WO1995032449A1 - Structure of conductive connecting portions, and liquid crystal display and electronic printer provided with the same - Google Patents

Structure of conductive connecting portions, and liquid crystal display and electronic printer provided with the same Download PDF

Info

Publication number
WO1995032449A1
WO1995032449A1 PCT/JP1995/000976 JP9500976W WO9532449A1 WO 1995032449 A1 WO1995032449 A1 WO 1995032449A1 JP 9500976 W JP9500976 W JP 9500976W WO 9532449 A1 WO9532449 A1 WO 9532449A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
conductive
fine particle
particle layer
adhesive
Prior art date
Application number
PCT/JP1995/000976
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Uchiyama
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO1995032449A1 publication Critical patent/WO1995032449A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/035Paste overlayer, i.e. conductive paste or solder paste over conductive layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a structure of a conductive connection portion between conductive terminal portions provided on a base, and to a connection structure of an external connection terminal of a liquid crystal display device and an electronic printing device using the same.
  • conductive connecting portions in which conductive terminal portions provided on two substrates are conductively connected to each other have been formed on various electronic devices and electric devices.
  • this conductive connection part if the conductive terminal part itself is fine or its forming bit becomes small, the connection work becomes difficult and a special connection method is used. For example, if the connection pitch of the connection terminals is 0.3 mm or less, soldering becomes difficult, and as shown in FIG. 40, the connection terminals 10 2 And an electrical connection structure in which electrical contact is made by making direct contact between the electrodes 104 and conductive particles 1 between the connection terminals 102 and 104 using an anisotropic conductive film 109 as shown in FIG. A method of establishing conduction through 08 is adopted.
  • the structure of the conductive connection portion is a transparent electrode such as ITO (Indium Tin in xide) patterned on a plastic substrate 103 such as polycarbonate.
  • the connection terminal 104 and the connection terminal 102 whose surface is tin-plated with a pattern of copper foil on a polyimide base film substrate 101 are bonded with an epoxy resin-based adhesive 100 Connection terminal by heating and pressurizing tool via 6
  • a crack 105 is generated in a portion (including a peripheral portion) where the connecting terminal 102 is in contact with the connecting terminal 104 of the ITO, and conduction cannot be taken from the beginning, or There was a problem that the conduction state became extremely unstable and sufficient connection reliability could not be obtained.
  • cracks 105 are formed vertically and horizontally at the part (including the peripheral part) where the connection terminal 102 comes into contact with the ITO connection terminal 104 of the substrate 103 by peeling off the connection part shown in FIG. It is confirmed that the connection terminal 104 of the ITO is cut off and no continuity is established.
  • a connection terminal 102 which is formed by patterning copper foil on a base film substrate 101 and tinning the surface, is connected to conductive particles 108, which are made of a plastic particle such as a polystyrene resin and have a Ni-Au plating process.
  • the connection is made via an anisotropic electric membrane 109 dispersed in an adhesive 107 containing a base resin as a main component.
  • FIG. 43 shows a state in which the connection portion shown in FIG. 42 is peeled off to expose the surface of the ITO connection terminal 104 of the substrate 103, and the surface is enlarged. Cracks 105 are formed all around or partially around the part where the conductive particles 108 are in contact with the ITO connection terminal 104 and the surrounding area, so that the connection part between the ITO connection terminal 104 and the conductive particle is cut off. Therefore, it was confirmed that there was no continuity.
  • an object of the present invention is to provide a structure capable of preventing breakage of a conductive terminal portion and performing a reliable conductive connection in a conductive connection portion between two substrates in order to solve the above-mentioned drawbacks. .
  • the present invention aims to secure the electrical connection of the fine conductive connection portion, stabilize the connection state, and secure a highly reliable connection, for example, a liquid crystal substrate of a liquid crystal display device or an electronic device. It is an object of the present invention to obtain a technology suitable for conductive connection of conductive terminal portions formed at a fine pitch, such as external connection terminals of a thermal printing head of a printing apparatus. Disclosure of the invention
  • the structure of the conductive connecting portion according to the present invention is a conductive connecting portion in which a first conductive terminal portion provided on a first base and a second conductive terminal portion provided on a second base are conductively connected.
  • a fine particle layer formed by depositing ultrafine particles of a conductive substance between the first conductive terminal portion and the second conductive terminal portion is formed.
  • the present invention is characterized in that the first conductive terminal portion and the second conductive terminal portion are conductively connected via a layer.
  • the average particle diameter of the ultrafine particles is preferably from about 6 O nm.
  • a fine particle layer formed by depositing ultrafine particles of a conductive substance is provided between a first conductive terminal provided on the first base and a second conductive terminal provided on the second base.
  • the conductive connection via the first and second conductive terminals allows the fine particle layer to absorb the stress applied between the first and second conductive terminals, thereby preventing cracks and the like from being generated in the conductive connection and preventing cracks and the like. Even if it occurs, the conductive connection can be secured by the change of the fine particle layer.
  • the ultrafine particles constituting the fine particle layer are filled in defective portions such as thinned terminals, broken terminals, and missing terminals of the first or second conductive terminal portion, and these particles are filled. Since defects can be complemented, connection failures caused by defects can be avoided.
  • the ultrafine particles increase the contact area that contributes to conduction between the first conductive terminal and the second conductive terminal, the resistance value of the conductive connection can be reduced. . For this reason, the electrical connection at the conductive connection portion is ensured, the connection state is stabilized, and a highly reliable conductive connection can be secured.
  • connection conditions temperature, pressure, mechanical accuracy, etc.
  • the fine particle layer is applied on the surface of the first conductive terminal portion, and that the second conductive terminal portion is brought into direct contact with the fine particle layer.
  • the fine particle layer is formed by a gas evaporation method.
  • the ultrafine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion through a nozzle. It is desirable that In the gas evaporation method, the fine particle layer can be formed relatively easily and inexpensively with good controllability, so that the conductive connection can be reliably performed without increasing the manufacturing cost. In particular, the formation of the fine particle layer by spraying through a nozzle does not require the formation of a mask or the like, and the layer can be formed with good selectivity even in a fine region. Can be.
  • the fine particle layer is applied on the surface of the first conductive terminal portion, and the second conductive terminal portion is conductively connected to the fine particle layer via a conductive adhesive. May be.
  • the fine particle layer may be adhered on the surface of the first conductive terminal portion, and the second conductive terminal portion may be conductively connected to the fine particle layer via an anisotropic conductive material.
  • first base may be a wiring board
  • second base may be an electronic element
  • At least one of the first and second substrates may be a glass substrate.
  • the other of the first and second substrates may be an electronic element.
  • the first or second substrate is a hard glass substrate
  • a highly reliable conductive connection can be obtained by connecting the conductive connecting portion thereon flexibly by deformation of the fine particle layer.
  • it is possible to correct defects such as thinned terminals, broken terminals, and missing terminals of the first or second conductive terminal portion.
  • At least one of the first and second substrates is a flexible plastic film substrate or a plastic substrate.
  • the other of the first and second substrates may be an electronic element.
  • the first or second substrate When the first or second substrate is a flexible plastic film substrate or a plastic substrate, the first or second substrate may be made flexible by heating or pressurized connection or pressurized connection due to deformation of the fine particle layer.
  • the occurrence of cracks in the conductive terminal portion is suppressed, and even if a crack occurs in the first or second conductive terminal portion, the ultra-fine particles are added to the crack portion to make the electrical connection state. Guaranteed.
  • a transparent conductive film is formed on the first base.
  • the second base may be an electronic element for driving a liquid crystal. Further, it is preferable that the fine particle layer is formed by a gas evaporation method.
  • the fine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion through a nozzle. Is desirable.
  • a liquid crystal display device it is possible to correct defects such as thinning, disconnection, and lack of terminals of external connection terminals of a liquid crystal substrate made of glass, a flexible plastic film substrate, a plastic substrate, or the like. Further, the external connection terminals on the liquid crystal substrate can be reinforced, and the resistance value of the external connection terminals can be reduced. Further, since the contact area in the conductive connection portion can be increased and the connection state can be stabilized, the connection resistance value of the conductive connection portion can be reduced. In particular, since a liquid crystal driving semiconductor chip or an electronic element on which the liquid crystal driving semiconductor chip is mounted can be easily connected to an external connection terminal of a liquid crystal substrate, a liquid crystal display device having a shape optimal for product formation and application can be provided. Furthermore, the range of appropriate connection conditions (temperature, pressure, mechanical accuracy, etc.) in the connection process can be widened, and a good yield, efficient terminal connection, and an inexpensive liquid crystal display device can be provided.
  • the first base is a thermal head and the first conductive terminal is an external connection terminal of the thermal head.
  • the second substrate is formed of a semiconductor chip for driving a thermal printing head. In some cases.
  • the fine particle layer is formed by a gas evaporation method.
  • the fine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion via a nozzle. It is desirable.
  • an electronic printing device it is possible to correct defects such as thinned, disconnected and missing terminals of the external connection terminals of the thermal printer head. Further, the resistance value of the external connection terminal itself can be reduced. Furthermore, since the contact area in the conductive connection portion can be increased and the connection state can be stabilized, the connection resistance value of the conductive connection portion can be reduced. In particular, since the semiconductor chip itself for driving the thermal print head and the electronic device equipped with the semiconductor chip for driving the thermal print head can be easily connected to the external connection terminal of the thermal print head, the product form and the It is possible to provide an electronic printing device having a shape optimal for the application.
  • connection process can be widened, and the terminal connection can be efficiently performed with good yield, and an inexpensive electronic printing device can be provided.
  • FIG. 1 is a sectional view showing a main part of one embodiment of the present invention.
  • FIG. 2 is a sectional view showing a main part of one embodiment of the present invention.
  • FIG. 3 is a perspective view showing one embodiment of the present invention.
  • FIG. 4 is a schematic view showing a working method according to one embodiment of the present invention.
  • FIG. 5 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 6 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 7 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 8 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 9 is a perspective view showing another embodiment of the present invention.
  • FIG. 10 is a schematic view showing a processing method according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing a main part of another embodiment of the present invention,
  • FIG. 7 is a perspective view showing another embodiment of the present invention.
  • FIG. 15 is a perspective view showing a main part of another embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • ⁇ FIG. 18 is a schematic diagram showing a processing method of another embodiment of the present invention, FIG. Is a cross-sectional view showing a main part of another embodiment of the present invention,
  • FIG. 20 is a cross-sectional view showing a main part of another embodiment of the present invention,
  • FIG. 22 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 24 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 24 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a main part of one embodiment of the present invention.
  • FIG. 26 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 27 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 28 is a perspective view showing another embodiment of the present invention.
  • FIG. 29 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • ⁇ FIG. 30 is a cross-sectional view showing a main part of another embodiment of the present invention.
  • FIG. 1 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 32 is a perspective view showing another embodiment of the present invention.
  • FIG. 33 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 34 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 35 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 36 is a perspective view showing another embodiment of the present invention.
  • FIG. 37 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 38 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 39 is a sectional view showing a main part of another embodiment of the present invention.
  • FIG. 40 is a cross-sectional view showing a conventional conductive connection portion.
  • FIG. 41 is a diagram showing a substrate peeling surface of a conventional conductive connection portion.
  • FIG. 42 is a cross-sectional view showing another conventional conductive connection portion.
  • FIG. 43 is a view showing a substrate peeling surface of another conventional conductive connection portion.
  • FIGS. 1 and 2 are cross-sectional views showing main parts of a first embodiment of the structure of a conductive connection portion according to the present invention, which are cut along planes perpendicular to each other to show a main part.
  • a connection terminal 2 made of a conductive metal thin film is formed, and a similar connection terminal 4 is formed on the other substrate 5.
  • a fine particle layer 1 on which ultrafine particles are deposited is applied to part or all of the surface of the connection terminal 2.
  • the fine particle layer 1 and the connection terminal 4 are arranged so as to be in contact with each other, the adhesive 6 is filled around the contact portion, and the substrate 3 and the substrate 5 are connected to each other. It is fixed so as to be sandwiched between the connection terminal 4.
  • FIG. 3 is a perspective view of one embodiment of the structure of the conductive connection portion, and shows a state in which the connection terminal 2 of the substrate 3 and the connection terminal 4 of the substrate 5 are connected.
  • Section A—A in FIG. 3 corresponds to FIG. 1, and section B—B corresponds to FIG.
  • FIG. 4 is a schematic view showing a method for forming a fine particle layer 1 formed by depositing ultrafine particles on the surface of the connection terminal 2 of the substrate 3.
  • the fine particle layer 1 is formed by a gas evaporation method (gas deposition method) shown in FIG.
  • gas evaporation method gas deposition method
  • the raw material constituting the ultrafine particles is evaporated by various methods such as resistance heating, induction heating, laser heating, electron beam heating, and the like, and the vapor is conveyed by a flow of inert gas. This is a method of depositing ultra-fine particles at a predetermined location.
  • the raw material B is evaporated in the high-pressure ultrafine particle generation chamber A to which the inert gas G is supplied, and the vapor is diffused into the inert gas. Vapor is sprayed onto the surface of the connection terminal 2 of the substrate 3 from the nozzle 13 opened in the film forming chamber C maintained at a low pressure while being transported through 12 to deposit desired ultrafine particles to form a film. Things.
  • the fine particle layer 1 having a desired shape and thickness can be formed on the surface of the connection terminal 2 of the substrate 3. Further, by controlling the pressure difference and the temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness, and the like of the fine particles 1 can be made desired.
  • the gap between the nozzle 13 and the adherend is 0.3 to 0.5 mm.
  • the width of the fine particle layer 1 is 31 to 36 m.
  • the width of the fine particle layer 1 is 105 to 120 ⁇ .
  • This formation width depends on the pressure difference between the ultrafine particle generation chamber and the film formation chamber and the pressure in the film formation chamber, in addition to the nozzle inner diameter and the gap. Generally, the larger the pressure difference and the higher the pressure in the film forming chamber, the larger the fine particle formation width tends to be. However, if the pressure in the film forming chamber is 10 Torr or less, there is no significant effect.
  • the fine particle layer 1 was formed under the film forming condition that a formation width almost similar to the inner diameter of the nozzle 13 was obtained as described above.
  • an Ag fine particle layer 1 is formed on the surface of a connection terminal 2 made of 18 // m thick copper foil formed on a 0.4 mm thick glass epoxy substrate 3.
  • the pressure difference between the ultrafine particle generation chamber A and the film formation chamber C was set as lOOOTrr, and the temperature of the film formation chamber C was room temperature (about 25 ° C).
  • the Ag fine particle layer 1 ultrafine particles having an average particle diameter of about 60 nm were deposited with some gaps.
  • the thickness of the fine particle layer 1 is 0.5 to 2.0 ⁇ m.
  • a connection formed by patterning an 18 / m thick copper foil on an 18 / zm thick polyimide base film substrate 5 on the surface of the fine particle layer 1 on the connection terminal 2 thus formed Terminal 4 was fixed via adhesive 6.
  • the adhesive 6 may be applied to the upper portion of the connection terminal 2 or the connection terminal 4, or the adhesive 6 may be formed in a sheet shape in advance on the corresponding portion of the connection terminal 2 or the connection terminal 4, and the adhesive sheet may be formed. It may be placed on the substrate 3 or the substrate 5.
  • SBS styrene-butadiene-styrene
  • the adhesive 6 is disposed between the connection terminal 2 and the connection terminal 4, The adhesive 6 is cured by pressing the heating / pressing head against the substrate 5, and the substrate 3 and the substrate 5 are fixed.
  • a fine particle layer adhered to the surface of the connection terminal 2 1 and the connection terminal 4 are in direct contact with each other to establish electrical continuity, and the adhesive 6 filled on and between the terminals is mechanically fixed and held in this state. It protects from the external environment (eg, temperature, corrosive gas, dust, etc.) and stabilizes the connection.
  • an adhesive 6 containing an epoxy-based component as the main component was used, and the heating and pressurizing were performed at a temperature of 175 ° (with a pressure of 3 MPa and a time of 20 seconds.
  • the conductive connection performed was performed at a constant forming pitch.
  • a plurality of parallel connection terminals are conductively connected to each other, and the number of connection terminals is 200 m and the number of connection terminals is 320.
  • a humidity resistance test 60 ° C , 90% RH
  • thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) 500 cycles were performed, but a stable connection state was maintained even after this connection reliability evaluation.
  • metals such as Au, Cu, Zn, Pd, and Sn, and Cu—Zn, Au—Zn, and Ag—Pd
  • conductive materials such as alloys, other metallic materials such as high-temperature superconducting materials, carbon other than metals, and conductive resins can be used.
  • the particle diameter of the ultrafine particles deposited in the fine particle layer 1 can be from 60 nm to 3 m, which can be used by appropriately selecting the gas deposition conditions.
  • the thickness of the ultrafine particle layer is set to be equal to or larger than the particle size of the formed ultrafine particles.
  • the thickness of the fine particle layer is preferably in the range of 0.1 / m to 3.0 ⁇ 1.
  • the upper limit of the thickness is desirably determined in consideration of the layer width that increases as the thickness increases and the pitch at which the connection terminals are formed. It is not necessary to limit the upper limit to the above range.
  • the thickness is 0.3 to 0.6 ⁇ m, and when the fine particle layer 1 is connected via a conductive adhesive as described later. It is particularly preferable that the thickness be in the range of 1.5 to 2.5 zm and in the case of connection through an anisotropic conductive film, in the range of 2.5 to 3.5 m. This is because, when a conductive adhesive or an anisotropic conductive film is interposed, a certain degree of flexibility is required for the fine particle layer 1 in order to surely make contact with the conductive particles.
  • the narrowing or disconnection of the terminal width of the connection terminal 2 can be repaired by covering or filling the ultrafine particles of the fine particle layer 1, and the connection width or the connection length with the connection terminal 4 can be repaired. , The connection resistance can be reduced, and the conductive connection state can be stabilized.
  • the fine particle layer 1 functions as a cushion material by forming the fine particles of fine particles of about 60 nm in a state where there is a gap between the particles, so that the connection terminal 2 or the connection terminal 4 is formed.
  • the unevenness of the connection terminal 2 or the connection terminal 4 can be reduced to increase the connection area, reduce the connection resistance value, and stabilize the connection state it can.
  • the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 are directly connected, a connection failure will occur unless a short between terminals due to a misalignment of the terminal alignment or a misalignment during the heating and pressurizing connection. Since other factors are not included, miniaturization of the formation pitch of the connection terminals becomes easy.
  • FIGS. 5 and 6 are cross-sectional views showing a main part of a second embodiment of the structure of the conductive connecting portion according to the present invention. Part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with a fine particle layer 1 on which ultrafine particles are deposited, and the fine particle layer 1 on the connection terminal 2 and the connection formed on the other substrate 5 are formed. Terminal 4 is They are connected via a conductive adhesive 7.
  • Example 2 as in Example 1, the structure of the conductive connection portion is shown in FIG. 3, and the cross section A—A in FIG. 3 corresponds to FIG. 5, and the cross section BB in FIG. 6 corresponds to FIG. are doing.
  • connection terminals 2 a plurality of connection terminals 2 arranged in parallel are formed on a 1 mm-thick alumina-based substrate 3 by patterning with a 2111-thick Pt paste.
  • a fine particle layer 1 made of ultra-fine Au particles is formed by the same gas evaporation method as in Example 1 shown in FIG.
  • the ultrafine particles were formed under the condition that the pressure difference between the ultrafine particle generation chamber A and the film formation chamber C was 1 atm and the temperature of the substrate 3 in the film formation chamber was 200 ° C.
  • the ultrafine particles in the Au fine particle layer 1 had an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 2 to 4 m.
  • connection terminal 4 formed by patterning an 18 m thick polyimide base film substrate 18 with an 18 m thick copper foil through a conductive adhesive 7.
  • This conductive adhesive 7 is prepared by mixing and dispersing Ag having a particle diameter of 0.1 to 5 m in an adhesive of a single type or a mixture or a plurality of compounds of epoxy type, acrylic type, polyester type, urethane type, etc. It was done.
  • the conductive adhesive 7 is selectively arranged on the surface of the fine particle layer 1 or the connection terminal 4 by screen printing, dispensing, or the like. Thereafter, the substrate 3 and the substrate 5 are positioned and overlapped. When a thermosetting or a blended type of thermoplastic and thermosetting adhesive is used as the conductive adhesive 7, the conductive adhesive 7 is disposed between the connection terminal 2 and the connection terminal 4. In this state, the heating and pressurizing head is pressed against the substrate 5 to cure and bond it. Also, although not shown, this connection part is connected to the external environment (for example, humidity, corrosive gas, dust, etc.). To protect, between connection terminals or conductive connection The entire part may be covered with a synthetic resin mold material.
  • a conductive adhesive 7 in which silver powder having a particle diameter of 1 to 2 m is mixed and dispersed in an adhesive mainly composed of an epoxy-based material
  • the connection was made under the conditions of 3 MPa and a time of 20 seconds.
  • the formation pitch of the connection terminals is 23 O ⁇ m, and the number of terminals is 320 terminals.
  • the conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (-30 minutes at -30 ° C, 30 minutes at 80 ° C) for 500 cycles. Even after the connection reliability evaluation, a stable connection state was secured.
  • the material of the ultrafine particles other metals such as Ag, Cu, Zn, Pd, and 311 (alloys such as 11-21, Au-Sn, and octane?
  • Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 ⁇ m can be used by appropriately selecting the conditions for gas deposition.
  • the conductive adhesive 7 is interposed to complement the unevenness of the connection terminal 2 or the connection terminal 4 or the unevenness of the connection terminal 2 and the connection terminal 4 to further increase the connection area.
  • the connection resistance can be reduced and the connection state can be stabilized.
  • the conductive material in the conductive adhesive 7 carbon particles of 0.1111 to 3111 can be used, and in this case, the connection resistance value is higher than that of silver. In addition, the material cost is reduced, and migration does not occur.
  • FIGS. 7 and 8 are cross-sectional views showing a main part of a third embodiment of the structure of the conductive connection portion according to the present invention. Part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with a fine particle layer 1 formed by depositing ultrafine particles, The connection terminal 2 and the connection terminal 4 formed on the other substrate 5 are connected via an anisotropic conductive material 8.
  • FIG. 3 shows a conductive connection portion.
  • a cross section AA in FIG. 3 corresponds to FIG. 7, and a cross section BB in FIG. 8 corresponds to FIG.
  • a plurality of parallel connection terminals 2 formed by patterning with a 2 m-thick Ag—Pt paste are provided on a substrate 3 made of an alumina substrate having a thickness of 1 mm.
  • Ultrafine particles of All are deposited on the surface of the connection terminal 2 by the in-gas evaporation method shown in FIG.
  • the film was formed by setting the pressure difference between the ultrafine particle generation chamber A and the film generation chamber C to 100 Torr, and setting the temperature of the substrate 3 in the film formation chamber C to 120 ° C.
  • the average particle diameter of the ultrafine Au particles in the fine particle layer 1 was about 3 zm.
  • the thickness of the fine particle layer 1 is 3 to 8 ⁇ m.
  • connection terminal 4 On the fine particle layer 1 on the connection terminal 2, a connection terminal 4 in which an 18 / m-thick polyimide base film substrate 5 is patterned with 18 / m-thick copper foil is connected via an anisotropic conductive material 8. Have been.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and exhibits a property having conductivity only in the layer thickness direction by applying a pressure in the layer thickness direction.
  • This anisotropic conductive film is mainly composed of an adhesive 10 in which conductive particles 9 are dispersed.
  • the conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., composite metal particles made of alloy, plating, etc., plastic particles (polystyrene, polycarbonate, acrylic, Dibenenylbenzene, etc.), Ni, Au, Cu, Fe, etc., singly or multiplely plated particles, carpon particles, etc.
  • the adhesive 10 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • This anisotropic conductive material 8 is arranged between the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 of the substrate 5, and the material of the anisotropic conductive material is thermosetting or thermoplastic and thermosetting.
  • the anisotropic conductive film (anisotropic conductive material 8) was used, and the heating and pressing conditions were a temperature of 175, a pressure of 3 MPa, and a time of 20 seconds.
  • the formation bit of the connection terminals 2 and 4 is 200 m, and each terminal has 320 terminals.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive.
  • This anisotropic adhesive is mainly composed of an adhesive in which conductive particles are dispersed. These conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn and the like, composite metal particles of alloys, plating, etc., plastic particles (polystyrene, polycarbonate, acrylic, etc.). , Dibenylbenzenes, etc.), and particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles.
  • the adhesive is a single or a mixture or compound of styrene butadiene styrene (SBS), ethoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed on the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser. It is.
  • a thermosetting or thermoplastic / thermosetting blend adhesive is used for the anisotropic conductive adhesive, a hardening connection is made by pressing the heating and pressing head against the substrate 5. .
  • the molding material may be used to cover between the terminals or the entire connection portion. Good.
  • the conductive particles 9 complement the unevenness of the connection terminal 2 and / or the connection terminal 4 by interposing the anisotropic conductive material, and a large number of particles contribute to conduction. As a result, the connection resistance value can be reduced and the connection state can be stabilized.
  • the anisotropic conductive material has an insulating property in the plane direction, the application process of the anisotropic conductive material is extremely easy even when conductively connecting fine pitch connection terminals.
  • FIG. 11 is a cross-sectional view showing a main part of a fourth embodiment of the conductive connection structure according to the present invention. Part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with a fine particle layer 1 made of ultrafine particles, and the connection terminal 2 and the bump 17 formed on the semiconductor chip 16 are in direct contact with each other. In this state, it is fixed by the adhesive 6.
  • FIG. 9 is a perspective view showing the overall configuration of the conductive connection structure, in which connection terminals 2 of a substrate 3 are connected to bumps 17 formed on a chip 16 for mounting a semiconductor element.
  • Section A—A in FIG. 9 corresponds to FIG.
  • FIG. 10 is a schematic diagram showing a situation when the fine particle layer 1 is formed on the surface of the connection terminal 2 of the substrate 3.
  • the vapor generated in the ultrafine particle generation chamber (not shown) by the same gas evaporation method as described above is transported by the gas and fine particle flow 11 through the transfer pipe 12 to form the film formation chamber (generally shown in FIG. 10).
  • Stuff A fine particle layer 1 is formed by spraying ultra-fine particles from the nozzles 13 located in the chamber 13) onto the surface of the connection terminal 2 of the substrate 3.
  • a fine particle layer 1 made of ultrafine Ag particles was formed on the surface of a 3 m thick Cu connection terminal 2 formed on a substrate 3 of a low-temperature fired ceramic substrate having a pressure of 0.8 mm. Has formed.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , and the temperature of the film formation chamber was set to room temperature (about 25 ° C).
  • the Ag fine particle layer 1 was formed with a gap between ultrafine particles having a particle diameter of about 60 nm.
  • the thickness of the particle layer 1 is 0.3 to 2 is zm c Panbu 1 7 of the semiconductor chip 1 6 fine particle layer on the surface of the connection terminal 2 is connected via an adhesive 6.
  • the adhesive 6 is a single compound or a mixture or compound of styrene-butadiene styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, urethane-based and the like.
  • SBS styrene-butadiene styrene
  • This adhesive 6 is arranged between the connection terminal 2 and the semiconductor chip 16, and when a thermosetting adhesive or a blend of thermoplastic and thermosetting is used as the adhesive 6, heat is applied. A hardening connection is made by pressing a pressure head against the semiconductor chip 16.
  • an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed. Connection was performed under the conditions of a temperature of 175 ° C, a pressure of 0.2 MPa, and a time of 20 seconds.
  • the formation pitch of the connection bumps is 12 O / zm, and the number of bumps is 100.
  • the conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (30 ° C for 30 minutes and 80 ° C for 30 minutes) for 500 cycles. Even after this connection reliability evaluation, a stable connection state was secured.
  • the ultrafine particles of the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds the state.
  • this connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • the material of the fine particle layer 1, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metal materials or conductive materials can be used.
  • those particles meter ultrafine particles is 3 to 60 nm Gasudeboji: usable by appropriately selecting the conditions for N'yon.
  • the narrowing or disconnection of the connection terminal 2 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 17 can be secured to the maximum, and the connection can be secured.
  • the resistance value can be reduced and the connection state can be stabilized.
  • the fine particle layer 1 acts as a cushion material, and the unevenness of the connection terminal 2 or the bump 17 is formed.
  • the connection area can be increased by relaxing the unevenness of the connection terminal 2 and the bump 17, so that the connection resistance value can be reduced and the connection state can be stabilized.
  • the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 are directly connected, a misalignment will occur unless a short circuit between the terminals due to misalignment due to misalignment at the time of heating and pressurizing connection. It is possible to miniaturize the pitch of the connection terminals or bumps as long as the above factor is not included.
  • FIG. 12 is a sectional view showing a main part of a fifth embodiment of the conductive connection structure according to the present invention.
  • Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3.
  • Particle layer 1 on connection terminal 2 and bump 17 of semiconductor chip 16 are electrically conductive adhesive 7. Connected through.
  • the present embodiment similarly to the fourth embodiment, it has the entire configuration as shown in FIG. 9, and the connection terminals 2 of the substrate 3 and the bumps 17 of the semiconductor chip 16 are connected.
  • Section A—A in FIG. 9 corresponds to FIG.
  • connection terminal 2 is formed by patterning a 1111-thick alumina base substrate 3 with a 2111-thick Pt paste.
  • a fine particle layer 1 of Au is formed by the in-gas evaporation method shown in FIG. 10 similarly to the fourth embodiment.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 1 atm, and the temperature of the substrate 3 in the film formation chamber was set at 200 ° C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is l ⁇ 3> tm.
  • the bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 on the surface of the connection terminal 2 via the conductive adhesive 7.
  • the conductive adhesive 7 is a single or multiple mixture or compound of epoxy-based, acrylic-based, polyester-based, or urethane-based adhesive, and contains silver having a particle size of 0.1 to 5 ⁇ m.
  • the conductive adhesive 7 is disposed between the connection terminal 2 and the bump 17.
  • the conductive adhesive 7 is arranged by a known method such as screen printing and dispensing.
  • thermosetting or blend of thermoplastic and thermosetting conductive adhesive 7 In the case where Eve's adhesive is used, a hardening connection is made by pressing a heating / pressing head against the semiconductor chip 16.
  • a conductive adhesive 7 was used in which silver powder with a particle size of 1 to 2 m was mixed and dispersed in an adhesive whose main component was an epoxy-based resin. The test was performed under the conditions of 2 MPa and a time of 20 seconds. The formation pitch of the connection terminals and bumps is 12 O ⁇ m, and the number of these formed is 100.
  • the conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30.C, 30 minutes at 80.C) for 500 cycles. Even after the connection reliability evaluation, a stable connection state was secured.
  • connection parts In order to protect these connection parts from the external environment (for example, humidity, corrosive gas, dust, etc.), between the connection terminals or the whole connection part is covered with a molding material. .
  • the material of the fine particle layer 1
  • other metals such as Ag, Cu, Zn, Pd, and Sn
  • alloys such as Cu—Zn, Au—Sn, and Ag—Pd
  • metals such as high-temperature superconducting materials
  • Materials or conductive materials can be used.
  • Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • connection area can be increased by complementing the unevenness of the connection terminal 2 or the bump 17 or the unevenness of the connection terminal 2 or the bump 17.
  • the connection resistance can be reduced and the connection state can be stabilized.
  • the conductive material in the conductive adhesive 7 it is possible to use carbon particles having a force of 0.1 l ⁇ m to 3 / m, and in this case, the connection resistance value is higher than that in the case of Ag.
  • the material cost is low, and there is no need to take measures to prevent the occurrence of migration, etc., and inexpensive and highly reliable terminal connections can be made.
  • FIG. 13 is a sectional view showing a main part of a sixth embodiment of the conductive connection structure according to the present invention.
  • Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3, and connection terminal 2 and pump 17 of semiconductor chip 16 are connected via anisotropic conductive material 8. ing.
  • This embodiment has the same overall configuration as that of the fourth embodiment shown in FIG. 9, and the cross section AA of FIG. 9 corresponds to FIG.
  • connection terminal 2 is formed by patterning a 2 / zm-thick Ag—Pt paste on a 1 mm-thick alumina substrate 3.
  • a fine particle layer 1 made of ultrafine Au particles is formed by the in-gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set at 3 atm, and the temperature of the substrate 3 in the film formation chamber was set at 250 ° C to form a film.
  • the ultrafine particles of Au in the fine particle layer 1 had an average particle diameter of about 0.5 m.
  • the thickness of the fine particle layer 1 is 0.5-4 / m.
  • the bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of an adhesive 10 in which conductive particles 9 are dispersed.
  • the conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., composite metal particles made of alloys, plating, etc., and plastic particles (polystyrene, polycarbonate, acrylic, Diphenylbenzene-based particles), or particles of Ni, Au, Cu, Fe, etc., or carbon particles.
  • the adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acryl, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • This anisotropic conductive material 8 is connected When placed between the fine particle layer 1 on the surface of the connection terminal 2 and the bumps 17 of the semiconductor chip 16 and using a thermosetting or thermoplastic and thermosetting blend type adhesive for the anisotropic conductive film A hardening connection is made by pressing a heating and pressing head against the semiconductor chip 16.
  • the particle size is 1! 3> m polystyrene-based plastic particles with 1> m thick Ni plating and 0.5; m-thick Au plating conductive particles 9 in epoxy-based adhesive 10
  • anisotropic conductive film anisotropic conductive material 8
  • connection was made under the conditions of heating and pressing at a temperature of 175 C, a pressure of 10 gf / bump, and a time of 30 seconds.
  • the formation pitch of the connection terminals or bumps is 10 Om, and the number of these is 120.
  • Moisture resistance test 60.C, 90% RH
  • thermal cycle test (30 minutes at 30 ° C and 30 minutes at 80 ° C
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzenes, etc.), or particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles.
  • the adhesive is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is known in the art such as a printing method and a dispensing method using a dispenser. It is arranged at the connection part of the connection terminal 2 by the method.
  • a thermosetting or thermoplastic and thermosetting blend type adhesive is used as the anisotropic conductive adhesive
  • the semiconductor chip 16 is cured by pressing a heating and pressing head against the semiconductor chip 16.
  • connection or the entire semiconductor chip may be covered with a molding material. Good.
  • the material of the ultrafine particles other metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and octane (1st, etc.) Alloys, high-temperature superconducting metal materials or conductive materials can be used, and ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition. is there.
  • the conductive particles 9 complement the unevenness of the connection terminal 2 or the bump 17 or the unevenness of the connection terminal 2 and the bump 17 by interposing the anisotropic conductive material 8. A large number of particles contribute to conduction, reducing the connection resistance and stabilizing the connection state.
  • This embodiment has the same main parts as those of the first embodiment shown in FIGS. That is, the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3, and the fine particle layer 1 on the connection terminal 2 and the connection terminal 4 formed on the substrate 5 are bonded. Connected via agent 6.
  • connection terminal 2 of the substrate 3 and the connection terminal 4 of the substrate 5 are connected via the fine particle layer 1.
  • Section A—A in FIG. 3 corresponds to FIG. 1
  • section B—B corresponds to FIG.
  • connection terminals 2 of I TO Indium T in 0 xide
  • a fine particle layer 1 formed by depositing ultrafine Ag particles is formed on the surface of the connection terminal 2 by the in-gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 1 O OTorr, and the film formation was performed under the condition that the temperature of the film formation chamber was room temperature (about 25 ° C).
  • This Ag fine particle layer 1 was formed with a gap between ultrafine particles having a particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.5 m.
  • connection terminal 4 in which a 18 / m-thick polyimide base film substrate 5 is patterned with an 18 / m-thick copper foil is connected to the fine particle layer 1 on the connection terminal 2 via a bonding agent 6.
  • styrene-butadiene-styrene (SBS) -based, eboxy-based, acrylic-based, polyester-based, urethane-based, or a mixture or compound of a plurality of them can be used.
  • This adhesive 6 is disposed between the connection terminal 2 and the connection terminal 4, and when an adhesive of a thermosetting or a blend type of a thermoplastic and a thermosetting is used as the adhesive 6, heating and pressing are performed.
  • the connection is made by pressing the head against the substrate 5.
  • a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the substrate 5 and the substrate 3 (glass substrate) is irradiated with UV to cure the adhesive.
  • the adhesive 6 mainly composed of an epoxy was used, and the heating and pressurizing were performed at a temperature of 175 ° C, a pressure of 3 MPa, and a time of 20 seconds.
  • the formation pitch of the connection terminals is 200 zm, and the number of terminals is 320.
  • This conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (one for 30 minutes at 30 ° C and 30 minutes at 80 ° C) for 500 cycles.
  • a stable connection state was secured even after the connection reliability evaluation.
  • the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 are in direct contact with each other for electrical conduction, and the adhesive 6 mechanically fixes and holds this state. (Eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • the material of the fine particle layer 1
  • other metals such as Au, Cu, Zn, Pd, and Sn
  • alloys such as Cu—Zn, Au—Sn, and Ag—Pd
  • metals such as high-temperature superconducting materials
  • Materials or conductive materials can be used.
  • Ultrafine particles with a particle size of 60 nm to 3 zm can be used by appropriately selecting the conditions for gas deposition.
  • repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate are complicated processing steps.
  • the advantage is that it can be easily done without the need for
  • FIGS. 5 and 6 The main parts of this embodiment are shown in FIGS. 5 and 6 similarly to the second embodiment. Partial or entire surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 2 and the connection terminal 4 formed on the substrate 5 are electrically conductive adhesive 7. Connected through.
  • the overall configuration of the present embodiment is the same as that of the seventh embodiment shown in FIG. 3, in which section AA in FIG. 3 corresponds to FIG. 5, and section BB in FIG. 6 corresponds to FIG.
  • a connection terminal 2 is formed on a 1.1 mm thick glass substrate 3 by patterning an 80 OA thick ITO.
  • a fine particle layer 1 formed by depositing ultra fine particles of Au is formed on the surface of the connection terminal 2.
  • the fine particle layer 1 is formed of Au ultrafine particles by the in-gas evaporation method shown in FIG.
  • Ultrafine particle generation chamber and film formation chamber The pressure was set to 3 atm, and the temperature of the substrate 3 in the film formation chamber was set to 100 ° C. to form a film.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 1-3.
  • connection terminal 4 in which an 18-thick copper foil is patterned on an 18-m-thick polyimide base film substrate 5 is adhered via a conductive adhesive 7.
  • This conductive adhesive 7 is prepared by mixing Ag having a particle size of 0.1 to 5111 into an adhesive of a single or a plurality of mixtures or compounds of epoxy, acrylic, polyester, urethane, etc. It is dispersed.
  • the conductive adhesive 7 is disposed between the connection terminal 2 and the connection terminal 4, and the conductive adhesive 7 is a thermosetting or a blend of thermoplastic and thermosetting adhesive. In this case, a hardening connection is made by pressing a heating and pressing head against the substrate 5.
  • connection was made under the condition of a time of 20 seconds.
  • the formation pitch of the connection terminals is 230 m, and the number of terminals is 320.
  • the conductive connection thus formed was subjected to a humidity resistance test (60 eC , 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 500 cycles. Carried out. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • connection portion in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a molding material.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, Further, a metal material such as a high-temperature superconducting material or a conductive material can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions of gas deposition.
  • This embodiment includes the main parts shown in FIGS. 7 and 8 similarly to the third embodiment.
  • Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3, and fine particle layer 1 on connection terminal 2 and connection terminal 4 formed on substrate 5 are anisotropic. They are connected via conductive material 8.
  • the entire configuration shown in FIG. 3 is provided, and the cross section A—A in FIG. 3 corresponds to FIG. 7, and the cross section BB in FIG. ing.
  • connection terminals 2 are formed on a 0.7 mm thick glass substrate 3 by patterning with a 100 A thick ITO.
  • the pressure was set to 3 atm, and the temperature of the substrate 3 in the film forming chamber was 100 ° C. to form a film.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 1 to 3 m.
  • connection terminal 4 obtained by patterning a 18 xzm thick polyimide base film substrate 5 with 18 xm thick copper foil is used. • Connected via anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of an adhesive 10 in which conductive particles 9 are dispersed.
  • the conductive particles 9 include solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., composite metal particles such as alloys and platings, plastic particles (polystyrene, poly-polynate, acrylic) Particles, such as Ni, Au, Cu, Fe, etc., or carbon particles.
  • the adhesive 10 is a single compound or a mixture or compound of a plurality of styrene butadiene styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, and urethane-based materials.
  • SBS styrene butadiene styrene
  • This anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 on the substrate 5, and the anisotropic conductive film is made of thermosetting or thermoplastic resin.
  • the connection is cured by pressing the heating and pressing head against the substrate 5.
  • a UV (ultraviolet) curable adhesive is used for the anisotropic conductive film, the pressure head is pressed against the substrate 5 and UV is irradiated from the connection terminal 2 (glass substrate side) side. And cure.
  • the particle diameter is 5 ⁇ !
  • the mixed and dispersed anisotropic conductive film (anisotropic conductive material 8) was used.
  • C pressure 3MPa, time 20 seconds.
  • the formation pitch of the connection terminals is 200 m, and the number of terminals is 320.
  • the conductive connection thus formed was subjected to a humidity resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 500 cycles. As a result, a stable connection state is maintained even after these connection reliability evaluations. Had been.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles may be solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, diphenylbenzene, etc.). Particles, such as Ni, Au, Cu, Fe, etc., and carbon particles.
  • the adhesive is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser.
  • a thermosetting or a blend of thermoplastic and thermosetting adhesives is used as the anisotropic conductive adhesive, a hardening connection is made by pressing a heating and pressing head against the substrate 5.
  • a UV adhesive is used as the anisotropic conductive adhesive, a pressure head is pressed against the substrate 5, and the substrate 3 (glass substrate) is irradiated with UV light to be cured.
  • connection portion in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a molding material.
  • the material of the ultrafine particles other metals such as Ag, Cu, Zn, Pd, and 311 (alloys such as 11-21, Au-Sn, and octane (1 series), and ultra-high-temperature conductive materials
  • Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • repair, reinforcement, and low resistance of the thin film connection terminals such as ITO formed on the surface of the glass substrate are reduced.
  • This embodiment includes the main part shown in FIG. 11 similarly to the fourth embodiment, and the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3.
  • the fine particle layer 1 on 2 and the bumps 17 formed on the semiconductor chip 16 are connected via an adhesive 6.
  • FIG. 9 is a perspective view of the present embodiment, and a cross section AA of FIG. 9 corresponds to FIG.
  • connection terminal 2 having a thickness of 70 OA and an Ni layer having a thickness of 2 m formed thereon is provided on a 0.7 mm thick glass substrate 3. Is formed.
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by the in-gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 100 Torr, and the film was formed at room temperature (about 25 ° C).
  • This Ag fine particle layer 1 was formed in a state where there was a gap between the ultrafine particles having a particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.5 m.
  • the pump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the adhesive 6.
  • Styrene-butadiene-styrene (SB S) system as the adhesive 6 epoxy, acrylic, Poriesu ether-based, is a single or a plurality of mixture or compound of urethane or the like (the adhesive 6 connecting terminal 2 and the semiconductor chip Placed between 1 and 6 bumps 1 ⁇ and this adhesive 6 is thermosetting or a blend of thermoplastic and thermosetting
  • a type of adhesive is used, a hardening connection is made by pressing a heating and pressing head against the semiconductor chip 16.
  • a UV hardening adhesive is used as the adhesive 6, a pressure head is pressed against the semiconductor chip 16 and the substrate 3 (glass substrate) is irradiated with UV light to be cured.
  • an adhesive 6 mainly composed of epoxy is used, and the heating and pressing are performed at a temperature of 175. C, pressure 0.2 MPa, time 20 seconds.
  • the formation pitch of the connection terminals and bumps is 120 m, and the number of terminals and the number of bumps are 100.
  • the conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 500 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • connection terminal 2 and the bump 17 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. (Eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • the material of the fine particle layer 1, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials
  • Metallic or conductive materials can be used.
  • Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • Example 11 This embodiment has the same main parts as in Embodiment 5 shown in FIG. 12, and the fine particles 1 cover part or all of the surface of the connection terminal 2 formed on the substrate 3, The fine particle layer 1 on the connection terminal 2 and the bump 17 of the semiconductor chip 16 are connected via a conductive adhesive 7.
  • the structure of the conductive connection portion having the entire configuration shown in FIG. 9 is provided, and the cross section AA in FIG. 9 corresponds to FIG.
  • a connection terminal 2 is formed on a glass substrate 3 having a thickness of 0.7 mm by patterning with ITO having a thickness of 1000 A.
  • a fine particle layer 1 formed by depositing ultra-fine particles of Au is formed by a gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to ⁇ , ⁇ ⁇ ⁇ ⁇ ⁇ , and the temperature of the substrate 3 in the film formation chamber was set to 120 ° C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 3 / zm.
  • the thickness of the fine particle layer 1 is 3 to 8 m.
  • the bump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the conductive adhesive 7.
  • the conductive adhesive 7 may be an epoxy, acrylic, polyester, urethane, or other single or mixed or compounded adhesive having a particle size of 0.1 to 5 / m. Are mixed and dispersed.
  • This conductive adhesive 7 is disposed between the contact terminal 2 and the bump 17, and when a thermosetting or a blend of thermoplastic and thermosetting is used as the conductive adhesive, The hardening connection is performed by pressing the heating and pressing head against the semiconductor chip 16.
  • a pressure head is pressed against the semiconductor chip 16 and cured by irradiating UV rays from the substrate 3 (glass substrate) side.
  • a conductive adhesive 7 was used in which silver powder with a particle size of 1 to 2 m was mixed and dispersed in an adhesive mainly composed of an epoxy resin, and heating and pressing were performed at a temperature of 175 ° C and a pressure of 0.
  • connection terminals and bumps The test was performed under the conditions of 2 MPa and a time of 20 seconds.
  • the formation pitch of the connection terminals and bumps is 120 m, and the number of connection terminals and bumps is 100.
  • the conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (one cycle at 30 ° C for 30 minutes and 80 ° C for 30 minutes) for 500 cycles.
  • a stable connection state was maintained even after these connection reliability evaluations.
  • the terminals or the entire connection portion may be covered with a mold.
  • the material of the fine particle layer 1, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials
  • Metallic or conductive materials can be used.
  • Ultrafine particles with a particle diameter of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
  • This embodiment has a main part shown in FIG. 13 similarly to the sixth embodiment, and a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with one layer of fine particles.
  • the fine particle layer 1 on the connection terminal 2 and the bump 17 of the semiconductor chip 16 are connected via the anisotropic conductive material 8.
  • This embodiment has the entire configuration shown in FIG. Section A—A in FIG. 9 corresponds to FIG.
  • connection terminal 2 is formed on a glass substrate 3 having a thickness of 0.7 mm by patterning with a 100 OA thick ITO.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed on the surface of the connection terminal 2 by the gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to ⁇ , and the temperature of the substrate 3 in the film formation chamber was set to 120 ° C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 3 m. Fine particle layer thickness 3-8 zm
  • the bump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be composed of solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloyed metal, composite metal particles of metal, etc., plastic particles (polystyrene, polycarbonate, acrylic, etc.). Particles, such as Ni, Au, Cu, Fe, etc., and carbon particles.
  • the adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive film of the anisotropic conductive material 8 is arranged between the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 of the semiconductor chip 16, and the thermosetting or thermoplastic
  • a hardening connection is made by pressing a heating and pressing head against the semiconductor chip 16.
  • the pressure head is pressed against the semiconductor chip 16 to make the substrate 3 (glass The substrate is cured by UV irradiation from the side.
  • conductive particles 9 made of polystyrene-based plastic particles having a particle size of 1 m to 3 m and a 1-m thick Ni film and a 0.5 m-thick Au film are bonded to an epoxy-based adhesive.
  • Anisotropic conductive film anisotropic conductive material 8 mixed and dispersed at 5% by weight in 10 was used, and heating and pressurization were performed at a temperature of 175 ° C, a pressure of 10 gf / bump, and a time of 30 seconds.
  • the formation pitch of connection terminals and bumps is 100 m, and the number of connection terminals and bumps is 120.
  • This conductive connection was subjected to a humidity resistance test (60.C, 90 RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C and 30 minutes at 80 ° C) for 500 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles may be solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., alloyed metal or composite metal particles made of metal, plastic particles (polystyrene, polycarbonate, dibenylbenzene, etc.). Etc.) Ni, Au, Cu, Fe, etc., single or multiple plated particles, carbon particles, etc.
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, ethoxy-based, acrylic-based, polyester-based, urethane-based or other single or a mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is arranged at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser.
  • a thermosetting or thermoplastic and thermosetting blend adhesive is used as the anisotropic conductive adhesive
  • the connection is cured by pressing the heating and pressing head against the semiconductor chip 16.
  • UV-curable adhesive is used for the anisotropic conductive adhesive. In this case, the pressure head is pressed against the semiconductor chip 16 and cured by irradiating UV rays from the substrate 3 (glass substrate) side.
  • connection or the entire semiconductor chip may be covered with a molding material. Good.
  • ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and octane (type 1), and high-temperature superconducting materials.
  • metals such as Ag, Cu, Zn, Pd, and Sn
  • alloys such as Cu—Zn, Au—Sn, and octane (type 1)
  • high-temperature superconducting materials Ultra-fine particles with a particle size of 60 nm to 3 / zm can be used by appropriately selecting the conditions for gas deposition.
  • FIG. 3 shows the structure of the conductive connecting portion of the present embodiment.
  • the cross section AA in FIG. 3 corresponds to FIG. 1, and the cross section BB corresponds to FIG.
  • connection terminal 2 of IT0 Indium Tin Oxide
  • IT0 Indium Tin Oxide
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag on the surface of the connection terminal was formed by the gas evaporation method shown in FIG. It is used and formed.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 10 OTorr, and the temperature of the film formation chamber was room temperature (about 25 ° C).
  • the Ag fine particle layer 1 was formed in a state where there was a gap between the ultrafine particles having an average particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.
  • connection terminal 4 formed by patterning an 18 m-thick copper foil on a 18 m-thick polyimide base film substrate 5 is connected to the fine particle layer 1 on the connection terminal 2 via an adhesive 6.
  • the adhesive 6 is a single compound or a mixture or compound of styrene-butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • This adhesive 6 is disposed between the connection terminal 2 and the connection terminal 4, and when a thermosetting or a blend of thermoplastic and thermosetting is used as the adhesive 6, heat and pressure are applied. A hardening connection is made by pressing the head against the substrate 5. When a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the substrate 5 and cured by irradiating UV rays from the substrate 3 side.
  • an adhesive 6 mainly composed of an epoxy-based material was used, and heating and pressing were performed at a temperature of 135 ° C, a pressure of 0.5 MPa, and a time of 20 seconds.
  • the formation pitch of the connection terminals is 200 m, and the number of terminals is 320.
  • the conductive connection was subjected to a humidity resistance test (60, 90% RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 200 cycles. As a result, a stable connection state was maintained even after this connection reliability evaluation.
  • the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 are in direct contact with each other for electrical conduction, and the adhesive 6 is mechanically fixed and held in this state. (Eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • the material of the ultrafine particles is Au, Cu, Zn, Pd, Metals such as Sn, Cu-Zn, Au-Sn, (Materials such as alloys of series 1 and metallic or conductive materials such as high-temperature superconducting materials can be used.
  • the conditions for gas deposition should be selected appropriately for ultrafine particles with a particle size of 60 nm to 3 m.) Can be used by
  • the base material of the substrate 3 may be a plastic film having a thickness of 18 111 to 500/111 such as poly'ethersulfone (PES), acrylic, polyarylate or poly'hydroxypolyether, in addition to polycarbonate (PC). Plastic plates can also be used.
  • PES poly'ethersulfone
  • PC polycarbonate
  • the cushioning property of the fine particle layer 1 depends on the pressure and temperature during connection.
  • the fine particle layer 1 is appropriately deformed, so that the conduction of the connection portion is ensured.
  • connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1.
  • This connection terminal 2 and the connection formed on the other substrate 5 The terminal 4 is connected via a conductive adhesive 7.
  • FIG. 3 shows the conductive connection structure of the present embodiment, as in the thirteenth embodiment.
  • the cross section AA in FIG. 3 corresponds to FIG. 5, and the cross section BB in FIG. 6 corresponds to FIG.
  • a connection terminal 2 of ITO having a thickness of 50 OA is formed on a substrate 3 of a polycarbonate substrate having a thickness of 0.1 mm.
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by using the same gas evaporation method as in the second embodiment.
  • the differential pressure between the ultrafine particle generation chamber and the film formation chamber was set to ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , and the film was formed at room temperature (about 25 ° C).
  • the Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 6 Onm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.5 zm.
  • a connection terminal 4 formed by patterning a 1-mm thick copper foil on a substrate 5 of a polyimide base film having a thickness of 18 m is connected to the fine particle layer 1 on the connection terminal 2 via a conductive adhesive 7.
  • the conductive adhesive 7 may be an epoxy-based, acrylic-based, polyester-based, or urethane-based adhesive or a mixture or compound of a plurality of such adhesives, such as Ag having a particle diameter of 0.1 to 5111.
  • the conductive material is mixed and dispersed.
  • the conductive adhesive 7 When the conductive adhesive 7 is disposed between the connection terminal 2 and the connection terminal 4 and a thermosetting or a blend of thermoplastic and thermosetting is used as the conductive adhesive 7, Is hardened by pressing a heating and pressing head against the substrate 5.
  • a UV-curable adhesive is used as the conductive adhesive 7, a pressure head is pressed against the substrate 5, and the substrate 3 is irradiated with UV to cure the adhesive.
  • the terminals or the entire connection may be covered with a molding material.
  • the fine particles of l to 2 m are contained in the adhesive mainly composed of epoxy resin.
  • a conductive adhesive 7 mixed and dispersed with silver powder having a diameter heating and pressing were performed at a temperature of 135 ° C, a pressure of 0.5 MPa, and a time of 20 seconds.
  • the formation pitch of the connection terminals is 23 O zm and the number of terminals is 320.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the substrate 3 may be a plastic film having a thickness of 18 m to 500 m such as polyether sulfone (PES), acrylic, polyarylate or polyhydroxypolyethyl, in addition to polycarbonate (PC). Plastic plates can also be used.
  • PES polyether sulfone
  • PC polycarbonate
  • the cushioning property of the fine particle layer 1 has the effect of reducing the influence on the ITO thin film due to the pressure and temperature at the time of connection, and has the effect of reducing Even if damage such as cracks occurs, conduction is ensured by appropriately deforming the fine particle layer 1.
  • the main part of this embodiment is shown in FIGS. 7 and 8 similarly to the third embodiment, and the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3.
  • the fine particle layer 1 on the terminal 2 and the connection terminal 4 formed on the other substrate 5 are connected via the anisotropic conductive material 8.
  • FIG. 3 The overall configuration of the present embodiment is shown in FIG. 3, similarly to Embodiment 13, and the cross section AA in FIG. 3 corresponds to FIG. 7, and the cross section BB in FIG. 8 corresponds to FIG.
  • a connection terminal 2 is formed on a substrate 3 of a polycarbonate substrate having a thickness of 0.4 mm by patterning it with an ITO having a thickness of 80 OA.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by using the gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the substrate 3 in the film formation chamber was set at 100 ° C.
  • the ultrafine particles in the fine particle layer 1 of Au were formed with an average particle diameter of about 1 / zm.
  • the thickness of the fine particle layer 1 is 1 to 3 m.
  • connection terminal 2 The fine particle layer 1 on the connection terminal 2 is connected to the connection terminal 4 formed by patterning a 18-m thick polyimide base film substrate 5 with a 18-> m-thick copper foil via an anisotropic conductive material 8. .
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, etc., plastic particles (polystyrene). System, polycarbonate system, acrylic system, diphenylbenzene system, etc.) • Single or multiple plated particles of u, Cu, Fe, etc., and carbon particles.
  • the adhesive 10 is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane, and the like.
  • the anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 of the substrate 5, and the anisotropic conductive film is made of a thermosetting or thermoplastic resin.
  • a thermosetting blend adhesive is used, a heating and pressing head is pressed against the substrate 5 to make a hardened connection.
  • a UV-curable adhesive is used for the anisotropic conductive film, a pressure head is pressed against the substrate 5 and UV is irradiated from the connection terminal 2 side to be cured.
  • the particle size is 5! ! ⁇ 10 m of polystyrene-based plastic particles with 3 m thick Ni plating and 0.5 / m thickness Au plating conductive particles 9 in an epoxy-based adhesive 10 weight 5
  • the heating and pressing were performed at a temperature of 135 eC, a pressure of 0.5 MPa, and a time of 20 seconds, using an anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed in a%.
  • the number of connection terminals is 230 m and the number of terminals is 320.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic).
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is arranged at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser.
  • a thermosetting or thermoplastic and thermosetting blend type adhesive is used for the anisotropic conductive adhesive
  • the connection is cured by pressing the heating and pressing head against the substrate 5.
  • a UV-curable adhesive is used as the anisotropic conductive adhesive
  • the pressure head is pressed against the substrate 5 and the substrate 3 is cured by irradiating UV from the substrate 3 side.
  • the terminals or the entire connection portion may be covered with a molding material.
  • examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and 311, alloys such as 011-21, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials.
  • a conductive material can be used.
  • Ultrafine particles with a particle size of 60 nm to 3 can be used by appropriately selecting the conditions for gas deposition.
  • the substrate 3 may be made of a plastic film such as a polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether having a thickness of 18 to 500 m. Can be used.
  • PES polyethersulfone
  • acrylic acrylic
  • polyarylate polyarylate
  • polyhydroxypolyether having a thickness of 18 to 500 m. Can be used.
  • repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic base substrate are achieved.
  • a wet method is generally used as a method of lowering resistance.
  • discoloration, corrosion, erosion, etc. will occur due to the alkaline or acidic chemicals used. It is not preferable because it is strongly received.
  • the method of the present embodiment is an optimal method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal. Furthermore, even if the influence of the pressure and temperature at the time of connection on the IT0 thin film is reduced due to the cushioning property of the fine particle layer 1, or even if the IT0 thin film is damaged by a crack or the like, this fine particle layer 1 can be formed. Conduction is ensured by appropriate deformation. In addition, by interposing the anisotropic conductive material 8, the conductive particles 9 complement the unevenness of the connection terminal 4, and a large number of particles contribute to conduction, thereby reducing the connection resistance value and the connection state. Can be stabilized.
  • the main part of this embodiment is the same as that of the fourth embodiment, as shown in FIG. 11, in which a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1.
  • the fine particle layer 1 on 2 and the bumps 1 formed on the semiconductor chip 16 are connected via an adhesive 6.
  • FIG. 9 The overall configuration of this embodiment is shown in FIG. 9, and a cross section A- ⁇ in FIG. 9 corresponds to FIG.
  • a connection terminal 2 formed by patterning ITO having a thickness of 70 OA is formed on a substrate 3 of a polycarbonate substrate having a thickness of 0.1 mm.
  • a fine particle layer 1 formed by depositing ultrafine Ag particles on the surface of the connection terminal 2 is formed by using the gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 1 OOT orr, and the temperature of the film formation chamber was room temperature (about 25 ° C).
  • the Ag fine particle layer 1 is formed in a state where there is a gap between the ultrafine particles having a particle diameter of about 60 nm. Had been.
  • the thickness of the fine particle layer 1 is 0.1 to 1.5 / m.
  • the bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 on the surface of the connection terminal 2 via the adhesive 6.
  • the adhesive 6 may be a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyethylene, urethane, and the like.
  • SBS styrene butadiene styrene
  • a hardening connection is made by pressing the heating and pressing head against the semiconductor chip 16.
  • a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the semiconductor chip 16 and the substrate 3 is irradiated with UV to cure the adhesive.
  • connection terminals and bumps are 120 m, and the number of bumps is 100.
  • the conductive connection was subjected to a humidity resistance test (60 C, 90 RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • connection terminal 2 and the bump 17 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. , Humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. In addition, ultrafine particles with a particle size of 60 nm to 3 m are used for gas deposition. It can be used by appropriately selecting the conditions.
  • the material of the substrate 3 is not only polycarbonate (PC) but also a polyethersulfone (PES), acrylic, polyarylate, polyhydroxyether, or other plastic film having a thickness of 18 m to 500 m. Plastic plates can also be used.
  • PC polycarbonate
  • PES polyethersulfone
  • acrylic acrylic
  • polyarylate polyarylate
  • polyhydroxyether or other plastic film having a thickness of 18 m to 500 m.
  • Plastic plates can also be used.
  • repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic substrate are complicated. It has the advantage that it can be easily performed without the need for complicated processing steps.
  • a method of lowering the resistance there is generally a plating process by a wet method.
  • the plating process by the wet method can be used for a connection terminal of a thin film made of ITO or the like formed on the surface of the plastic substrate. Alkaline or acidic chemicals are not preferred because they have strong adverse effects such as discoloration, corrosion, and erosion.
  • the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such thin film connection terminals. Further, the influence of pressure, temperature, and the like when connecting to the ITO thin film is reduced. However, even if damage such as cracks occurs, the fine particle layer 1 is appropriately deformed, so that conduction is ensured. Also, by making the particle diameter of the ultrafine particles as fine as about 6 O nm and forming a state in which there is a gap between the particles, the fine particle layer 1 functions as a cushion material, and the connection terminals 2 or the bumps 17 are formed.
  • connection area can be increased by reducing the unevenness of the connection terminals or the unevenness of the connection terminals 2 and the bumps 17, thereby reducing the connection resistance value and stabilizing the connection state.
  • the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 directly contact each other, other factors that may cause a connection failure, except for short-circuiting between terminals due to misalignment or misalignment during heating / pressing connection Since the gap does not enter, the connection pitch can be miniaturized. (Example 17)
  • FIG. 12 The main part of this embodiment is shown in FIG. 12 similarly to the fifth embodiment, and a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1.
  • the fine particle layer 1 and the bumps 17 of the semiconductor chip 16 are connected via the conductive adhesive 7.
  • FIG. 9 The overall configuration of the present embodiment is shown in FIG. 9 similarly to the tenth embodiment, and the cross section AA in FIG. 9 corresponds to FIG.
  • connection terminal 2 formed by patterning with a 100 OA-thick ITO is formed on a 0.1 mm-thick polycarbonate base substrate 3.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed using the gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to ⁇ , and the temperature of the substrate 3 in the film formation chamber was set to 120 ° C.
  • the ultrafine particles of Au in the fine particle layer 1 had an average particle diameter of about 3 im.
  • the thickness of the fine particle layer 1 is 3-8> m.
  • the bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 on the surface of the connection terminal 2 via the conductive adhesive 7.
  • This conductive adhesive 7 is a single or multiple mixture or compound adhesive of epoxy, acrylic, polyester, urethane, etc., containing Ag having a particle size of 0.1 to 5 / m. It is mixed and dispersed.
  • the conductive adhesive 7 is placed on the connection terminal 2 by a known method such as a printing method and a dispensing method, and the adhesive 6 is disposed between the conductive adhesive 7 and the bump 17.
  • a thermosetting or a blend of thermoplastic and thermosetting adhesives is used as the adhesive 6, the adhesive is cured by pressing a heating and pressing head against the semiconductor chip 16.
  • a pressure head is used.
  • connection terminals and bumps are 12 O ⁇ m, and the number of bumps is 100.
  • the terminals or the entire connection portion may be covered with a mold material.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
  • the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal. Furthermore, the influence on the ITO thin film due to the pressure and temperature during connection can be reduced, 'Even if damage such as cracks occur in the ITO thin film, the fine particle layer 1 is appropriately deformed, so that conduction is ensured.
  • Embodiment 18 As in Embodiment 6, Embodiment 18 has the main parts shown in FIG. Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3, and fine particle layer 1 on connection terminal 2 and bump 17 of semiconductor chip 16 are anisotropic conductive material. Connected via 8.
  • FIG. 9 shows the entire configuration. Section A—A in FIG. 9 corresponds to FIG.
  • a connection terminal 2 formed by patterning with an ITO of 100 OA is formed on a substrate 3 of a polycarbonate base material having a thickness of 0.1 mm.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed using the gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 1 O OTorr, and the temperature of the substrate 3 in the film formation chamber was 120 ° C.
  • the ultrafine particles of Au in the fine particle layer 1 were formed with an average particle diameter of about 3 / m.
  • the thickness of the fine particle layer 1 is 3 to 8 m.
  • the bump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, Dibenenylbenzene, etc.) and Ni or Au, Cu, Fe, etc. Particles, carbon particles, etc.
  • the adhesive 10 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 of the semiconductor chip 16, and the anisotropic conductive film is made of a thermosetting or thermoplastic resin.
  • the heating and pressing head is pressed against the semiconductor chip 16 to make a hardened connection.
  • a pressure head is pressed against the semiconductor chip 16 and cured by UV irradiation from the substrate 3 side.
  • An anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed at 5% by weight was used, and the heating and pressing were performed at a temperature of 175 ° C, a pressure of 1 Ogf / bump, and a time of 30 seconds.
  • the formation pitch of the connection terminals and bumps is 10 Oym, and the number of bumps is 120.
  • the conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 500 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles include solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene-based, polycarbonate-based, Acrylic, diphenylbenzene, etc.), Ni, Au, C
  • the adhesive is a single or multiple plated particles such as u, Fe, etc., and carbon particles, etc. c .
  • the adhesive is made of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane, etc. One or a plurality of mixtures or compounds.
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is arranged at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser.
  • a thermosetting or thermoplastic and thermosetting blend type adhesive is used as the anisotropic conductive adhesive
  • the semiconductor chip 16 is hardened and connected by pressing the heating and pressing head against the semiconductor chip 16.
  • a UV-curable adhesive is used as the anisotropic conductive adhesive, a pressure head is pressed against the semiconductor chip 16 and the substrate 3 is cured by irradiating UV from the substrate 3 side.
  • connection or the entire semiconductor chip may be covered with a molding material. Good.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Au—Sn, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 im can be used by appropriately selecting the conditions for gas deposition.
  • a plastic film or a plastic plate having a thickness of 18 im to 500 / zm such as polyethersulfone (PES), acrylic, polyarylate or polyhydroxypolyether may be used as the material of the substrate 3. Can be used.
  • PES polyethersulfone
  • acrylic acrylic
  • polyarylate polyhydroxypolyether
  • the sixth embodiment in addition to the effects of the sixth embodiment, in particular, repair of thin film connection terminals such as ITO formed on the surface of the plastic substrate, There is an advantage that reinforcement and low resistance can be easily performed without the need for complicated processing steps. Furthermore, as a method of lowering the resistance, there is generally a plating process by a wet method, but for the thin-film connection terminals such as IT0 formed on the surface of the plastic substrate, the plating process by the wet method is used. This is not preferable because the alkaline or acidic chemicals used are strongly affected by discoloration, corrosion, and erosion. On the other hand, the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal.
  • the flexibility of the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure and temperature at the time of connection, and even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 can be appropriately deformed. The conduction is ensured.
  • Example 19 is an example of the liquid crystal display device according to the present invention having the main parts shown in FIGS. 16 and 17.
  • FIG. A part or all of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 26 and the connection formed on the other substrate 20. Terminals 25 are connected via adhesive 6.
  • FIG. 14 is a perspective view of the liquid crystal display device of the present embodiment.
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. (Not shown) and the connection terminal 25 of the substrate 20 are connected.
  • the cross section A—A in FIG. 15 corresponds to FIG. 16 and the cross section B—B corresponds to FIG. 17. c
  • the substrate on which the liquid crystal driving semiconductor chip 19 is mounted on the liquid crystal panel 18 20 are connected to the X and Y sides.
  • FIG. 18 is a schematic view showing a method of forming the fine particle layer 1 on the surface of the connection terminal 26 of the panel substrate 24.
  • the vapor of the conductive substance generated in the ultra-fine particle generation chamber (not shown) by the gas evaporation method is transported together with the inert gas into the transport tube.
  • the fine particle layer 1 is formed.
  • a fine particle layer 1 having a desired shape and thickness can be formed on the surface of 26. Further, by controlling the pressure difference and the temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness and the like of the fine particle layer 1 can be made desired.
  • a 1000 A-thick ITO (Indium Tin Oxide) connection terminal 26 is formed on a panel substrate 24 made of a 1.1 mm-thick glass substrate.
  • a fine particle layer 1 formed by depositing ultrafine Ag particles is formed on the surface of the connection terminal 26, a fine particle layer 1 formed by depositing ultrafine Ag particles is formed.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber is 10 OTorr, and the temperature in the film formation chamber is room temperature (about 25 ° C). Filmed.
  • the Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 60 nm.
  • the thickness of the ultrafine particle layer 1 is 0.1 to 1.5 t / m.
  • connection terminal 25 formed by patterning a 35 m thick copper foil on a 50 m thick polyimide base film substrate 20 is connected via an adhesive 6.
  • the adhesive 6 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), eboxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • connection terminal 26 and the connection terminal 25 Place the adhesive 6 between the connection terminal 26 and the connection terminal 25, and When an adhesive of thermosetting or a blend type of thermoplastic and thermosetting is used for the adhesive 6, the connection is cured by pressing the heating and pressing head against the substrate 20.
  • a UV-curable adhesive is used for the adhesive 6, a pressure head is pressed against the substrate 20, and the substrate is irradiated with UV from the panel substrate 24 (glass substrate) side to be cured.
  • an adhesive 6 containing an epoxy-based main component was used, and heating and pressing were performed at a temperature of 175 ° C, a pressure of 3 MPa, and a time of 20 seconds.
  • connection terminals are formed at a pitch of 200 m and have a total of 1120 terminals (corresponding to a liquid crystal display device with a display capacity of 640x480 dots).
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (120 ° C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state.
  • the parts are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) and the connection is stabilized.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
  • connection terminal 26 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 25 can be reduced.
  • the maximum connection can be ensured, the connection resistance can be reduced, and the connection state can be stabilized.
  • repair, reinforcement, and low resistance of thin-film connection terminals such as ITO require complicated processing steps such as wet plating. There is a merit that it can be easily done without necessity.
  • the fine particle layer 1 functions as a cushion material, and the unevenness of the connection terminal 25 is reduced. Relaxation can increase the connection area, reduce the connection resistance value, and stabilize the connection state.
  • the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other, a connection failure may occur unless terminal misalignment or short-circuit between terminals due to misalignment during heating and pressurizing connection is eliminated. The miniaturization of the connection bitch is possible because the above factors are not included.
  • FIGS. 19 and 20 are cross-sectional views showing the main parts of an embodiment of the liquid crystal display device according to the present invention. Part or all of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 26 and the other substrate 20 are formed. The connection terminals 25 are connected via the adhesive 6.
  • FIG. 14 is a perspective view of one embodiment of the liquid crystal display device of the present embodiment.
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 6 (not shown) and the connection terminal 25 of the board 20 are connected. Section A—A in FIG. 15 corresponds to FIG. 19, and section B—B corresponds to FIG.
  • FIG. 18 is a schematic diagram showing a state in which the fine particle layer 1 is formed on the surface of the connection terminal 26 of the panel substrate 24.
  • the vapor of the conductive substance generated in the ultrafine particle generation chamber (not shown) by the gas evaporation method is transported along the flow 11 by the inert gas through the transport pipe 12 to form the film formation chamber (generally, FIG. 18).
  • the connection terminal of the panel board 24 is A fine particle layer 1 having a desired shape and thickness can be formed on the surface of 26. Also, by controlling the pressure difference and temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness, and the like of the fine particle layer 1 can be made desired.
  • a connection terminal 26 of ITO (Indium Tin Oxide) having a thickness of 1000 A is formed on a substrate 24 made of a glass substrate having a thickness of 1.1 mm.
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by a gas evaporation method.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to lO OTorr, and the temperature of the film formation chamber was set at room temperature (about 25 ° C).
  • This Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 60 nm.
  • the fine particle layer 1 covers almost the entire surface of the connection terminal 26, where the height is about 2 m to 5 im, and the pitch between the projections is 5 ⁇ to 30 O ⁇ m. A certain degree of protrusion 27 is formed. As a result, the thickness of the fine particle layer 1 is 0.1 to 6. The protrusion 27 can be easily formed by changing the moving speed of the nozzle 13.
  • connection terminal 25 formed by patterning a 35 ⁇ m thick copper foil on a polyimide base film substrate 20 of 5 is connected via an adhesive 6.
  • the adhesive 6 is a single or a mixture or compound of styrene butadiene styrene (SBS), eboxy, acrylic, polyester, urethane and the like. This adhesive 6 is disposed between the connection terminal 26 and the connection terminal 25, and the adhesive 6 is heated when a thermosetting adhesive or a blend of thermoplastic and thermosetting is used. A hardening connection is made by pressing the pressure head against the substrate 20. When a UV-curable adhesive is used for the adhesive 6, the pressure head is pressed against the substrate 20, and the substrate is irradiated with UV from the panel substrate 24 (glass substrate) side to be cured.
  • SBS styrene butadiene styrene
  • an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed at a temperature of 175. C, pressure 3MPa, time 20 seconds.
  • the connection terminals are formed at a pitch of 20 O ⁇ m and have a total of 1120 terminals (corresponding to a liquid crystal display device with a display capacity of 640 x 480 dots).
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (120 ° C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
  • the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state.
  • the parts are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) and the connection is stabilized.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys of Cu—Zn, Au—Sn, and octane (type 1), and high-temperature superconducting materials Ultrafine particles with a particle size of 60 nm to 3 zm can be used by appropriately selecting the conditions for gas deposition.
  • the particle diameter of the ultrafine particles is reduced to about 6 Onm, the gaps are formed between the particles, and the projections 27 are formed.
  • the connection with 25 protrusion 27 Due to the cushioning function of, the adhesive 6 is promptly removed from the contact portion of the protrusion from the gap between the protrusions, so that the conductive connection is reliably performed, and the connection resistance value can be reduced. The connection state can be stabilized.
  • FIG. 21 and FIG. 22 are cross-sectional views showing the main parts of an embodiment of the liquid crystal display device according to the present invention. Part or all of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 26 and the other substrate 20 are formed. The connection terminal 25 is connected via the conductive adhesive 7.
  • FIG. 14 is a perspective view of the liquid crystal display device of the present embodiment.
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. (Not shown) and the connection terminal 25 of the substrate 20 are connected.
  • the cross section A—A in FIG. 15 corresponds to FIG. 21 and the cross section B—B corresponds to FIG. 22.
  • the substrate 20 on which the liquid crystal driving semiconductor chip 19 is mounted on the liquid crystal panel 18 is X Side and Y side are connected.
  • a connection terminal 26 of ITO (indium tin oxide) having a thickness of 100 A is formed on a panel substrate 24 made of a glass substrate having a thickness of 1.1 mm. Have been.
  • a fine particle layer 1 made of ultrafine particles of Au is formed by a gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 ° C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 1 to 3 / m.
  • the fine particle layer 1 on the connection terminal 26 has a connection end formed by patterning a 35-m-thick copper foil on a 5-layer polyimide base film substrate 20.
  • the child 25 is connected via the conductive adhesive 7.
  • the conductive adhesive 7 may be a single or multiple mixture or compound of epoxy, acrylic, polyester, urethane, etc., and may be a conductive material such as Ag having a particle size of 0.1 to 5 m. It is a mixture of substances.
  • the conductive adhesive 7 may be placed on the connection terminals 26 by a known method such as a printing method and a dispense method, and the adhesive 6 may be used in combination, and the conductive adhesive 7 and the adhesive 6 may be used. It is placed between the connection terminals 25, and when a thermosetting or a blend of thermoplastic and thermosetting is used for this conductive adhesive 7 or adhesive 6, the heating and pressurizing head is used. Is pressed to the substrate 20 to make a hardened connection. When a UV-curable adhesive is used for the conductive adhesive 7 or the adhesive 6, the pressing head is pressed against the substrate 20 to irradiate UV light from the panel substrate 24 (glass substrate) side. And cure. Further, in order to protect the connection portion and the exposed portion of the connection terminal 26 from the external environment (for example, humidity, corrosive gas, dust, etc.), the mold 23 covers the terminals or the entire connection portion.
  • the connection portion and the exposed portion of the connection terminal 26 from the external environment (for example, humidity, corrosive gas, dust
  • a conductive adhesive 7 in which silver powder having a particle diameter of 1 to 2 m is mixed and dispersed in an adhesive mainly composed of an epoxy resin is used, and heating and pressing are performed at a temperature of 175. C, pressure 4MPa, time 20 seconds.
  • the connection terminals are formed at a pitch of 200 m and have a total of 1120 terminals (corresponding to a liquid crystal display device having a display capacity of 640 ⁇ 480 dots).
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20.C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
  • the material of the ultrafine particles is Ag, Cu, Zn, Pd, Metals such as Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metallic or conductive materials such as high-temperature superconducting materials can be used.
  • Ultrafine particles with a particle diameter of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • the conductive adhesive 7 intervenes to compensate for the unevenness of the connection terminal 25, thereby increasing the connection area, reducing the connection resistance value, and stabilizing the connection state.
  • the conductive material in the conductive adhesive 7 carbon particles of 0.1> cm to 3 / im can be used, and in this case, the connection resistance value is higher than that of Ag.
  • the material cost is reduced, and the moisture-proof mold material as a measure for preventing the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
  • FIG. 23 and FIG. 24 are cross-sectional views showing main parts of Embodiment 22 of the liquid crystal display device according to the present invention.
  • the fine particle layer 1 covers part or all of the surface of the connection terminal 26 formed on the panel substrate 24, and the fine particle layer 1 on the connection terminal 26 differs from the connection terminal 25 formed on the other substrate 20. They are connected via anisotropic conductive material 8.
  • FIG. 14 is a perspective view of the liquid crystal display device
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, wherein a connection terminal 26 (not shown) of the panel substrate 24 and a gun Terminal 25 is connected.
  • the cross section A-A in FIG. 15 corresponds to FIG. 23, and the cross section BB corresponds to FIG.
  • a plurality of substrates 20 each having a liquid crystal driving semiconductor chip 19 mounted on a liquid crystal panel 18 are connected to the X side and the Y side.
  • a 1000 A-thick IT 0 Indium Tin Oxid
  • the connection terminal 26 of e is formed.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed on the surface of the connection terminal 26 by a gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 ° C.
  • the ultrafine particles of Au were formed with an average particle size.
  • the thickness of the fine particle layer 1 is 1 to 3 / zm.
  • connection terminal 25 formed by patterning a 25 / zm-thick copper foil on a 50-m-thick polyimide base film substrate 20 is coated with an anisotropic conductive material 8. Connected through.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be solder particles, single or multiple mixtures of Ni, Axi Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, plastic particles (polystyrene, polycarbonate, acrylic, Diphenyl benzene resin), Ni, Au, Cu, Fe, etc., particles or carbon particles.
  • the adhesive 10 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the panel substrate 24 and the connection terminal 26 and the connection terminal 25 of the substrate 20, so that the anisotropic conductive film has a thermosetting property.
  • the heating and pressurizing head is pressed against the substrate 20 to make a hardening connection.
  • a UV-curable adhesive is used for the anisotropic conductive film
  • the pressure head is pressed against the substrate 20, and the connection terminals 26 (the glass substrate side) are irradiated with UV to be hardened.
  • conductive particles 9 with 2 / m-thick Ni plating and 0.5-thick Au plating on dibenylbenzene-based plastic particles with particle diameters of 5 m to 10 // m are mainly epoxy-based.
  • using an anisotropic conductive film 5 is wt% mixed and dispersed in the adhesive 10, (anisotropic conductive material 8), carried out heating pressurization temperature 155 e C, pressure 2 MPa, in terms of time 20 seconds Was.
  • connection terminals are formed at a pitch of 20 Ozm and have a total of 1120 terminals (corresponding to a liquid crystal display device with a display capacity of 640 x 480 dots).
  • the electrical connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a cold / hot cycle (30 minutes at 20 ° C, 30 minutes at 60 ° C) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., alloy metal, composite metal particles such as paint, plastic particles (polystyrene, polycarbonate, Acrylic, diphenylbenzene resin, etc.), Ni, Au, Cu, Fe, etc. particles or single or multiple particles, carbon particles, etc.
  • the adhesive is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed at the connection portion of the connection terminal 26 by a known method such as a printing method or a dispensing method using a dispenser.
  • a thermosetting or thermoplastic and thermosetting blend adhesive is used as the anisotropic conductive adhesive
  • a hardening connection is made by pressing a heating and pressing head against the substrate 20.
  • UV hardening is applied to the anisotropic conductive adhesive.
  • When using a chemical adhesive press the pressure head against the substrate 20 and cure it by UV irradiation from the panel substrate 24 (glass substrate side).
  • connection portion in order to protect this connection portion from an external environment (for example, humidity, corrosive gas, dust, etc.), the terminals 23 or the entire connection portion may be covered with a mold 23.
  • an external environment for example, humidity, corrosive gas, dust, etc.
  • examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and Ag—Pd. Alloys, metal materials such as high-temperature superconducting materials, or conductive materials can be used. Ultrafine particles having a particle diameter of 60 nm to 3 m can be used by appropriately selecting the gas position conditions.
  • the narrowing or disconnection of the terminal width of the connection terminal 26 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 25 can be repaired.
  • the connection resistance can be reduced, and the connection state can be stabilized.
  • it has the advantage that it can easily repair, reinforce, and reduce the resistance of thin-film connection terminals such as ITO formed on the surface of a glass substrate without requiring complicated processing steps.
  • connection area of the conductive particles 9 can be increased by complementing the unevenness of the connection terminals 25, thereby reducing the connection resistance value and stabilizing the connection state. it can.
  • FIG. 25 is a sectional view showing a main part of Example 23 of the liquid crystal display device according to the present invention.
  • Particulate layer 1 covers part or all of the surface of connection terminal 26 formed on panel substrate 24, and fine particle layer 1 on connection terminal 26 and connection terminal formed on another substrate 20. 2 and 5 are connected via an adhesive 6.
  • FIG. 14 is a perspective view of the liquid crystal display device of the present embodiment
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, in which connection terminals 26 (not shown) of the panel substrate 24 and the substrate 20 connection terminals 25 are connected.
  • Section BB in FIG. 15 corresponds to FIG.
  • a plurality of substrates 20 each having a liquid crystal panel 18 and a liquid crystal driving semiconductor chip 19 mounted thereon are connected to the X side and the Y side.
  • a 700 A-thick ITO (Indium Tin Oxide) connection terminal 26 is formed on a substrate 24 made of a plastic substrate having a thickness of 0.1 mm.
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed on the surface of the connection terminal by the gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 100 Torr, and the temperature of the film formation chamber was room temperature (about 25 ° C).
  • the Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.
  • a connection terminal 25 obtained by patterning a 35 // m copper foil on a substrate 20 of a polyimide base film having a thickness of 50 zm is connected to the fine particle layer 1 on the connection terminal 26 via an adhesive 6.
  • the adhesive 6 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • This adhesive 6 is disposed between the connection terminal 26 and the connection terminal 25, and when a thermosetting adhesive or a blend of thermoplastic and thermosetting is used as the adhesive 6, heating is performed. A hardening connection is made by pressing the pressure head against the substrate 20.
  • a UV-curable adhesive is used as the adhesive 6, the pressure head is pressed against the substrate 20, and the panel substrate 24 is irradiated with UV to cure the adhesive.
  • an adhesive 6 containing an epoxy-based component as a main component was used, and heating and pressing were performed at a temperature of 135 ° C, a pressure of 0.2 MPa, and a time of 20 seconds.
  • connection terminals have a pitch of 250 m and have a total of 560 terminals (corresponding to a liquid crystal display device with a display capacity of 320 x 240 dots).
  • the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. Connections are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • a deformation part 28 is generated in a part of the connection terminal 26 due to the stress at the time of connection, and the fine particle layer 1 adhered on the connection terminal 26 is also greatly deformed. Has occurred.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and octa, and metals such as high-temperature superconducting materials Materials or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 ⁇ m can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the panel substrate 24 is not only polycarbonate (PC) but also plastic such as polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether having a thickness of 18 / m to 500 / m. Film or plastic plates can also be used.
  • PC polycarbonate
  • PET polyethersulfone
  • acrylic acrylic
  • polyarylate polyarylate
  • polyhydroxypolyether having a thickness of 18 / m to 500 / m.
  • Film or plastic plates can also be used.
  • the flexibility of the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure, temperature, and the like at the time of connection. Even if damages such as occur, conduction is ensured by the fine particle layer 1 being appropriately deformed.
  • the fine particle layer 1 acts as a cushion material, and the unevenness of the connection terminals 25 is reduced. Relaxation can increase the connection area, reduce the connection resistance value, and stabilize the connection state.
  • connection terminal 26 and the connection terminal 25 are directly connected, a connection failure occurs unless a shortage between terminals due to a misalignment of the terminal alignment and a misalignment during the heating and pressurizing connection.
  • the minimization of the connection pitch is possible as long as other factors are not included.
  • FIG. 26 is a sectional view showing a main part of Example 24 of the liquid crystal display device according to the present invention. Partial or whole of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the connection terminal 26 is formed on the upper fine particle layer 1 and the other substrate 20. Are electrically connected to each other via a conductive adhesive 7.
  • FIG. 14 is a perspective view of the liquid crystal display device
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, showing connection terminals 26 (not shown) of the panel substrate 24.
  • the connection terminal 25 of the substrate 20 is connected.
  • Section B—B in FIG. 15 corresponds to FIG.
  • a plurality of substrates 20 on which a liquid crystal driving semiconductor chip 19 is mounted on a liquid crystal panel 18 are connected to the X side and the Y side.
  • a connection terminal 26 of ITO (Indeum Tin Oxide) having a thickness of 100 A is formed on a substrate 24 made of a plastic substrate having a thickness of 0.4 mm. Have been.
  • ITO Indeum Tin Oxide
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber is The film was formed at a pressure of 3 atm and a temperature of 100 ° C in the film forming chamber.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 1 to 3 m.
  • connection terminal 25 formed by patterning a 25 m thick copper foil on a 50 / m thick polyimide base film substrate 20 is connected to the fine particle layer 1 on the connection terminal 26 via a conductive adhesive 7. I have.
  • This conductive adhesive 7 may be used alone or in a mixture or compound of a plurality of compounds such as epoxy, acrylic, polyester, and urethane based adhesives such as Ag having a particle diameter of 0.1 to 5 m. It is a substance in which an active substance is mixed and dispersed.
  • the conductive adhesive 7 may be placed on the connection terminal 26 by a known method such as a printing method and a dispense method, and may be put together via the adhesive 6, and the conductive adhesive 7 and the adhesive 6 are connected. Place it between terminals 25, and if using a thermosetting adhesive or a blend of thermoplastic and thermosetting adhesive for the conductive adhesive 7 or adhesive 6, attach the heating / pressing head. A hardening connection is made by pressing against the substrate 20.
  • a UV-curable adhesive is used for the conductive adhesive 7 or the adhesive 6, a pressure head is pressed against the substrate 20 and cured by irradiating UV light from the panel substrate 24 side.
  • a mold 23 covers the terminals or the entire connection portion.
  • a conductive adhesive 7 in which silver powder having a particle size of l to 2xm is mixed and dispersed in an adhesive mainly composed of an epoxy system is used, and heating and pressing are performed at a temperature of 135. C, the pressure was 0.4 MPa, and the time was 20 seconds.
  • the connection terminals are formed at a pitch of 250 Adm and have a total of 560 terminals (corresponding to a liquid crystal display device with a display capacity of 320 x 240 dots).
  • This The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (30 minutes at 20 ° C and 30 minutes at 60 ° C) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3> cm can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the panel substrate 24 is not only polycarbonate (PC) but also a plastic film having a thickness of 18 / m to 50, such as polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether. Alternatively, a plastic plate can also be used.
  • PC polycarbonate
  • PET polyethersulfone
  • acrylic acrylic
  • polyarylate polyarylate
  • polyhydroxypolyether polyhydroxypolyether
  • a deformed portion 28 is formed in a part of the connection terminal 26 due to the stress at the time of connection, and at the same time, the fine particle layer 1
  • the adhesive 7 also has a large deformation. According to the above configuration, it is the most suitable method for repairing, reinforcing and lowering the resistance of the thin film connection terminal as described above, and the flexibility of the fine particle layer 1 depends on the pressure and temperature during connection. Even if damage such as a crack occurs in the deformed portion 28 of the connection terminal 26, the fine particle layer 1 is appropriately deformed, thereby ensuring conduction.
  • the unevenness of the connection terminal 25 can be complemented to increase the connection area, reduce the connection resistance value, and stabilize the connection state.
  • the conductive adhesive 7 has an effect of relieving stress at the time of connection.
  • connection resistance value is higher than in the case of Ag, but the material cost is low, and the moisture-proof mold material as a measure to prevent the occurrence of migration etc. is omitted, and the cost is low. Highly reliable terminal connection is possible.
  • FIG. 27 is a cross-sectional view showing a main part of Embodiment 25 of the liquid crystal display device according to the present invention.
  • Particulate layer 1 covers part or all of the surface of connection terminal 26 formed on panel substrate 24, and fine particle layer 1 on connection terminal 26 and connection terminal 2 ⁇ formed on another substrate 20 are connected. They are connected via an anisotropic conductive material 8.
  • FIG. 14 is a perspective view of the liquid crystal display device
  • FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, in which connection terminals 26 (not shown) of the panel substrate 24 and connection terminals of the substrate 20 are connected. 25 and are connected. Sections ⁇ — ⁇ in Figure 15 'correspond to Figure 27.
  • a plurality of substrates 20 on which a liquid crystal driving semiconductor chip 19 is mounted on a liquid crystal panel 18 are connected to the X side and the X side.
  • a 1000 A-thick connection terminal 26 of ITO (Indium Tin Oxide) having a thickness of 1000 A formed on a substrate 24 of a plastic base material having a thickness of 0.1 mm is formed.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber is 1 O OTorr, and the temperature of the film formation chamber is 120.
  • the film was formed under the condition of C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 3 m.
  • the thickness of the fine particle layer 1 is 3 to 8 xm.
  • connection terminal 26 On the fine particle layer 1 on the connection terminal 26, a connection terminal obtained by patterning a 25 / m-thick copper foil on a 50-m-thick polyimide base film substrate 20 • 25 are connected via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, etc., plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzene-based resin, etc.), and particles of single or multiple platings of Ni, Au, Cu, Fe, etc., and carbon particles.
  • the adhesive 10 is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • the anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the panel substrate 2 and the connection terminals 26 and the connection terminals 25 of the substrate 20, and is thermoset into the anisotropic conductive film.
  • a thermosetting or thermoplastic and thermosetting blend type adhesive is used, the connection is cured by pressing the heating and pressing head against the substrate 20.
  • a UV-curable adhesive is used for the anisotropic conductive film, a pressure head is pressed against the substrate 20 and UV is irradiated from the connection terminal 26 side to be cured.
  • conductive particles 9 made of a polystyrene-based plastic particle having a particle diameter of 8 m to 15 // m and a 2-m thick Ni plating and a 0.5 m-thick Au plating are mainly composed of epoxy resin.
  • An anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed at 5% by weight in the adhesive 10 is used.
  • the heating and pressing are performed at a temperature of 135 ° C, a pressure of 0.3 MPa, and a time of 20 seconds. went.
  • the number of connection terminals is 250 / m, with a total of 560 terminals (corresponding to a liquid crystal display device with a display capacity of 320 x 240 dots).
  • 200 hours of humidity resistance test (60 C, 90 RH) and 200 cycles of cooling / heating cycle (30 minutes at 20 ° C, 30 minutes at 60 eC ) did. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles may be solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, Diphenylbenzene-based resin), Ni, Au, Cu, Fe and other particles or carbon particles.
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is formed by a known method such as a printing method or a dispensing method using a dispenser. To place.
  • a hardening connection is made by pressing a heating and pressing head against the substrate 20.
  • a UV-curable adhesive is used as the anisotropic conductive adhesive, a pressure head is pressed against the substrate 20 and the panel substrate 24 is irradiated with UV to cure the adhesive.
  • a mold 23 may cover the terminals or the entire connection portion.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sri, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. Also, Ultrafine particles with a particle diameter of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the panel substrate 24 is not only polycarbonate (PC) but also polyethersulfone (PES), acrylic, polyarylate or polyhydroxypolyether, etc., in a thickness of 18 m to 500 m.
  • PC polycarbonate
  • PES polyethersulfone
  • acrylic acrylic
  • polyarylate polyhydroxypolyether
  • etc. in a thickness of 18 m to 500 m.
  • a plastic film or a plastic plate can also be used.
  • the fine particle layer 1 has an effect of relaxing local stress received by the conductive particles of the anisotropic conductive material 8 due to pressure, temperature, and the like at the time of connection. Even if damage such as a crack occurs in the locally deformed portion 28 generated in the ITO thin film, conduction is ensured by appropriate deformation of the fine particle layer 1.
  • connection area of the conductive particles 9 can be increased by complementing the unevenness of the connection terminals 25, thereby reducing the connection resistance value and stabilizing the connection state. it can. '
  • FIG. 29 is a cross-sectional view showing a main part of Example 26 of the liquid crystal display device according to the present invention.
  • a part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal drive are driven.
  • the bumps 30 formed on the semiconductor chip 19 for use are connected via the adhesive 6.
  • FIG. 28 is a perspective view of the liquid crystal display device. Although input wiring 31, output wiring 32, and path wiring 33 on the panel substrate 24 are not shown, the liquid crystal driving device is provided on the panel substrate 24. The semiconductor chip 19 is connected. The cross section A-A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
  • an input wiring 31 and an output wiring 32 of ITO (Indium Tin Oxide) having a thickness of 100 OA are formed on a 1.1 mm glass substrate 24.
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by a gas evaporation method in the same manner as the method shown in FIGS.
  • the pressure difference between the ultrafine particle generation chamber and the film forming chamber was set to ⁇ ⁇ ⁇ ⁇ ⁇ , and the film was formed under the conditions of room temperature (about 25.C).
  • the Ag fine particle layer 1 was formed with gaps between ultrafine particles having an average particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to: L. 5 m.
  • a bump 30 formed on the liquid crystal driving semiconductor chip 19 is connected via an adhesive 6.
  • the adhesive 6 is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single compound or a mixture or a plurality of compounds.
  • SBS styrene-butadiene-styrene
  • This adhesive 6 is arranged between the fine particle layer 1 of the input wiring 31 and the output wiring 32 and the semiconductor chip 19 for driving the liquid crystal and the bump 30, and the thermosetting or thermoplastic and thermosetting adhesive is applied to the adhesive 6.
  • the connection is cured by pressing the heating / pressing head against the liquid crystal driving semiconductor chip 19.
  • a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the liquid crystal driving semiconductor chip 19, and is cured by irradiating UV from the panel substrate 24 side.
  • an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed at a temperature of 175. C, pressure 10 gf / bump, time 30 seconds.
  • the connection terminals and bumps are formed at a minimum pitch of 120 zm and correspond to a liquid crystal display device having a display capacity of 640 ⁇ 480 dots. This conductive contact
  • the connected part was subjected to a humidity resistance test (60 ° C, 90% H) for 200 hours and a thermal cycle test (120 ° C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and maintained after these connection reliability evaluations.
  • the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the bump 30 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds the state.
  • This connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. Ultrafine particles with a particle size of 60 nm to 3 / im can be used by appropriately selecting the conditions for gas deposition.
  • the narrowing or disconnection of the terminal width of the input wiring 31 and the output wiring 32 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 30 can be maximized.
  • the connection resistance can be reduced, and the connection state can be stabilized.
  • it has the advantage that it can easily repair, reinforce, and reduce the resistance of thin-film connection terminals such as ITO without the need for complicated processing steps such as the wet plating method.
  • the fine particle layer 1 acts as a cushion material and reduces the bumps and bumps on the bump 30 for connection.
  • connection pitch can be reduced.
  • FIG. 30 is a cross-sectional view showing a main part of Embodiment 27 of the liquid crystal display device according to the present invention.
  • the fine particle layer 1 covers part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal driving semiconductor chip 19.
  • the bump 30 formed on the substrate is connected via the conductive adhesive 7.
  • FIG. 28 is a perspective view of the liquid crystal display device, and the input wiring 31, output wiring 32, bus wiring 33, etc. on the panel substrate 24 are not shown, but the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. Have been.
  • the cross section A-A in FIG. 28 corresponds to FIG.
  • a plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
  • an input wiring 31 and an output wiring 32 of 1000 ⁇ thick ITO are formed on a substrate 24 made of a 1.1 mm thick glass base material.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed on the surfaces of these input wirings and output wirings by the gas evaporation method shown in FIGS.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 eC .
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 zm.
  • the thickness of the c fine particle layer 1 is 1 to 3 / m.
  • the bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the input wiring 31 and the output wiring 32 on the fine particle layer 1 via the conductive adhesive 7.
  • the conductive adhesive 7 may be an epoxy, acrylic, polyester, urethane-based adhesive or a mixture or compound of a plurality of such adhesives. Mixed and dispersed O
  • the conductive adhesive 7 may be placed on the input wiring 31 and the output wiring 32 by a known method such as a printing method or a dispensing method, and may be put together via an adhesive 6.
  • the adhesive 6 is placed between the semiconductor chip 19 for driving the liquid crystal and the bump 30, and a thermosetting or a blend of thermoplastic and thermosetting is applied to the conductive adhesive 7 or the adhesive 6.
  • the connection is hardened by pressing the heating / pressing head against the semiconductor chip 19 for driving liquid crystal.
  • a UV-curable adhesive is used for the conductive adhesive 7 or the adhesive 6, the pressure head is pressed against the liquid crystal driving semiconductor chip 19, and the UV light is applied from the panel substrate 24 side. Irradiate to cure.
  • connection portion and the exposed portion of the input wiring 31 and the output wiring 3.2 from an external environment (for example, humidity, corrosive gas, dust, etc.), the connection between the terminals or the entire connection portion is performed. It may be covered with a mold.
  • a conductive adhesive 7 in which silver powder with a particle size of l to 2 / zm is mixed and dispersed in an epoxy-based adhesive is used, and heating and pressing are performed at a temperature of 175 ° C and a pressure of 10 ° C.
  • the connection was made under the conditions of gf / bump and time of 30 seconds.
  • the formation pitch of the connection terminals is a minimum of 120; m, which corresponds to a liquid crystal device having a display capacity of 640 x 480 dots.
  • the conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 200 hours and a thermal cycle test (120.C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. In addition, ultrafine particles with a particle size of 60 nm to 3 m are used for gas deposition. Can be used by appropriately selecting.
  • repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30.
  • the connection resistance can be reduced as much as possible, and the connection state can be stabilized.
  • repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate can be easily performed without requiring complicated processing steps.
  • connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
  • the conductive material in the conductive adhesive 7 carbon particles of 0.1111 to 3 ⁇ 111 can be used, and in this case, the connection resistance value is higher than that of Ag.
  • the material cost is reduced, and a moisture-proof mold material as a measure for preventing the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
  • FIG. 31 is a sectional view showing a main part of Example 28 of the liquid crystal display device according to the present invention. Partial or entire surface of the input wiring 31 and output wiring 3 2 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the input wiring 31 and the output wiring 3 2 and the other.
  • the liquid crystal driving semiconductor chip 19 is connected to a pump 30 formed through an anisotropic conductive material 8.
  • FIG. 28 is a perspective view of the liquid crystal display device.
  • the input wiring 31, output wiring 32, and bus wiring 33 on the panel substrate 24 are not shown, but the liquid crystal driving device is provided on the panel substrate 24.
  • the semiconductor chip 19 is connected.
  • Figure 28 Section A—A corresponds to FIG.
  • a plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
  • an input wiring 31 and an output wiring 32 of 1000 ⁇ thick ITO are formed on a 0.7 mm thick glass substrate panel substrate 24.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIGS.
  • the thickness of the fine particle layer 1 is 3 to 8 m.
  • the bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the fine particle layer 1 on the input wiring 31 and the output wiring 32 via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 are solder particles, Ni,
  • the adhesive 10 is made of styrene butadiene styrene (S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-styrene
  • BS epoxy-based, acrylic-based, polyester-based, urethane-based, etc., or a mixture or compound of two or more.
  • the anisotropic conductive film of the anisotropic conductive material 8 is connected to the panel substrate 24 and the input wiring.
  • thermosetting or a blend type of thermoplastic and thermosetting is thermosetting or a blend type of thermoplastic and thermosetting.
  • a pressure head is pressed against the semiconductor chip 19 for driving liquid crystal, and is cured by irradiating UV from the panel substrate 24 side.
  • an electrically conductive particle 9 composed of a styrene-based plastic particle with a particle diameter of 2 m to 3 ⁇ m and a Ni plating with a thickness of 2 m and a Au plating with a thickness of 0.5 m is used as an epoxy-based adhesive.
  • an anisotropic conductive film anisotropic conductive material 8 mixed and dispersed in 5% by weight in 10
  • heating and pressing were performed at a temperature of 175 ° C, a pressure of 10 gf / bump, and a time of 30 seconds.
  • the minimum forming pitch of the connection terminals and bumps is 120 m, and it corresponds to a liquid crystal display device with a display capacity of 640 x 480 dots.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90 RH) for 200 hours and a thermal cycle test (120 ° C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles include solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles by plating, etc., plastic particles (polystyrene-based, polystyrene-based, acrylic , Ni-, Au-, Cu-, Fe-, etc. particles or carbon particles
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is known in the art such as a printing method and a dispensing method using a dispenser. According to the method, it is arranged in the connection part of the input wiring 31 and the output wiring 32.
  • a thermosetting or thermoplastic and thermosetting adhesive is used as the anisotropic conductive adhesive, it is cured by pressing the heating / pressing head against the LCD drive semiconductor chip 19. Connect.
  • a UV-curable adhesive is used as the anisotropic conductive adhesive, the pressure head is pressed against the semiconductor chip 19 for driving the liquid crystal, and UV is irradiated from the panel substrate 24 side. And cure.
  • a mold may cover the terminals or the entire connection to protect the connection from the external environment (for example, humidity, corrosive gas, dust, etc.).
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Further, a metal substance such as a high-temperature superconducting substance or a conductive substance can be used. Ultrafine particles with a particle diameter of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
  • repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30.
  • the connection resistance can be reduced as much as possible, and the connection state can be stabilized.
  • repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate can be easily performed without requiring complicated processing steps.
  • connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
  • FIG. 29 is a cross-sectional view showing a main part of Embodiment 29 of the liquid crystal display device according to the present invention.
  • the fine particle layer 1 covers part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal driving semiconductor chip 19.
  • the bump 30 formed on the substrate is connected via the adhesive 6.
  • FIG. 28 is a perspective view of the liquid crystal display device.
  • the input wiring 31, output wiring 32, and path wiring 33 on the panel substrate 24 are not shown, but the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. Have been.
  • the cross section A-A in FIG. 28 corresponds to FIG.
  • a plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
  • an input wiring 31 and an output wiring 32 of 700 A thick ITO are formed on a pallet substrate 24 made of a 0.1 mm thick polycarbonate base material. I have.
  • a fine particle layer 1 on which ultrafine particles of Ag are deposited is formed by a gas evaporation method shown in FIG. 10 and FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was defined as lOOTorr, and the temperature of the film formation chamber was set at room temperature (about 25 ° C).
  • This Ag fine particle layer 1 was formed with gaps between ultrafine particles having a particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.5.
  • a bump 30 formed on the liquid crystal driving semiconductor chip 19 is connected via an adhesive 6.
  • the adhesive 6 is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single or a mixture or compound of a plurality of them.
  • SBS styrene-butadiene-styrene
  • thermosetting or a blend of thermoplastic and thermosetting is used as the adhesive 6
  • the heating and pressing head is used.
  • a hardening connection is made by pressing against the liquid crystal driving semiconductor chip 19.
  • UV-curable adhesive is used as the adhesive 6
  • a pressure head is pressed against the liquid crystal driving semiconductor chip 19, and is cured by irradiating UV from the panel substrate 24 side.
  • an adhesive 6 containing an epoxy-based component as a main component was used, and heating and pressing were performed at a temperature of 135 ° C, a pressure of 10 gf / bump, and a time of 30 seconds.
  • the connection terminals and bumps are formed at a minimum pitch of 120 / m, which corresponds to a liquid crystal display device having a display capacity of 320 ⁇ 240 dots.
  • This conductive connection was subjected to a humidity resistance test (60, 90% RH) for 200 hours and a thermal cycle test (at 20 ° C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the pump 30 are in direct contact with each other to establish electrical continuity, and the adhesive 6 is mechanically fixed and held in this state.
  • This connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.) to stabilize the connection.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the panel substrate 24 is, in addition to polycarbonate (PC), a polyethersulfone (PES), acrylic, polyarylate, or hydroxypolyether or the like having a thickness of 18 to 500 / m. Tick films or plastic plates can also be used.
  • the narrowing or disconnection of the terminal width of the input wiring 31 and the output wiring 32 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 30 can be reduced.
  • the maximum connection can be ensured, the connection resistance can be reduced, and the connection state can be stabilized.
  • the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal.
  • the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure, temperature, and the like at the time of connection. Even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed. Conduction is ensured.
  • the ultrafine particles have a fine particle diameter of about 6 O nm and are formed with gaps between the particles, so that the fine particle layer 1 acts as a cushion material, and alleviates the bumps and bumps 30. As a result, the connection area can be increased, the connection resistance value can be reduced, and the connection state can be stabilized.
  • the connection pitch can be miniaturized as other factors that cause defects are not included.
  • FIG. 30 is a cross-sectional view showing a main part of Embodiment 30 of the liquid crystal display device according to the present invention.
  • the fine particle layer 1 covers part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal driving semiconductor chip 19.
  • the bump 30 formed on the substrate is connected via the conductive adhesive 7.
  • FIG. 28 is a perspective view of the liquid crystal display device.
  • the input wiring 31, output wiring 32, and path wiring 33 on the panel substrate 24 are not shown, but the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. Have been.
  • the cross section A-A in FIG. 28 corresponds to FIG.
  • a plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
  • an input wiring 31 and an output wiring 32 of 70 OA thick ITO are formed on a substrate 24 made of a 0.1 mm thick polycarbonate base material.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIGS.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 ° C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 / m.
  • the thickness of the fine particle layer 1 is 1-3 / zm.
  • the bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the input wiring 31 and the output wiring 32 on the fine particle layer 1 via the conductive adhesive 7.
  • the conductive adhesive 7 may be a single or multiple mixture or compound of epoxy-based, acrylic-based, polyester-based, and urethane-based adhesives, and may be a conductive material such as Ag having a particle diameter of 0.1 to 5 m. It is a substance in which an active substance is mixed and dispersed.
  • the conductive adhesive 7 is placed on the input wiring 31 and the output wiring 32 by a known method such as a printing method and a dispensing method, and is put together via the adhesive 6.
  • the conductive adhesive 7 and the adhesive 6 may be disposed between the semiconductor chip 19 for driving the liquid crystal and the bump 30, and the conductive adhesive 7 or the adhesive 6 may be thermoset or thermoplastic and thermoset.
  • a heating and pressing head is pressed against the liquid crystal driving semiconductor chip 19 to make a hardened connection.
  • a UV-curable adhesive is used as the conductive adhesive 7 or the adhesive 6, the pressure head is pressed against the semiconductor chip 19 for driving the liquid crystal, and UV is irradiated from the panel substrate 24 side. And cure.
  • the connection portion and the exposed portions of the input wiring 31 and the output wiring 32 are protected from an external environment (for example, humidity, corrosive gas, dust, etc.). May be covered with a mold.
  • a conductive adhesive 7 in which silver powder having a particle diameter of l to 2 m is mixed and dispersed in an adhesive mainly composed of an epoxy resin is used, and heating and pressing are performed at a temperature of 135. C, pressure 10 gf / bump, time 30 seconds.
  • the formation pitch of the connection terminals is a minimum of 120 m, which corresponds to a liquid crystal display device having a display capacity of 320 ⁇ 240 dots.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20.C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • the material of the ultrafine particles other metals such as Ag, Cu, Zn, Pd, and 511 (alloys such as 11-211, Au—Sn, and octane (type 1), and high-temperature superconducting materials Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 ⁇ m can be used by appropriately selecting the conditions for gas deposition.
  • metals such as Ag, Cu, Zn, Pd, and 511 (alloys such as 11-211, Au—Sn, and octane (type 1)
  • high-temperature superconducting materials Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 ⁇ m can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the panel substrate 24 is not only polycarbonate (PC) but also polyethersulfone (PES), acrylic, and polyarylate.
  • PC polycarbonate
  • PES polyethersulfone
  • acrylic acrylic
  • polyarylate Alternatively, a plastic film or a plastic plate having a thickness of 1 to 500 / m such as polyhydroxy polyether can be used.
  • repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30.
  • the connection resistance can be reduced as much as possible, and the connection state can be stabilized.
  • the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure, temperature, and the like at the time of connection. Even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed. Conduction is ensured.
  • connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
  • the conductive material in the conductive adhesive 7 carbon particles of 0.1 111 to 3 ⁇ 111 can be used, and in this case, the connection resistance value is higher than that of Ag.
  • the material cost is low, and the moisture-proof mold material as a measure to prevent the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
  • FIG. 31 is a sectional view showing a main part of Example 31 of the liquid crystal display device according to the present invention.
  • a part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the other liquid crystal drive.
  • the bumps 30 formed on the semiconductor chip 19 are connected via the anisotropic conductive material 8
  • FIG. 28 is a perspective view of the liquid crystal display device. Although the input wiring 31, output wiring 32, bus wiring 33 and the like on the panel substrate 24 are not shown, the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. ing. Section A—A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
  • an input wiring 31 and an output wiring 32 of 800 ⁇ thick ITO are formed on a panel substrate 24 made of a polycarbonate substrate having a thickness of 0.4 mm.
  • a fine particle layer 1 formed by depositing ultra fine particles of Au is formed by the gas evaporation method shown in FIGS.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to ⁇ , and the temperature in the film formation chamber was set to 120 ° C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 3 m, and the thickness of the c particle layer 1 is 3 to 8111.
  • the bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the fine particle layer 1 on the input wiring 31 and the output wiring 32 via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be solder particles, a single or plural mixture of Ni, Au, Ag, Cu, Pb, Sn, etc., an alloy, Or composite metal particles or plastic particles (polystyrene, polycarbonate, acrylic, diphenylbenzene-based resin, etc.) with Ni, Au, Cu, Fe, etc., or carbon particles, etc. It is.
  • the adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the panel substrate 24 and the input wiring 31 and the output wiring 32, the liquid crystal driving semiconductor chip 19 and the bump 30,
  • a thermosetting or a blend of thermoplastic and thermosetting adhesive is used for the anisotropic conductive film
  • the connection is cured by pressing the heating pressure head against the liquid crystal drive semiconductor chip 19. Let it.
  • a UV-curable adhesive is used for the anisotropic conductive film, the pressure head is pressed against the liquid crystal driving semiconductor chip 19 and cured by UV irradiation from the panel substrate 24 side.
  • conductive particles 9 with 2 m thick Ni plating and 0.5111 thick 811 plating on styrene plastic particles with particle diameters of 2> am to 3 m are mainly composed of epoxy resin.
  • anisotropic conductive film anisotropic conductive material 8
  • the formation pitch of connection terminals and bumps is at least 120 / m, and it corresponds to a liquid crystal display device with a display capacity of 320 x 240 dots.
  • the conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 200 hours and a thermal cycle test (120.C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles are solder particles, Ni, Au, Ag, Cu, Pb, Sn or other single or multiple mixtures, alloys, or composite metal particles and plastic particles (metals such as polystyrene, polycarbonate, acrylic, dibenylbenzene resins, etc.) made of nickel, Au , Cu, Fe, etc., particles having one or more platings, carbon particles and the like.
  • conductive particles are solder particles, Ni, Au, Ag, Cu, Pb, Sn or other single or multiple mixtures, alloys, or composite metal particles and plastic particles (metals such as polystyrene, polycarbonate, acrylic, dibenylbenzene resins, etc.) made of nickel, Au , Cu, Fe, etc., particles having one or more platings, carbon particles and the like.
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is connected to the input wiring 31 and the output wiring 32 by a known method such as a printing method or a dispensing method using a dispenser. To place.
  • a thermosetting or a blend of thermoplastic and thermosetting adhesives for the anisotropic conductive adhesive it is cured by pressing the heating / pressing head against the liquid crystal drive semiconductor chip 19.
  • a UV-curable adhesive is used as the anisotropic conductive adhesive, the pressure head is pressed against the semiconductor chip 19 for driving liquid crystal, and is cured by irradiating UV from the panel substrate 24 side. .
  • a mold may cover the terminals or the entire connection to protect the connection from the external environment (for example, humidity, corrosive gas, dust, etc.).
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, 31 and the like, alloys such as 11-21 system, Au-Sn system, Ag-Pd system, and metals such as high-temperature superconducting material Materials or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3 // m can be used by appropriately selecting the conditions for gas deposition.
  • the base material of the panel substrate 24 is made of polycarbonate (PC).
  • PC polycarbonate
  • a plastic film or plastic plate having a thickness of 1 to 50 5 ⁇ such as polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether can be used.
  • repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30.
  • the connection resistance can be reduced as much as possible, and the connection state can be stabilized.
  • the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure and temperature at the time of connection, and even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed. The conduction is ensured. Further, by interposing the anisotropic conductive material 8, the connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
  • FIG. 33 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. Part or all of the surface of the connection terminal 39 formed on the thermal print head 34 is covered with the fine particle layer 1. An adhesive is used between the fine particle layer 1 and the connection terminals 40 formed on the other substrate 36.
  • FIG. 32 is a perspective view of the electronic printing apparatus. Although not shown, the connection terminals 39 of the thermal lubricating head 34 and the connection terminals 40 of the substrate 36 are connected.
  • the section A—A in FIG. 32 corresponds to FIG.
  • a plurality of substrates 36 each mounted with a semiconductor chip 35 for driving a thermal bridging head are connected to the thermal printing head 34, and wiring (not shown) is provided for each of them.
  • connection terminals 39 having a thickness of 3> cm are formed on the thermal printing head 34.
  • a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by a gas evaporation method similar to that shown in FIG.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was l O OTorr, and the temperature of the film formation chamber was room temperature (about 25.C).
  • the Ag fine particle layer 1 was formed such that gaps exist between the ultrafine particles having an average particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1
  • connection terminal 40 formed by coating a 35-m-thick copper foil on a film substrate 36 is connected via an adhesive 6.
  • the adhesive 6 is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single or a mixture or compound of a plurality of them.
  • SBS styrene-butadiene-styrene
  • This adhesive 6 is disposed between the connection terminal 39 and the connection terminal 40, and when a thermosetting or a thermoplastic and thermosetting blend type adhesive is used for the adhesive 6, the heating is performed. A hardening connection is made by pressing the pressure head against the substrate 36.
  • the adhesive 6 mainly composed of an epoxy was used, and the heating and pressurizing were performed at a temperature of 175 ° C, a pressure of 3 MPa, and a time of 20 seconds.
  • the formation pitch of the connection terminals is 200 / m, with a total of 960 terminals.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (one cycle at 20 ° C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
  • the fine particle layer 1 on the connection terminal 39 and the connection terminal 40 are in direct contact with each other to establish electrical continuity, and the adhesive 6 is mechanically fixed and held in this state.
  • the parts are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) and the connection is stabilized.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 zm can be used by appropriately selecting the conditions for gas deposition.
  • the narrowing or disconnection of the terminal width of the connection terminal 39 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 40 can be maximized.
  • the connection resistance can be reduced, and the connection state can be stabilized.
  • it has the advantage that repair, reinforcement, and low resistance of metal film connection terminals such as Ni can be easily performed without the need for complicated processing steps such as the wet plating method.
  • the ultrafine particles have a fine particle size of about 60 nm and are formed with a gap between the particles, so that the fine particle layer 1 acts as a cushion material, and alleviates the unevenness of the connection terminal 40.
  • the connection area can be increased, the connection resistance value can be reduced, and the connection state can be stabilized.
  • the fine particles 1 on the surface of the connection terminal 39 and the connection terminal 40 are directly connected to each other, other than the terminal misalignment, a short-circuit between the terminals due to the misalignment due to the pressurized connection may cause a poor connection. Since the factors are not included, the connection pitch can be reduced.
  • FIG. 34 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention.
  • the fine particle layer 1 covers a part or all of the surface of the connection terminal 39 formed on the thermal printing head 34, and the fine particle layer 1 on the connection terminal 39 and the other substrate 36
  • the formed connection terminals 40 are connected via a conductive adhesive ⁇ .
  • FIG. 32 is a perspective view of the liquid crystal display device, and although not shown, the connection terminal 39 on the thermal lug head 34 and the connection terminal 40 on the substrate 36 are connected. Section A—A in FIG. 32 corresponds to FIG. A plurality of substrates 36 on which a semiconductor chip 35 for driving a thermal pudding head is mounted are connected to the thermal lubrication head 34, and wiring (not shown) is provided for each of them.
  • a connection terminal 39 of Ni having a thickness of 3> c / m is formed on the thermal printing head 34.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by the gas evaporation method shown in FIG. 18c.
  • the differential pressure between the ultrafine particle generation chamber and the film formation chamber is The film was formed under the conditions of 1 atm and a temperature of 200 ° C. in the film forming chamber.
  • the fine particle layer 1 of Au was formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 1 to 3 m.
  • connection terminals 39 On the fine particle layer 1 on the connection terminals 39, a 50-m thick polyimide base film substrate 36 is connected with a 35-mm thick copper foil patterned connection end.
  • the terminals 40 are connected via the conductive adhesive 7.
  • the conductive adhesive 7 may be an epoxy, acrylic, polyester, urethane-based adhesive or a mixture or compound of a plurality of such adhesives. Is a mixture of conductive materials
  • This conductive adhesive 7 is placed on a part of the fine particle layer 1 formed on the connection terminal 39 or on the entire part thereof by a known method such as a printing method or a dispensing method, and may be put together via the adhesive 6. Then, the conductive adhesive 7 and the adhesive 6 are arranged between the connection terminals 40.
  • a thermosetting or a blend of thermoplastic and thermosetting is used as the conductive adhesive 7 or the adhesive 6, the connection is cured by pressing the heating and pressing head against the substrate 36. Let it. Further, in order to protect this connection portion and the exposed portion of the connection terminal 39 from the external environment (for example, humidity, corrosive gas, dust, etc.), the mold 23 covers the terminals or the entire connection portion.
  • a conductive adhesive 7 in which silver powder having a particle diameter of l to 2; t / m is mixed and dispersed in an adhesive mainly composed of an epoxy resin is used, and heating and pressing are performed at a temperature of 175 ° C, The test was performed under the conditions of a pressure of 4 MPa and a time of 20 seconds.
  • the connection terminals are 200 m long and have a total of 960 terminals.
  • a moisture resistance test (60 eC , 90% RH) for 200 hours and a thermal cycle test (30 minutes at 20 ° C and 30 minutes at 60 ° C) were performed on this conductive connection for 200 hours.
  • a stable connection state was maintained even after these connection reliability evaluations.
  • ultrafine particles As the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. In addition, ultrafine particles with a particle size of 60 nm to 3 m are used for gas deposition. It can be used by appropriately selecting the conditions.
  • the narrowing or disconnection of the terminal width of the connection terminal 39 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 40 can be repaired.
  • the connection resistance can be reduced, and the connection state can be stabilized.
  • connection terminal 40 can be complemented to increase the connection area, reduce the connection resistance value, and stabilize the connection state.
  • connection resistance value is higher than that of Ag, The material cost is reduced, and the moisture-proof mold material as a measure to prevent the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connections can be made.
  • FIG. 35 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. A part or all of the surface of the connection terminal 39 formed on the thermal link head 34 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 39 and the other substrate 36 are formed. The connected connection terminal 40 is connected via the anisotropic conductive material 8.
  • FIG. 32 is a perspective view of the electronic printing apparatus. Although not shown, the connection terminals 39 on the thermal head 34 and the connection terminals 40 on the substrate 36 are connected. I have. Section A—A in FIG. 32 corresponds to FIG. Thermal lubricating head 3 4 A plurality of substrates 36 on which 5 is mounted are connected, and each wiring (not shown) is provided.
  • a 3111-thick 1; 1 connection terminal 39 is formed on the thermal print head 34.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by the gas evaporation method shown in FIG. 18c.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber is set to ⁇ ⁇ .
  • ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , and the temperature of the film formation chamber was 120 ° C.
  • the fine particle layer 1 of Au was formed with an average particle diameter of about 3 / m.
  • the thickness of the fine particle layer 1 is 3 to 8 // m o
  • connection terminal 40 obtained by patterning a 50-m thick polyimide base film substrate 36 with a 25-m-thick copper foil is connected via an anisotropic conductive material 8. Have been.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be composed of solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles formed by plating, plastic particles (polystyrene, polycarbonate, acrylic, etc.). Or diphenylbenzene-based resin), Ni, Au, Cu, Fe, etc., or particles with single or multiple plating, carbon particles, etc.
  • the adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the thermal binder 34 and the connection terminals 39 and the connection terminals 40 of the substrate 36, and When a thermosetting or thermoplastic and thermosetting blend type adhesive is used for the conductive film, the heating and pressing head is pressed onto the substrate 36. A hardening connection is made by pressing.
  • the particle size Conductive particles 9 with a 2 / m thick Ni plating and a 0.5 m thick Au plating on diphenylbenzene-based plastic particles of ⁇ 10 / m 5% by weight in an adhesive 10 mainly composed of epoxy
  • the mixed and dispersed anisotropic conductive film anisotropic conductive material 8 was used, and the heating and pressing were performed at a temperature of 175, a pressure of 3 MPa, and a time of 20 seconds.
  • the formation of the connection terminals is 200 m, with a total of 960 terminals.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20 ° C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sh, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzene-based resin, etc.) and particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles.
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed at the connection portion of the connection terminal 39 by a known method such as a printing method or a dispensing method using a dispenser.
  • a thermosetting or thermoplastic and thermosetting blend type adhesive is used for the anisotropic conductive adhesive, the connection is cured by pressing the heating and pressing head against the substrate 36. 'Let me.
  • connection portion in order to protect the connection portion from an external environment (for example, humidity, corrosive gas, dust, etc.), the terminals 23 or the entire connection portion may be covered with a mold 23.
  • an external environment for example, humidity, corrosive gas, dust, etc.
  • examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and Ag—Pd. Alloys, metal materials such as high-temperature superconducting materials, or conductive materials can be used. Ultrafine particles having a particle diameter of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
  • the narrowing or disconnection of the terminal width of the connection terminal 39 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 40 can be repaired.
  • the connection resistance can be reduced, and the connection state can be stabilized.
  • repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without the need for complicated processing steps.
  • connection area of the conductive particles 9 can be increased by complementing the unevenness of the connection terminal 40, the connection resistance value can be reduced, and the connection state can be stabilized. it can.
  • FIG. 37 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention.
  • the fine particle layer 1 covers part or all of the surface of the input wiring 41 and the output wiring 42 formed on the thermal print head 34 and the fine particles on the input wiring 41 and the output wiring 42.
  • the layer 1 and the bumps 43 formed on the semiconductor chip 35 for driving the thermal print head are connected via an adhesive 6.
  • Fig. 36 is a perspective view of the electronic printing device.
  • the input wiring 41, output wiring 42, bus wiring 44, etc. of the thermal printing head 34 are not shown, but they are above the thermal printing head 34.
  • a semiconductor chip 35 for driving a thermal bridging head is connected thereto. Section A—A in FIG. 36 corresponds to FIG.
  • the input wiring 41 and the output wiring 42 on the 3 m-thick N are formed on the thermal printing head 34.
  • a fine particle layer 1 on which ultrafine particles of Ag are deposited is formed by a gas evaporation method shown in FIGS. 10 and 18.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 100 T0 rr, and the temperature of the film formation chamber was room temperature (about 25 ° C.).
  • the Ag fine particle layer 1 was formed in a state where there were gaps in the ultrafine particles having a particle diameter of about 60 nm.
  • the thickness of the fine particle layer 1 is 0.1 to 1.5 m.
  • a pump 43 formed on a semiconductor chip 35 for driving a sub-line head is connected via an adhesive 6. I have.
  • the adhesive 6 is a styrene-butadiene styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single compound or a mixture or compound.
  • SBS styrene-butadiene styrene
  • This adhesive 6 is placed between the fine particle layer 1 of the input wiring 41 and the output wiring 42, the semiconductor chip 35 for driving the thermal printer head 35 and the bump 43, and the thermosetting or thermoplastic is applied to the adhesive 6.
  • a heat and pressure head is pressed against a semiconductor chip 35 for driving a thermal pudding to form a hardened connection.
  • an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed at a temperature of 17.5. C, pressure was 10 gf / bump, and time was 30 seconds.
  • This The minimum pitch for forming the connection terminals and bumps is 120 zm, which corresponds to an electronic printing device with a printing capacity of 960 dots.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (one cycle at 20 ° C for 30 minutes and at 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
  • connection state is stabilized.
  • the material of the ultrafine particles is Au, Cu, Zn, Pd,
  • Metals such as 5n, Cu-Zn-based, Au-Sn-based, and octa-cured (alloys such as 1-based), and metallic or conductive materials such as high-temperature superconducting materials can be used. Can be used by selecting gas deposition conditions appropriately from 60 nm to 3 m.
  • the narrowing or disconnection of the terminal width of the input wiring 41 and the output wiring 42 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 43 can be maximized.
  • the connection resistance can be reduced, and the connection state can be stabilized.
  • it has the advantage that repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without the need for complicated processing steps.
  • the fine particle layer 1 acts as a cushion material, and alleviates the bumps 43 bumps and connects. The area can be increased, the connection resistance can be reduced, and the connection state can be stabilized.
  • FIG. 38 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention.
  • the fine particle layer 1 covers part or all of the surface of the input wiring 4 1 and output 'wiring 4 2' formed on the thermal head 3 4, and the input wiring 4 1 and output wiring 4 2
  • the fine particle layer 1 and the bumps 43 formed on the semiconductor chip 35 for driving the thermal print head are connected via a conductive adhesive 7.
  • Fig. 36 is a perspective view of the electronic printing device.
  • the input wiring 41, output wiring 42, and pass wiring 44 on the thermal printing head 34 are not shown, but the thermal printing head 3 is not shown.
  • the semiconductor chip 35 for driving the thermal print head is connected on 4. Section A—A in FIG. 36 is shown in FIG.
  • a 3 ⁇ ⁇ m-thick Ni input wiring 41 and an output wiring 42 are formed on the thermal printing head 34.
  • a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIGS. 10 and 18.
  • the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 3 atm, and the temperature of the film formation chamber was 100.
  • C was performed under the condition of C.
  • the ultrafine particles of Au were formed with an average particle diameter of about 1 m.
  • the thickness of the fine particle layer 1 is 1 to 3> t / m.
  • a bump 43 formed on a semiconductor chip 35 for driving a thermal binder is connected via a conductive adhesive 7.
  • This conductive adhesive 7 may be an epoxy-based, acrylic-based, polyester-based, urethane-based, etc. single or plural mixture or compound adhesive.
  • 0.1 Mixed and dispersed conductive material such as Ag with particle diameter of 1 to 5 m o
  • the conductive adhesive 7 may be placed on the input wiring 41 and the output wiring 42 by a known method such as a printing method or a dispensing method, and may be put together via an adhesive 6.
  • the adhesive 6 is arranged between the semiconductor chip 35 for driving the thermal head and the bump 43, and the conductive adhesive 7 or the adhesive 6 is thermoset or a blend of thermoplastic and thermosetting.
  • the heating and pressurizing head is pressed against the semiconductor chip 35 for driving the thermal head to make a hardened connection.
  • the terminal 23 or the whole connection part is covered with a mold 23. You may.
  • a conductive adhesive 7 was used, in which silver powder with a particle size of l to 2 zm was mixed and dispersed in an epoxy-based adhesive, and heating and pressing were performed at a temperature of 175 ° C and a pressure of 10 gf. / Bump, time 30 seconds.
  • This connection terminal has a minimum forming pitch of 120 zm and is compatible with an electronic printing device with a printing capacity of 960 dots.
  • the conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20 ° C for 30 minutes and at 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • the material of the ultrafine particles other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used.
  • the narrowing or disconnection of the terminal width of the input wiring 41 and the output wiring 42 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 43 can be maximized. And low connection resistance And the connection state can be stabilized.
  • repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without requiring complicated processing steps.
  • the bumps 43 can be supplemented with irregularities to increase the connection area, reduce the connection resistance value, and stabilize the connection state.
  • the conductive material in the conductive adhesive 7 a force particle of 0.1111 to 3111 can be used, and in this case, the connection resistance value is higher than that of Ag.
  • the material cost is reduced, and the moisture-proof mold material as a measure for preventing the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
  • FIG. 39 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention.
  • the particle layer 1 covers part or all of the surface of the input wiring 41 and the output wiring 42 formed on the thermal printer head 34, and the fine particle layer 1 on the input wiring 41 and the output wiring 42.
  • the bumps 43 formed on the semiconductor chip 35 for driving the thermal binder are connected via the anisotropic conductive material 8.
  • Figure 36 is a perspective view of the electronic printing device.
  • the input wiring 41, output wiring 42, and path wiring 44 on the thermal printer head 34 are not shown, but the thermal printing head 34
  • the semiconductor chip 35 for driving the thermal print head is connected above.
  • Section A—A in FIG. 36 corresponds to FIG.
  • a 3 m-thick Ni input wiring 41 and an output wiring 42 are formed on the thermal printing head 34.
  • a A fine particle layer 1 formed by depositing ultrafine particles of u is formed by the gas evaporation method shown in FIGS.
  • the differential pressure between the ultrafine particles producing chamber and film forming chamber and l O OTorr, the temperature of the film forming chamber c particle diameter of the ultrafine particles is the average 3 m-position of the Au was performed under the conditions of 120 ° C Had been formed.
  • the thickness of the fine particle layer 1 is 3 to 8 m.
  • the bumps 43 formed on the thermal printhead driving semiconductor chip 35 are connected to the fine particle layer 1 on the input wiring 41 and the output wiring 42 via the anisotropic conductive material 8.
  • the anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
  • the conductive particles 9 may be composed of solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, or the like, alloy metal, composite metal particles made of metal, etc., plastic particles (polystyrene, polycarbonate, acrylic, etc.). , Diphenylbenzene-based resin, etc.), and particles of carbon such as Ni, Au, Cu, Fe, etc., singly or in combination.
  • the adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
  • SBS styrene butadiene styrene
  • the anisotropic conductive film of the anisotropic conductive material 8 is applied to the thermal print head 34 and the fine particle layer 1 on the surface of the input wiring 41 and the output wiring 42 and the semiconductor chip 35 for driving the thermal bridge head 35.
  • the thermosetting or thermoplastic and thermosetting blend type adhesive is used for the anisotropic conductive film, the heat and pressure A hardening connection is made by pressing against the head driving semiconductor chip 35.
  • the particle diameter is 2 ⁇ ! ⁇ 3> m styrene-based plastic particles mixed with 2 / m-thick Ni plating and 0.5 m-thick Au plating conductive particles 9 mixed in an epoxy-based adhesive 10% by weight Dispersed differences Using an isotropic conductive film (anisotropic conductive material 8), the heating and pressing were performed at a temperature of 175 ° C, a pressure of 10 gf / bump, and a time of 30 seconds.
  • the minimum forming pitch of the connection terminals and bumps is 12, and it corresponds to an electronic printing device with a printing capacity of 960 dots.
  • the conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20.C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
  • anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive.
  • the conductive particles may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, Diphenylbenzene-based resin), Ni, Au, Cu, Fe, etc., single or multiple plating particles, carbon particles, etc.
  • the adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
  • SBS styrene-butadiene-styrene
  • the anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is connected to the input wiring 41 and the output wiring 42 by a known method such as a printing method or a dispensing method using a dispenser. To place.
  • a thermosetting or a blend of thermoplastic and thermosetting adhesive is used for the anisotropic conductive adhesive, the heating and pressurizing head is replaced with a semiconductor chip 35 for driving the thermal head. A hardening connection is made by pressing.
  • the mold 23 may cover the terminals or the entire connection portion.
  • the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and Ag—Pd. Alloys, metal materials such as high-temperature superconducting materials, or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions of gas deposition.
  • the narrowing or disconnection of the terminal width of the input wiring 41 and the output wiring 42 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bumps 4 3
  • the connection resistance can be reduced as much as possible, and the connection state can be stabilized.
  • repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without the need for complicated processing steps.
  • the bumps 4 3 can be compensated for, and the connection area of the conductive particles 9 can be increased, the connection resistance value can be reduced, and the connection state can be stabilized.
  • the conductive terminal portion has a thinned terminal, a broken terminal, and a lack of terminal by interposing a fine particle layer formed by depositing ultrafine particles between the conductive terminal portions formed on two substrates. Defects, or irregularities and steps on the surface of the terminal can be corrected, the resistance value can be reduced, and the connection area contributing to conduction can be increased. And a stable and reliable conductive connection can be secured.
  • the flexibility of the fine particle layer can alleviate the stress applied to the conductive terminal portion at the time of connection, thereby preventing the conductive terminal portion from being deformed or cracked. Cracks etc. around it This also has the effect that the conductive connection can be maintained and secured by the compensation based on the deformation of the fine particle layer.
  • connection characteristics of the conductive connection as described above, the range of appropriate connection conditions (temperature, pressure, mechanical accuracy, etc.) in the conductive connection process can be widened, so that the yield of the conductive connection can be reduced. It can be formed well and efficiently.

Abstract

A connecting terminal (2) of copper foil is formed on a substrate (3) of a glass epoxy base material, and a layer (1) of super-fine particles of Ag is deposited on the surface of this connecting terminal (2). The layer (1) is connected electrically with a connecting terminal (4) of copper foil formed on another substrate (5) comprising a polyamide base film via a bonding agent (6). The layer (1) compensates for a defect of conduction of the connecting terminals and increases the contact areas of the conductive connecting portions to attain the reduction of the resistance thereof. The fine particle layer lessens the stress imparted to the connecting terminals during a connecting operation, and, even when a crack occurs in a connecting terminal, this layer makes up therefor. This stabilizes the conductive connecting portions and improves the yield of structures thereof.

Description

明細書 導電接続部の構造、 これを備えた液晶表示装置及び電子印字装置 技術分野  Description: Structure of conductive connection portion, liquid crystal display device and electronic printing device provided with the structure
この発明は、 基体に設けられた導電性端子部同士の導電接続部の構造 に関し、 それを用いた液晶表示装置および電子印字装置の外部接続端子 の接続構造に関するものである。 背景技術  The present invention relates to a structure of a conductive connection portion between conductive terminal portions provided on a base, and to a connection structure of an external connection terminal of a liquid crystal display device and an electronic printing device using the same. Background art
従来から、 2つの基体にそれそれ設けられた導電性端子部を相互に導 電接続した導電接続部は、 種々の電子機器、 電気機器に形成されている。 この導電接続部において、 導電性端子部自体が微細であったり、 その形 成ビツチが小さくなつたりした場合には、 接続作業が困難で k>るため、 特殊な接続方法が用いられる。 例えば、 接続端子の接続ピッチが 0 . 3 mm以下の細密ピッチになった場合には半田付けは難しくなることから、 図 4 0に示すように接着剤 1 0 6を介して接続端子 1 0 2、 1 0 4間を 直接接触させて導通をとる電気接続構造や、 図 4 2に示すように異方性 導電膜 1 0 9を使って接続端子 1 0 2、 1 0 4間を導電粒子 1 0 8を介 して導通をとる方法が採用される。  2. Description of the Related Art Conventionally, conductive connecting portions in which conductive terminal portions provided on two substrates are conductively connected to each other have been formed on various electronic devices and electric devices. In this conductive connection part, if the conductive terminal part itself is fine or its forming bit becomes small, the connection work becomes difficult and a special connection method is used. For example, if the connection pitch of the connection terminals is 0.3 mm or less, soldering becomes difficult, and as shown in FIG. 40, the connection terminals 10 2 And an electrical connection structure in which electrical contact is made by making direct contact between the electrodes 104 and conductive particles 1 between the connection terminals 102 and 104 using an anisotropic conductive film 109 as shown in FIG. A method of establishing conduction through 08 is adopted.
ところで、 上記導電接続部の構造としては、 図 4 0に示すように、 ポ リカーボネートのようなプラスチック基板 1 0 3上にパターニングされ た I T O ( I n d i u m T i n 0 x i d e ) のような透明電極の接 続端子 1 0 4と、 ポリイミ ドベースフィルムの基板 1 0 1上に銅箔をパ ターニングし表面を錫メツキした接続端子 1 0 2とを、 エポキシ系樹脂 を主成分とした接着剤 1 0 6を介して、 加熱加圧ツールにより接続端子 102、 104を直接接触させて接続した構造がある。 By the way, as shown in FIG. 40, the structure of the conductive connection portion is a transparent electrode such as ITO (Indium Tin in xide) patterned on a plastic substrate 103 such as polycarbonate. The connection terminal 104 and the connection terminal 102 whose surface is tin-plated with a pattern of copper foil on a polyimide base film substrate 101 are bonded with an epoxy resin-based adhesive 100 Connection terminal by heating and pressurizing tool via 6 There is a structure in which 102 and 104 are connected by direct contact.
この場合には、 導電接続部を構成する際に、 I TOの接続端子 104 に接続端子 102が接触した部分 (周辺部分を含む) に亀裂 105が発 生し、 導通が当初から取れないか又は導通状態が非常に不安定になり、 充分な接続信頼性が得られないという不具合があった。 図 41に、 図 4 0で示した接続部を剥離して基板 103の I TOの接続端子 104に接 続端子 102が接触した部分 (周辺部分を含む) に亀裂 105が縦横に 発生して、 I TOの接続端子 104が寸断され、 導通が取れていないこ とが確認される。  In this case, when forming the conductive connecting portion, a crack 105 is generated in a portion (including a peripheral portion) where the connecting terminal 102 is in contact with the connecting terminal 104 of the ITO, and conduction cannot be taken from the beginning, or There was a problem that the conduction state became extremely unstable and sufficient connection reliability could not be obtained. In FIG. 41, cracks 105 are formed vertically and horizontally at the part (including the peripheral part) where the connection terminal 102 comes into contact with the ITO connection terminal 104 of the substrate 103 by peeling off the connection part shown in FIG. It is confirmed that the connection terminal 104 of the ITO is cut off and no continuity is established.
また、 図 42のように、 上記の構造と同様のポリカーボネートのよう なブラスチック基板 103上にパターニングされた ITO (Ind iu m T in Oxide) のような透明電極の接続端子 104と、 ポリ ィミ ドベースフィルムの基板 101上に銅箔をパターニングし表面を錫 メツキした接続端子 102とを、 ポリスチレン系樹脂のようよブラスチ ック粒子に N i— Auのメツキ処理を施した導電粒子 108をエポキシ 系樹脂を主成分とする接着剤 107の中に分散させた異方性電動膜 10 9を介して接続する場合もある。  In addition, as shown in FIG. 42, a connection terminal 104 of a transparent electrode such as ITO (Indium Tin Oxide) patterned on a plastic substrate 103 such as polycarbonate having the same structure as described above, and a polyimide. A connection terminal 102, which is formed by patterning copper foil on a base film substrate 101 and tinning the surface, is connected to conductive particles 108, which are made of a plastic particle such as a polystyrene resin and have a Ni-Au plating process. In some cases, the connection is made via an anisotropic electric membrane 109 dispersed in an adhesive 107 containing a base resin as a main component.
この場合にも、 I TOの接続端子 104に導電粒子 108が接触した 部分及びその周辺部分に亀裂 105が発生し、 導通が当初から取れない か又は導通状態が非常に不安定になり、 充分な接続信頼性が得られない という不具合があった。 図 43に、 図 42で示した接続部を剥離して基 板 103の I TOの接続端子 104の表面を露出させ、 表面を拡大した 状態を示す。 I TOの接続端子 104に導電粒子 108が接触した部分 及びその周辺部分に亀裂 105が全周囲に又は部分的に発生することに より、 I TOの接続端子 104と導電粒子の接続部分が寸断されるため、 導通が取れていないことが確認された。 そこで、 本発明は上記欠点を解決するために 2つの基体間の導電接続 部において、 導電性端子部の破損を防止し、 確実な導電接続を行うこと のできる構造を提供することを目的とする。 In this case as well, cracks 105 are generated at the portion where the conductive particles 108 contact the connection terminal 104 of the ITO and at the periphery thereof, and conduction cannot be taken from the beginning or the conduction state is very unstable, and sufficient There was a problem that connection reliability could not be obtained. FIG. 43 shows a state in which the connection portion shown in FIG. 42 is peeled off to expose the surface of the ITO connection terminal 104 of the substrate 103, and the surface is enlarged. Cracks 105 are formed all around or partially around the part where the conductive particles 108 are in contact with the ITO connection terminal 104 and the surrounding area, so that the connection part between the ITO connection terminal 104 and the conductive particle is cut off. Therefore, it was confirmed that there was no continuity. Accordingly, an object of the present invention is to provide a structure capable of preventing breakage of a conductive terminal portion and performing a reliable conductive connection in a conductive connection portion between two substrates in order to solve the above-mentioned drawbacks. .
特に、 本発明は微細な導電接続部の電気的接続を確実なものとし、 そ の接続状態を安定化し信頼性の高い接続を確保することを目的とし、 例 えば液晶表示装置の液晶基板や電子印字装置のサーマルプリン夕へッド' の外部接続端子のように、 微細なピッチで形成された導電性端子部の導 電接続に適した技術を得ることを目的とするものである。 発明の開示  In particular, the present invention aims to secure the electrical connection of the fine conductive connection portion, stabilize the connection state, and secure a highly reliable connection, for example, a liquid crystal substrate of a liquid crystal display device or an electronic device. It is an object of the present invention to obtain a technology suitable for conductive connection of conductive terminal portions formed at a fine pitch, such as external connection terminals of a thermal printing head of a printing apparatus. Disclosure of the invention
本発明の導電接続部の構造は、 第 1の基体に設けられた第 1の導電性 端子部と、 第 2の基体に設けられた第 2の導電性端子部とを導電接続し た導電接続部の構造において、 前記第 1の導電性端子部と前記第 2の導 電性端子部との間に導電性物質の超微粒子を堆積してなる微) k子層を形 成し、 該微粒子層を介して前記第 1の導電性端子部と前記第 2の導電性 端子部とを導電接続したことを特徴とするものである。  The structure of the conductive connecting portion according to the present invention is a conductive connecting portion in which a first conductive terminal portion provided on a first base and a second conductive terminal portion provided on a second base are conductively connected. In the structure of the portion, a fine particle layer formed by depositing ultrafine particles of a conductive substance between the first conductive terminal portion and the second conductive terminal portion is formed. The present invention is characterized in that the first conductive terminal portion and the second conductive terminal portion are conductively connected via a layer.
ここで、 前記超微粒子の粒子平均径は約 6 O nmから であるこ とが好ましい。  Here, the average particle diameter of the ultrafine particles is preferably from about 6 O nm.
第 1の基体に設けられた第 1の導電性端子部と第 2の基体に設けられ た第 2の導電性端子部との間に、 導電性物質の超微粒子を堆積してなる 微粒子層を介して導電接続することにより、 第 1及び第 2の導電性端子 部の間に加えられる応力を微粒子層が吸収するため、 導電接続部に亀裂 等が発生することを防止できるとともに、 亀裂等が発生しても微粒子層 の変化により導電接続を確保することができる。  A fine particle layer formed by depositing ultrafine particles of a conductive substance is provided between a first conductive terminal provided on the first base and a second conductive terminal provided on the second base. The conductive connection via the first and second conductive terminals allows the fine particle layer to absorb the stress applied between the first and second conductive terminals, thereby preventing cracks and the like from being generated in the conductive connection and preventing cracks and the like. Even if it occurs, the conductive connection can be secured by the change of the fine particle layer.
また、 微粒子層を構成する超微粒子は、 第 1または第 2の導電性端子 部の端子の細り、 端子切れ、 端子欠如等の欠陥部に充填されてこれらの 欠陥を補完することができるので、 欠陥に起因する接続不良を回避する ことができる。 In addition, the ultrafine particles constituting the fine particle layer are filled in defective portions such as thinned terminals, broken terminals, and missing terminals of the first or second conductive terminal portion, and these particles are filled. Since defects can be complemented, connection failures caused by defects can be avoided.
更に、 超微粒子は、 第 1の導電性端子部と第 2の導電性端子部との間 の導通に寄与する接触面積を大きくするため、 導電接続部の抵抗値の低 減を図ることができる。 このような理由により、 導電接続部における電 気的接続を確実にし、 接続状態を安定化させ、 信頼性の高い導電接続を 確保できる。  Furthermore, since the ultrafine particles increase the contact area that contributes to conduction between the first conductive terminal and the second conductive terminal, the resistance value of the conductive connection can be reduced. . For this reason, the electrical connection at the conductive connection portion is ensured, the connection state is stabilized, and a highly reliable conductive connection can be secured.
さらに、 導電接続を行う行程における適正な接続条件 (温度、 圧力、 機械精度等) の範囲を広くとることができ、 歩留まり良く、 効率的に導 電接続部を形成することができる。  Furthermore, the range of appropriate connection conditions (temperature, pressure, mechanical accuracy, etc.) in the process of conducting the conductive connection can be widened, and the conductive connection can be efficiently formed with good yield.
また、 前記第 1の導電性端子部の表面上に前記微粒子層を被着し、' 前 記微粒子層に直接に、 前記第 2の導電性端子部を接触させることが好ま しい。  Further, it is preferable that the fine particle layer is applied on the surface of the first conductive terminal portion, and that the second conductive terminal portion is brought into direct contact with the fine particle layer.
更に、 前記微粒子層は、 ガス中蒸発法により形成したもの ½あること が好ましい。  Further, it is preferable that the fine particle layer is formed by a gas evaporation method.
この場合には特に、 前記超微粒子層は、 不活性ガスにより搬送される 導電性物質の蒸気を前記第 1又は第 2の導電性端子部にノズルを介して 選択的に吹き付けることにより形成したものであることが望ましい。 ガス中蒸発法は、 比較的容易かつ安価に微粒子層を制御性良く形成す ることができるので、 製造コストを増加させずに確実に導電接続を行う ことが可能である。 特にノズルを介して吹き付けることによる微粒子層 の形成は、 マスク等の形成が不要であるとともに微細領域にも選択性良 く層形成を行うことができるから、 効率的に導電接続部を形成すること ができる。  In this case, particularly, the ultrafine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion through a nozzle. It is desirable that In the gas evaporation method, the fine particle layer can be formed relatively easily and inexpensively with good controllability, so that the conductive connection can be reliably performed without increasing the manufacturing cost. In particular, the formation of the fine particle layer by spraying through a nozzle does not require the formation of a mask or the like, and the layer can be formed with good selectivity even in a fine region. Can be.
また、 前記第 1の導電性端子部の表面上に前記微粒子層を被着し、 前 記微粒子層に導電性接着剤を介して前記第 2の導電性端子部を導電接続 する場合がある。 Further, the fine particle layer is applied on the surface of the first conductive terminal portion, and the second conductive terminal portion is conductively connected to the fine particle layer via a conductive adhesive. May be.
更に、 前記第 1の導電性端子部の表面上に前記微粒子層を被着し、 前 記微粒子層に異方性導電材を介して前記第 2の導電性端子部を導電接続 する場合がある。  Further, the fine particle layer may be adhered on the surface of the first conductive terminal portion, and the second conductive terminal portion may be conductively connected to the fine particle layer via an anisotropic conductive material. .
また、 前記第 1の基体は配線基板であり、 前記第 2の基体は電子素子 ある場合がある。  Further, the first base may be a wiring board, and the second base may be an electronic element.
更に、 前記第 1及び第 2の基体の少なくとも一方がガラス基板である 場合がある。  Furthermore, at least one of the first and second substrates may be a glass substrate.
この場合には更に、 前記第 1及び第 2の基体の他方は電子素子である 場合がある。  In this case, the other of the first and second substrates may be an electronic element.
第 1又は第 2の基体を硬質のガラス基板とする場合には、 その上の導 電接続部を微粒子層の変形により柔軟に接続させることによって、 信頼 性の高い導電接続を取ることができるとともに、 第 1又は第 2の導電性 端子部の端子の細り、 端子切れ、 端子欠如等の欠陥を補正す ί>ことがで きる。  When the first or second substrate is a hard glass substrate, a highly reliable conductive connection can be obtained by connecting the conductive connecting portion thereon flexibly by deformation of the fine particle layer. In addition, it is possible to correct defects such as thinned terminals, broken terminals, and missing terminals of the first or second conductive terminal portion.
また、 前記第 1及び第 2の基体の少なくとも一方が可撓性ブラスチッ クフィルム基板またはブラスチック基板である場合がある。  In some cases, at least one of the first and second substrates is a flexible plastic film substrate or a plastic substrate.
この場合において、 前記第 1及び第 2の基体の他方は電子素子である 場合がある。  In this case, the other of the first and second substrates may be an electronic element.
第 1又は第 2の基体を可撓性ブラスチックフィルム基板またはプラス チック基板とする場合には、 微粒子層の変形により、 基体の可撓性又は 加熱加圧接続もしくは加圧接続による第 1又は第 2の導電性端子部の亀 裂の発生を押さえ、 また、 第 1又は第 2の導電性端子部に亀裂が発生し ても、 亀裂部分に超微粒子が補填されることにより電気的接続状態が確 保される。  When the first or second substrate is a flexible plastic film substrate or a plastic substrate, the first or second substrate may be made flexible by heating or pressurized connection or pressurized connection due to deformation of the fine particle layer. (2) The occurrence of cracks in the conductive terminal portion is suppressed, and even if a crack occurs in the first or second conductive terminal portion, the ultra-fine particles are added to the crack portion to make the electrical connection state. Guaranteed.
次に、 液晶表示装置としては、 前記第 1の基体を透明導電膜を形成し た液晶表示装置のガラス、 プラスチック若しくはブラスチックフィルム で構成された液晶基板とし、 前記第 1の導電性端子部を、 前記透明導電 膜に接続され、 前記液晶基板の端部の露出面に導出された外部接続端子 とするものである。 Next, as the liquid crystal display device, a transparent conductive film is formed on the first base. A liquid crystal substrate made of glass, plastic or plastic film of the liquid crystal display device, wherein the first conductive terminal portion is connected to the transparent conductive film, and is led to an exposed surface at an end of the liquid crystal substrate. External connection terminal.
ここで、 前記第 2の基体は液晶駆動用の電子素子である場合がある。 また、 前記微粒子層を、 ガス中蒸発法により形成したものとすること が好ましい。  Here, the second base may be an electronic element for driving a liquid crystal. Further, it is preferable that the fine particle layer is formed by a gas evaporation method.
この場合特に、 前記微粒子層を、 不活性ガスにより搬送される導電性 物質の蒸気を前記第 1又は第 2の導電性端子部にノズルを介して選択的 に吹き付けることにより形成したものであることが望ましい。  In this case, particularly, the fine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion through a nozzle. Is desirable.
液晶表示装置においては、 ガラス、 可撓性プラスチヅクフィルム基板 またはブラ.スチック基板等からなる液晶基板の外部接続端子の端子の細 り、 端子切れ、 端子欠如等の欠陥を補正することができる。 また、 液晶 基板上の外部接続端子を補強できるとともに、 外部接続端子 έ体の抵抗 値を小さくすることができる。 更に、 導電接続部における接触面積を広 げること、 また接続状態を安定化することが可能であるため、 導電接続 部の接続抵抗値を小さくできる。 特に、 液晶駆動用半導体チップまたは 液晶駆動用半導体チップを搭載した電子素子を容易に液晶基板の外部接 続端子に接続できることにより、 製品形成や用途に最適な形状の液晶表 示装置を提供できる。 さらにまた、 接続工程における適正な接続条件 ( 温度、 圧力、 機械精度等) の範囲を広くとることができ、 歩留まり良く、 効率的な端子接続ができ、 安価な液晶表示装置を提供できる。  In a liquid crystal display device, it is possible to correct defects such as thinning, disconnection, and lack of terminals of external connection terminals of a liquid crystal substrate made of glass, a flexible plastic film substrate, a plastic substrate, or the like. Further, the external connection terminals on the liquid crystal substrate can be reinforced, and the resistance value of the external connection terminals can be reduced. Further, since the contact area in the conductive connection portion can be increased and the connection state can be stabilized, the connection resistance value of the conductive connection portion can be reduced. In particular, since a liquid crystal driving semiconductor chip or an electronic element on which the liquid crystal driving semiconductor chip is mounted can be easily connected to an external connection terminal of a liquid crystal substrate, a liquid crystal display device having a shape optimal for product formation and application can be provided. Furthermore, the range of appropriate connection conditions (temperature, pressure, mechanical accuracy, etc.) in the connection process can be widened, and a good yield, efficient terminal connection, and an inexpensive liquid crystal display device can be provided.
次に、 電子印字装置としては、 前記第 1の基体をサーマルブリン夕へ ッ ドとし、 前記第 1の導電性端子部を、 該サーマルブリン夕ヘッ ドの外 部接続端子とするものである。  Next, in the electronic printing apparatus, the first base is a thermal head and the first conductive terminal is an external connection terminal of the thermal head.
ここで、 前記第 2の基体を、 サーマルプリン夕ヘッド駆動用半導体チ ッブとする場合がある。 Here, the second substrate is formed of a semiconductor chip for driving a thermal printing head. In some cases.
また、 前記微粒子層は、 ガス中蒸発法により形成したものであること が好ましい。  Further, it is preferable that the fine particle layer is formed by a gas evaporation method.
この場合には、 前記微粒子層は、 不活性ガスにより搬送される導電性 物質の蒸気を前記第 1又は第 2の導電性端子部にノズルを介して選択的 に吹き付けることにより形成したものであることが望ましい。  In this case, the fine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion via a nozzle. It is desirable.
電子印字装置においては、 サーマルブリン夕へッドの外部接続端子の 端子の細り、 端子切れ、 端子欠如等の欠陥を補正することができる。 ま た、 外部接続端子自体の抵抗値を小さくすることができる。 さらに、 導 電接続部における接触面積を広げること、 また接続状態を安定化するこ とが可能であるため、 導電接続部の接続抵抗値を小さくできる。 特に、 サーマルプリン夕へッド駆動用半導体チップ自体やサーマルブリン夕へ ッド駆動用半導体チヅブを搭載した電子素子を容易にサーマルブリン夕 へッドの外部接続端子に接続できることにより、 製品形態や用途に最適 な形状の電子印字装置を提供できる。 さらにまた、 接続工程における適 正な接続条件 (温度、 圧力、 機械精度等) の範囲を広くとることができ、 歩留まり良く、 効率的に端子接続ができ、 安価な電子印字装置を提供で きる。 図面の簡単な説明  In an electronic printing device, it is possible to correct defects such as thinned, disconnected and missing terminals of the external connection terminals of the thermal printer head. Further, the resistance value of the external connection terminal itself can be reduced. Furthermore, since the contact area in the conductive connection portion can be increased and the connection state can be stabilized, the connection resistance value of the conductive connection portion can be reduced. In particular, since the semiconductor chip itself for driving the thermal print head and the electronic device equipped with the semiconductor chip for driving the thermal print head can be easily connected to the external connection terminal of the thermal print head, the product form and the It is possible to provide an electronic printing device having a shape optimal for the application. Furthermore, the range of appropriate connection conditions (temperature, pressure, mechanical accuracy, etc.) in the connection process can be widened, and the terminal connection can be efficiently performed with good yield, and an inexpensive electronic printing device can be provided. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施例の主要部分を示す断図面である。  FIG. 1 is a sectional view showing a main part of one embodiment of the present invention.
第 2図は、 本発明の一実施例の主要部分を示す断図面である。  FIG. 2 is a sectional view showing a main part of one embodiment of the present invention.
第 3図は、 本発明の一実施例を示す斜視図である。  FIG. 3 is a perspective view showing one embodiment of the present invention.
第 4図は、 本発明の一実施例の加工方法を示す概略図である。  FIG. 4 is a schematic view showing a working method according to one embodiment of the present invention.
第 5図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 6図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 7図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 8図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 9図は、 本発明の他の一実施例を示す斜視図である。 FIG. 5 is a sectional view showing a main part of another embodiment of the present invention. FIG. 6 is a sectional view showing a main part of another embodiment of the present invention. FIG. 7 is a sectional view showing a main part of another embodiment of the present invention. FIG. 8 is a sectional view showing a main part of another embodiment of the present invention. FIG. 9 is a perspective view showing another embodiment of the present invention.
第 1 0図は、 本発明の他の一実施例の加工方法を示す概略図である, 第 1 1図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 1 2図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 1 3図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 1 4図は、 本発明の他の一実施例を示す斜視図である。 FIG. 10 is a schematic view showing a processing method according to another embodiment of the present invention. FIG. 11 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 2 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 13 is a cross-sectional view showing a main part of another embodiment of the present invention, FIG. FIG. 7 is a perspective view showing another embodiment of the present invention.
第 1 5図は、 本発明の他の一実施例の主要部分を示す斜視図である, 第 1 6図は、 本発明の他の一実施例の主要部分を示す断面図である < 第 1 7図は、 本発明の他の一実施例の主要部分を示す断面図である < 第 1 8図は、 本発明の他の一実施例の加工方法を示す概略図である, 第 1 9図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 2 0図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 2 1図は、 本発明の他の一実施例の主要部分を示す断面図である < 第 2 2図は、 本発明の他の一実施例の主要部分を示す断面図である < 第 2 3図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 2 4図は、 本発明の他の一実施例の主要部分を示す断面図である < 第 2 5図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 2 6図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 2 7図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 2 8図は、 本発明の他の一実施例を示す斜視図である。 FIG. 15 is a perspective view showing a main part of another embodiment of the present invention. FIG. 16 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 7 is a cross-sectional view showing a main part of another embodiment of the present invention. <FIG. 18 is a schematic diagram showing a processing method of another embodiment of the present invention, FIG. Is a cross-sectional view showing a main part of another embodiment of the present invention, FIG. 20 is a cross-sectional view showing a main part of another embodiment of the present invention, FIG. FIG. 22 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 22 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 24 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 24 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 3 is a cross-sectional view showing a main part of one embodiment of the present invention. FIG. 26 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 27 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 28 is a perspective view showing another embodiment of the present invention.
第 2 9図は、 本発明の他の一実施例の主要部分を示す断面図である < 第 3 0図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 3 1図は、 本発明の他の一実施例の主要部分を示す断面図である, 第 3 2図は、 本発明の他の一実施例を示す斜視図である。 第 3 3図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 3 4図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 3 5図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 3 6図は、 本発明の他の一実施例を示す斜視図である。 FIG. 29 is a cross-sectional view showing a main part of another embodiment of the present invention. <FIG. 30 is a cross-sectional view showing a main part of another embodiment of the present invention. FIG. 1 is a sectional view showing a main part of another embodiment of the present invention. FIG. 32 is a perspective view showing another embodiment of the present invention. FIG. 33 is a sectional view showing a main part of another embodiment of the present invention. FIG. 34 is a sectional view showing a main part of another embodiment of the present invention. FIG. 35 is a sectional view showing a main part of another embodiment of the present invention. FIG. 36 is a perspective view showing another embodiment of the present invention.
第 3 7図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 3 8図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 3 9図は、 本発明の他の一実施例の主要部分を示す断面図である。 第 4 0図は、 従来の導電接続部を示す断面図である。  FIG. 37 is a sectional view showing a main part of another embodiment of the present invention. FIG. 38 is a sectional view showing a main part of another embodiment of the present invention. FIG. 39 is a sectional view showing a main part of another embodiment of the present invention. FIG. 40 is a cross-sectional view showing a conventional conductive connection portion.
第 4 1図は、 従来の導電接続部の基板剥離面を示す図である。  FIG. 41 is a diagram showing a substrate peeling surface of a conventional conductive connection portion.
第 4 2図は、 従来の他の導電接続部を示す断面図である。  FIG. 42 is a cross-sectional view showing another conventional conductive connection portion.
第 4 3図は、 従来の他の導電接続部の基板剥離面を示す図である。 発明を実施するための最良の形態  FIG. 43 is a view showing a substrate peeling surface of another conventional conductive connection portion. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に示すために、 添付の図面に基づいてこれを説明す る。  The present invention will be described with reference to the accompanying drawings in order to show the present invention in more detail.
〔実施例 1〕 (Example 1)
図 1、 図 2は、 本発明に係る導電接続部の構造の第 1実施例の主要部 分を示すための相互に直交する平面で切断した状態を示す断面図である —方の基板 3には導電性の金属薄膜からなる接続端子 2が形成され、 他 方の基板 5にも、 同様の接続端子 4が形成されている。 接続端子 2の表 面の一部分または全部には超微粒子を堆積させた微粒子層 1が被着され ている。 この微粒子層 1と接続端子 4とが相互に接触するように配置さ れ、 この接触部の周囲に接着剤 6が充填され、 基板 3と基板 5とを、 微 粒子層 1が接続端子 2と接続端子 4との間に挟持された状態に固定して いる。 図 3は導電接続部の構造の 1実施例の斜視図であり、 基板 3の接続端 子 2と基板 5の接続端子 4とが接続している様子を示している。 図 3の 断面 A— Aは図 1に対応し、 断面 B— Bは図 2に対応している。 FIGS. 1 and 2 are cross-sectional views showing main parts of a first embodiment of the structure of a conductive connection portion according to the present invention, which are cut along planes perpendicular to each other to show a main part. A connection terminal 2 made of a conductive metal thin film is formed, and a similar connection terminal 4 is formed on the other substrate 5. A fine particle layer 1 on which ultrafine particles are deposited is applied to part or all of the surface of the connection terminal 2. The fine particle layer 1 and the connection terminal 4 are arranged so as to be in contact with each other, the adhesive 6 is filled around the contact portion, and the substrate 3 and the substrate 5 are connected to each other. It is fixed so as to be sandwiched between the connection terminal 4. FIG. 3 is a perspective view of one embodiment of the structure of the conductive connection portion, and shows a state in which the connection terminal 2 of the substrate 3 and the connection terminal 4 of the substrate 5 are connected. Section A—A in FIG. 3 corresponds to FIG. 1, and section B—B corresponds to FIG.
図 4は基板 3の接続端子 2の表面に超微粒子を堆積して形成された微 粒子層 1を形成する方法を示す概略図である。 微粒子層 1は、 図 4に示 'すガス中蒸発法 (ガスデポジション法) により形成される。 このガス中' 蒸発法は、 超微粒子を構成する原料物質を抵抗加熱、 誘導加熱、 レーザ 一加熱、 電子ビーム加熱等の種々の方法で蒸発させ、 この蒸気を不活性 ガスの流れによって搬送して所定の場所において超微粒子として堆積さ せる方法である。 通常、 不活性ガス Gが供給されている高圧の超微粒子 生成室 Aで原料物質 Bを蒸発させ、 この蒸気を不活性ガス中に拡散させ た状態で、 不活性ガスの流れ 1 1に従って搬送管 1 2を通して搬送し、 低圧に保持された膜形成室 C内に開口するノズル 1 3から、 基板 3の接 続端子 2の表面に蒸気を吹き付け、 所望の超微粒子を堆積させて成膜す るものである。  FIG. 4 is a schematic view showing a method for forming a fine particle layer 1 formed by depositing ultrafine particles on the surface of the connection terminal 2 of the substrate 3. The fine particle layer 1 is formed by a gas evaporation method (gas deposition method) shown in FIG. In this gas evaporation method, the raw material constituting the ultrafine particles is evaporated by various methods such as resistance heating, induction heating, laser heating, electron beam heating, and the like, and the vapor is conveyed by a flow of inert gas. This is a method of depositing ultra-fine particles at a predetermined location. Usually, the raw material B is evaporated in the high-pressure ultrafine particle generation chamber A to which the inert gas G is supplied, and the vapor is diffused into the inert gas. Vapor is sprayed onto the surface of the connection terminal 2 of the substrate 3 from the nozzle 13 opened in the film forming chamber C maintained at a low pressure while being transported through 12 to deposit desired ultrafine particles to form a film. Things.
基板 3を X方向 1 4と Y方向 1 5に移動する移動方向と移動速度、 ノ ズル 1 3からのガスと超微粒子の流れ 1 1、 およびノズル 1 3と接続端 子 2との距離を制御することにより、 基板 3の接続端子 2の表面に所望 の形状及び厚みの微粒子層 1を形成することができる。 また、 超微粒子 生成室と膜形成室との差圧と温度を制御することによつても微粒子 1の 粒子径、 密度、 厚み等を所望のものとすることができる。  Controls the moving direction and moving speed of substrate 3 in X direction 14 and Y direction 15, flow of gas and ultrafine particles 11 from nozzle 13, and distance between nozzle 13 and connection terminal 2 By doing so, the fine particle layer 1 having a desired shape and thickness can be formed on the surface of the connection terminal 2 of the substrate 3. Further, by controlling the pressure difference and the temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness, and the like of the fine particles 1 can be made desired.
例えば、 ノズル 1 3と被着部とのギャップは 0 . 3〜0 . 5 mmであ り、 この条件では、 ノズル内径が 3 0 Π1の場合、 微粒子層 1の幅は 3 1〜 3 6 m、 ノズル内径が 1 0 0 mの場合、 微粒子層 1の幅は 1 0 5〜1 2 0 πιとなる。 この形成幅は、 ノズル内径及びギャップの他に、 超微粒子生成室と膜形成室との圧力差及び膜形成室の圧力に依存する。 一般に圧力差が大きくなるほど、 膜形成室の圧力が高くなるほど、 微粒 子の形成幅が大きくなる傾向にあるが、 膜形成室の圧力が 1 0 T o r r 以下であれば大きな影響をもたらさない。 本実施例では、 上記のように ノズル 1 3の内径とほぼ同様の形成幅が得られる成膜条件で微粒子層 1 を形成した。 For example, the gap between the nozzle 13 and the adherend is 0.3 to 0.5 mm. Under this condition, when the nozzle inner diameter is 30Π1, the width of the fine particle layer 1 is 31 to 36 m. When the inner diameter of the nozzle is 100 m, the width of the fine particle layer 1 is 105 to 120 πι. This formation width depends on the pressure difference between the ultrafine particle generation chamber and the film formation chamber and the pressure in the film formation chamber, in addition to the nozzle inner diameter and the gap. Generally, the larger the pressure difference and the higher the pressure in the film forming chamber, the larger the fine particle formation width tends to be. However, if the pressure in the film forming chamber is 10 Torr or less, there is no significant effect. In the present example, the fine particle layer 1 was formed under the film forming condition that a formation width almost similar to the inner diameter of the nozzle 13 was obtained as described above.
本実施例では、 0 . 4 mm厚のガラスエポキシ基材 3上に形成された 1 8 // m厚の銅箔からなる接続端子 2の表面上に、 A gの微粒子層 1を 形成している。 ガス中蒸発法を使い、 超微粒子生成室 Aと膜形成室 Cと の差圧を l O O T o r rとし、 膜形成室 Cの温度は室温 (約 2 5 °C) の 条件で行った。 この A gの微粒子層 1においては、 平均 6 0 nm位の粒 子径の超微粒子が若干の隙間がある状態で堆積された。 微粒子層 1の厚 さは 0 . 5〜2 . 0 μ. mである。  In this embodiment, an Ag fine particle layer 1 is formed on the surface of a connection terminal 2 made of 18 // m thick copper foil formed on a 0.4 mm thick glass epoxy substrate 3. I have. Using the gas evaporation method, the pressure difference between the ultrafine particle generation chamber A and the film formation chamber C was set as lOOOTrr, and the temperature of the film formation chamber C was room temperature (about 25 ° C). In the Ag fine particle layer 1, ultrafine particles having an average particle diameter of about 60 nm were deposited with some gaps. The thickness of the fine particle layer 1 is 0.5 to 2.0 μm.
このようにして形成された接続端子 2上の微粒子層 1の表面に、 1 8 /zm厚のポリィミ ドベースフィルムの基板 5上において 1 8 /m厚の銅 箔をパターニングして形成された接続端子 4を接着剤 6を介して固着し た。 接着剤 6は接続端子 2又は接続端子 4の上部に塗布しても良く、 あ るいは接着剤 6を予め接続端子 2又は接続端子 4の対応部分にシート状 に成形して、 この接着シートを基板 3又は基板 5に載せてもよい。 この接着剤 6としては、 スチレンブタジエンスチレン (S B S ) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または 複数の混合物若しくは化合物が用いられる。 例えば、 この接着剤 6に熱 硬化性又は熱可塑性と熱硬化性とのプレンドタイプの接着剤を使った接 着工程では、 接着剤 6を接続端子 2と接続端子 4との間に配置し、 加熱 加圧へッドを基板 5に押し当てることによって接着剤 6を硬化させ、 基 板 3と基板 5とを固着させる。  A connection formed by patterning an 18 / m thick copper foil on an 18 / zm thick polyimide base film substrate 5 on the surface of the fine particle layer 1 on the connection terminal 2 thus formed Terminal 4 was fixed via adhesive 6. The adhesive 6 may be applied to the upper portion of the connection terminal 2 or the connection terminal 4, or the adhesive 6 may be formed in a sheet shape in advance on the corresponding portion of the connection terminal 2 or the connection terminal 4, and the adhesive sheet may be formed. It may be placed on the substrate 3 or the substrate 5. As the adhesive 6, a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, urethane-based or the like alone or a mixture or a plurality of compounds is used. For example, in a bonding process using a thermosetting or thermoplastic and thermosetting blend type adhesive as the adhesive 6, the adhesive 6 is disposed between the connection terminal 2 and the connection terminal 4, The adhesive 6 is cured by pressing the heating / pressing head against the substrate 5, and the substrate 3 and the substrate 5 are fixed.
この導電接続部においては、 接続端子 2の表面に被着された微粒子層 1と接続端子 4とが直接接触し電気的導通がとられており、 その状態を、 端子上及び端子間に充填された接着剤 6が機械的に固定保持し、 また、 この接続部部分を外部環境 (例えば、 温度、 腐食性ガス、 塵埃等) から 保護し接続状態を安定化させている。 ここでは、 エポキシ系を主成分と する接着剤 6を使用し、 加熱加圧を温度 175° (:、 圧力 3MPa、 時間 20秒の条件で行った。 実施した導電接続は、 一定の形成ピッチで並列 した複数の接続端子同士を導電接続したものであり、 接続端子の形成ビ ツチは 200 mで、 接続端子数は 320端子である。 この導電接続部 に対して、 耐湿放置試験 ( 60°C、 90%RH) 500時間、 冷熱サイ クル試験 (一 30°Cで 30分、 80。Cで 30分) 500サイクルを実施 したが、 この接続信頼性評価後も安定した接続状態が確保されていた。 ここで、 微粒子層 1の材質としては、 上記の Agの他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Zn系、 Ag— Pd 系等の合金、 また高温超電導物質等その他の金属物質または金属以外の 炭素、 導電性樹脂等の各種導電性物質が利用できる。 In this conductive connection part, a fine particle layer adhered to the surface of the connection terminal 2 1 and the connection terminal 4 are in direct contact with each other to establish electrical continuity, and the adhesive 6 filled on and between the terminals is mechanically fixed and held in this state. It protects from the external environment (eg, temperature, corrosive gas, dust, etc.) and stabilizes the connection. Here, an adhesive 6 containing an epoxy-based component as the main component was used, and the heating and pressurizing were performed at a temperature of 175 ° (with a pressure of 3 MPa and a time of 20 seconds. The conductive connection performed was performed at a constant forming pitch. A plurality of parallel connection terminals are conductively connected to each other, and the number of connection terminals is 200 m and the number of connection terminals is 320. For this conductive connection part, a humidity resistance test (60 ° C , 90% RH) 500 hours, thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) 500 cycles were performed, but a stable connection state was maintained even after this connection reliability evaluation. Here, as the material of the fine particle layer 1, in addition to the above Ag, metals such as Au, Cu, Zn, Pd, and Sn, and Cu—Zn, Au—Zn, and Ag—Pd Various conductive materials such as alloys, other metallic materials such as high-temperature superconducting materials, carbon other than metals, and conductive resins can be used. .
また、 微粒子層 1内に堆積する超微粒子の粒子径は、 60nmから 3 ; mのものをガスデポジションの条件を適宜選定することによって使用 可能である。  The particle diameter of the ultrafine particles deposited in the fine particle layer 1 can be from 60 nm to 3 m, which can be used by appropriately selecting the gas deposition conditions.
微粒子層 1については、 内部の超微粒子が相互に導電接続され、 特に 平面的に接続されている必要があるために、 超微粒子層の厚さを形成さ れた超微粒子の粒径以上とする必要がある。 例えば、 上記のように平均 粒径が 60 nmである場合には、 微粒子層の厚さは 0. l /mから 3. 0 Π1の範囲であることが好ましい。 但し、 厚さの上限は厚さが大きく なる程広がる層幅と、 接続端子の形成ピッチとを勘案して泱定されるこ とが望ましく必ずしも上記範囲内に抑える必要はない。 しかし、 必要以 上に成膜時間をかけること、 隣接する端子との間がショートする危険性 が生じる程に厚く形成することは避けるべきである。 本実施例のように 微粒子層 1を他方の接続端子と直接接触させる場合には、 厚さを 0 . 3 〜0 . 6 ^m、 後述するように導電性接着剤を介して接続する場合には 1 . 5〜2 . 5 z m、 異方性導電膜を介して接続する場合には 2 . 5〜 3 . 5 mの範囲に形成することが、 特に望ましい。 なぜならば、 導電 性接着剤や異方性導電膜を介する場合には、 導電粒子との接触を確実に 行うために、 微粒子層 1にある程度の柔軟性が要求されるからである。 上述のような構成によれば、 接続端子 2の端子幅の細りや断線を微粒 子層 1の超微粒子が覆うこと又は充填することにより補修ができ、 接続 端子 4との接続幅又は接続長さを最大限に確保でき、 接続抵抗値を低減 でき、 更に導電接続状態を安定化できる。 In the fine particle layer 1, since the ultrafine particles inside are required to be electrically conductively connected to each other and particularly connected in a plane, the thickness of the ultrafine particle layer is set to be equal to or larger than the particle size of the formed ultrafine particles. There is a need. For example, when the average particle size is 60 nm as described above, the thickness of the fine particle layer is preferably in the range of 0.1 / m to 3.0Π1. However, the upper limit of the thickness is desirably determined in consideration of the layer width that increases as the thickness increases and the pitch at which the connection terminals are formed. It is not necessary to limit the upper limit to the above range. However, longer film deposition time than necessary and the risk of short-circuit between adjacent terminals It should be avoided to form the layers so thick that they occur. When the fine particle layer 1 is brought into direct contact with the other connection terminal as in this embodiment, the thickness is 0.3 to 0.6 ^ m, and when the fine particle layer 1 is connected via a conductive adhesive as described later. It is particularly preferable that the thickness be in the range of 1.5 to 2.5 zm and in the case of connection through an anisotropic conductive film, in the range of 2.5 to 3.5 m. This is because, when a conductive adhesive or an anisotropic conductive film is interposed, a certain degree of flexibility is required for the fine particle layer 1 in order to surely make contact with the conductive particles. According to the configuration described above, the narrowing or disconnection of the terminal width of the connection terminal 2 can be repaired by covering or filling the ultrafine particles of the fine particle layer 1, and the connection width or the connection length with the connection terminal 4 can be repaired. , The connection resistance can be reduced, and the conductive connection state can be stabilized.
また、 華微粒子の粒子径を 6 0 n m位の微細にし、 粒子間に隙間があ る状態に形成することにより、 微粒子層 1がクッション材的な働きをし て、 接続端子 2又は接続端子 4の破損や亀裂の発生を防止で έるととも に、 接続端子 2又は接続端子 4の凸凹を緩和して接続面積を大きくとる ことができ、 接続抵抗値を低減でき、 更に接続状態を安定化できる。 また、 接続端子 2の表面上の微粒子層 1と接続端子 4とが直接接続す るため、 端子位置合わせズレゃ加熱加圧接続時のズレによる端子間ショ ートを除けば、 接続不良となる他の要因が入らないため、 接続端子の形 成ピッチの微細化が容易になる。  In addition, the fine particle layer 1 functions as a cushion material by forming the fine particles of fine particles of about 60 nm in a state where there is a gap between the particles, so that the connection terminal 2 or the connection terminal 4 is formed. In addition to preventing the occurrence of breakage and cracking of the connection terminals, the unevenness of the connection terminal 2 or the connection terminal 4 can be reduced to increase the connection area, reduce the connection resistance value, and stabilize the connection state it can. In addition, since the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 are directly connected, a connection failure will occur unless a short between terminals due to a misalignment of the terminal alignment or a misalignment during the heating and pressurizing connection. Since other factors are not included, miniaturization of the formation pitch of the connection terminals becomes easy.
〔実施例 2〕 (Example 2)
図 5、 図 6は本発明に係る導電接続部の構造の第 2の実施例の主要部 分を示す断面図である。 基板 3に形成された接続端子 2の表面の一部分 または全部を、 超微粒子の堆積した微粒子層 1が覆っていて、 この接続 端子 2上の微粒子層 1ともう一方の基板 5に形成された接続端子 4とが 導電性接着剤 7を介して接続されている。 FIGS. 5 and 6 are cross-sectional views showing a main part of a second embodiment of the structure of the conductive connecting portion according to the present invention. Part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with a fine particle layer 1 on which ultrafine particles are deposited, and the fine particle layer 1 on the connection terminal 2 and the connection formed on the other substrate 5 are formed. Terminal 4 is They are connected via a conductive adhesive 7.
この実施例 2においては、 実施例 1と同様に図 3に導電接続部の構造 が示されており、 図 3の断面 A— Aは図 5に対応し、 断面 B— Bは図 6 に対応している。  In Example 2, as in Example 1, the structure of the conductive connection portion is shown in FIG. 3, and the cross section A—A in FIG. 3 corresponds to FIG. 5, and the cross section BB in FIG. 6 corresponds to FIG. are doing.
本実施例では、 1 mm厚のアルミナ基材の基板 3に、 2 111厚の 一 P tペーストでパターニングする事により複数並列した接続端子 2が 形成されている。 この接続端子 2の表面上には、 図 4に示す実施例 1と 同様のガス中蒸発法により A uの超微粒子からなる微粒子層 1を形成し ている。 この場合、 超微粒子生成室 Aと膜形成室 Cとの差圧を 1気圧と し、 膜形成室内の基板 3の温度を 2 0 0 °Cとした条件で超微粒子の形成 を行った。 この A uの微粒子層 1内の超微粒子は平均 1 m位の粒子径 で形成されていた。 微粒子層 1の厚さは 2〜4 mである。  In this embodiment, a plurality of connection terminals 2 arranged in parallel are formed on a 1 mm-thick alumina-based substrate 3 by patterning with a 2111-thick Pt paste. On the surface of the connection terminal 2, a fine particle layer 1 made of ultra-fine Au particles is formed by the same gas evaporation method as in Example 1 shown in FIG. In this case, the ultrafine particles were formed under the condition that the pressure difference between the ultrafine particle generation chamber A and the film formation chamber C was 1 atm and the temperature of the substrate 3 in the film formation chamber was 200 ° C. The ultrafine particles in the Au fine particle layer 1 had an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 2 to 4 m.
この接続端子 2上の微粒子層 1には、 1 8 m厚のポリィミ ドベース フィルムの基板 5に 1 8 m厚の銅箔をパターニングして形成した接続 端子 4が導電性接着剤 7を介して接続される。 この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または 複数の混合物若しくは化合物の接着剤の中に、 0 . l〜5 mの粒子径 の A gを混合分散したものである。  The fine particle layer 1 on the connection terminal 2 is connected to a connection terminal 4 formed by patterning an 18 m thick polyimide base film substrate 18 with an 18 m thick copper foil through a conductive adhesive 7. Is done. This conductive adhesive 7 is prepared by mixing and dispersing Ag having a particle diameter of 0.1 to 5 m in an adhesive of a single type or a mixture or a plurality of compounds of epoxy type, acrylic type, polyester type, urethane type, etc. It was done.
導電性接着剤 7はスクリーン印刷、 ディスペンス載置等により微粒子 層 1または接続端子 4の表面上に選択的に配置される。 この後、 基板 3 と基板 5を位置合わせして重ね合わせる。 この導電性接着剤 7に熱硬化 性または熱可塑性と熱硬化性とのブレンドタイブの接着剤を使った場合 には、 導電性接着剤 7を接続端子 2と接続端子 4との間に配置した状態 で、 加熱加圧へッ ドを基板 5に押し当てることによって硬化接着させる c また、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 接続端子間または導電接続 -部全体を合成樹脂からなるモールド材で覆ってもよい。 The conductive adhesive 7 is selectively arranged on the surface of the fine particle layer 1 or the connection terminal 4 by screen printing, dispensing, or the like. Thereafter, the substrate 3 and the substrate 5 are positioned and overlapped. When a thermosetting or a blended type of thermoplastic and thermosetting adhesive is used as the conductive adhesive 7, the conductive adhesive 7 is disposed between the connection terminal 2 and the connection terminal 4. In this state, the heating and pressurizing head is pressed against the substrate 5 to cure and bond it. Also, although not shown, this connection part is connected to the external environment (for example, humidity, corrosive gas, dust, etc.). To protect, between connection terminals or conductive connection The entire part may be covered with a synthetic resin mold material.
本実施例では、 エポキシ系を主成分とする接着剤中に 1〜 2 mの粒 子径の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 175°C, 圧力 3MPa、 時間 20秒の条件で接続を行った。 接続端子 の形成ピッチは 23 O^mで、 端子数は 320端子である。 この導電接 続部に、 耐湿放置試験 (60°C、 90%RH) 500時間、 冷熱サイク ル試験 (—30°Cで 30分、 80°Cで 30分) 500サイクルを実施し たが、 この接続信頼性評価後も安定した接続状態が確保されていた。 ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 311等の金属ゃ(:11ー21 系、 Au— Sn系、 八 —?(1系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3〃mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  In the present embodiment, a conductive adhesive 7 in which silver powder having a particle diameter of 1 to 2 m is mixed and dispersed in an adhesive mainly composed of an epoxy-based material, The connection was made under the conditions of 3 MPa and a time of 20 seconds. The formation pitch of the connection terminals is 23 O ^ m, and the number of terminals is 320 terminals. The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (-30 minutes at -30 ° C, 30 minutes at 80 ° C) for 500 cycles. Even after the connection reliability evaluation, a stable connection state was secured. Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and 311 (alloys such as 11-21, Au-Sn, and octane? Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 μm can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 導電性接着剤 7を介在させることにより、 接続端子 2または接続端子 4の凸凹、 または接続端子 2および接続端子 4の凸凹を補完して接続面積を更に大きくとることができ、 接続抵抗値 を低減でき、 また接続状態を安定化できる。  According to the configuration described above, the conductive adhesive 7 is interposed to complement the unevenness of the connection terminal 2 or the connection terminal 4 or the unevenness of the connection terminal 2 and the connection terminal 4 to further increase the connection area. The connection resistance can be reduced and the connection state can be stabilized.
また、 導電性接着剤 7の中の導電材として、 0. 1 111〜3 111のカ 一ボン粒子を使うこともでき、 この場合には接続抵抗値は銀の場合と比 較すると高くなるが、 材料費が安くなり、 またマイグレーション等の発 生が無く、 安価で信頼性の高い端子接続ができる。  Also, as the conductive material in the conductive adhesive 7, carbon particles of 0.1111 to 3111 can be used, and in this case, the connection resistance value is higher than that of silver. In addition, the material cost is reduced, and migration does not occur.
〔実施例 3〕 (Example 3)
図 7、 図 8は本発明に係る導電接続部の構造の第 3の実施例の主要部 分を示す断面図である。 基板 3に形成された接続端子 2の表面の一部分 または全部を、 超微粒子を堆積させて形成した微粒子層 1が覆っていて、 この接続端子 2ともう一方の基板 5に形成された接続端子 4とが異方性 導電材 8を介して接続されている。 FIGS. 7 and 8 are cross-sectional views showing a main part of a third embodiment of the structure of the conductive connection portion according to the present invention. Part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with a fine particle layer 1 formed by depositing ultrafine particles, The connection terminal 2 and the connection terminal 4 formed on the other substrate 5 are connected via an anisotropic conductive material 8.
本実施例では、 実施例 1と同様に図 3に導電接続部を示し、 図 3の断 面 A— Aは図 7に対応し、 断面 B— Bは図 8に対応している。  In the present embodiment, as in the first embodiment, FIG. 3 shows a conductive connection portion. A cross section AA in FIG. 3 corresponds to FIG. 7, and a cross section BB in FIG. 8 corresponds to FIG.
本実施例では、 1mm厚のアルミナ基材からなる基板 3上に、 2 m 厚の Ag— P tペース卜でパターニングして形成した複数並列した接続 端子 2が設けられている。 この接続端子 2の表面に、 実施例 1と同様に 図 4に示すガス中蒸発法により Allの超微粒子を堆積させて、 微粒子層 1を形成している。 超微粒子生成室 Aと膜生成室 Cとの差圧を 100T orrとし、 膜形成室 C内の基板 3の温度を 120°Cとして成膜した。 この微粒子層 1内の Auの超微粒子の平均粒子径は 3 zm位であった。 微粒子層 1の厚さは 3〜8〃mである。  In the present embodiment, a plurality of parallel connection terminals 2 formed by patterning with a 2 m-thick Ag—Pt paste are provided on a substrate 3 made of an alumina substrate having a thickness of 1 mm. Ultrafine particles of All are deposited on the surface of the connection terminal 2 by the in-gas evaporation method shown in FIG. The film was formed by setting the pressure difference between the ultrafine particle generation chamber A and the film generation chamber C to 100 Torr, and setting the temperature of the substrate 3 in the film formation chamber C to 120 ° C. The average particle diameter of the ultrafine Au particles in the fine particle layer 1 was about 3 zm. The thickness of the fine particle layer 1 is 3 to 8 μm.
この接続端子 2上の微粒子層 1上には、 18 /in厚のポリィミ ドベー スフィルムの基板 5に 18 /m厚の銅箔をパターニングした接続端子 4 が異方性導電材 8を介して接続されている。  On the fine particle layer 1 on the connection terminal 2, a connection terminal 4 in which an 18 / m-thick polyimide base film substrate 5 is patterned with 18 / m-thick copper foil is connected via an anisotropic conductive material 8. Have been.
ここで使用する異方性導電材 8は異方性導電膜であり、 層厚方向に圧 力をかけることにより、 層厚方向にのみ導電性を有する特性を呈するも のである。 この異方性導電膜は主に導電粒子 9を分散させた接着剤 10 より構成されている。 この導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメツキ等 による複合金属粒子、 プラスチック粒子 (ポリスチレン系、 ポリカーボ ネート系、 アクリル系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 F e等の単独または複数のメツキをした粒子、 カーポン粒子等である。 接着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ボリエステル系、 ウレタン系等の単独または複数の混合物 若しくは化合物である。 この異方性導電材 8を接続端子 2の表面の微粒子層 1と基板 5の接続 端子 4との間に配置し、 異方性導鼋材の材質に熱硬化性または熱可塑性 と熱硬化性とのブレンドタイプの接着剤を使った場合には加熱加圧へッ ドを基板 5に押し当てることによって硬化接続させる。 The anisotropic conductive material 8 used here is an anisotropic conductive film, and exhibits a property having conductivity only in the layer thickness direction by applying a pressure in the layer thickness direction. This anisotropic conductive film is mainly composed of an adhesive 10 in which conductive particles 9 are dispersed. The conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., composite metal particles made of alloy, plating, etc., plastic particles (polystyrene, polycarbonate, acrylic, Dibenenylbenzene, etc.), Ni, Au, Cu, Fe, etc., singly or multiplely plated particles, carpon particles, etc. The adhesive 10 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like. This anisotropic conductive material 8 is arranged between the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 of the substrate 5, and the material of the anisotropic conductive material is thermosetting or thermoplastic and thermosetting. When using an adhesive of a blend type with, a heating and pressurizing head is pressed against the substrate 5 to make a hardened connection.
ここでは、 粒子径が !〜 1 O zmのポリスチレン系のプラスチッ ク粒子に 厚の N iメツキと 0. 5 111厚の \1メツキをした導電 粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散さ せた異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧条件は温度 1 75 、 圧力 3MPa、 時間 20秒である。 接続端子 2、 4の形成ビッ チは 200 mで、 それそれの端子数は 320個である。  Here, the particle size! ~ 1 O zm of polystyrene plastic particles with thick Ni plating and 0.5111 thick \ 1 plating conductive particles 9 mixed and dispersed in an epoxy-based adhesive 10 at 5 wt% The anisotropic conductive film (anisotropic conductive material 8) was used, and the heating and pressing conditions were a temperature of 175, a pressure of 3 MPa, and a time of 20 seconds. The formation bit of the connection terminals 2 and 4 is 200 m, and each terminal has 320 terminals.
このようにして導電接続した導電接続部に、 耐湿放置試験 (60。 (、 90%RH) 500時間、 冷熱サイクル試験 (一 30°Cで 30分、 80 °Cで 30分) 500サイクルを実施した。 この接続信頼性評価後も安定 した接続状態が確保されていた。  Conducted a humidity resistance test (60. (, 90% RH)) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) on the conductive connection part thus connected. Even after this connection reliability evaluation, a stable connection state was secured.
他の異方性導電材 8の例としては、 異方性導電接着剤がある。 この異 方性接着剤は、 主に導電粒子を分散させた接着剤より構成されている。 この導電粒子は、 半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 S n等の 単独または複数の混合物、 合金、 若しくはメツキ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系等) に、 Ni、 Au、 Cu、 Fe等の単独または複 数のメツキをした粒子、 カーボン粒子等である。  An example of another anisotropic conductive material 8 is an anisotropic conductive adhesive. This anisotropic adhesive is mainly composed of an adhesive in which conductive particles are dispersed. These conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn and the like, composite metal particles of alloys, plating, etc., plastic particles (polystyrene, polycarbonate, acrylic, etc.). , Dibenylbenzenes, etc.), and particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェボ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合若しくは化合物である。 この異方性導電材 8の異方性導電接着剤 は液状、 またはペースト状であり、 印刷方法、 デイスペンザを使ったデ ィスペンス方法等の公知の方法により、 接続端子 2の接続部分に配置さ れる。 異方性導電接着剤に熱硬化性または熱可塑性と熱硬化性とのブレ ンド夕イブの接着剤を使った場合には加熱加圧へッ ドを基板 5に押し当 てることによって硬化接続させる。 The adhesive is a single or a mixture or compound of styrene butadiene styrene (SBS), ethoxy, acrylic, polyester, urethane and the like. The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed on the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser. It is. When a thermosetting or thermoplastic / thermosetting blend adhesive is used for the anisotropic conductive adhesive, a hardening connection is made by pressing the heating and pressing head against the substrate 5. .
また、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿 度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全 '体をモールド材で覆ってもよい。  Although not shown, in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the molding material may be used to cover between the terminals or the entire connection portion. Good.
上述のような構成によれば、 異方性導電材を介在させることにより、 接続端子 2及び//または接続端子 4の凸凹を導電粒子 9が補完して、 多 数の粒子が導通に寄与するようになるため、 接続抵抗値を低減でき、 ま た接続状態を安定化できる。 特に、 異方性導電材は平面方向の絶縁性を 有しているので、 細ピッチの接続端子の導電接続に際しても異方性導電 材の塗布工程はきわめて容易である。  According to the configuration described above, the conductive particles 9 complement the unevenness of the connection terminal 2 and / or the connection terminal 4 by interposing the anisotropic conductive material, and a large number of particles contribute to conduction. As a result, the connection resistance value can be reduced and the connection state can be stabilized. In particular, since the anisotropic conductive material has an insulating property in the plane direction, the application process of the anisotropic conductive material is extremely easy even when conductively connecting fine pitch connection terminals.
〔実施例 4〕 ' 図 1 1は本発明に係る導電接続構造の第 4の実施例の主要部分を示す 断面図である。 基板 3に形成された接続端子 2の表面上の一部分または 全部を超微粒子からなる微粒子層 1が覆っていて、 この接続端子 2と半 導体チップ 1 6に形成されたバンプ 1 7とが直接接触した状態で接着剤 6により固定されている。 Embodiment 4 FIG. 11 is a cross-sectional view showing a main part of a fourth embodiment of the conductive connection structure according to the present invention. Part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with a fine particle layer 1 made of ultrafine particles, and the connection terminal 2 and the bump 17 formed on the semiconductor chip 16 are in direct contact with each other. In this state, it is fixed by the adhesive 6.
図 9は導電接続構造の全体構成を示す斜視図であり、 基板 3の接続端 子 2と半導体素子の実装構造チップ 1 6に形成されたバンプ 1 7とが接 続している。 図 9の断面 A— Aは図 1 1に対応している。  FIG. 9 is a perspective view showing the overall configuration of the conductive connection structure, in which connection terminals 2 of a substrate 3 are connected to bumps 17 formed on a chip 16 for mounting a semiconductor element. Section A—A in FIG. 9 corresponds to FIG.
図 1 0は基板 3の接続端子 2の表面に微粒子層 1を形成する際の状況 を示す概略図である。 上記と同様のガス中蒸発法により、 超微粒子生成 室 (図示せず) で生成した蒸気を搬送管 1 2を通して、 ガスと微粒子の 流れ 1 1により運び、 膜形成室 (おおむね図 1 0に示したものが入って いる室) にあるノズル 1 3から、 基板 3の接続端子 2の表面に吹き付け て超微粒子を形成し、 微粒子層 1を成膜する。 FIG. 10 is a schematic diagram showing a situation when the fine particle layer 1 is formed on the surface of the connection terminal 2 of the substrate 3. The vapor generated in the ultrafine particle generation chamber (not shown) by the same gas evaporation method as described above is transported by the gas and fine particle flow 11 through the transfer pipe 12 to form the film formation chamber (generally shown in FIG. 10). Stuff A fine particle layer 1 is formed by spraying ultra-fine particles from the nozzles 13 located in the chamber 13) onto the surface of the connection terminal 2 of the substrate 3.
基板 3を X方向 1 4と Y方向 1 5に移動する移動方向と移動速度、 ノ ズル 1 3からのガスと超微粒子の流れ 1 1、 およびノズル 1 3と接続端 子 2との距離を制御することにより、 基板 3の接続端子 2の表面に所望 の形状および厚みの微粒子層 1を形成することができる。 また、 超微粒 子生成室と膜形成室との差圧と温度を制御することによつても超微粒子 の粒子径、 密度、 厚み等を所望のものとすることができる。 ここで、 ノ ズル 1 3よりも上流側にシャツ夕装置が取り付けられており、 一つの成 膜部分のトレースが完成すると、 ノズル 1 3が次の成膜部分に移動する まで蒸気の供給が停止される。  Controls the moving direction and moving speed of substrate 3 in X direction 14 and Y direction 15, flow of gas and ultrafine particles 11 from nozzle 13, and distance between nozzle 13 and connection terminal 2 Thereby, the fine particle layer 1 having a desired shape and thickness can be formed on the surface of the connection terminal 2 of the substrate 3. Also, by controlling the pressure difference and temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness, and the like of the ultrafine particles can be made desired. Here, a shirting device is installed upstream of the nozzle 13 and when the trace of one film formation part is completed, the supply of steam is stopped until the nozzle 13 moves to the next film formation part. Is done.
本実施例では、 0 . 8 mm圧の低温焼成セラミック基材の基板 3に形 成された 3 m厚の C uの接続端子 2の表面上に、 A gの超微粒子から なる微粒子層 1を形成している。 超微粒子生成室と膜形成室との差圧を Ι Ο Ο Τ Ο Γ Γとし、 膜形成室の温度は室温 (約 2 5 °C ) の条件で行つ た。 この A gの微粒子層 1は 6 0 n m位の粒子径の超微粒子間に隙間が ある状態で形成されていた。 微粒子層 1の厚さは 0 . 3〜2 z mである c この接続端子 2の表面上の微粒子層に半導体チップ 1 6のパンブ 1 7 が接着剤 6を介して接続されている。 この接着剤 6としてはスチレンブ 夕ジエンスチレン (S B S ) 系、 エポキシ系、 アクリル系、 ポリエステ ル系、 ウレ夕ン系等の単独又は複数の混合物若しくは化合物である。 この接着剤 6を接続端子 2と半導体チップ 1 6との間に配置し、 この 接着剤 6に熱硬化性又は熱可塑性と熱硬化性とのブレンドタイプの接着 剤を使った場合には加熱加圧へッドを半導体チップ 1 6に押し当てるこ とによって硬化接続させる。 In the present embodiment, a fine particle layer 1 made of ultrafine Ag particles was formed on the surface of a 3 m thick Cu connection terminal 2 formed on a substrate 3 of a low-temperature fired ceramic substrate having a pressure of 0.8 mm. Has formed. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to Ι Ο Ο Ο 、 、 、, and the temperature of the film formation chamber was set to room temperature (about 25 ° C). The Ag fine particle layer 1 was formed with a gap between ultrafine particles having a particle diameter of about 60 nm. The thickness of the particle layer 1 is 0.3 to 2 is zm c Panbu 1 7 of the semiconductor chip 1 6 fine particle layer on the surface of the connection terminal 2 is connected via an adhesive 6. The adhesive 6 is a single compound or a mixture or compound of styrene-butadiene styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, urethane-based and the like. This adhesive 6 is arranged between the connection terminal 2 and the semiconductor chip 16, and when a thermosetting adhesive or a blend of thermoplastic and thermosetting is used as the adhesive 6, heat is applied. A hardening connection is made by pressing a pressure head against the semiconductor chip 16.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 175°C、 圧力 0. 2MPa、 時間 20秒の条件で接続を行った。 接続バンプの形成ピッチは 12 O/zmで、 バンプ数は 100である。 こ の導電接続部に、 耐湿放置試験 (60°C、 90%RH) 500時間、 冷 熱サイクル試験 (一 30°Cで 30分、 80°Cで 30分) 500サイクル を実施した。 この接続信頼性評価後も安定した接続状態が確保されてい た。 Here, an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed. Connection was performed under the conditions of a temperature of 175 ° C, a pressure of 0.2 MPa, and a time of 20 seconds. The formation pitch of the connection bumps is 12 O / zm, and the number of bumps is 100. The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (30 ° C for 30 minutes and 80 ° C for 30 minutes) for 500 cycles. Even after this connection reliability evaluation, a stable connection state was secured.
この実施例では、 接続端子 2の表面上の微粒子層 1の超微粒子とバン ブ 17が直接接触し電気的導通がとられており、 その状態を接着剤 6が 機械的に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護し接続状態を安定化している。  In this embodiment, the ultrafine particles of the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds the state. However, this connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで微粒子層 1の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質又は導電性物質が利用できる。 また、 超微粒子の粒子計が 60 nmから 3 のものをガスデボジ :ンヨンの条 件を適宜選定することによって使用可能である。 Here, as the material of the fine particle layer 1, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metal materials or conductive materials can be used. Moreover, those particles meter ultrafine particles is 3 to 60 nm Gasudeboji: usable by appropriately selecting the conditions for N'yon.
上記のような構成によれば、 接続端子 2の端子幅の細りや断線を微粒 子層 1が覆うことまたは充填することにより補修ができ、 バンプ 17と の接続面積を最大限に確保でき、 接続抵抗値を低減でき、 また接続状態 を安定化できる。  According to the above-described configuration, the narrowing or disconnection of the connection terminal 2 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 17 can be secured to the maximum, and the connection can be secured. The resistance value can be reduced and the connection state can be stabilized.
また、 超微粒子の粒子径を 6 Onm位の微細にし、 粒子間に隙間があ る状態に形成することにより、 微粒子層 1がクッション材的な働きをし て、 接続端子 2またはバンプ 17の凸凹、 または接続端子 2およびバン プ 17の凸凹を緩和して接続面積を大きくとることができ、 接続抵抗値 を低減でき、 また接続状態を安定化できる。 また、 接続端子 2の表面上 の微粒子層 1とバンプ 17とが直接接続するため、 位置合わせズレゃ加 熱加圧接続時のズレによる端子間ショートを除けば、 接続不良となる他 の要因が入らないだけ接続端子乃至はバンプの形成ピッチの微細化が可 能である。 Also, by making the particle diameter of the ultrafine particles as fine as about 6 Onm and forming a state in which there is a gap between the particles, the fine particle layer 1 acts as a cushion material, and the unevenness of the connection terminal 2 or the bump 17 is formed. Alternatively, the connection area can be increased by relaxing the unevenness of the connection terminal 2 and the bump 17, so that the connection resistance value can be reduced and the connection state can be stabilized. In addition, since the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 are directly connected, a misalignment will occur unless a short circuit between the terminals due to misalignment due to misalignment at the time of heating and pressurizing connection. It is possible to miniaturize the pitch of the connection terminals or bumps as long as the above factor is not included.
〔実施例 5 (Example 5
図 1 2は本発明に係る導電接続構造の第 5の実施例の主要部分を示す 断面図である。 基板 3に形成された接続端子 2の表面の一部分または全 部を微粒子層 1が覆っていて、 この接続端子 2上の微粒子層 1と半導体 チップ 1 6のバンプ 1 7とが導電性接着剤 7を介して接続されている。 本実施例では、 実施例 4と同様に、 図 9に示すような全体構成を有し ており、 基板 3の接続端子 2と半導体チップ 1 6のバンプ 1 7とが接続 されている。 図 9の断面 A— Aは図 1 2に対応する。  FIG. 12 is a sectional view showing a main part of a fifth embodiment of the conductive connection structure according to the present invention. Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3. Particle layer 1 on connection terminal 2 and bump 17 of semiconductor chip 16 are electrically conductive adhesive 7. Connected through. In the present embodiment, similarly to the fourth embodiment, it has the entire configuration as shown in FIG. 9, and the connection terminals 2 of the substrate 3 and the bumps 17 of the semiconductor chip 16 are connected. Section A—A in FIG. 9 corresponds to FIG.
本実施^!では、 1 mm厚のアルミナ基材の基板 3に、 2 111厚の八 一 P tペーストでパターニングして接続端子 2を形成している。 この接 続端子 2の表面上に、 A uの微粒子層 1を、 実施例 4と同様に'図 1 0に 示すガス中蒸発法で形成している。 超微粒子生成室と膜形成室との差圧 を 1気圧とし、 膜形成室内の基板 3の温度は 2 0 0 °Cの条件で行った。 この A uの超微粒子は平均 1 m位の粒子径で形成されていた。 微粒子 層 1の厚さは l〜3 >t mである。  In the present embodiment, the connection terminal 2 is formed by patterning a 1111-thick alumina base substrate 3 with a 2111-thick Pt paste. On the surface of the connection terminal 2, a fine particle layer 1 of Au is formed by the in-gas evaporation method shown in FIG. 10 similarly to the fourth embodiment. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 1 atm, and the temperature of the substrate 3 in the film formation chamber was set at 200 ° C. The ultrafine particles of Au were formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is l〜3> tm.
この接続端子 2の表面上の微粒子層 1に半導体チッブ 1 6のバンプ 1 7が導電性接着剤 7を介して接続される。 この導電性接着剤 7は、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物の接着剤の中に、 0 . l〜 5 ^mの粒子径の銀 を混合分散したものであり、 この導電性接着剤 7を接続端子 2とバンプ 1 7との間に配置する。 導電性接着剤 7の配置は、 スクリーン印刷、 デ イスペンス載置等の公知の方法でなされる。  The bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 on the surface of the connection terminal 2 via the conductive adhesive 7. The conductive adhesive 7 is a single or multiple mixture or compound of epoxy-based, acrylic-based, polyester-based, or urethane-based adhesive, and contains silver having a particle size of 0.1 to 5 ^ m. The conductive adhesive 7 is disposed between the connection terminal 2 and the bump 17. The conductive adhesive 7 is arranged by a known method such as screen printing and dispensing.
導電性接着剤 7に熱硬化性または熱可塑性と熱硬化性とのブレンド夕 イブの接着剤を使った場合には、 加熱加圧へッ ドを半導体チップ 16に 押し当てることによって硬化接続させる。 ここでは、 エポキシ系を主成 分とする接着剤中に 1〜 2 mの粒子径の銀粉末を混合分散した導電性 接着剤 7を使用し、 加熱加圧を温度 175°C、 圧力 0. 2MPa、 時間 20秒の条件で行った。 接続端子及びバンプの形成ピッチは 12 O^m で、 これらの形成数は 100個である。 この導電接続部に、 耐湿放置試 験 (60。C、 90%RH) 500時間、 冷熱サイクル試験 (一 30。Cで 30分、 80。Cで 30分) 500サイクルを実施した。 この接続信頼性 評価後も安定した接続状態が確保されていた。 Thermosetting or blend of thermoplastic and thermosetting conductive adhesive 7 In the case where Eve's adhesive is used, a hardening connection is made by pressing a heating / pressing head against the semiconductor chip 16. Here, a conductive adhesive 7 was used in which silver powder with a particle size of 1 to 2 m was mixed and dispersed in an adhesive whose main component was an epoxy-based resin. The test was performed under the conditions of 2 MPa and a time of 20 seconds. The formation pitch of the connection terminals and bumps is 12 O ^ m, and the number of these formed is 100. The conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30.C, 30 minutes at 80.C) for 500 cycles. Even after the connection reliability evaluation, a stable connection state was secured.
なお、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 接続端子間または接続部全体をモールド材で覆つ ている。 .  In order to protect these connection parts from the external environment (for example, humidity, corrosive gas, dust, etc.), between the connection terminals or the whole connection part is covered with a molding material. .
ここで微粒子層 1の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the fine particle layer 1, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metals such as high-temperature superconducting materials Materials or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 導電性接着剤 7を介在させることにより、 接続端子 2またはバンプ 17の凸凹、 または接続端子 2及びバンプ 17 の凸凹を補完して接続面積を大きくとることができ、 接続抵抗値を低減 でき、 また接続状態を安定化できる。  According to the above-described configuration, by providing the conductive adhesive 7, the connection area can be increased by complementing the unevenness of the connection terminal 2 or the bump 17 or the unevenness of the connection terminal 2 or the bump 17. The connection resistance can be reduced and the connection state can be stabilized.
なお、 導電性接着剤 7の中の導電材として、 0. l^m〜3 /mの力 一ボン粒子を使うこともでき、 この場合には接続抵抗値は A gの場合と 比較すると高くなるが、 材料費が安くなり、 またマイグレーション等の 発生防止対策が必要無く、 安価で信頼性の高い端子接続ができる。 • 〔実施例 6〕 In addition, as the conductive material in the conductive adhesive 7, it is possible to use carbon particles having a force of 0.1 l ^ m to 3 / m, and in this case, the connection resistance value is higher than that in the case of Ag. However, the material cost is low, and there is no need to take measures to prevent the occurrence of migration, etc., and inexpensive and highly reliable terminal connections can be made. • [Example 6]
図 13は本発明に係る導電接続構造の第 6の実施例の主要部分を示す 断面図である。 基板 3に形成された接続端子 2の表面の一部分または全 部を微粒子層 1が覆っていて、 この接続端子 2と半導体チップ 16のパ ンブ 17とが異方性導電材 8を介して接続されている。  FIG. 13 is a sectional view showing a main part of a sixth embodiment of the conductive connection structure according to the present invention. Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3, and connection terminal 2 and pump 17 of semiconductor chip 16 are connected via anisotropic conductive material 8. ing.
本実施例では、 実施例 4と同様の図 9に示す全体構成を備えており、 図 9の断面 A— Aは図 13に対応している。  This embodiment has the same overall configuration as that of the fourth embodiment shown in FIG. 9, and the cross section AA of FIG. 9 corresponds to FIG.
本実施例では、 1mm厚のアルミナ基材の基板 3上に、 2/zm厚の A g— P tペーストをパターニングして接続端子 2を形成している。 この 接続端子 2の表面上に、 実施例 4と同様の図 10に記すガス中蒸発法に より Auの超微粒子からなる微粒子層 1を形成している。 超微粒子生成 室と膜形成室との差圧を 3気圧とし、 膜形成室内の基板 3の温度を 25 0°Cとして成膜した。 この微粒子層 1内の Auの超微粒子は平均 0. 5 m位の粒子径で形成されていた。 微粒子層 1の厚さは 0. 5〜4 /m である。  In the present embodiment, the connection terminal 2 is formed by patterning a 2 / zm-thick Ag—Pt paste on a 1 mm-thick alumina substrate 3. On the surface of the connection terminal 2, a fine particle layer 1 made of ultrafine Au particles is formed by the in-gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set at 3 atm, and the temperature of the substrate 3 in the film formation chamber was set at 250 ° C to form a film. The ultrafine particles of Au in the fine particle layer 1 had an average particle diameter of about 0.5 m. The thickness of the fine particle layer 1 is 0.5-4 / m.
この微粒子層 1上に半導体チップ 16のバンプ 17が異方性導電材 8 を介して接続される。 ここで使用する異方性導電材 8は異方性導電膜で あり、 主に導電粒子 9を分散させた接着剤 10より構成されている。 この導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 Pd、 S n等 の単独または複数の混合物、 合金、 メツキ等による複合金属粒子、 ブラ スチヅク粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジ ベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等の単独または複数の メツキをした粒子、 カーボン粒子等である。  The bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 via the anisotropic conductive material 8. The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of an adhesive 10 in which conductive particles 9 are dispersed. The conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., composite metal particles made of alloys, plating, etc., and plastic particles (polystyrene, polycarbonate, acrylic, Diphenylbenzene-based particles), or particles of Ni, Au, Cu, Fe, etc., or carbon particles.
また、 接着剤 10はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合若しくは化合物である。 この異方性導電材 8の異方性導電膜を接 続端子 2の表面の微粒子層 1と半導体チップ 16のバンプ 17との間に 配置し、 異方性導電膜に熱硬化性または熱可塑性と熱硬化性とのプレン ドタイプの接着剤を使った場合には加熱加圧へッ ドを半導体チップ 16 に押し当てることによって硬化接続される。 The adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acryl, polyester, urethane and the like. This anisotropic conductive material 8 is connected When placed between the fine particle layer 1 on the surface of the connection terminal 2 and the bumps 17 of the semiconductor chip 16 and using a thermosetting or thermoplastic and thermosetting blend type adhesive for the anisotropic conductive film A hardening connection is made by pressing a heating and pressing head against the semiconductor chip 16.
ここでは、 粒子径が 1 !〜 3 > mのポリスチレン系のブラスチック 粒子に 1 > m厚の N iメツキと 0. 5; m厚の Auメツキをした導電粒 子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散させ た異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧条件は温度 17 5 C、 圧力 10 gf/バンプ、 時間 30秒の条件で接続を行った。 接続 端子乃至はバンプの形成ピッチは 10 O mで、 これらの数は 120個 である。 この導電接続部に、 耐湿放置試験 (60。C、 90%RH) 50 0時間、 冷熱サイクル試験 (一 30°Cで 30分、 80°Cで 30分) 50 0サイクルを実施した結果、 これらの接続信頼性評価後も安定した接続 状態が確保されていた。 '  Here, the particle size is 1! 3> m polystyrene-based plastic particles with 1> m thick Ni plating and 0.5; m-thick Au plating conductive particles 9 in epoxy-based adhesive 10 Using an anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed by weight%, connection was made under the conditions of heating and pressing at a temperature of 175 C, a pressure of 10 gf / bump, and a time of 30 seconds. The formation pitch of the connection terminals or bumps is 10 Om, and the number of these is 120. Moisture resistance test (60.C, 90% RH) for 500 hours, and thermal cycle test (30 minutes at 30 ° C and 30 minutes at 80 ° C) for this conductive connection Even after the connection reliability evaluation, a stable connection state was secured. '
他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリ カーボネート系、 アクリル系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等の単独または複数のメツキをした粒子、 カーボン粒子等で ある。  Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzenes, etc.), or particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles.
また、 接着剤はスチレンブタジエンスチレン (SBS) 系、 エポキシ 系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数の混 合物若しくは化合物である。  The adhesive is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 接続端子 2の接続部分に配置される。 異方性導電接着剤に熱 硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着剤を使った 場合には加熱加圧へッドを半導体チップ 1 6に押し当てることによって 硬化接続させる。 The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is known in the art such as a printing method and a dispensing method using a dispenser. It is arranged at the connection part of the connection terminal 2 by the method. In the case where a thermosetting or thermoplastic and thermosetting blend type adhesive is used as the anisotropic conductive adhesive, the semiconductor chip 16 is cured by pressing a heating and pressing head against the semiconductor chip 16.
また、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿 度、 腐食性ガス、 塵埃等) から保護するために、 接続部または半導体チ ッブ全体をモールド材で覆ってもよい。  Although not shown, in order to protect this connection from the external environment (for example, humidity, corrosive gas, dust, etc.), the connection or the entire semiconductor chip may be covered with a molding material. Good.
ここで超微粒子の材質としては、 その他に A g、 C u、 Z n、 P d、 S n等の金属や C u— Z n系、 A u— S n系、 八 ー卩(1系等の合金、 また高温超電導物質の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and octane (1st, etc.) Alloys, high-temperature superconducting metal materials or conductive materials can be used, and ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition. is there.
上述のような構造によれば、 異方性導電材 8を介在させることにより、 接続端子 2またはバンプ 1 7の凸凹、 または接続端子 2及びバンプ 1 7 の凸凹を導電粒子 9が補完して、 多数の粒子が導通に寄与して、 接続抵 抗を低減でき、 また接続状態を安定化できる。  According to the above-described structure, the conductive particles 9 complement the unevenness of the connection terminal 2 or the bump 17 or the unevenness of the connection terminal 2 and the bump 17 by interposing the anisotropic conductive material 8. A large number of particles contribute to conduction, reducing the connection resistance and stabilizing the connection state.
〔実施例 7〕 (Example 7)
この実施例は、 実施例 1と同様の図 1、 図 2に示す主要部分を備えて いる。 即ち、 基板 3上に形成された接続端子 2の表面の一部分または全 部を微粒子層 1が覆っていて、 この接続端子 2上の微粒子層 1と基板 5 に形成された接続端子 4とが接着剤 6を介して接続されている。  This embodiment has the same main parts as those of the first embodiment shown in FIGS. That is, the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3, and the fine particle layer 1 on the connection terminal 2 and the connection terminal 4 formed on the substrate 5 are bonded. Connected via agent 6.
本実施例の全体構造は図 3に示すようになつており、 基板 3の接続端 子 2と基板 5の接続端子 4とが微粒子層 1を介して接続されている。 図 3の断面 A— Aは図 1に対応し、 断面 B— Bは図 2に対応する。  The overall structure of the present embodiment is as shown in FIG. 3, and the connection terminal 2 of the substrate 3 and the connection terminal 4 of the substrate 5 are connected via the fine particle layer 1. Section A—A in FIG. 3 corresponds to FIG. 1, and section B—B corresponds to FIG.
本実施例では、 1 . 1 mm厚のガラス基材の基板 3上に、 1 0 0 0 A の厚さの I TO (I nd ium T in 0 x i d e ) の接続端子 2が 複数並列して形成されている。 この接続端子 2の表面に、 Agの超微粒 子を堆積してなる微粒子層 1が、 実施例 1と同様の図 4に示すガス中蒸 発法により形成されている。 In the present embodiment, 100 A A plurality of connection terminals 2 of I TO (Indium T in 0 xide) having a thickness of 2 mm are formed in parallel. A fine particle layer 1 formed by depositing ultrafine Ag particles is formed on the surface of the connection terminal 2 by the in-gas evaporation method shown in FIG.
ここで、 超微粒子生成室と膜形成室との差圧を 1 O OTorrとし、 '膜形成室の温度は室温 (約 25°C) の条件で成膜を行った。 この Agの' 微粒子層 1は 60 nm位の粒子径の超微粒子間に隙間がある状態で形成 されていた。 微粒子層 1の厚さは 0. 1〜1. 5 mである。  Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 1 O OTorr, and the film formation was performed under the condition that the temperature of the film formation chamber was room temperature (about 25 ° C). This Ag fine particle layer 1 was formed with a gap between ultrafine particles having a particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to 1.5 m.
この接続端子 2上の微粒子層 1に、 18 zm厚のポリィミ ドベースフ イルムの基板 5に 18 /m厚の銅箔をパターニングした接続端子 4が接 着剤 6を介して接続されている。  A connection terminal 4 in which a 18 / m-thick polyimide base film substrate 5 is patterned with an 18 / m-thick copper foil is connected to the fine particle layer 1 on the connection terminal 2 via a bonding agent 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ボキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複 数の混合物若しくは化合物を用いることができる。  As the adhesive 6, a styrene-butadiene-styrene (SBS) -based, eboxy-based, acrylic-based, polyester-based, urethane-based, or a mixture or compound of a plurality of them can be used.
この接着剤 6を接続端子 2と接続端子 4との間に配置し、 この接着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着剤を 使った場合には加熱加圧へッ ドを基板 5に押し当てることによって硬化 接続させる。 また、 この接着剤 6に UV硬化性夕イブの接着剤を使った 場合には加圧へッ ドを基板 5に押し当て、 基板 3 (ガラス基板) 側から UV照射して硬化させる。  This adhesive 6 is disposed between the connection terminal 2 and the connection terminal 4, and when an adhesive of a thermosetting or a blend type of a thermoplastic and a thermosetting is used as the adhesive 6, heating and pressing are performed. The connection is made by pressing the head against the substrate 5. When a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the substrate 5 and the substrate 3 (glass substrate) is irradiated with UV to cure the adhesive.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 175°C、 圧力 3MPa、 時間 20秒の条件で行った。 接続端子の 形成ピッチは 200 zmで、 端子数は 320個である。 この導電接続部 に、 耐湿放置試験 (60°C、 90%RH) 500時間、 冷熱サイクル試 験 (一 30°Cで 30分、 80°Cで 30分) 500サイクルを実施し、 こ の結果、 その接続信頼性評価後も安定した接続状態が確保されていた。 接続端子 2の表面の微粒子層 1と接続端子 4とは直接接触し電気的導 通がとられており、 その状態を接着剤 6が機械的に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保 護し接続状態を安定化している。 Here, the adhesive 6 mainly composed of an epoxy was used, and the heating and pressurizing were performed at a temperature of 175 ° C, a pressure of 3 MPa, and a time of 20 seconds. The formation pitch of the connection terminals is 200 zm, and the number of terminals is 320. This conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (one for 30 minutes at 30 ° C and 30 minutes at 80 ° C) for 500 cycles. However, a stable connection state was secured even after the connection reliability evaluation. The fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 are in direct contact with each other for electrical conduction, and the adhesive 6 mechanically fixes and holds this state. (Eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで微粒子層 1の材質としては、 その他に Au、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物資等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 zmのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the fine particle layer 1, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metals such as high-temperature superconducting materials Materials or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 zm can be used by appropriately selecting the conditions for gas deposition.
上述のような構造によれば、 実施例 1と同様の効果に加えて、 特に、 ガラス基板の表面に形成された I TO等の薄膜接続端子の補修、 補強、 低抵抗化が複雑な処理工程を必要とせず簡単にできるというメリットが  According to the above-described structure, in addition to the same effects as in the first embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate are complicated processing steps. The advantage is that it can be easily done without the need for
〔実施例 8〕 (Example 8)
本実施例の主要部分は実施例 2と同様に図 5、 図 6に示されている。 基板 3上に形成された接続端子 2の表面の一部分または全部を微粒子層 1が覆っていて、 この接続端子 2上の微粒子層 1と基板 5に形成された 接続端子 4とが導電接着剤 7を介して接続されている。  The main parts of this embodiment are shown in FIGS. 5 and 6 similarly to the second embodiment. Partial or entire surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 2 and the connection terminal 4 formed on the substrate 5 are electrically conductive adhesive 7. Connected through.
本実施例の全体構成は、 実施例 7と同様の図 3に示すものであり、 図 3の断面 A— Aは図 5に対応し、 断面 B— Bは図 6に対応する。  The overall configuration of the present embodiment is the same as that of the seventh embodiment shown in FIG. 3, in which section AA in FIG. 3 corresponds to FIG. 5, and section BB in FIG. 6 corresponds to FIG.
本実施例では、 1. 1 mm厚のガラス基材の基板 3上に、 80 OAの 厚さの I TOをパターニングして接続端子 2が形成されている。 この接 続端子 2の表面上に、 Auの超微粒子を堆積してなる微粒子層 1が形成 されている。 微粒子層 1は、 実施例 1と同様の図 4に示すガス中蒸発法 により A uの超微粒子で形成されている。 超微粒子生成室と膜形成室と の差圧を 3気圧とし、 膜形成室内の基板 3の温度は 100°Cとして成膜 した。 この Auの超微粒子は平均 1 m位の粒子径で形成されていた。 微粒子層 1の厚さは 1〜3 である。 In this embodiment, a connection terminal 2 is formed on a 1.1 mm thick glass substrate 3 by patterning an 80 OA thick ITO. On the surface of the connection terminal 2, a fine particle layer 1 formed by depositing ultra fine particles of Au is formed. The fine particle layer 1 is formed of Au ultrafine particles by the in-gas evaporation method shown in FIG. Ultrafine particle generation chamber and film formation chamber The pressure was set to 3 atm, and the temperature of the substrate 3 in the film formation chamber was set to 100 ° C. to form a film. The ultrafine particles of Au were formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 1-3.
この微粒子層 1上には、 18 m厚のポリィミ ドベースフィルムの基 板 5に 18 厚の銅箔をパターニングした接続端子 4が導電性接着剤 7を介して接着されている。  On the fine particle layer 1, a connection terminal 4 in which an 18-thick copper foil is patterned on an 18-m-thick polyimide base film substrate 5 is adhered via a conductive adhesive 7.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレ夕ン系等の単独または複数の混合物若しくは化合物の接着剤の中に、 0. 1〜5 111の粒子径の Agを混合分散したものである。  This conductive adhesive 7 is prepared by mixing Ag having a particle size of 0.1 to 5111 into an adhesive of a single or a plurality of mixtures or compounds of epoxy, acrylic, polyester, urethane, etc. It is dispersed.
この導電性接着剤 7を接続端子 2と接続端子 4との間に配置し、 この 導電性接着剤 7に熱硬化性又は熱可塑性と熱硬化性とのブレンド夕イブ の接着剤を使つた場合には加熱加圧へッ ドを基板 5に押し当てることに よって硬化接続させる。  When the conductive adhesive 7 is disposed between the connection terminal 2 and the connection terminal 4, and the conductive adhesive 7 is a thermosetting or a blend of thermoplastic and thermosetting adhesive. In this case, a hardening connection is made by pressing a heating and pressing head against the substrate 5.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2 mの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 17 5eC、 圧力 3MPa、 時間 20秒の条件で接続を行った。 接続端子の形 成ピッチは 230 mで、 端子数は 320である。 このようにして形成 した導電性接続部に、 耐湿放置試験 (60eC、 90%RH) 500時間、 冷熱サイクル試験 (一 30°Cで 30分、 80°Cで 30分) 500サイク ルを実施した。 その結果、 これらの接続信頼性評価後も安定した接続状 態が確保されていた。 Here, using the conductive adhesive 7 and the silver powder having a particle size of L~2 m in the adhesive were mixed and dispersed mainly containing epoxy resin, a heating and pressurizing a temperature 17 5 e C, pressure 3 MPa, Connection was made under the condition of a time of 20 seconds. The formation pitch of the connection terminals is 230 m, and the number of terminals is 320. The conductive connection thus formed was subjected to a humidity resistance test (60 eC , 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 500 cycles. Carried out. As a result, a stable connection state was secured even after these connection reliability evaluations.
また、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿 度、 腐食性ガス、 塵埃等) から保護するために、 端子間又は接続部全体 をモールド材で覆ってもよい。  In addition, although not shown, in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a molding material.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 八 ー卩(1系等の合金、 また高温超電導物質等の金属物質又は導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, Further, a metal material such as a high-temperature superconducting material or a conductive material can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions of gas deposition.
上述のような構成によれば、 上記実施例 2と同様の効果を奏する他、 特に、 ガラス基板の表面に形成された I T O等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リットがある。  According to the above-described configuration, in addition to the same effects as those of the second embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate are complicated processes. There is a merit that it can be easily performed without requiring a process.
〔実施例 9〕 (Example 9)
本実施例は、 実施例 3と同様に、 図 7、 図 8に示す主要部分を備えた ものである。 基板 3上に形成された接続端子 2の表面の一部分または全 部を微粒子層 1が覆っていて、 この接続端子 2上の微粒子層 1と基板 5 に形成された接続端子 4とが異方性導電材 8を介して接続されている。 ここで、 本実施例では、 実施例 7と同様に、 図 3に示す全体構成を備 えており、 図 3の断面 A— Aは図 7に対応し、 断面 B— Bは図 8に対応 している。  This embodiment includes the main parts shown in FIGS. 7 and 8 similarly to the third embodiment. Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3, and fine particle layer 1 on connection terminal 2 and connection terminal 4 formed on substrate 5 are anisotropic. They are connected via conductive material 8. Here, in the present embodiment, similarly to the seventh embodiment, the entire configuration shown in FIG. 3 is provided, and the cross section A—A in FIG. 3 corresponds to FIG. 7, and the cross section BB in FIG. ing.
本実施例では、 0 . 7 mm厚のガラス基材の基板 3上に、 1 0 0 0 A の厚さの I T Oでパターニングして複数並列した接続端子 2が形成され ている。 この接続端子 2の表面上に、 A uの超微粒子からなる微粒子層 1を上記実施例 1と同様の図 4に示すガス中蒸発法により形成している c 超微粒子生成室と膜形成室との差圧を 3気圧とし、 膜形成室内の基板 3 の温度は 1 0 0 °Cの条件で成膜を行った。 この A uの超微粒子は平均 1 m位の粒子径で形成されていた。 微粒子層 1の厚さは l〜3 mであ る。 In the present embodiment, a plurality of connection terminals 2 are formed on a 0.7 mm thick glass substrate 3 by patterning with a 100 A thick ITO. On the surface of the connection terminal 2, and c ultrafine particles producing chamber and film forming chamber is formed by gas evaporation method shown in the same FIG. 4 the particle layer 1 as in Example 1 consisting of ultrafine particles A u The pressure was set to 3 atm, and the temperature of the substrate 3 in the film forming chamber was 100 ° C. to form a film. The ultrafine particles of Au were formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 1 to 3 m.
この接続端子 2の微粒子層 1上に、 1 8 /z m厚のポリイミ ドベースフ イルムの基板 5に 1 8 xm厚の銅箔をパターニングした接続端子 4が異 •方性導電材 8を介して接続されている。 ここで使用する異方性導電材 8 は異方性導電膜であり、 主に導電粒子 9を分散させた接着剤 10より構 成されている。 この導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 Pd、 Sn等の単独又は複数の混合物、 合金若しくはメツキ等による複 合金属粒子、 プラスチック粒子 (ポリスチレン系、 ポリ力一ポネート系、 アクリル系、 ジベニルベンゼン系統) に Ni、 Au、 Cu、 Fe等の単 独又は複数のメツキをした粒子、 カーボン粒子等である。 また、 この接 着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 ァ クリル系、 ポリエステル系、 ウレタン系等の単独又は複数の混合物若し くは化合物である。 On the fine particle layer 1 of the connection terminal 2, a connection terminal 4 obtained by patterning a 18 xzm thick polyimide base film substrate 5 with 18 xm thick copper foil is used. • Connected via anisotropic conductive material 8. The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of an adhesive 10 in which conductive particles 9 are dispersed. The conductive particles 9 include solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., composite metal particles such as alloys and platings, plastic particles (polystyrene, poly-polynate, acrylic) Particles, such as Ni, Au, Cu, Fe, etc., or carbon particles. The adhesive 10 is a single compound or a mixture or compound of a plurality of styrene butadiene styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, and urethane-based materials.
この異方性導電材 8の異方性導電膜を接続端子 2の表面の微粒子層 1 と基板 5の接続端子 4との間に配置し、 異方性導電膜に熱硬化性又は熱 可塑性と熱硬化性とのブレンドタイブの接着剤を使った場合には加熱加 圧ヘッ ドを基板 5に押し当てることによって硬化接続させる。 また、 異 方性導電膜に UV (紫外線) 硬化性夕イブの接着剤を使った場合には加 圧へッ ドを基板 5に押し当て、 接続端子 2 (ガラス基板側) 側から UV 照射して硬化させる。  This anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 on the substrate 5, and the anisotropic conductive film is made of thermosetting or thermoplastic resin. In the case where an adhesive of a blend type with thermosetting is used, the connection is cured by pressing the heating and pressing head against the substrate 5. When a UV (ultraviolet) curable adhesive is used for the anisotropic conductive film, the pressure head is pressed against the substrate 5 and UV is irradiated from the connection terminal 2 (glass substrate side) side. And cure.
ここでは、 粒子径が 5 π!〜 10 > mのボリスチレン系のブラスチッ ク粒子に 3 /m厚の N iメヅキと 0. 5 zm厚の Auメツキをした導電 粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散さ せた異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 175 。C、 圧力 3MPa、 時間 20秒の条件で行った。 接続端子の形成ピッチ は 200 mで、 端子数は 320である。 このようにして形成した導電 接続部に、 耐湿放置試験 (60°C、 90%RH) 500時間、 冷熱サイ クル試験 (一 30。Cで 30分、 80°Cで 30分) 500サイクルを実施 し、 その結果、 これらの接続信頼性評価後も安定した接続状態が確保さ れていた。 Here, the particle diameter is 5π! Conductive particles 9 with 3 / m thick Ni plating and 0.5 zm thick Au plating on polystyrene-based plastic particles of ~ 10> m 5% by weight in adhesive 10 mainly composed of epoxy resin The mixed and dispersed anisotropic conductive film (anisotropic conductive material 8) was used. C, pressure 3MPa, time 20 seconds. The formation pitch of the connection terminals is 200 m, and the number of terminals is 320. The conductive connection thus formed was subjected to a humidity resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 500 cycles. As a result, a stable connection state is maintained even after these connection reliability evaluations. Had been.
他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独又は複数の混合物、 合金、 又はメツキ 等による複合金属粒子、 プラスチック粒子 (ポリスチレン系、 ポリカー ポネート系、 アクリル系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等の単独又は複数のメツキをした粒子、 カーボン粒子等である。 また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複数の 混合物若しくは化合物である。  Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles may be solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, diphenylbenzene, etc.). Particles, such as Ni, Au, Cu, Fe, etc., and carbon particles. The adhesive is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電接着剤は液状あるいはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 接続端子 2の接続部分に配置される。 異方性導電接着剤に熱 硬化性又は熱可塑性と熱硬化性とのブレンドタイプの接着剤を使った場 合には加熱加圧へッ ドを基板 5に押し当てることによって硬化接続させ る。 また、 異方性導電接着剤に UV夕イブの接着剤を使った場合には加 圧へッ ドを基板 5に押し当て、 基板 3 (ガラス基板) 側から UV照射し て硬化させる。  The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser. When a thermosetting or a blend of thermoplastic and thermosetting adhesives is used as the anisotropic conductive adhesive, a hardening connection is made by pressing a heating and pressing head against the substrate 5. When a UV adhesive is used as the anisotropic conductive adhesive, a pressure head is pressed against the substrate 5, and the substrate 3 (glass substrate) is irradiated with UV light to be cured.
また、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿 度、 腐食性ガス、 塵埃等) から保護するために、 端子間又は接続部全体 をモールド材で覆ってもよい。  In addition, although not shown, in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a molding material.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 311等の金属ゃ( 11ー 21 系、 Au— Sn系、 八 ー卩(1系等の合金、 また超高温電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 上述のような構成によれば、 上記実施例 3と同様の効果を奏すること に加えて、 特に、 ガラス基板の表面に形成された I TO等の薄膜接続端 子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にでき るというメリッ トがある。 Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and 311 (alloys such as 11-21, Au-Sn, and octane (1 series), and ultra-high-temperature conductive materials Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition. According to the above-described configuration, in addition to having the same effects as those of the third embodiment, in particular, repair, reinforcement, and low resistance of the thin film connection terminals such as ITO formed on the surface of the glass substrate are reduced. However, there is an advantage that it can be easily performed without requiring complicated processing steps.
〔実施例 1 0〕 (Example 10)
本実施例は、 実施例 4と同様に図 1 1に示す主要部分を備え、 基板 3 上に形成された接続端子 2の表面の一部分または全部を微粒子層 1が覆 つていて、 この接続端子 2上の微粒子層 1と半導体チップ 1 6に形成さ れたバンプ 1 7とが接着剤 6を介して接続されている。  This embodiment includes the main part shown in FIG. 11 similarly to the fourth embodiment, and the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3. The fine particle layer 1 on 2 and the bumps 17 formed on the semiconductor chip 16 are connected via an adhesive 6.
図 9は本実施例の斜視図であり、 図 9の断面 A— Aは図 1 1に対応し ている。  FIG. 9 is a perspective view of the present embodiment, and a cross section AA of FIG. 9 corresponds to FIG.
本実施例では、 0. 7mm厚のガラス基材の基板 3上に、 70 OAの 厚さの I TOと、 その上に形成された 2 mの厚さの N i層を持つ接続 端子 2が形成されている。 この接続端子 2の表面に、 A gの超微粒子を 堆積してなる微粒子層 1を、 実施例 4と同様の図 1 0に示すガス中蒸発 法により形成している。 超微粒子生成室と膜形成室との差圧を 1 00 T o r rとし、 膜形成室の温度は室温 (約 25°C) の条件で成膜した。 こ の A gの微粒子層 1は 60 nm位の粒子径の超微粒子間に隙間がある状 態で形成されていた。 微粒子層 1の厚さは 0. 1〜 1. 5^mである。 この接続端子 2の表面上の微粒子層 1に半導体チップ 1 6のパンブ 1 7が接着剤 6を介して接続されている。 この接着剤 6としてはスチレン ブタジエンスチレン (SB S) 系、 エポキシ系、 アクリル系、 ポリエス テル系、 ウレタン系等の単独または複数の混合物若しくは化合物である ( この接着剤 6を接続端子 2と半導体チップ 1 6のバンプ 1 Ίとの間に 配置し、 この接着剤 6に熱硬化性又は熱可塑性と熱硬化性とのブレンド タイプの接着剤を使った場合には加熱加圧へッドを半導体チップ 16に 押し当てることによって硬化接続させる。 また、 この接着剤 6に UV硬 化夕イブの接着剤を使った場合には加圧へッドを半導体チップ 16に押 し当て、 基板 3 (ガラス基板) 側から UV照射して硬化させる。 In this embodiment, a connection terminal 2 having a thickness of 70 OA and an Ni layer having a thickness of 2 m formed thereon is provided on a 0.7 mm thick glass substrate 3. Is formed. On the surface of the connection terminal 2, a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by the in-gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 100 Torr, and the film was formed at room temperature (about 25 ° C). This Ag fine particle layer 1 was formed in a state where there was a gap between the ultrafine particles having a particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to 1.5 m. The pump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the adhesive 6. Styrene-butadiene-styrene (SB S) system as the adhesive 6, epoxy, acrylic, Poriesu ether-based, is a single or a plurality of mixture or compound of urethane or the like (the adhesive 6 connecting terminal 2 and the semiconductor chip Placed between 1 and 6 bumps 1 に and this adhesive 6 is thermosetting or a blend of thermoplastic and thermosetting When a type of adhesive is used, a hardening connection is made by pressing a heating and pressing head against the semiconductor chip 16. When a UV hardening adhesive is used as the adhesive 6, a pressure head is pressed against the semiconductor chip 16 and the substrate 3 (glass substrate) is irradiated with UV light to be cured.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を '温度 175。C、 圧力 0. 2MPa、 時間 20秒の条件で行った。 接続端' 子及びバンプの形成ピッチは 120 mで、 端子数及びバンプ数は 10 0個である。 この導電接続部に、 耐湿放置試験 (60。C、 90%RH) 500時間、 冷熱サイクル試験 (一 30 °Cで 30分、 80。Cで 30分) 500サイクルを実施した。 その結果、 これらの接続信頼性評価後も安 定した接続状態が確保されていた。  Here, an adhesive 6 mainly composed of epoxy is used, and the heating and pressing are performed at a temperature of 175. C, pressure 0.2 MPa, time 20 seconds. The formation pitch of the connection terminals and bumps is 120 m, and the number of terminals and the number of bumps are 100. The conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 500 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
接続端子 2の表面上の微粒子層 1とバンプ 17とは直接接触し電気的 導通がとられており、 その状態を接着剤 6が機械的に固定保持し、 また、 この接続部分を外部璟境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保 護し接続状態を安定化している。  The fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. (Eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで微粒子層 1の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the fine particle layer 1, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 実施例 4と同様の効果を奏する上に、 特 に、 ガラス基板の表面に形成された I TO、 ITO + Ni等の薄膜接続 端子の補修、 補強、 低抵抗化が、 湿式メツキ法のような複雑な処理工程 を必要とせず簡単にできるというメリッ卜がある。  According to the above-described configuration, the same effects as in the fourth embodiment can be obtained, and in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO and ITO + Ni formed on the surface of the glass substrate can be achieved. There is a merit that the process can be simplified without the need for complicated processing steps such as the wet plating method.
〔実施例 11〕 本実施例は、 実施例 5と同様の図 1 2に示す主要部分を備えたもので あり、 基板 3上に形成された接続端子 2の表面の一部分または全部を微 粒子 1が覆っていて、 この接続端子 2上の微粒子層 1と半導体チップ 1 6のバンプ 1 7とが導電性接着剤 7を介して接続されている。 (Example 11) This embodiment has the same main parts as in Embodiment 5 shown in FIG. 12, and the fine particles 1 cover part or all of the surface of the connection terminal 2 formed on the substrate 3, The fine particle layer 1 on the connection terminal 2 and the bump 17 of the semiconductor chip 16 are connected via a conductive adhesive 7.
本実施例においては、 実施例 1 0と同様に、 図 9に示す全体構成を有 する導電接続部の構造を有し、 図 9の断面 A— Aは図 1 2に対応してい る。  In the present embodiment, similarly to the tenth embodiment, the structure of the conductive connection portion having the entire configuration shown in FIG. 9 is provided, and the cross section AA in FIG. 9 corresponds to FIG.
本実施例では、 0 . 7 mm厚のガラス基材の基板 3上に、 1 0 0 0 A の厚さの I T Oでパターニングしてなる接続端子 2が形成されている。 この接続端子 2の表面上には、 A uの超微粒子を堆積してなる微粒子層 1が実施例 1 0と同様の図 1 0に示すガス中蒸発法により成膜されてい る。 超微粒子生成室と膜形成室との差圧を Ι Ο Ο Τ Ο Γ Γとし、 膜形成 室内の基板 3の温度は 1 2 0 Cの条件で成膜した。 この A uの超微粒子 は平均 3 /zm位の粒子径で形成されていた。 微粒子層 1の厚さは 3〜 8 mである。  In this embodiment, a connection terminal 2 is formed on a glass substrate 3 having a thickness of 0.7 mm by patterning with ITO having a thickness of 1000 A. On the surface of the connection terminal 2, a fine particle layer 1 formed by depositing ultra-fine particles of Au is formed by a gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to Ι, 基板 Ο 、 Γ 、, and the temperature of the substrate 3 in the film formation chamber was set to 120 ° C. The ultrafine particles of Au were formed with an average particle diameter of about 3 / zm. The thickness of the fine particle layer 1 is 3 to 8 m.
この接続端子 2の表面上の微粒子層 1に半導体チッブ 1 6のバンプ 1 7が導電接着剤 7を介して接続されている。 この導電性接着剤 7は、 ェ ポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複 数の混合若しくは化合物の接着剤の中に、 0 . l〜5 / mの粒子径の A gを混合分散したものである。  The bump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the conductive adhesive 7. The conductive adhesive 7 may be an epoxy, acrylic, polyester, urethane, or other single or mixed or compounded adhesive having a particle size of 0.1 to 5 / m. Are mixed and dispersed.
この導電性接着剤 7を接銃端子 2とバンプ 1 7との間に配置し、 この 導電性接着剤に熱硬化性または熱可塑性と熱硬化性とのブレンドタイプ の接着剤を使った場合には加熱加圧へッ ドを半導体チップ 1 6に押し当 てることによって硬化接続させる。 また、 この導電性接着剤に U V硬化 性タイプの接着剤を使った場合には加圧へッドを半導体チップ 1 6に押 し当て、 基板 3 (ガラス基板) 側から U V照射して硬化させる。 ここでは、 エポキシ系を主成分とする接着剤中に 1〜2 mの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 17 5°C、 圧力 0. 2MPa、 時間 20秒の条件で行った。 接続端子及びバ ンブの形成ピッチは 120 mで、 接続端子及びバンプ数は 100個で ある。 この導電接続部に、 耐湿放置試験 (60°C、 90%RH) 500 時間、 冷熱サイクル試験 (一 30°Cで 30分、 80°Cで 30分) 500 サイクルを実施した。 その結果、 これらの接続信頼性評価後も安定した 接続状態が確保されていた。 なお、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部 全体をモールド で覆ってもよい。 This conductive adhesive 7 is disposed between the contact terminal 2 and the bump 17, and when a thermosetting or a blend of thermoplastic and thermosetting is used as the conductive adhesive, The hardening connection is performed by pressing the heating and pressing head against the semiconductor chip 16. When a UV-curable adhesive is used as the conductive adhesive, a pressure head is pressed against the semiconductor chip 16 and cured by irradiating UV rays from the substrate 3 (glass substrate) side. . Here, a conductive adhesive 7 was used in which silver powder with a particle size of 1 to 2 m was mixed and dispersed in an adhesive mainly composed of an epoxy resin, and heating and pressing were performed at a temperature of 175 ° C and a pressure of 0. The test was performed under the conditions of 2 MPa and a time of 20 seconds. The formation pitch of the connection terminals and bumps is 120 m, and the number of connection terminals and bumps is 100. The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (one cycle at 30 ° C for 30 minutes and 80 ° C for 30 minutes) for 500 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations. In addition, in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a mold.
ここで微粒子層 1の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 /mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the fine particle layer 1, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 実施例 5と同様の効果に加えて、 特に、 ガラス基板の表面に形成された I TO、 I TO + N i等の薄膜接続端子 の補修、 補強、 低抵抗化が、 湿式メツキ法のような複雑な処理工程を必 要とせず簡単にできるというメリヅトがある。  According to the configuration as described above, in addition to the same effects as in the fifth embodiment, in particular, repair, reinforcement, and low resistance of the thin film connection terminals such as ITO and ITO + Ni formed on the surface of the glass substrate There is a merit that the process can be easily performed without requiring complicated processing steps such as a wet plating method.
〔実施例 12〕 (Example 12)
本実施例は、 実施例 6と同様に図 13に示す主要部分を備えたもので あり、 基板 3上に形成された接続端子 2の表面の一部分または全部を微 粒子 1層が覆っていて、 この接続端子 2上の微粒子層 1と半導体チップ 16のバンプ 17とが異方性導電材 8を介して接続されている。  This embodiment has a main part shown in FIG. 13 similarly to the sixth embodiment, and a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with one layer of fine particles. The fine particle layer 1 on the connection terminal 2 and the bump 17 of the semiconductor chip 16 are connected via the anisotropic conductive material 8.
本実施例では、 実施例 10と同様に、 図 9に示す全体構成を有する。 図 9の断面 A— Aは図 13に対応している。 This embodiment has the entire configuration shown in FIG. Section A—A in FIG. 9 corresponds to FIG.
本実施例では、 0. 7mmの厚さのガラス基材の基板 3上に、 100 OAの厚さの I TOでパターニングしてなる接続端子 2が形成されてい る。 この接続端子 2の表面上に、 Auの超微粒子を堆積してなる微粒子 層 1が実施例 6と同様に図 10に示すガス中蒸発法により形成されてい る。 超微粒子生成室と膜形成室との差圧を Ι Ο Ο Τ Ο Γ Γとし、 膜形成 室内の基板 3の温度は 120°Cの条件で行った。 この A uの超微粒子は 平均 3 m位の粒子径で形成されていた。 微粒子層の厚さは 3〜8 zm In this embodiment, a connection terminal 2 is formed on a glass substrate 3 having a thickness of 0.7 mm by patterning with a 100 OA thick ITO. A fine particle layer 1 formed by depositing ultrafine particles of Au is formed on the surface of the connection terminal 2 by the gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to Ι, and the temperature of the substrate 3 in the film formation chamber was set to 120 ° C. The ultrafine particles of Au were formed with an average particle diameter of about 3 m. Fine particle layer thickness 3-8 zm
^め o ^ Me o
この接続端子 2の表面上の微粒子層 1には半導体チップ 16のバンプ 17が異方性導電材 8を介して接続されている。 ここで使用する異方性 導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成 されている。 この導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 P b、 Sn等の単独または複数の混合物、 合金、 またはメツキ等による複 合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等の単 独または複数のメツキをした粒子、 カーボン粒子等である。  The bump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the anisotropic conductive material 8. The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be composed of solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloyed metal, composite metal particles of metal, etc., plastic particles (polystyrene, polycarbonate, acrylic, etc.). Particles, such as Ni, Au, Cu, Fe, etc., and carbon particles.
また、 この接着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または 複数の混合物若しくは化合物である。  The adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電膜を接続端子 2の表面上の微粒子層 1と半導体チップ 16のバンプ 17との間に配置し、 異方性導電膜に熱 硬化性又は熱可塑性と熱硬化性とのブレンドタイプの接着剤を使つた場 合には加熱加圧へッ ドを半導体チップ 16に押し当てることによって硬 化接続させる。 また、 異方性導電膜に UV硬化性タイプの接着剤を使つ た場合には加圧ヘッ ドを半導体チップ 16に押し当て、 基板 3 (ガラス 基板) 側から UV照射して硬化させる。 The anisotropic conductive film of the anisotropic conductive material 8 is arranged between the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 of the semiconductor chip 16, and the thermosetting or thermoplastic In the case of using a blend type adhesive of thermosetting and thermosetting, a hardening connection is made by pressing a heating and pressing head against the semiconductor chip 16. When a UV-curable adhesive is used for the anisotropic conductive film, the pressure head is pressed against the semiconductor chip 16 to make the substrate 3 (glass The substrate is cured by UV irradiation from the side.
ここでは粒子径が 1 m〜3 mのポリスチレン系のブラスチック粒 子に 1 m厚の N iメヅキと 0. 5 zm厚の Auメヅキをした導電粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散させた 異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 175°C、 圧力 10 gf/バンプ、 時間 30秒の条件で行った。 接続端子及びパン プの形成ピッチは 100 mで、 接続端子及びバンプ数は 120個であ る。 この導電接続部に、 耐湿放置試験 (60。C、 90 RH) 500時 間、 冷熱サイクル試験 (一 30°Cで 30分、 80°Cで 30分) 500サ イクルを実施した。 その結果、 これらの接続信頼性評価後も安定した接 続状態が確保されていた。  Here, conductive particles 9 made of polystyrene-based plastic particles having a particle size of 1 m to 3 m and a 1-m thick Ni film and a 0.5 m-thick Au film are bonded to an epoxy-based adhesive. Anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed at 5% by weight in 10 was used, and heating and pressurization were performed at a temperature of 175 ° C, a pressure of 10 gf / bump, and a time of 30 seconds. . The formation pitch of connection terminals and bumps is 100 m, and the number of connection terminals and bumps is 120. This conductive connection was subjected to a humidity resistance test (60.C, 90 RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C and 30 minutes at 80 ° C) for 500 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pd、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 ブラスチック粒子 (ボリスチレン系、 ポリ カーボネート系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等 の単独または複数のメツキをした粒子、 カーボン粒子等である。  Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles may be solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., alloyed metal or composite metal particles made of metal, plastic particles (polystyrene, polycarbonate, dibenylbenzene, etc.). Etc.) Ni, Au, Cu, Fe, etc., single or multiple plated particles, carbon particles, etc.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェボ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。  The adhesive is a styrene-butadiene-styrene (SBS) -based, ethoxy-based, acrylic-based, polyester-based, urethane-based or other single or a mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 接続端子 2の接続部分に配置する。 異方性導電接着剤に熱硬 化性又は熱可塑性と熱硬化性とのプレンド夕イブの接着剤を使った場合 には加熱加圧へッ ドを半導体チップ 16に押し当てることによって硬化 接続させる。 また、 異方性導電接着剤に UV硬化性夕イブの接着剤を使 つた場合には加圧ヘッ ドを半導体チップ 16に押し当て、 基板 3 (ガラ ス基板) 側から UV照射して硬化させる。 The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is arranged at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser. When a thermosetting or thermoplastic and thermosetting blend adhesive is used as the anisotropic conductive adhesive, the connection is cured by pressing the heating and pressing head against the semiconductor chip 16. . UV-curable adhesive is used for the anisotropic conductive adhesive. In this case, the pressure head is pressed against the semiconductor chip 16 and cured by irradiating UV rays from the substrate 3 (glass substrate) side.
また、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿 度、 腐食性ガス、 塵埃等) から保護するために、 接続部または半導体チ ッブ全体をモールド材で覆ってもよい。  Although not shown, in order to protect this connection from the external environment (for example, humidity, corrosive gas, dust, etc.), the connection or the entire semiconductor chip may be covered with a molding material. Good.
ここで超微粒子の材料としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 八 ー (1系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 /zmのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, other materials for the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and octane (type 1), and high-temperature superconducting materials. Ultra-fine particles with a particle size of 60 nm to 3 / zm can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 実施例 6の効果に加えて、 特に、 ガラス 基板の表面に形成された I TO、 I TO + Ν i等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リットがある。  According to the configuration as described above, in addition to the effects of the sixth embodiment, in particular, repair, reinforcement, and low resistance of the thin film connection terminals such as ITO and ITO + Νi formed on the surface of the glass substrate are achieved. However, there is an advantage that it can be easily performed without requiring complicated processing steps.
〔実施例 13〕 (Example 13)
本実施例 13の主要部分は実施例 1と同様の図 1、 図 2に示すもので あり、 基板 3上に形成された接続端子 2の表面の一部分または全部を微 粒子層 1が覆っていて、 この接続端子 2上の微粒子層 1ともう一方の基 板 5に形成された接続端子 4とが接着剤 6を介して接続されている。 図 3は本実施例の導電接続部の構造を示し、 図 3の断面 A— Aは図 1 に対応し、 断面 B— Bは図 2に対応する。  The main part of the thirteenth embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2, and the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3. The fine particle layer 1 on the connection terminal 2 and the connection terminal 4 formed on the other substrate 5 are connected via an adhesive 6. FIG. 3 shows the structure of the conductive connecting portion of the present embodiment. The cross section AA in FIG. 3 corresponds to FIG. 1, and the cross section BB corresponds to FIG.
本実施例では、 0. 1mm温のポリカーボネート基材の基板 3上に、 500 Aの厚さの I T 0 ( I nd i um Tin Oxide) の接続 端子 2が形成されている。 この接続端子の表面上に、 A gの超微粒子を 堆積してなる微粒子層 1が実施例 1と同様に図 4に示すガス中蒸発法を 使い形成されている。 超微粒子生成室と膜形成室との差圧を 10 OTo rrとし、 膜形成室の温度は室温 (約 25°C) の条件で行った。 この A gの微粒子層 1は平均 60 nm位の粒子径の超微粒子間に隙間がある状 態で形成されていた。 微粒子層 1の厚さは 0. 1〜1. である。 In this embodiment, a connection terminal 2 of IT0 (Indium Tin Oxide) having a thickness of 500 A is formed on a substrate 3 of a polycarbonate base material having a temperature of 0.1 mm. A fine particle layer 1 formed by depositing ultrafine particles of Ag on the surface of the connection terminal was formed by the gas evaporation method shown in FIG. It is used and formed. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was 10 OTorr, and the temperature of the film formation chamber was room temperature (about 25 ° C). The Ag fine particle layer 1 was formed in a state where there was a gap between the ultrafine particles having an average particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to 1.
この接続端子 2上の微粒子層 1に、 18 m厚のポリイミ ドベースフ イルムの基板 5に 18 m厚の銅箔をパターニングしてなる接続端子 4 が接着剤 6を介して接続されている。 この接着剤 6としてはスチレンブ 夕ジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ポリエステ ル系、 ウレタン系等の単独または複数の混合物若しくは化合物である。  A connection terminal 4 formed by patterning an 18 m-thick copper foil on a 18 m-thick polyimide base film substrate 5 is connected to the fine particle layer 1 on the connection terminal 2 via an adhesive 6. The adhesive 6 is a single compound or a mixture or compound of styrene-butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この接着剤 6を接続端子 2と接続端子 4との間に配置し、 この接着剤 6に熱硬化性又は熱可塑性と熱硬化性とのブレンドタイプの接着剤を使 つた場合には加熱加圧へッドを基板 5に押し当てることによって硬化接 続させる。 また、 この接着剤 6に UV硬化性タイプの接着剤を使った場 合には加圧へッドを基板 5に押し当て、 基板 3側から UV 射して硬化 させる。  This adhesive 6 is disposed between the connection terminal 2 and the connection terminal 4, and when a thermosetting or a blend of thermoplastic and thermosetting is used as the adhesive 6, heat and pressure are applied. A hardening connection is made by pressing the head against the substrate 5. When a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the substrate 5 and cured by irradiating UV rays from the substrate 3 side.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 135°C、 圧力 0. 5 MP a、 時間 20秒の条件で行った。 接続端 子の形成ピッチは 200 mで、 端子数 320である。 この導電接続部 に耐湿放置試験 (60 、 90%RH) 200時間、 冷熱サイクル試験 (一 30°Cで 30分、 80。Cで 30分) 200サイクルを実施した。 そ の結果、 この接続信頼性評価後も安定した接続状態が確保されていた。 接続端子 2の表面上の微粒子層 1と接続端子 4が直接接触し電気的導 通がとられており、 その状態を接着剤 6が機械的に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保 護し接続状態を安定化している。  Here, an adhesive 6 mainly composed of an epoxy-based material was used, and heating and pressing were performed at a temperature of 135 ° C, a pressure of 0.5 MPa, and a time of 20 seconds. The formation pitch of the connection terminals is 200 m, and the number of terminals is 320. The conductive connection was subjected to a humidity resistance test (60, 90% RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 200 cycles. As a result, a stable connection state was maintained even after this connection reliability evaluation. The fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 are in direct contact with each other for electrical conduction, and the adhesive 6 is mechanically fixed and held in this state. (Eg, humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 八 ー?(1系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Here, the material of the ultrafine particles is Au, Cu, Zn, Pd, Metals such as Sn, Cu-Zn, Au-Sn, (Materials such as alloys of series 1 and metallic or conductive materials such as high-temperature superconducting materials can be used. In addition, the conditions for gas deposition should be selected appropriately for ultrafine particles with a particle size of 60 nm to 3 m.) Can be used by
また、 基板 3の基材としては、 ポリカーボネート (PC) の他にポリ ' エーテルサルフォン (PES) 、 アクリル、 ポリアリレートまたはポリ' ヒドロキシポリエーテル等の厚み 18 111から500/ 111のプラスチッ クフィルムまたはブラスチック板も使用できる。  The base material of the substrate 3 may be a plastic film having a thickness of 18 111 to 500/111 such as poly'ethersulfone (PES), acrylic, polyarylate or poly'hydroxypolyether, in addition to polycarbonate (PC). Plastic plates can also be used.
上述のような構成によれば、 実施例 1の効果に加えて、 特に、 ブラス チック基板の表面に形成された I TO等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメリッ ト がある。 特に、 低抵抗化の方法としては、 一般的に湿式法によるメツキ 処理があるが、 このブラスチック基板の表面に形成された I TO等の簿 膜接続端子についてはこの湿式法によるメツキ処理をすると使用するァ ルカリ性ゃ酸性の薬品により変色、 腐食、 浸食等の悪影響を強く受ける ため好ましくない。 これに対して、 本実施例の方法は、 このような薄膜 接続端子の補修、 補強、 低抵抗化に最適である。  According to the above-described configuration, in addition to the effects of the first embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic substrate are complicated processing steps. There is a merit that it can be easily done without the need. In particular, as a method for lowering the resistance, there is generally a plating process by a wet method. However, for the film connection terminals such as ITO formed on the surface of the plastic substrate, a plating process by the wet method is used. The alkaline and acidic chemicals used are not preferred because they have a strong adverse effect such as discoloration, corrosion, and erosion. On the other hand, the method of this embodiment is most suitable for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal.
更に、 微粒子層 1のクッション性には接続時の圧力や温度等による I Furthermore, the cushioning property of the fine particle layer 1 depends on the pressure and temperature during connection.
TO薄膜に加わる影響を減少させる効果があるとともに、 万が一 I TO 薄膜に亀裂等のダメージを生じても、 この微粒子層 1が適度に変形する ことにより、 接続部の導通は確保される。 In addition to the effect of reducing the effect on the TO thin film, even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed, so that the conduction of the connection portion is ensured.
〔実施例 14〕 (Example 14)
本実施例の主要部分は、 実施例 2と同様に図 5、 図 6に示されており、 基板 3上に形成された接続端子 2の表面の一部分または全部を微粒子層 1が覆っていて、 この接続端子 2ともう一方の基板 5に形成された接続 端子 4とが導電性接着剤 7を介して接続されている。 The main part of this embodiment is shown in FIGS. 5 and 6 similarly to the second embodiment, and a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1. This connection terminal 2 and the connection formed on the other substrate 5 The terminal 4 is connected via a conductive adhesive 7.
実施例 13と同様に、 図 3は本実施例の導電接続構造を示し、 図 3の 断面 A— Aは図 5に対応し、 断面 B— Bは図 6に対応する。  3 shows the conductive connection structure of the present embodiment, as in the thirteenth embodiment. The cross section AA in FIG. 3 corresponds to FIG. 5, and the cross section BB in FIG. 6 corresponds to FIG.
本実施例では、 0. 1mmの厚さのポリカーボネート基材の基板 3上 に、 50 OAの厚さの I TOの接続端子 2が形成されている。 この接続 端子 2の表面上に、 A gの超微粒子を堆積してなる微粒子層 1が実施例 2と同様のガス中蒸発法を使い形成されている。 超微粒子生成室と膜形 成室との差圧を Ι Ο Ο ΤΟ Γ Γとし、 膜形成室の温度は室温 (約 25°C) の条件で成膜した。 この A gの微粒子層 1は平均 6 Onm位の粒子径の 超微粒子間に隙間がある状態で形成されていた。 微粒子層 1の厚さは 0. 1〜 1. 5 zmである。  In this embodiment, a connection terminal 2 of ITO having a thickness of 50 OA is formed on a substrate 3 of a polycarbonate substrate having a thickness of 0.1 mm. On the surface of the connection terminal 2, a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by using the same gas evaporation method as in the second embodiment. The differential pressure between the ultrafine particle generation chamber and the film formation chamber was set to Ι Ο Ο Ο 、 、 成膜, and the film was formed at room temperature (about 25 ° C). The Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 6 Onm. The thickness of the fine particle layer 1 is 0.1 to 1.5 zm.
この接続端子 2上の微粒子層 1に、 18 m厚のポリィミ ドベースフ イルムの基板 5に 1 厚の銅箔をパターニングしてなる接続端子 4 が導電性接着剤 7を介して接続されている。 この導電性接着剤 7は、 ェ ポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複数 の混合物若しくは化合物の接着剤の中に、 0. 1〜5 111の粒子径の A g等の導電性物質を混合分散したものである。  A connection terminal 4 formed by patterning a 1-mm thick copper foil on a substrate 5 of a polyimide base film having a thickness of 18 m is connected to the fine particle layer 1 on the connection terminal 2 via a conductive adhesive 7. The conductive adhesive 7 may be an epoxy-based, acrylic-based, polyester-based, or urethane-based adhesive or a mixture or compound of a plurality of such adhesives, such as Ag having a particle diameter of 0.1 to 5111. The conductive material is mixed and dispersed.
この導電性接着剤 7を接続端子 2と接続端子 4との間に配置し、 この 導電性接着剤 7に熱硬化性又は熱可塑性と熱硬化性とのブレンドタイプ の接着剤を使った場合には加熱加圧へッドを基板 5に押し当てることに よって硬化接続させる。 また、 この導電性接着剤 7に UV硬化性夕イブ の接着剤を使った場合には加圧へッドを基板 5に押し当て、 基板 3側か ら UV照射して硬化させる。 また、 図示は省略してあるが、 この接続部 分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するため に、 端子間または接続部全体をモールド材で覆ってもよい。  When the conductive adhesive 7 is disposed between the connection terminal 2 and the connection terminal 4 and a thermosetting or a blend of thermoplastic and thermosetting is used as the conductive adhesive 7, Is hardened by pressing a heating and pressing head against the substrate 5. When a UV-curable adhesive is used as the conductive adhesive 7, a pressure head is pressed against the substrate 5, and the substrate 3 is irradiated with UV to cure the adhesive. In addition, although not shown, in order to protect the connection from the external environment (for example, humidity, corrosive gas, dust, and the like), the terminals or the entire connection may be covered with a molding material.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2 mの微粒子 径の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 1 35°C、 圧力 0. 5MPa、 時間 20秒の条件で行った。 接続端子の形 成ピッチは 23 O zmで、 端子数 320である。 この導電接続部に、 耐 湿放置試験 (60°C、 90%RH) 200時間、 冷熱サイクル試験 (一 30°Cで 30分、 80°Cで 30分) 200サイクルを実施した。 その結 果、 これらの接続信頼性評価後も安定した接続状態が確保されていた。 ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Here, the fine particles of l to 2 m are contained in the adhesive mainly composed of epoxy resin. Using a conductive adhesive 7 mixed and dispersed with silver powder having a diameter, heating and pressing were performed at a temperature of 135 ° C, a pressure of 0.5 MPa, and a time of 20 seconds. The formation pitch of the connection terminals is 23 O zm and the number of terminals is 320. The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations. Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
また、 基板 3の基材としては、 ポリカーポネート (PC) の他にポリ エーテルサルフォン (PES) 、 アクリル、 ポリアリレートまたはボリ ヒドロキシポリエーチル等の厚み 18 mから 500 mのブラスチッ クフィルムまたはブラスチック板も使用できる。  The base material of the substrate 3 may be a plastic film having a thickness of 18 m to 500 m such as polyether sulfone (PES), acrylic, polyarylate or polyhydroxypolyethyl, in addition to polycarbonate (PC). Plastic plates can also be used.
上述のような構成によれば、 実施例 2の効果に加えて、 特に、 ブラス チック基板の表面に形成された I TO等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメリッ ト がある。 特に、 低抵抗化の方法としては、 一般的に湿式法によるメツキ 処理があるが、 このプラスチック基板の表面に形成された I TO等の薄 膜接続端子についてはこの湿式法によるメツキ処理をすると使用するァ ルカリ性ゃ酸性の薬品により変色、 腐食、 浸食等の悪影響を強く受ける ため好ましくない。 これに対して、 本実施例の方法は、 このような薄膜 接続端子の補修、 補強、 低抵抗化に最適な方法である。  According to the configuration as described above, in addition to the effects of the second embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic substrate are complicated processing steps. There is a merit that it can be easily done without the need. In particular, as a method of lowering the resistance, there is generally a plating method by a wet method. However, thin film connection terminals such as ITO formed on the surface of this plastic substrate are used by a plating method by this wet method. It is not preferable because it has strong adverse effects such as discoloration, corrosion, and erosion due to alkaline and acidic chemicals. On the other hand, the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal.
また、 微粒子層 1のクッション性には接続時の圧力や温度等による I TO薄膜への影響を減少させる効果があると共に、 万が一 I TO薄膜に 亀裂等のダメージを生じても、 この微粒子層 1が適度に変形することに より、 導通が確保される。 In addition, the cushioning property of the fine particle layer 1 has the effect of reducing the influence on the ITO thin film due to the pressure and temperature at the time of connection, and has the effect of reducing Even if damage such as cracks occurs, conduction is ensured by appropriately deforming the fine particle layer 1.
〔実施例 1 5〕 (Example 15)
本実施例の主要部分は実施例 3と同様に図 7、 図 8に示され、 基板 3 上に形成された接続端子 2の表面の一部分または全部を微粒子層 1が覆 つていて、 この接続端子 2上の微粒子層 1ともう一方の基板 5に形成さ れた接続端子 4とが異方性導電材 8を介して接続されている。  The main part of this embodiment is shown in FIGS. 7 and 8 similarly to the third embodiment, and the fine particle layer 1 covers part or all of the surface of the connection terminal 2 formed on the substrate 3. The fine particle layer 1 on the terminal 2 and the connection terminal 4 formed on the other substrate 5 are connected via the anisotropic conductive material 8.
本実施例の全体構成は、 実施例 1 3と同様に図 3に示され、 図 3の断 面 A— Aは図 7に対応し、 断面 B— Bは図 8に対応する。  The overall configuration of the present embodiment is shown in FIG. 3, similarly to Embodiment 13, and the cross section AA in FIG. 3 corresponds to FIG. 7, and the cross section BB in FIG. 8 corresponds to FIG.
本実施例では、 0 . 4 mm厚さのポリカーボネート基材の基板 3上に、 8 0 O A©厚さの I T Oでパターニングしてなる接続端子 2が形成され ている。 この接続端子 2の表面上に、 A uの超微粒子を堆積してなる微 粒子層 1を実施例 1と同様の図 4に示すガス中蒸発法を使い形成してい る。 超微粒子生成室と膜形成室との差圧を 3気圧とし、 膜形成室内の基 板 3の温度は 1 0 0 °Cの条件で行った。 この A uの微粒子層 1内の超微 粒子は平均 1 /zm位の粒子径で形成されていた。 微粒子層 1の厚さは 1 〜 3 mである。  In the present embodiment, a connection terminal 2 is formed on a substrate 3 of a polycarbonate substrate having a thickness of 0.4 mm by patterning it with an ITO having a thickness of 80 OA. On the surface of the connection terminal 2, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by using the gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the substrate 3 in the film formation chamber was set at 100 ° C. The ultrafine particles in the fine particle layer 1 of Au were formed with an average particle diameter of about 1 / zm. The thickness of the fine particle layer 1 is 1 to 3 m.
この接続端子 2上の微粒子層 1に、 1 8 厚のポリィミ ドベースフ イルムの基板 5に 1 8 > m厚の銅箔をパターニングした接続端子 4が異 方性導電材 8を介して接続されている。  The fine particle layer 1 on the connection terminal 2 is connected to the connection terminal 4 formed by patterning a 18-m thick polyimide base film substrate 5 with a 18-> m-thick copper foil via an anisotropic conductive material 8. .
ここで使用する異方性導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 1 0より構成されている。 この導電粒子 9は半田粒子、 N i、 A u、 A g、 C u、 P b、 S n等の単独または複数の混合物、 合金、 ま たはメツキ等による複合金属粒子、 ブラスチック粒子 (ボリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系等) に N i、 A •u、 Cu、 Fe等の単独または複数のメツキをした粒子、 カーボン粒子 等である。 また、 この接着剤 10はスチレンブタジエンスチレン (SB S) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単 独または複数の混合物若しくは化合物である。 この異方性導電材 8の異 方性導電膜を接続端子 2の表面の微粒子層 1と基板 5の接続端子 4との 間に配置し、 異方性導電膜に熱硬化性または熱可塑性と熱硬化性とのブ レンド夕イブの接着剤を使った場合には加熱加圧へッドを基板 5に押し 当てることによって硬化接続させる。 また、 異方性導電膜に UV硬化性 夕イブの接着剤を使った場合には加圧へッ ドを基板 5に押し当て、 接続 端子 2側から UV照射して硬化させる。 The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, etc., plastic particles (polystyrene). System, polycarbonate system, acrylic system, diphenylbenzene system, etc.) • Single or multiple plated particles of u, Cu, Fe, etc., and carbon particles. The adhesive 10 is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane, and the like. The anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the connection terminal 2 and the connection terminal 4 of the substrate 5, and the anisotropic conductive film is made of a thermosetting or thermoplastic resin. When a thermosetting blend adhesive is used, a heating and pressing head is pressed against the substrate 5 to make a hardened connection. When a UV-curable adhesive is used for the anisotropic conductive film, a pressure head is pressed against the substrate 5 and UV is irradiated from the connection terminal 2 side to be cured.
ここでは、 粒子径が 5 !!!〜 10 mのポリスチレン系のブラスチヅ ク粒子に 3 m厚の N iメツキと 0. 5 /m厚の Auメツキをした導電 粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散さ せた異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 135 eC、 圧力 0. 5MP a、 時間 20秒の条件で行った。 接続端子の形成ビ ツチは 230 mで、 端子数 320である。 この導電接続部に、 耐湿放 置試験 (60。C、 90 RH) 200時間、 冷熱サイクル試験 (一 30 °Cで 30分、 80。Cで 30分) 200サイクルを実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態が確保されていた。 他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリ カーボネート系、 アクリル系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等の単独または複数のメツキをした粒子、 カーボン粒子等で める。 また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。 Here, the particle size is 5! !! ~ 10 m of polystyrene-based plastic particles with 3 m thick Ni plating and 0.5 / m thickness Au plating conductive particles 9 in an epoxy-based adhesive 10 weight 5 The heating and pressing were performed at a temperature of 135 eC, a pressure of 0.5 MPa, and a time of 20 seconds, using an anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed in a%. The number of connection terminals is 230 m and the number of terminals is 320. The conductive connection was subjected to a humidity resistance test (60.C, 90 RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations. Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzenes, etc.) and particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles. The adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 接続端子 2の接続部分に配置する。 異方性導電接着剤に熱硬 化性又は熱可塑性と熱硬化性とのブレンドタイブの接着剤を使った場合 には加熱加圧へッ ドを基板 5に押し当てることによつて硬化接続させる。 また、 異方性導電接着剤に UV硬化性夕イブの接着剤を使った場合には 加圧ヘッ ドを基板 5に押し当て、 基板 3側から UV照射して硬化させる。 なお図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体を モールド材で覆ってもよい。  The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is arranged at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser. When a thermosetting or thermoplastic and thermosetting blend type adhesive is used for the anisotropic conductive adhesive, the connection is cured by pressing the heating and pressing head against the substrate 5. . When a UV-curable adhesive is used as the anisotropic conductive adhesive, the pressure head is pressed against the substrate 5 and the substrate 3 is cured by irradiating UV from the substrate 3 side. Although not shown, in order to protect the connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a molding material.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 311等の金属ゃ011— 21 系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 のものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and 311, alloys such as 011-21, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials. Alternatively, a conductive material can be used. Ultrafine particles with a particle size of 60 nm to 3 can be used by appropriately selecting the conditions for gas deposition.
また、 基板 3の材質としては、 ポリカーボネート (PC) の他にポリ エーテルサルフォン (PES) 、 アクリル、 ポリアリレートまたはボリ ヒドロキシポリエーテル等の厚み 18〃mから 500 mのブラスチッ クフィルムまたはプラスチック板も使用できる。  In addition to polycarbonate (PC), the substrate 3 may be made of a plastic film such as a polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether having a thickness of 18 to 500 m. Can be used.
上述のような構成によれば、 実施例 3と同様の効果に加えて、 特に、 ブラスチック基材の基板の表面に形成された I TO等の薄膜接続端子の 補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできると いうメリッ 卜がある。 特に、 低抵抗化の方法としては、 一般的に湿式法 によるメツキ処理があるが、 このブラスチック基板の表面に形成された I T O等の薄膜接続端子についてはこの湿式法によるメツキ処理をする と使用するアルカリ性や酸性の薬品により変色、 腐食、 浸食等の悪影響 を強く受けるため好ましくない。 これに対して、 本実施例の方法は、 こ のような薄膜接続端子の補修、 補強、 低抵抗化に最適な方法である。 さらに、 微粒子層 1のクッシヨン性により接続時の圧力や温度等によ る I T 0薄膜への影響を減少させたり、 万が一 I T 0薄膜に亀裂等のダ メージを生じても、 この微粒子層 1は適度に変形することにより、 導通 が確保される。 また、 異方性導電材 8を介在させることにより、 接続端 子 4の凸凹を導電粒子 9が補完して、 多数の粒子が導通に寄与して、 接 続抵抗値を低減でき、 また接続状態を安定化できる。 According to the above-described configuration, in addition to the same effect as in the third embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic base substrate are achieved. There is an advantage that it can be easily performed without requiring complicated processing steps. In particular, as a method of lowering resistance, a wet method is generally used. However, if the thin-film connection terminals such as ITO formed on the surface of the plastic substrate are treated by the wet method, discoloration, corrosion, erosion, etc. will occur due to the alkaline or acidic chemicals used. It is not preferable because it is strongly received. On the other hand, the method of the present embodiment is an optimal method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal. Furthermore, even if the influence of the pressure and temperature at the time of connection on the IT0 thin film is reduced due to the cushioning property of the fine particle layer 1, or even if the IT0 thin film is damaged by a crack or the like, this fine particle layer 1 can be formed. Conduction is ensured by appropriate deformation. In addition, by interposing the anisotropic conductive material 8, the conductive particles 9 complement the unevenness of the connection terminal 4, and a large number of particles contribute to conduction, thereby reducing the connection resistance value and the connection state. Can be stabilized.
〔実施例 1 6 (Example 16
本実施例の主要部分は、 実施例 4と同様に図 1 1に示さ ίι、 基板 3上 に形成された接続端子 2の表面の一部または全部を微粒子層 1が覆って いて、 この接続端子 2上の微粒子層 1と半導体チップ 1 6に形成された バンプ 1 Ίとが接着剤 6を介して接続されている。  The main part of this embodiment is the same as that of the fourth embodiment, as shown in FIG. 11, in which a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1. The fine particle layer 1 on 2 and the bumps 1 formed on the semiconductor chip 16 are connected via an adhesive 6.
本実施例の全体構成は、 図 9に示されており、 図 9の断面 A— Αは図 1 1に対応している。  The overall configuration of this embodiment is shown in FIG. 9, and a cross section A-Α in FIG. 9 corresponds to FIG.
本実施例では、 0 . 1 mmの厚さのポリカーボネート基材の基板上 3 に、 7 0 O Aの厚さの I T Oをパターニングしてなる接続端子 2が形成 されている。 この接続端子 2の表面上に、 A gの超微粒子を堆積してな る微粒子層 1が、 実施例 4と同様に図 1 0に示すガス中蒸発法を使い形 成されている。 超微粒子生成室と膜形成室との差圧を 1 O O T o r rと し、 膜形成室の温度は室温 (約 2 5 °C ) の条件で行った。 この A gの微 粒子層 1は 6 0 n m位の粒子径の超微粒子間に隙間がある状態で形成さ れていた。 微粒子層 1の厚さは 0. 1〜1. 5/ mである。 In this embodiment, a connection terminal 2 formed by patterning ITO having a thickness of 70 OA is formed on a substrate 3 of a polycarbonate substrate having a thickness of 0.1 mm. A fine particle layer 1 formed by depositing ultrafine Ag particles on the surface of the connection terminal 2 is formed by using the gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was 1 OOT orr, and the temperature of the film formation chamber was room temperature (about 25 ° C). The Ag fine particle layer 1 is formed in a state where there is a gap between the ultrafine particles having a particle diameter of about 60 nm. Had been. The thickness of the fine particle layer 1 is 0.1 to 1.5 / m.
この接続端子 2の表面上の微粒子層 1に半導体チップ 16のバンプ 1 7が接着剤 6を介して接続されている。 この接着剤 6としてはスチレン ブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ボリエス テル系、 ウレタン系等の単独又は複数の混合物若しくは化合物である。 この接着剤 6を接続端子 2と半導体チップ 16及びバンプ 17との藺 に配置し、 この接着剤 6に熱硬化性又は熱可塑性と熱硬化性とのプレン ドタイプの接着剤を使った場合には加熱加圧へッドを半導体チップ 16 に押し当てることによって硬化接続させる。 また、 この接着剤 6に UV 硬化性タイプの接着剤を使った場合には加圧へヅ ドを半導体チップ 16 に押し当て、 基板 3側から UV照射して硬化させる。  The bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 on the surface of the connection terminal 2 via the adhesive 6. The adhesive 6 may be a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyethylene, urethane, and the like. When the adhesive 6 is arranged on the ridge between the connection terminal 2 and the semiconductor chip 16 and the bump 17, and a thermosetting or thermoplastic and thermosetting blend type adhesive is used as the adhesive 6, A hardening connection is made by pressing the heating and pressing head against the semiconductor chip 16. When a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the semiconductor chip 16 and the substrate 3 is irradiated with UV to cure the adhesive.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 135eC、 圧力 0. 2 MP a、 時間 20秒の条件で行った。 接続端 子及びバンプの形成ピッチは 120 mで、 バンプ数 100である。 こ の導電接続部に、 耐湿放置試験 (60 C、 90 RH) 200時間、 冷 熱サイクル試験 (一 30°Cで 30分、 80。Cで 30分) 200サイクル を実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態 が確保されていた。 Here, using an adhesive 6 mainly composed of epoxy resin, subjected to heating and pressurizing a temperature 135 e C, pressure 0. 2 MP a, under conditions of time 20 seconds. The pitch of the connection terminals and bumps is 120 m, and the number of bumps is 100. The conductive connection was subjected to a humidity resistance test (60 C, 90 RH) for 200 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80.C) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
接続端子 2の表面の微粒子層 1とバンプ 17が直接接触し電気的導通 がとられており、 その状態を接着剤 6が機械的に固定保持し、 また、 こ の接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護 し接続状態を安定化している。  The fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. , Humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. In addition, ultrafine particles with a particle size of 60 nm to 3 m are used for gas deposition. It can be used by appropriately selecting the conditions.
また、 基板 3の材質としては、 ポリカーボネート (P C ) の他にポリ エーテルサルフォン (P E S ) 、 アクリル、 ポリアリレートまたはボリ ヒドロキシポリエ一テル等の厚み 1 8 mから 5 0 0 mのブラスチッ クフィルムまたはブラスチック板も使用できる。  The material of the substrate 3 is not only polycarbonate (PC) but also a polyethersulfone (PES), acrylic, polyarylate, polyhydroxyether, or other plastic film having a thickness of 18 m to 500 m. Plastic plates can also be used.
上述のような構成によれば、 上記実施例 4の効果の他に、 特に、 ブラ スチック基材の基板の表面に形成された I T O等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リッ トがある。 特に、 低抵抗化の方法としては、 一般的に湿式法による メツキ処理があるが、 このブラスチック基板の表面に形成された I T O 等の簿膜接続端子についてはこの湿式法によるメツキ処理をすると 用 するアルカリ性や酸性の薬品により変色、 腐食、 浸食等の悪影響を強く 受けるため好ましくない。 これに対して、 本実施例の方法は、 このよう な薄膜接続端子の補修、 補強、 低抵抗化に最適な方法である ό さらに、 I T O薄膜に接続時の圧力や温度等による影響を減少させたり、 万が一 に亀裂等のダメージを生じても、 この微粒子層 1は適度に変形すること により、 導通が確保される。 また、 超微粒子の粒子径を 6 O nm位の微 細にし、 粒子間に隙間がある状態に形成することにより、 微粒子層 1が クッション材的な働きをして、 接続端子 2またはバンプ 1 7の凸凹、 ま たは接続端子 2及びバンプ 1 7の凸凹を緩和して接続面積を大きくとる ことができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。 ま た、 接続端子 2の表面の微粒子層 1とバンプ 1 7とが直接接触するため、 位置合わせズレや加熱加圧接続時のズレによる端子間のショートを除け ば、 接続不良となる他の要因が入らないだけ、 接続ピッチの微細化が可 能である。 〔実施例 17〕 According to the configuration described above, in addition to the effects of the fourth embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic substrate are complicated. It has the advantage that it can be easily performed without the need for complicated processing steps. In particular, as a method of lowering the resistance, there is generally a plating process by a wet method. However, for a connection terminal of a thin film made of ITO or the like formed on the surface of the plastic substrate, the plating process by the wet method can be used. Alkaline or acidic chemicals are not preferred because they have strong adverse effects such as discoloration, corrosion, and erosion. On the other hand, the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such thin film connection terminals. Further, the influence of pressure, temperature, and the like when connecting to the ITO thin film is reduced. However, even if damage such as cracks occurs, the fine particle layer 1 is appropriately deformed, so that conduction is ensured. Also, by making the particle diameter of the ultrafine particles as fine as about 6 O nm and forming a state in which there is a gap between the particles, the fine particle layer 1 functions as a cushion material, and the connection terminals 2 or the bumps 17 are formed. The connection area can be increased by reducing the unevenness of the connection terminals or the unevenness of the connection terminals 2 and the bumps 17, thereby reducing the connection resistance value and stabilizing the connection state. In addition, since the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 directly contact each other, other factors that may cause a connection failure, except for short-circuiting between terminals due to misalignment or misalignment during heating / pressing connection Since the gap does not enter, the connection pitch can be miniaturized. (Example 17)
本実施例の主要部分は実施例 5と同様に図 12に示され、 基板 3上に 形成された接続端子 2の表面の一部分または全部を微粒子層 1が覆って いて、 この接続端子 2上の微粒子層 1と半導体チップ 16のバンプ 17 とが導電性接着剤 7を介して接続されている。  The main part of this embodiment is shown in FIG. 12 similarly to the fifth embodiment, and a part or all of the surface of the connection terminal 2 formed on the substrate 3 is covered with the fine particle layer 1. The fine particle layer 1 and the bumps 17 of the semiconductor chip 16 are connected via the conductive adhesive 7.
本実施例の全体構成は、 実施例 10と同様に図 9に示され、 図 9の断 面 A— Aは図 12に対応している。  The overall configuration of the present embodiment is shown in FIG. 9 similarly to the tenth embodiment, and the cross section AA in FIG. 9 corresponds to FIG.
本実施例では、 0. 1mmの厚さのポリカーボネート基材の基板 3上 に、 100 OAの厚さの I TOでパターニングしてなる接続端子 2が形 成されている。 接続端子 2の表面上には、 Auの超微粒子を堆積してな る微粒子層 1が実施例 5と同様に図 10に示すガス中蒸発法を使い形成 されている。 超微粒子生成室と膜形成室との差圧を Ι Ο Ο ΤΟ Γ Γとし、 膜形成室内の基板 3の温度は 120°Cの条件で成膜した。 この微粒子層 1内の Auの超微粒子は平均 3 im位の粒子径で形成されていた。 微粒 子層 1の厚さは 3〜8 > mである。  In this embodiment, a connection terminal 2 formed by patterning with a 100 OA-thick ITO is formed on a 0.1 mm-thick polycarbonate base substrate 3. On the surface of the connection terminal 2, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed using the gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to Ι, and the temperature of the substrate 3 in the film formation chamber was set to 120 ° C. The ultrafine particles of Au in the fine particle layer 1 had an average particle diameter of about 3 im. The thickness of the fine particle layer 1 is 3-8> m.
この接続端子 2の表面上の微粒子層 1に半導体チップ 16のバンプ 1 7が導電性接着剤 7を介して接続されている。 この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複 数の混合物若しくは化合物の接着剤の中に、 0. l〜5/ mの粒子径の A gを混合分散したものである。  The bumps 17 of the semiconductor chip 16 are connected to the fine particle layer 1 on the surface of the connection terminal 2 via the conductive adhesive 7. This conductive adhesive 7 is a single or multiple mixture or compound adhesive of epoxy, acrylic, polyester, urethane, etc., containing Ag having a particle size of 0.1 to 5 / m. It is mixed and dispersed.
この導電性接着剤 7を接続端子 2上に印刷法ゃデイスペンス法等の公 知の方法によって載置し、 合わせて接着剤 6をバンプ 17との間に配置 し、 この導電性接着剤 7または接着剤 6に熱硬化性又は熱可塑性と熱硬 化性とのブレンドタイプの接着剤を使った場合には加熱加圧へッドを半 導体チップ 16に押し当てることによって硬化接続させる。 また、 この 導電性接着剤に U V硬化性夕ィプの接着剤を使った場合には加圧へヅド を半導体チップ 16に押し当て、 基板 3側から UV照射して硬化させる £ ここでは、 エポキシ系を主成分とする接着剤の中に 1〜2 mの粒子 径の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 1 35°C、 圧力 10 gf/バンプ、 時間 30秒の条件で行った。 接続端子 及びバンプの形成ピッチは 12 O^mで、 バンプ数は 100である。 こ の導電接続部に耐湿放置試験 (60eC、 90%RH) 200時間、 冷熱 サイクル試験 (一 30。Cで 30分、 80°Cで 30分) 200サイクルを 実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態が 確保されていた。 なお、 この接続部分を外部環境 (例えば、 湿度、 腐食 性ガス、 塵埃等) から保護するために、 端子間または接続部全体をモー ルド材で覆ってもよい。 The conductive adhesive 7 is placed on the connection terminal 2 by a known method such as a printing method and a dispensing method, and the adhesive 6 is disposed between the conductive adhesive 7 and the bump 17. When a thermosetting or a blend of thermoplastic and thermosetting adhesives is used as the adhesive 6, the adhesive is cured by pressing a heating and pressing head against the semiconductor chip 16. In addition, when a UV-curable adhesive is used as the conductive adhesive, a pressure head is used. Press the semiconductor chip 16 against, where £ cured by UV irradiation from the substrate 3 side, 1 to 2 m silver powder mixture dispersed conductive particle diameter in the adhesives based on epoxy Using adhesive 7, heating and pressing were performed at a temperature of 135 ° C, a pressure of 10 gf / bump, and a time of 30 seconds. The pitch for forming the connection terminals and bumps is 12 O ^ m, and the number of bumps is 100. Humidity shelf test to the conductive connection portion of this (60 e C, 90% RH ) 200 hours, thermal cycling test (30 minutes in one 30.C, 30 minutes 80 ° C) was carried out 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations. In addition, in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminals or the entire connection portion may be covered with a mold material.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 /mのものをガスデポジションの条 件を適宜選定することによつて使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 実施例 5の効果に加えて、 特に、 プラス チック基材の基板の表面に形成された I TO等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リッ トがある。 さらに、 低抵抗化の方法としては、 一般的に湿式法によ るメツキ処理があるが、 このブラスチック基板の表面に形成された I T 0等の薄膜接続端子についてはこの湿式法によるメツキ処理をすると使 用するアルカリ性や酸性の薬品により変色、 腐食、 浸食等の悪影響を強 く受けるため好ましくない。 これに対して、 本実施例の方法は、 このよ うな薄膜接続端子の補修、 補強、 低抵抗化に最適な方法である。 さらに、 接続時の圧力や温度等による I TO薄膜への影響を減少させたり、 万が '一 I TO薄膜に亀裂等のダメージを生じても、 この微粒子層 1が適度に 変形することにより、 導通が確保される。 According to the above-described configuration, in addition to the effects of the fifth embodiment, in particular, repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the plastic substrate are complicated. It has the advantage that it can be easily performed without the need for complicated processing steps. Furthermore, as a method of lowering the resistance, there is generally a plating process by a wet method, but for the thin-film connection terminals such as IT0 formed on the surface of the plastic substrate, the plating process by the wet method is used. This is not preferred because the alkaline or acidic chemicals used have a strong adverse effect such as discoloration, corrosion, and erosion. On the other hand, the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal. Furthermore, the influence on the ITO thin film due to the pressure and temperature during connection can be reduced, 'Even if damage such as cracks occur in the ITO thin film, the fine particle layer 1 is appropriately deformed, so that conduction is ensured.
. 〔実施例 18〕 [Example 18]
本実施例 18は、 実施例 6と同様に図 13に示す主要部分を備えたも のである。 基板 3上に形成された接続端子 2の表面の一部分または全部 を微粒子層 1が覆っていて、 この接続端子 2上の微粒子層 1と半導体チ ッブ 16のバンプ 17とが異方性導電材 8を介して接続されている。 この実施例では、 実施例 10と同様に、 図 9にその全体構成が示され ている。 図 9の断面 A— Aは図 13に対応している。  Embodiment 18 As in Embodiment 6, Embodiment 18 has the main parts shown in FIG. Particulate layer 1 covers part or all of the surface of connection terminal 2 formed on substrate 3, and fine particle layer 1 on connection terminal 2 and bump 17 of semiconductor chip 16 are anisotropic conductive material. Connected via 8. In this embodiment, as in the tenth embodiment, FIG. 9 shows the entire configuration. Section A—A in FIG. 9 corresponds to FIG.
本実施例では、 0. 1mm厚のポリカーボネート基材の基板 3上に、 100 OAの厚さの I TOでパ夕一ニングしてなる接続端子 2が形成さ れている。 この接続端子の表面上には、 Auの超微粒子を堆積してなる 微粒子層 1が実施例 6と同様に図 10に示すガス中蒸発法を使い形成さ れている。 超微粒子生成室と膜形成室との差圧を 1 O OTorrとし、 膜形成室内の基板 3の温度は 120°Cの条件で行った。 この微粒子層 1 内の Auの超微粒子は平均 3 / m位の粒子径で形成されていた。 微粒子 層 1の厚さは 3〜8 mである。  In this embodiment, a connection terminal 2 formed by patterning with an ITO of 100 OA is formed on a substrate 3 of a polycarbonate base material having a thickness of 0.1 mm. On the surface of this connection terminal, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed using the gas evaporation method shown in FIG. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was 1 O OTorr, and the temperature of the substrate 3 in the film formation chamber was 120 ° C. The ultrafine particles of Au in the fine particle layer 1 were formed with an average particle diameter of about 3 / m. The thickness of the fine particle layer 1 is 3 to 8 m.
この接続端子 2の表面上の微粒子層 1に半導体チッブ 16のバンプ 1 7が異方性導鼋材 8を介して接続されている。 ここで使用する異方性導 電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成さ れている。  The bump 17 of the semiconductor chip 16 is connected to the fine particle layer 1 on the surface of the connection terminal 2 via the anisotropic conductive material 8. The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10.
この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 S n等の 単独又は複数の混合物、 合金、 またはメツキ等による複合金属粒子、 プ ラスチック粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系等) に Ni、 Au、 Cu、 Fe等の単独又は複数の メツキをした粒子、 カーボン粒子等である。 The conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, Dibenenylbenzene, etc.) and Ni or Au, Cu, Fe, etc. Particles, carbon particles, etc.
また、 この接着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複 数の混合物若しくは化合物である。  The adhesive 10 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電膜を接続端子 2の表面の微粒子層 1 と半導体チップ 16のバンプ 17との間に配置し、 異方性導電膜に熱硬 化性又は熱可塑性と熱硬化性とのブレンドタイブの接着剤を使つた場合 には加熱加圧へッドを半導体チッブ 16に押し当てることによって硬化 接続させる。 また、 異方性導電膜に UV硬化夕イブの接着剤を使った場 合には加圧ヘッ ドを半導体チップ 1 6に押し当て、 基板 3側から UV照 射して硬化させる。  The anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the connection terminal 2 and the bump 17 of the semiconductor chip 16, and the anisotropic conductive film is made of a thermosetting or thermoplastic resin. When using an adhesive of a blend type of thermosetting and thermosetting, the heating and pressing head is pressed against the semiconductor chip 16 to make a hardened connection. When a UV-curable adhesive is used for the anisotropic conductive film, a pressure head is pressed against the semiconductor chip 16 and cured by UV irradiation from the substrate 3 side.
ここでは、 粒子径が 1 m〜 3; mのポリスチレン系のブラスチヅク 粒子に 1 zm厚の N iメツキと 0. 厚の Auメツキをした導電粒 子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散させ た異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 175°C 圧力 1 O gf/バンプ、 時間 30秒の条件で行った。 接続端子及びバン ブの形成ピッチは 10 Oy mで、 バンプ数は 120である。 この導電接 続部に、 耐湿放置試験 (60°C、 90%RH) 500時間、 冷熱サイク ル試験 (一 30°Cで 30分、 80°Cで 30分) 500サイクルを実施し た。 その結果、 これらの接続信頼性評価後も安定した接続状態が確保さ れていた。  In this example, conductive particles 9 with a 1-m thick Ni plating and a 0-thick Au plating on polystyrene-based plastic particles having a particle diameter of 1 m to 3 m An anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed at 5% by weight was used, and the heating and pressing were performed at a temperature of 175 ° C, a pressure of 1 Ogf / bump, and a time of 30 seconds. The formation pitch of the connection terminals and bumps is 10 Oym, and the number of bumps is 120. The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 500 hours and a thermal cycle test (30 minutes at 30 ° C, 30 minutes at 80 ° C) for 500 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独又は複数の混合物、 合金、 またはメヅ キ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリ力 ーボネート系、 アクリル系、 ジベニルベンゼン系等) に N i、 Au、 C u、 Fe等の単独又は複数のメツキをした粒子、 力一ボン粒子等である c また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポキ シ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複数の混 合物若しくは化合物である。 Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles include solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene-based, polycarbonate-based, Acrylic, diphenylbenzene, etc.), Ni, Au, C The adhesive is a single or multiple plated particles such as u, Fe, etc., and carbon particles, etc. c . The adhesive is made of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane, etc. One or a plurality of mixtures or compounds.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 接続端子 2の接続部分に配置する。 異方性導電接着剤に熱硬 化性又は熱可塑性と熱硬化性とのブレンドタイブの接着剤を使った場合 には加熱加圧へッ ドを半導体チップ 16に押し当てることによって硬化 接続させる。 また、 異方性導電接着剤に UV硬化性タイプの接着剤を使 つた場合には加圧へッ ドを半導体チップ 16に押し当て、 基板 3側から UV照射して硬化させる。  The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is arranged at the connection portion of the connection terminal 2 by a known method such as a printing method or a dispensing method using a dispenser. When a thermosetting or thermoplastic and thermosetting blend type adhesive is used as the anisotropic conductive adhesive, the semiconductor chip 16 is hardened and connected by pressing the heating and pressing head against the semiconductor chip 16. When a UV-curable adhesive is used as the anisotropic conductive adhesive, a pressure head is pressed against the semiconductor chip 16 and the substrate 3 is cured by irradiating UV from the substrate 3 side.
なお、 図示は省略してあるが、 この接続部分を外部環境 (例えば、 湿 度、 腐食性ガス、 塵埃等) から保護するために、 接続部または半導体チ ップ全体をモールド材で覆ってもよい。  Although not shown, in order to protect the connection from the external environment (for example, humidity, corrosive gas, dust, etc.), the connection or the entire semiconductor chip may be covered with a molding material. Good.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Au— Sn系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子形が 60 nmから 3 imのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Au—Sn, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 im can be used by appropriately selecting the conditions for gas deposition.
また、 基板 3の材質としては、 ポリカーボネート (PC) の他にボリ エーテルサルフォン (PES) 、 アクリル、 ポリアリレートまたはポリ ヒドロキシポリエーテル等の厚み 18 imから 500 /zmのプラスチッ クフィルムまたはブラスチヅク板も使用できる。  In addition to the polycarbonate (PC), a plastic film or a plastic plate having a thickness of 18 im to 500 / zm such as polyethersulfone (PES), acrylic, polyarylate or polyhydroxypolyether may be used as the material of the substrate 3. Can be used.
上述のような構成によれば、 実施例 6の効果に加えて、 特に、 ブラス チック基材の基板の表面に形成された I TO等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リッ トがある。 さらに、 低抵抗化の方法としては、 一般的に湿式法によ るメツキ処理があるが、 このブラスチック基板の表面に形成された I T 0等の薄膜接続端子についてはこの湿式法によるメツキ処理をすると使 用するアルカリ性や酸性の薬品により変色、 腐食、 浸食等の悪影響を強 ' く受けるため好ましくない。 これに対して、 本実施例の方法は、 このよ' うな薄膜接続端子の補修、 補強、 低抵抗化に最適な方法である。 According to the configuration as described above, in addition to the effects of the sixth embodiment, in particular, repair of thin film connection terminals such as ITO formed on the surface of the plastic substrate, There is an advantage that reinforcement and low resistance can be easily performed without the need for complicated processing steps. Furthermore, as a method of lowering the resistance, there is generally a plating process by a wet method, but for the thin-film connection terminals such as IT0 formed on the surface of the plastic substrate, the plating process by the wet method is used. This is not preferable because the alkaline or acidic chemicals used are strongly affected by discoloration, corrosion, and erosion. On the other hand, the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal.
また、 微粒子層 1の柔軟性は接続時の圧力や温度等による I T O薄膜 への影響を減少させ、 万が一 I T O薄膜に亀裂等のダメージを生じても、 この微粒子層 1が適度に変形することにより、 導通が確保される。  In addition, the flexibility of the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure and temperature at the time of connection, and even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 can be appropriately deformed. The conduction is ensured.
〔実施例 1 9〕 (Example 19)
本実施例 1 9は、 図 1 6、 図 1 7に示す主要部分を備えた本発明に係 る液晶表示装置の実施例である。 パネル基板 2 4に形成された接続端子 2 6の表面の一部分または全部を微粒子層 1が覆っていて、 この接続端 子 2 6上の微粒子層 1ともう一方の基板 2 0に形成された接続端子 2 5 とが接着剤 6を介して接続されている。  Example 19 is an example of the liquid crystal display device according to the present invention having the main parts shown in FIGS. 16 and 17. FIG. A part or all of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 26 and the connection formed on the other substrate 20. Terminals 25 are connected via adhesive 6.
図 1 4は本実施例の液晶表示装置の斜視図であり、 図 1 5は図 1 4の 液晶表示装置の主要部分の拡大斜視図であり、 パネル基板 2 4の接続端 子 2 6 (図示せず) と基板 2 0の接続端子 2 5とが接続している。 図 1 5の断面 A— Aは図 1 6に対応し、 断面 B— Bは図 1 7に対応している c ここでは、 液晶パネル 1 8に液晶駆動用半導体チップ 1 9を搭載した基 板 2 0が X側、 Y側に複数個接続されている。 FIG. 14 is a perspective view of the liquid crystal display device of the present embodiment. FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. (Not shown) and the connection terminal 25 of the substrate 20 are connected. The cross section A—A in FIG. 15 corresponds to FIG. 16 and the cross section B—B corresponds to FIG. 17. c Here, the substrate on which the liquid crystal driving semiconductor chip 19 is mounted on the liquid crystal panel 18 20 are connected to the X and Y sides.
図 1 8はパネル基板 2 4の接続端子 2 6の表面に微粒子層 1を形成す る方法を示す概略図である。 ガス中蒸発法により、 超微粒子生成室 (図 示せず) で生成した導電性物質の蒸気が不活性ガスとともに搬送管 1 2 を通って流れ 11により運ばれ、 膜形成室 (おおむね図 18に示したも のが入っている室) にあるノズル 13から、 パネル基板 24の接続端子 26の表面に吹き付けられ、 超微粒子からなる微粒子層 1を成膜する。 パネル基板 24を X方向 14と Y方向 15に移動する移動方向と移動速 度、 ノズル 13からの流れ 11、 およびノズル 13と接続端子 26との 距離を制御することにより、 パネル基板 24の接続端子 26の表面に所 望の形状および厚みの微粒子層 1を形成することができる。 また、 超微 粒子生成室と膜形成室との差圧と温度を制御することによつても微粒子 層 1の粒子径、 密度、 厚み等を所望のものとすることができる。 FIG. 18 is a schematic view showing a method of forming the fine particle layer 1 on the surface of the connection terminal 26 of the panel substrate 24. The vapor of the conductive substance generated in the ultra-fine particle generation chamber (not shown) by the gas evaporation method is transported together with the inert gas into the transport tube. Through the nozzle 11 in the film formation chamber (the chamber containing the one shown in FIG. 18), and is sprayed onto the surface of the connection terminal 26 of the panel substrate 24, and is composed of ultrafine particles. The fine particle layer 1 is formed. By controlling the direction and speed of movement of the panel board 24 in the X direction 14 and the Y direction 15, the flow 11 from the nozzle 13, and the distance between the nozzle 13 and the connection terminal 26, the connection terminals of the panel board 24 are controlled. A fine particle layer 1 having a desired shape and thickness can be formed on the surface of 26. Further, by controlling the pressure difference and the temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness and the like of the fine particle layer 1 can be made desired.
本実施例では、 1. 1 mm厚さのガラス基材からなるパネル基板 24 上に 1000 A厚さの I TO (I nd ium Tin Oxide) の 接続端子 26を形成している。 この接続端子 26の表面に、 Agの超微 粒子を堆積してなる微粒子層 1が形成されている。 微粒子層 1を成膜す るガス中蒸発法においては、 超微粒子生成室と膜形成室との差圧を 10 OTo rrとし、 膜形成室の温度は室温 (約 25°C) の条件で成膜した。 この A gの微粒子層 1は平均 60 nm位の粒子径の超微粒子間に隙間が ある状態で形成されていた。 超微粒子層 1の厚さは 0. 1〜1. 5 t/m である。  In this embodiment, a 1000 A-thick ITO (Indium Tin Oxide) connection terminal 26 is formed on a panel substrate 24 made of a 1.1 mm-thick glass substrate. On the surface of the connection terminal 26, a fine particle layer 1 formed by depositing ultrafine Ag particles is formed. In the gas evaporation method for forming the fine particle layer 1, the pressure difference between the ultrafine particle generation chamber and the film formation chamber is 10 OTorr, and the temperature in the film formation chamber is room temperature (about 25 ° C). Filmed. The Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 60 nm. The thickness of the ultrafine particle layer 1 is 0.1 to 1.5 t / m.
この接続端子 2上の微粒子層 1に、 50 m厚のポリィミドベースフ イルムの基板 20に 35 m厚の銅箔をパターニングしてなる接続端子 25が接着剤 6を介して接続されている。  To the fine particle layer 1 on the connection terminal 2, a connection terminal 25 formed by patterning a 35 m thick copper foil on a 50 m thick polyimide base film substrate 20 is connected via an adhesive 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ボキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複数 の混合物若しくは化合物である。  The adhesive 6 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), eboxy, acrylic, polyester, urethane and the like.
この接着剤 6を接続端子 26と接続端子 25との間に配置し、 この接 着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着 剤を使った場合には加熱加圧へッ ドを基板 20に押し当てることによつ て硬化接続させる。 また、 この接着剤 6に UV硬化性タイプの接着剤を 使った場合には加圧ヘッ ドを基板 20に押し当て、 パネル基板 24 (ガ ラス基板) 側から UV照射して硬化させる。 ここでは、 エポキシ系を主 成分とする接着剤 6を使用し、 加熱加圧を温度 175°C、 圧力 3MPa、 時間 20秒の条件で行った。 接続端子の形成ピッチは 200 mで、 合 計 1120個の端子数を備えたもの (表示容量が 640x480ドッ ト の液晶表示装置に対応するもの) である。 この導電接続部に、 耐湿放置 試験 (60°C、 90%RH) 200時間、 冷熱サイクル試験 (一 20。C で 30分、 60°Cで 30分) 200サイクルを実施した。 その結果、 こ れらの接続信頼性評価後も安定した接続状態が確保されていた。 Place the adhesive 6 between the connection terminal 26 and the connection terminal 25, and When an adhesive of thermosetting or a blend type of thermoplastic and thermosetting is used for the adhesive 6, the connection is cured by pressing the heating and pressing head against the substrate 20. When a UV-curable adhesive is used for the adhesive 6, a pressure head is pressed against the substrate 20, and the substrate is irradiated with UV from the panel substrate 24 (glass substrate) side to be cured. Here, an adhesive 6 containing an epoxy-based main component was used, and heating and pressing were performed at a temperature of 175 ° C, a pressure of 3 MPa, and a time of 20 seconds. The connection terminals are formed at a pitch of 200 m and have a total of 1120 terminals (corresponding to a liquid crystal display device with a display capacity of 640x480 dots). The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (120 ° C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
この実施例では、 接続端子 26の表面の微粒子層 1と接続端子 25と が直接接触し電気的導通がとられており、 その状態を接着剤 6が機械的 に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性 ガス、 塵埃等) から保護し接続状態を安定化している。  In this embodiment, the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. The parts are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) and the connection is stabilized.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超伝導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 /mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 接続端子 26の端子幅の細りや断線を微 粒子層 1が覆うことまたは充填することにより補修ができ、 また接続端 子 25との接続幅または接続長さを最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 ITO等の薄膜接続端子 の補修、 補強、 低抵抗化が、 湿式メツキ法のような複雑な処理工程を必 要とせず簡単にできるというメリッ トがある。 According to the above-described configuration, the narrowing or disconnection of the connection terminal 26 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 25 can be reduced. The maximum connection can be ensured, the connection resistance can be reduced, and the connection state can be stabilized. In particular, repair, reinforcement, and low resistance of thin-film connection terminals such as ITO require complicated processing steps such as wet plating. There is a merit that it can be easily done without necessity.
また、 微粒子層 1の粒子径を 6 O nm位の微細にし、 粒子間に隙間が ある状態に形成することにより、 微粒子層 1がクッション材的な働きを して、 接続端子 2 5の凹凸を緩和して接続面積を大きくとることができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。 また、 接続端子 2 6の表面の微粒子層 1と接続端子 2 5とが直接接触するため、 端子位 置合わせズレや加熱加圧接続時のズレによる端子間ショートを除けば、 接続不良となる他の要因が入らないだけ、 接続ビッチの微細化が可能で ある。  In addition, by making the particle diameter of the fine particle layer 1 as fine as about 6 O nm and forming a state in which there is a gap between the particles, the fine particle layer 1 functions as a cushion material, and the unevenness of the connection terminal 25 is reduced. Relaxation can increase the connection area, reduce the connection resistance value, and stabilize the connection state. In addition, since the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other, a connection failure may occur unless terminal misalignment or short-circuit between terminals due to misalignment during heating and pressurizing connection is eliminated. The miniaturization of the connection bitch is possible because the above factors are not included.
〔実施例 2 0〕 (Example 20)
図 1 9、 図 2 0は本発明に係る液晶表示装置の実施例の主要部分を示 す断面図である。 パネル基板 2 4に形成された接続端子 2 6の表面の一 部分または全部を微粒子層 1が覆っていて、 この接続端子 2 6上の微粒 子層 1ともう一方の基板 2 0に形成された接続端子 2 5とが接着剤 6を 介して接続されている。  FIGS. 19 and 20 are cross-sectional views showing the main parts of an embodiment of the liquid crystal display device according to the present invention. Part or all of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 26 and the other substrate 20 are formed. The connection terminals 25 are connected via the adhesive 6.
図 1 4は本実施例の液晶表示装置の 1実施例の斜視図であり、 図 1 5 は図 1 4の液晶表示装置の主要部分の拡大斜視図であり、 パネル基板 2 4の接続端子 2 6 (図示せず) と基板 2 0の接続端子 2 5とが接続され ている。 図 1 5の断面 A— Aは図 1 9に対応し、 断面 B— Bは図 2 0に 対応している。  FIG. 14 is a perspective view of one embodiment of the liquid crystal display device of the present embodiment. FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 6 (not shown) and the connection terminal 25 of the board 20 are connected. Section A—A in FIG. 15 corresponds to FIG. 19, and section B—B corresponds to FIG.
図 1 8はパネル基板 2 4の接続端子 2 6の表面上に微粒子層 1を形成 する状態を示す概略図である。 ガス中蒸発法により、 超微粒子生成室 ( 図示せず) で生成した導電性物質の蒸気を不活性ガスにより搬送管 1 2 を通して流れ 1 1に沿って搬送し、 膜形成室 (おおむね図 1 8に示した ものが入っている室) にあるノズル 1 3から、 パネル基板 2 4の接銃端 ■子 26の表面に吹き付けることにより超微粒子が堆積してなる微粒子層 1が成膜される。 パネル基板 24を X方向 14と Y方向 15に移動する 移動方向と移動速度、 ノズル 13からの流れ 11、 およびノズル 13と 接続端子 26との距離を制御することにより、 パネル基板 24の接続端 子 26の表面に所望の形状および厚みの微粒子層 1を形成することがで きる。 また、 超微粒子生成室と膜形成室との差圧と温度を制御すること によっても微粒子層 1の粒子径、 密度、 厚み等を所望のものとすること ができる。 FIG. 18 is a schematic diagram showing a state in which the fine particle layer 1 is formed on the surface of the connection terminal 26 of the panel substrate 24. The vapor of the conductive substance generated in the ultrafine particle generation chamber (not shown) by the gas evaporation method is transported along the flow 11 by the inert gas through the transport pipe 12 to form the film formation chamber (generally, FIG. 18). From the nozzle 13 in the chamber that contains (2) By spraying the particles on the surface of the child 26, a fine particle layer 1 in which ultrafine particles are deposited is formed. Move the panel board 24 in the X direction 14 and the Y direction 15 By controlling the moving direction and speed, the flow 11 from the nozzle 13, and the distance between the nozzle 13 and the connection terminal 26, the connection terminal of the panel board 24 is A fine particle layer 1 having a desired shape and thickness can be formed on the surface of 26. Also, by controlling the pressure difference and temperature between the ultrafine particle generation chamber and the film formation chamber, the particle diameter, density, thickness, and the like of the fine particle layer 1 can be made desired.
本実施例では、 1. 1mmの厚さのガラス基材からなる基板 24上に、 1000 Aの厚さの I TO ( I nd i um Tin Oxide) の接 続端子 26が形成されている。 この接続端子 26の表面上に、 Agの超 微粒子を堆積してなる微粒子層 1がガス中蒸発法により成膜される。 超 微粒子生成室と膜形成室との差圧を l O OTorrとし、 膜形成室の温 度は室温 (約 25°C) の条件で行った。 この A gの微粒子層 1は平均 6 0 nm位の粒子径の超微粒子間に隙間がある状態で形成されていた。 この微粒子層 1は接続端子 26の表面をほぼ全面に亘つて被覆してい るが、 ここに、 高さが 2 mから 5 im程度あり、 凸部間のピッチが 5 θ ΛίΠΐから 30 O^m程度ある突起 27が形成されている。 この結果、 微粒子層 1の厚さは 0. 1〜6. となっている。 突起 27は、 ノ ズル 13の移動速度を変化させることにより容易に形成できる。  In this embodiment, a connection terminal 26 of ITO (Indium Tin Oxide) having a thickness of 1000 A is formed on a substrate 24 made of a glass substrate having a thickness of 1.1 mm. On the surface of the connection terminal 26, a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by a gas evaporation method. The pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to lO OTorr, and the temperature of the film formation chamber was set at room temperature (about 25 ° C). This Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 60 nm. The fine particle layer 1 covers almost the entire surface of the connection terminal 26, where the height is about 2 m to 5 im, and the pitch between the projections is 5θΛίΠΐ to 30 O ^ m. A certain degree of protrusion 27 is formed. As a result, the thickness of the fine particle layer 1 is 0.1 to 6. The protrusion 27 can be easily formed by changing the moving speed of the nozzle 13.
この接続端子 26上の微粒子層 1上に、 5 のポリイミ ドベース フィルムの基板 20に 35〃m厚の銅箔をパターニングしてなる接続端 子 25が接着剤 6を介して接続されている。  On the fine particle layer 1 on the connection terminal 26, a connection terminal 25 formed by patterning a 35 μm thick copper foil on a polyimide base film substrate 20 of 5 is connected via an adhesive 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ボキシ系、 アクリル系、 ボリエステル系、 ウレタン系等の単独又は複数 の混合物若しくは化合物である。 この接着剤 6を接続端子 26と接続端子 25との間に配置し、 この接 着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着 剤を使った場合には加熱加圧へッドを基板 20に押し当てることによつ て硬化接続させる。 また、 この接着剤 6に UV硬化性タイプの接着剤を 使った場合には加圧ヘッドを基板 20に押し当て、 パネル基板 24 (ガ ラス基板) 側から UV照射して硬化させる。 The adhesive 6 is a single or a mixture or compound of styrene butadiene styrene (SBS), eboxy, acrylic, polyester, urethane and the like. This adhesive 6 is disposed between the connection terminal 26 and the connection terminal 25, and the adhesive 6 is heated when a thermosetting adhesive or a blend of thermoplastic and thermosetting is used. A hardening connection is made by pressing the pressure head against the substrate 20. When a UV-curable adhesive is used for the adhesive 6, the pressure head is pressed against the substrate 20, and the substrate is irradiated with UV from the panel substrate 24 (glass substrate) side to be cured.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 175。C、 圧力 3MPa、 時間 20秒の条件で行った。 接続端子の 形成ピッチは 20 O^mで、 合計 1 120端子を備えたもの (表示容量 が 640 X 480ドットの液晶表示装置に対応するもの) である。 この 導電接続部に、 耐湿放置試験 (60°C、 90%RH) 200時間、 冷熱 サイクル試験 (一 20。Cで 30分、 60°Cで 30分) 200サイクルを 実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態が 維持確保されていた。  Here, an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed at a temperature of 175. C, pressure 3MPa, time 20 seconds. The connection terminals are formed at a pitch of 20 O ^ m and have a total of 1120 terminals (corresponding to a liquid crystal display device with a display capacity of 640 x 480 dots). The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (120 ° C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
この実施例では接続端子 26の表面上の微粒子層 1と接続端子 25と が直接接触し電気的導通がとられており、 その状態を接着剤 6が機械的 に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性 ガス、 塵埃等) から保護し、 接続状態を安定化している。  In this embodiment, the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. The parts are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) and the connection is stabilized.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Z n系、 Au— Sn系、 八 ー卩(1系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 zmのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys of Cu—Zn, Au—Sn, and octane (type 1), and high-temperature superconducting materials Ultrafine particles with a particle size of 60 nm to 3 zm can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 超微粒子の粒子径を 6 Onm位の微細に し、 粒子間に隙間がある状態に形成すること、 突起 27を形成すること により、 この微粒子層 1と接続端子 25との接続部において、 突起 27 のクッション材的な働きにより、 及び突起間の隙間から接着剤 6が速や かにこの突起部の接触部分より排除されることにより、 導電接続が確実 になされるので、 接続抵抗値を低減でき、 接続状態を安定化できる。 According to the above-described configuration, the particle diameter of the ultrafine particles is reduced to about 6 Onm, the gaps are formed between the particles, and the projections 27 are formed. At the connection with 25, protrusion 27 Due to the cushioning function of, the adhesive 6 is promptly removed from the contact portion of the protrusion from the gap between the protrusions, so that the conductive connection is reliably performed, and the connection resistance value can be reduced. The connection state can be stabilized.
〔実施例 2 1〕 (Example 21)
図 2 1、 図 2 2は本発明に係る液晶表示装置の実施例の主要部分を示 す断面図である。 パネル基板 2 4に形成された接続端子 2 6の表面の一 部分または全部を微粒子層 1が覆っていて、 この接続端子 2 6上の微粒 子層 1ともう一方の基板 2 0に形成された接続端子 2 5とが導電性接着 剤 7を介して接続されている。  FIG. 21 and FIG. 22 are cross-sectional views showing the main parts of an embodiment of the liquid crystal display device according to the present invention. Part or all of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 26 and the other substrate 20 are formed. The connection terminal 25 is connected via the conductive adhesive 7.
図 1 4は本実施例の液晶表示装置の斜視図であり、 図 1 5は図 1 4の 液晶表示装置の主要部分の拡大斜視図であり、 パネル基板 2 4の接続端 子 2 6 (図示せず) と基板 2 0の接続端子 2 5とが接続している。 図 1 5の断面 A— Aは図 2 1に対応し、 断面 B— Bは図 2 2に対応している c 液晶パネル 1 8に液晶駆動用半導体チップ 1 9を搭載した基板 2 0が X 側、 Y側に複数個接続されている。 FIG. 14 is a perspective view of the liquid crystal display device of the present embodiment. FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. (Not shown) and the connection terminal 25 of the substrate 20 are connected. The cross section A—A in FIG. 15 corresponds to FIG. 21 and the cross section B—B corresponds to FIG. 22. c The substrate 20 on which the liquid crystal driving semiconductor chip 19 is mounted on the liquid crystal panel 18 is X Side and Y side are connected.
本実施例では、 1 . 1 mmの厚さのガラス基材からなるパネル基板 2 4上に、 1 0 0 0 Aの厚さの I T O ( I n d i u m T i n O x i d e ) の接続端子 2 6が形成されている。 この接続端子 2 6の表面上に、 A uの超微粒子からなる微粒子層 1が図 1 8に示すガス中蒸発法を使い 成膜されている。 ここで、 超微粒子生成室と膜形成室との差圧を 3気圧 とし、 膜形成室の温度は 1 0 0 °Cの条件で行った。 この A uの超微粒子 は平均 1 m位の粒子径で形成されていた。 微粒子層 1の厚さは 1〜 3 / mである。  In this embodiment, a connection terminal 26 of ITO (indium tin oxide) having a thickness of 100 A is formed on a panel substrate 24 made of a glass substrate having a thickness of 1.1 mm. Have been. On the surface of the connection terminal 26, a fine particle layer 1 made of ultrafine particles of Au is formed by a gas evaporation method shown in FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 ° C. The ultrafine particles of Au were formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 1 to 3 / m.
この接続端子 2 6上の微粒子層 1に、 5 厚のポリイミ ドベース フィルムの基板 2 0に 3 5 m厚の銅箔をパターニングしてなる接続端 子 25が導電性接着剤 7を介して接続されている。 The fine particle layer 1 on the connection terminal 26 has a connection end formed by patterning a 35-m-thick copper foil on a 5-layer polyimide base film substrate 20. The child 25 is connected via the conductive adhesive 7.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複数の混合物若しくは化合物の接着剤の中に、 0. l〜5 mの粒子径の Ag等の導電性物質を混合分散したものであ る。  The conductive adhesive 7 may be a single or multiple mixture or compound of epoxy, acrylic, polyester, urethane, etc., and may be a conductive material such as Ag having a particle size of 0.1 to 5 m. It is a mixture of substances.
' この導電性接着剤 7を接続端子 26上に印刷法ゃデイスペンス法等の 公知の方法により載置し、 合わせて接着剤 6を使ってもよく、 この導電 性接着剤 7と接着剤 6を接続端子 25との間に配置し、 この導電性接着 剤 7または接着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンド タイプの接着剤を使った場合には加熱加圧へッドを基板 20に押し当て ることによって硬化接続させる。 また、 この導電性接着剤 7または接着 剤 6に U V硬化性夕ィブの接着剤を使った場合には加圧ヘッドを基板 2 0に押し当て、 パネル基板 24 (ガラス基板) 側から UV照射して硬化 させる。 また、 この接続部分および接続端子 26の露出部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間ま たは接続部全体をモールド 23で覆っている。  '' The conductive adhesive 7 may be placed on the connection terminals 26 by a known method such as a printing method and a dispense method, and the adhesive 6 may be used in combination, and the conductive adhesive 7 and the adhesive 6 may be used. It is placed between the connection terminals 25, and when a thermosetting or a blend of thermoplastic and thermosetting is used for this conductive adhesive 7 or adhesive 6, the heating and pressurizing head is used. Is pressed to the substrate 20 to make a hardened connection. When a UV-curable adhesive is used for the conductive adhesive 7 or the adhesive 6, the pressing head is pressed against the substrate 20 to irradiate UV light from the panel substrate 24 (glass substrate) side. And cure. Further, in order to protect the connection portion and the exposed portion of the connection terminal 26 from the external environment (for example, humidity, corrosive gas, dust, etc.), the mold 23 covers the terminals or the entire connection portion.
ここでは、 エポキシ系を主成分とする接着剤中に 1〜2 mの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 17 5。C、 圧力 4MPa、 時間 20秒の条件で行った。 接続端子の形成ビヅ チは 200 mで、 合計 1 120個の端子を備えたもの (表示容量が 6 40 x 480ドットの液晶表示装置に対応するもの) である。 この導電 接続部に、 耐湿放置試験 (60°C、 90%RH) 200時間、 冷熱サイ クル試験 (一 20。Cで 30分、 60。Cで 30分) 200サイクルを実施 した。 その結果、 これらの接続信頼性評価後も安定した接続状態が維持 確保されていた。  Here, a conductive adhesive 7 in which silver powder having a particle diameter of 1 to 2 m is mixed and dispersed in an adhesive mainly composed of an epoxy resin is used, and heating and pressing are performed at a temperature of 175. C, pressure 4MPa, time 20 seconds. The connection terminals are formed at a pitch of 200 m and have a total of 1120 terminals (corresponding to a liquid crystal display device having a display capacity of 640 × 480 dots). The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20.C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することにより使用可能である。 Here, the material of the ultrafine particles is Ag, Cu, Zn, Pd, Metals such as Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metallic or conductive materials such as high-temperature superconducting materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 導電性接着剤 7を介在させることにより、 接続端子 25の凹凸を補完して接続面積を大きくとることができ、 接続 抵抗値を低減でき、 また接続状態を安定化できる。 また、 導電性接着剤 7の中の導電材として、 0. 1 >c m〜3/imのカーボン粒子を使うこと もでき、 この場合には接続抵抗値は A gの場合と比較すると高くなるが、 材料費が安くなり、 またマイグレーション等の発生防止対策としての防 湿モールド材を省け、 安価で信頼性の高い端子接続ができる。  According to the above-described configuration, the conductive adhesive 7 intervenes to compensate for the unevenness of the connection terminal 25, thereby increasing the connection area, reducing the connection resistance value, and stabilizing the connection state. Can be Also, as the conductive material in the conductive adhesive 7, carbon particles of 0.1> cm to 3 / im can be used, and in this case, the connection resistance value is higher than that of Ag. In addition, the material cost is reduced, and the moisture-proof mold material as a measure for preventing the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
〔実施例 22〕 (Example 22)
図 23、 図 24は本発明に係る液晶表示装置の実施例 22の主要部分 を示す断面図である。 パネル基板 24に形成された接続端子 26の表面 の一部分または全部を微粒子層 1が覆っていて、 この接続端子 26上の 微粒子層 1ともう一方の基板 20に形成された接続端子 25とが異方性 導電材 8を介して接続されている。  FIG. 23 and FIG. 24 are cross-sectional views showing main parts of Embodiment 22 of the liquid crystal display device according to the present invention. The fine particle layer 1 covers part or all of the surface of the connection terminal 26 formed on the panel substrate 24, and the fine particle layer 1 on the connection terminal 26 differs from the connection terminal 25 formed on the other substrate 20. They are connected via anisotropic conductive material 8.
図 14は液晶表示装置の斜視図であり、 図 15は図 14の液晶表示装 置の主要部分の拡大斜視図であり、 パネル基板 24の接続端子 26 (図 示せず) と基板 20の接銃端子 25とが接続している。 図 15の断面 A 一 Aは図 23に対応し、 断面 B— Bは図 24に対応する。 液晶パネル 1 8に液晶駆動用半導体チップ 19を搭載した基板 20が X側、 Y側に複 数個接続されている。  FIG. 14 is a perspective view of the liquid crystal display device, and FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, wherein a connection terminal 26 (not shown) of the panel substrate 24 and a gun Terminal 25 is connected. The cross section A-A in FIG. 15 corresponds to FIG. 23, and the cross section BB corresponds to FIG. A plurality of substrates 20 each having a liquid crystal driving semiconductor chip 19 mounted on a liquid crystal panel 18 are connected to the X side and the Y side.
本実施例では、 0. 7 mmの厚さのガラス基材からなるパネル基板 2 4上に、 1000 Aの厚さの I T 0 ( I n d i um Tin Oxid e) の接続端子 26が形成されている。 この接続端子 26の表面上に、 Auの超微粒子を堆積してなる微粒子層 1が図 18に示すガス中蒸発法 により形成される。 ここで、 超微粒子生成室と膜形成室との差圧を 3気 圧とし、 膜形成室の温度は 100°Cの条件で行った。 この Auの超微粒 子は平均 位の粒子径で形成されていた。 微粒子層 1の厚さは 1〜 3 /zmである。 In this embodiment, a 1000 A-thick IT 0 (Indium Tin Oxid) was placed on a panel substrate 24 made of a 0.7 mm-thick glass substrate. The connection terminal 26 of e) is formed. A fine particle layer 1 formed by depositing ultrafine particles of Au is formed on the surface of the connection terminal 26 by a gas evaporation method shown in FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 ° C. The ultrafine particles of Au were formed with an average particle size. The thickness of the fine particle layer 1 is 1 to 3 / zm.
この接続端子 26上の微粒子層 1の上に、 50 m厚のポリィミ ドべ 一スフイルムの基板 20に 25 /zm厚の銅箔をパターニングしてなる接 続端子 25が異方性導電材 8を介して接続されている。  On the fine particle layer 1 on the connection terminal 26, a connection terminal 25 formed by patterning a 25 / zm-thick copper foil on a 50-m-thick polyimide base film substrate 20 is coated with an anisotropic conductive material 8. Connected through.
ここで使用する異方性導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成されている。 この導電粒子 9は半田粒子、 Ni、 Axi Ag、 Cu、 Pb、 Sn等の単独又は複数の混合物、 合金、 また はメツキ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 Au、 Cu、 Fe等の単独又は複数のメツキをした粒子、 カーボン粒子 等である。  The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be solder particles, single or multiple mixtures of Ni, Axi Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, plastic particles (polystyrene, polycarbonate, acrylic, Diphenyl benzene resin), Ni, Au, Cu, Fe, etc., particles or carbon particles.
また、 この接着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複 数の混合物若しくは化合物である。 この異方性導電材 8の異方性導電膜 をパネル基板 24および接続端子 26の表面の微粒子層 1と基板 20の 接続端子 25との間に配置し、 異方性導電膜に熱硬化性または熱可塑性 と熱硬化性とのプレンド夕イブの接着剤を使った場合には加熱加圧へッ ドを基板 20に押し当てることによって硬化接続させる。 また、 異方性 導電膜に UV硬化性タイプの接着剤を使った場合には加圧へッドを基板 20に押し当て、 接続端子 26 (ガラス基板側) 側から UV照射して硬 化させる。 ここでは、 粒子径が 5 m〜 10 //mのジベニルベンゼン系のプラス チック粒子に 2 /m厚の N iメツキと 0. 5 厚のの Auメツキをし た導電粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合 分散させた異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 155eC、 圧力 2MPa、 時間 20秒の条件で行った。 接続端子の形成 ピッチは 20 O zmで、 合計 1120個の端子を持つもの (表示容量が 640x480ドッ 卜の液晶表示装置に対応するもの) である。 この導 電接続部に、 耐湿放置試験 (60°C、 90%RH) 200時間、 冷熱サ ィクル (一 20°Cで 30分、 60。Cで 30分) 200サイクルを実施し た。 その結果、 これらの接続信頼性評価後も安定した接続状態が確保さ れていた。 The adhesive 10 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like. The anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the panel substrate 24 and the connection terminal 26 and the connection terminal 25 of the substrate 20, so that the anisotropic conductive film has a thermosetting property. Alternatively, when a thermoplastic and thermosetting blend adhesive is used, the heating and pressurizing head is pressed against the substrate 20 to make a hardening connection. Also, when a UV-curable adhesive is used for the anisotropic conductive film, the pressure head is pressed against the substrate 20, and the connection terminals 26 (the glass substrate side) are irradiated with UV to be hardened. . Here, conductive particles 9 with 2 / m-thick Ni plating and 0.5-thick Au plating on dibenylbenzene-based plastic particles with particle diameters of 5 m to 10 // m are mainly epoxy-based. using an anisotropic conductive film 5 is wt% mixed and dispersed in the adhesive 10, (anisotropic conductive material 8), carried out heating pressurization temperature 155 e C, pressure 2 MPa, in terms of time 20 seconds Was. The connection terminals are formed at a pitch of 20 Ozm and have a total of 1120 terminals (corresponding to a liquid crystal display device with a display capacity of 640 x 480 dots). The electrical connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a cold / hot cycle (30 minutes at 20 ° C, 30 minutes at 60 ° C) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pd、 Sn等の単独又は複数の混合物、 合金、 またはメヅ キ等による複合金属粒子、 プラスチック粒子 (ボリスチレン系、 ポリ力 —ボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 Au、 Cu、 Fe等の単独または複数のメツキをした粒子、 カーボン粒子等で ある。  Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pd, Sn, etc., alloy metal, composite metal particles such as paint, plastic particles (polystyrene, polycarbonate, Acrylic, diphenylbenzene resin, etc.), Ni, Au, Cu, Fe, etc. particles or single or multiple particles, carbon particles, etc.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ボリエステル系、 ウレタン系等の単独又は複数の 混合物若しくは化合物である。 この異方性導電材 8の異方性導電接着剤 は液状、 またはペースト状であり、 印刷方法、 デイスペンザを使ったデ イスペンス方法等の公知の方法により、 接続端子 26の接続部分に配置 する。 異方性導電接着剤に熱硬化性または熱可塑性と熱硬化性とのブレ ンド夕イブの接着剤を使った場合には加熱加圧へッ ドを基板 20に押し 当てることによって硬化接続させる。 また、 異方性導電接着剤に UV硬 '化性タイプの接着剤を使った場合には加圧へッ ドを基板 2 0に押し当て、 パネル基板 2 4 (ガラス基板側) 側から U V照射して硬化させる。 The adhesive is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like. The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed at the connection portion of the connection terminal 26 by a known method such as a printing method or a dispensing method using a dispenser. When a thermosetting or thermoplastic and thermosetting blend adhesive is used as the anisotropic conductive adhesive, a hardening connection is made by pressing a heating and pressing head against the substrate 20. In addition, UV hardening is applied to the anisotropic conductive adhesive. When using a chemical adhesive, press the pressure head against the substrate 20 and cure it by UV irradiation from the panel substrate 24 (glass substrate side).
なお、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体をモールド 2 3で覆って もよい。  In addition, in order to protect this connection portion from an external environment (for example, humidity, corrosive gas, dust, etc.), the terminals 23 or the entire connection portion may be covered with a mold 23.
ここで超微粒子の材質としては、 その他に A g、 C u、 Z n、 P d、 S n等の金属や C u— Z n系、 A u— S n系、 A g— P d系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 mのものをガスポジションの条件 を適宜選定することによつて使用可能である。  Here, examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and Ag—Pd. Alloys, metal materials such as high-temperature superconducting materials, or conductive materials can be used. Ultrafine particles having a particle diameter of 60 nm to 3 m can be used by appropriately selecting the gas position conditions.
上述のような構成によれば、 接続端子 2 6の端子幅の細りや断線を微 粒子層 1が覆うことまたは充填することにより補修ができ、 また接続端 子 2 5との接続幅または接続長さを最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 ガラス基板の表面に形成 された I T 0等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理 工程を必要とせず簡単にできるというメリッ トがある。  According to the configuration described above, the narrowing or disconnection of the terminal width of the connection terminal 26 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 25 can be repaired. The connection resistance can be reduced, and the connection state can be stabilized. In particular, it has the advantage that it can easily repair, reinforce, and reduce the resistance of thin-film connection terminals such as ITO formed on the surface of a glass substrate without requiring complicated processing steps.
また、 異方性導電材 8を介在させることにより、 接続端子 2 5の凹凸 を補完して導電粒子 9の接続面積を大きくとることができ、 接続抵抗値 を低減でき、 また接続状態を安定化できる。  In addition, by interposing the anisotropic conductive material 8, the connection area of the conductive particles 9 can be increased by complementing the unevenness of the connection terminals 25, thereby reducing the connection resistance value and stabilizing the connection state. it can.
〔実施例 2 3〕 (Example 23)
図 2 5は本発明に係る液晶表示装置の実施例 2 3の主要部分を示す断 面図である。 パネル基板 2 4に形成された接続端子 2 6の表面の一部分 または全部を微粒子層 1が覆っていて、 この接続端子 2 6上の微粒子層 1ともう一方の基板 2 0に形成された接続端子 2 5とが接着剤 6を介し て接続されている。 図 14は本実施例の液晶表示装置の斜視図であり、 図 15は図 14の 液晶表示装置の主要部分の拡大斜視図であり、 パネル基板 24の接続端 子 26 (図示せず) と基板 20の接続端子 25とが接続されている。 図 15の断面 B— Bは図 25に対応している。 液晶パネル 18に液晶駆動 用半導体チップ 19を搭載した基板 20が X側、 Y側に複数個接続され ている。 FIG. 25 is a sectional view showing a main part of Example 23 of the liquid crystal display device according to the present invention. Particulate layer 1 covers part or all of the surface of connection terminal 26 formed on panel substrate 24, and fine particle layer 1 on connection terminal 26 and connection terminal formed on another substrate 20. 2 and 5 are connected via an adhesive 6. FIG. 14 is a perspective view of the liquid crystal display device of the present embodiment, and FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, in which connection terminals 26 (not shown) of the panel substrate 24 and the substrate 20 connection terminals 25 are connected. Section BB in FIG. 15 corresponds to FIG. A plurality of substrates 20 each having a liquid crystal panel 18 and a liquid crystal driving semiconductor chip 19 mounted thereon are connected to the X side and the Y side.
本実施例では、 0. 1mmの厚さのブラスチック基材からなる基板 2 4上に、 700 Aの厚さの I TO ( I nd i um Tin Oxide) の接続端子 26が形成されている。 この接続端子の表面上に、 Agの超 微粒子を堆積してなる微粒子層 1が図 18に示すガス中蒸発法により形 成されている。 ここで、 超微粒子生成室と膜形成室との差圧を 100 T orrとし、 膜形成室の温度は室温 (約 25°C) の条件で行った。 この A gの微粒子層 1は平均 60 nm位の粒子径の超微粒子間に隙間がある 状態で形成されていた。 微粒子層 1の厚さは 0. 1〜1. である。 この接続端子 26上の微粒子層 1に、 50 zm厚のポリイミ ドベース フィルムの基板 20に 35 //mの銅箔をパターニングした接続端子 25 が接着剤 6を介して接続されている。  In this embodiment, a 700 A-thick ITO (Indium Tin Oxide) connection terminal 26 is formed on a substrate 24 made of a plastic substrate having a thickness of 0.1 mm. A fine particle layer 1 formed by depositing ultrafine particles of Ag is formed on the surface of the connection terminal by the gas evaporation method shown in FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 100 Torr, and the temperature of the film formation chamber was room temperature (about 25 ° C). The Ag fine particle layer 1 was formed with a gap between ultrafine particles having an average particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to 1. A connection terminal 25 obtained by patterning a 35 // m copper foil on a substrate 20 of a polyimide base film having a thickness of 50 zm is connected to the fine particle layer 1 on the connection terminal 26 via an adhesive 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独又は複数 の混合物若しくは化合物である。  The adhesive 6 is a single or a mixture or a compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この接着剤 6を接続端子 26と接続端子 25との間に配置し、 この接 着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンドタイプの接着 剤を使った場合には加熱加圧へッドを基板 20に押し当てることによつ て硬化接続させる。 また、 この接着剤 6に UV硬化性夕イブの接着剤を 使った場合には加圧ヘッドを基板 20に押し当て、 パネル基板 24側か ら UV照射して硬化させる。 ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 135°C、 圧力 0. 2 MP a、 時間 20秒の条件で行った。 接続端 子の形成ピッチは 250 mで、 合計 560端子を備えたもの (表示容 量が 320 X 240ドッ トの液晶表示装置に対応するもの) である。 こ の導電接続部に、 耐湿放置試験 (60eC、 90 RH) 200時間、 冷 熱サイクル試験 (一 20。Cで 30分、 60。Cで 30分) 200サイクル を実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態 が確保されていた。 This adhesive 6 is disposed between the connection terminal 26 and the connection terminal 25, and when a thermosetting adhesive or a blend of thermoplastic and thermosetting is used as the adhesive 6, heating is performed. A hardening connection is made by pressing the pressure head against the substrate 20. When a UV-curable adhesive is used as the adhesive 6, the pressure head is pressed against the substrate 20, and the panel substrate 24 is irradiated with UV to cure the adhesive. Here, an adhesive 6 containing an epoxy-based component as a main component was used, and heating and pressing were performed at a temperature of 135 ° C, a pressure of 0.2 MPa, and a time of 20 seconds. The connection terminals have a pitch of 250 m and have a total of 560 terminals (corresponding to a liquid crystal display device with a display capacity of 320 x 240 dots). The conductive connection portion of this, humidity storage test (60 e C, 90 RH) 200 hours, cold heat cycle test (30 minutes in one 20.C, 30 minutes 60.C) were performed 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
本実施例では、 接続端子 26の表面上の微粒子層 1と接続端子 25と が直接接触し電気的導通がとられており、 その状態を接着剤 6が機械的 に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性 ガス、 塵埃等) から保護し接続状態を安定化している。 ここで、 本実施 例では図 25に示すように、 接続時の応力により接続端子 26の一部に 変形部 28が生じ、 接続端子 26の上に被着されている微粒子層 1にも 大きな変形が発生している。  In this embodiment, the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds this state. Connections are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) to stabilize the connection. Here, in the present embodiment, as shown in FIG. 25, a deformation part 28 is generated in a part of the connection terminal 26 due to the stress at the time of connection, and the fine particle layer 1 adhered on the connection terminal 26 is also greatly deformed. Has occurred.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 八 ー 系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3〃mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and octa, and metals such as high-temperature superconducting materials Materials or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 μm can be used by appropriately selecting the conditions for gas deposition.
また、 パネル基板 24の基材としては、 ポリカーボネート (PC) の 他にポリエーテルサルフォン (PES) 、 アクリル、 ポリアリレートま たはポリヒドロキシポリエーテル等の厚み 18 /mから 500/ mのブ ラスチックフィルムまたはプラスチック板も使用できる。  The base material of the panel substrate 24 is not only polycarbonate (PC) but also plastic such as polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether having a thickness of 18 / m to 500 / m. Film or plastic plates can also be used.
上述のような構成によれば、 微粒子層 1の柔軟性は接続時の圧力や温 度等による I TO薄膜への影響を減少させ、 万が一、 変形部 28に亀裂 等のダメージを生じても、 微粒子層 1が適度に変形することにより、 導 通が確保される。 また、 超微粒子の粒子径を 6 O n m位の微細にし、 粒 子間に隙間がある状態に形成することにより、 微粒子層 1がクッション 材的な働きをして、 接続端子 2 5の凹凸を緩和して接続面積を大きくと ることができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。 また、 接続端子 2 6の表面上の微粒子層 1と接続端子 2 5とが直接接続 するため、 端子位置合わせズレゃ加熱加圧接続時のズレによる端子間シ ョートを除けば、 接続不良となる他の要因が入らないだけ接続ピッチの 微細化が可能である。 According to the configuration described above, the flexibility of the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure, temperature, and the like at the time of connection. Even if damages such as occur, conduction is ensured by the fine particle layer 1 being appropriately deformed. In addition, by making the particle diameter of the ultra-fine particles as small as about 6 O nm and forming a state in which there is a gap between the particles, the fine particle layer 1 acts as a cushion material, and the unevenness of the connection terminals 25 is reduced. Relaxation can increase the connection area, reduce the connection resistance value, and stabilize the connection state. In addition, since the fine particle layer 1 on the surface of the connection terminal 26 and the connection terminal 25 are directly connected, a connection failure occurs unless a shortage between terminals due to a misalignment of the terminal alignment and a misalignment during the heating and pressurizing connection. The minimization of the connection pitch is possible as long as other factors are not included.
〔実施例 2 4〕 (Example 24)
図 2 6は本発明に係る液晶表示装置の実施例 2 4の主要部分を示す断 面図である。 パネル基板 2 4に形成された接続端子 2 6の表面の一部分 または全部を微粒子層 1が覆っていて、 この接続端子 2 6上め微粒子層 1ともう一方の基板 2 0に形成された接続端子 2 5とが導電性接着剤 7 を介して導電接続されている。  FIG. 26 is a sectional view showing a main part of Example 24 of the liquid crystal display device according to the present invention. Partial or whole of the surface of the connection terminal 26 formed on the panel substrate 24 is covered with the fine particle layer 1, and the connection terminal 26 is formed on the upper fine particle layer 1 and the other substrate 20. Are electrically connected to each other via a conductive adhesive 7.
図 1 4は液晶表示装置の斜視図であり、 図 1 5は図 1 4の液晶表示装 置の主要部分の拡大斜視図であり、 パネル基板 2 4の接続端子 2 6 (図 示せず) と基板 2 0の接続端子 2 5とが接続されている。 図 1 5の断面 B— Bは図 2 6に対応している。 液晶パネル 1 8に液晶駆動用半導体チ ッブ 1 9を搭載した基板 2 0が X側、 Y側に複数個接続されている。 本実施例では、 0 . 4 mmの厚さのブラスチック基材からなる基板 2 4上に、 1 0 0 0 Aの厚さの I T O ( I n d e u m T i n O x i d e ) の接続端子 2 6が形成されている。 この接続端子 2 6の表面上に、 A uの超微粒子を堆積してなる微粒子層 1が図 1 8に示すガス中蒸発法 により形成されている。 ここで、 超微粒子生成室と膜形成室との差圧を 3気圧とし、 膜形成室の温度は 100°Cの条件で成膜した。 この Auの 超微粒子は平均 1 m位の粒子径で形成されていた。 微粒子層 1の厚さ は 1〜 3 mである。 FIG. 14 is a perspective view of the liquid crystal display device, and FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, showing connection terminals 26 (not shown) of the panel substrate 24. The connection terminal 25 of the substrate 20 is connected. Section B—B in FIG. 15 corresponds to FIG. A plurality of substrates 20 on which a liquid crystal driving semiconductor chip 19 is mounted on a liquid crystal panel 18 are connected to the X side and the Y side. In this embodiment, a connection terminal 26 of ITO (Indeum Tin Oxide) having a thickness of 100 A is formed on a substrate 24 made of a plastic substrate having a thickness of 0.4 mm. Have been. On the surface of the connection terminal 26, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber is The film was formed at a pressure of 3 atm and a temperature of 100 ° C in the film forming chamber. The ultrafine particles of Au were formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 1 to 3 m.
この接続端子 26上の微粒子層 1に、 50 /m厚のポリィミ ドベース フィルムの基板 20に 25 m厚の銅箔をパターニングしてなる接続端 子 25が導電性接着剤 7を介して接続されている。  A connection terminal 25 formed by patterning a 25 m thick copper foil on a 50 / m thick polyimide base film substrate 20 is connected to the fine particle layer 1 on the connection terminal 26 via a conductive adhesive 7. I have.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ボリエステル系、 ウレタン系等の単独又は複数の混合物若しくは化合物の接着剤の中に、 0. 1〜 5 mの粒子径の A g等の導電性物質を混合分散したものであ る。  This conductive adhesive 7 may be used alone or in a mixture or compound of a plurality of compounds such as epoxy, acrylic, polyester, and urethane based adhesives such as Ag having a particle diameter of 0.1 to 5 m. It is a substance in which an active substance is mixed and dispersed.
この導電性接着剤 7を接続端子 26上に印刷法ゃデイスペンス法等の 公知の方法により載置し、 合わせて接着剤 6を介してもよく、 この導電 性接着剤 7と接着剤 6を接続端子 25との間に配置し、 この導電性接着 剤 7または接着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンド タイプの接着剤を使った場合には加熱加圧へッドを基板 20に押し当て ることによって硬化接続させる。 また、 この導電性接着剤 7または接着 剤 6に UV硬化性タイプの接着剤を使った場合には加圧へッドを基板 2 0に押し当て、 パネル基板 24側から UV照射して硬化させる。 また、 この接続部分および接続端子 26の露出部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体を モールド 23で覆っている。  The conductive adhesive 7 may be placed on the connection terminal 26 by a known method such as a printing method and a dispense method, and may be put together via the adhesive 6, and the conductive adhesive 7 and the adhesive 6 are connected. Place it between terminals 25, and if using a thermosetting adhesive or a blend of thermoplastic and thermosetting adhesive for the conductive adhesive 7 or adhesive 6, attach the heating / pressing head. A hardening connection is made by pressing against the substrate 20. When a UV-curable adhesive is used for the conductive adhesive 7 or the adhesive 6, a pressure head is pressed against the substrate 20 and cured by irradiating UV light from the panel substrate 24 side. . Further, in order to protect the connection portion and the exposed portion of the connection terminal 26 from the external environment (for example, humidity, corrosive gas, dust, etc.), a mold 23 covers the terminals or the entire connection portion.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2x mの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 13 5。C、 圧力 0. 4MP a、 時間 20秒の条件で行った。 接続端子の形成 ピッチは 250 Admで、 合計 560個の端子を備えたもの (表示容量が 320 x 240 ドットである液晶表示装置に対応するもの) である。 こ の導電接続部に、 耐湿放置試験 (60°C、 90%RH) 200時間、 冷 熱サイクル試験 (一 20 Cで 30分、 60°Cで 30分) 200サイクル を実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態 が維持確保されていた。 Here, a conductive adhesive 7 in which silver powder having a particle size of l to 2xm is mixed and dispersed in an adhesive mainly composed of an epoxy system is used, and heating and pressing are performed at a temperature of 135. C, the pressure was 0.4 MPa, and the time was 20 seconds. The connection terminals are formed at a pitch of 250 Adm and have a total of 560 terminals (corresponding to a liquid crystal display device with a display capacity of 320 x 240 dots). This The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (30 minutes at 20 ° C and 30 minutes at 60 ° C) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 'また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 >c mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3> cm can be used by appropriately selecting the conditions for gas deposition.
また、 パネル基板 24の基材としては、 ボリカーボネート (PC) の 他にポリエーテルサルフォン (PES) 、 アクリル、 ポリアリレートま たはボリヒドロキシボリエーテル等の厚み 18/ mから 50 のブ ラスチックフィルムまたはブラスチック板も使用できる。  The base material of the panel substrate 24 is not only polycarbonate (PC) but also a plastic film having a thickness of 18 / m to 50, such as polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether. Alternatively, a plastic plate can also be used.
ここで、 本実施例では図 26に示すように、 接続時の応力により接続 端子 26の一部に変形部 28が生じ、 同時に接続端子 26の上に被着さ れている微粒子層 1、 導電性接着剤 7にも大きな変形が発生している。 上述のような構成によれば、 上記のような薄膜接続端子の補修、 補強、 低抵抗化に最適な方法であり、 微粒子層 1の柔軟性は接続時の圧力や温 度等による I TO薄膜への影響を減少させ、 万が一接続端子 26の変形 部 28に亀裂等のダメージを生じても、 この微粒子層 1が適度に変形す ることにより、 導通が確保される。  Here, in the present embodiment, as shown in FIG. 26, a deformed portion 28 is formed in a part of the connection terminal 26 due to the stress at the time of connection, and at the same time, the fine particle layer 1 The adhesive 7 also has a large deformation. According to the above configuration, it is the most suitable method for repairing, reinforcing and lowering the resistance of the thin film connection terminal as described above, and the flexibility of the fine particle layer 1 depends on the pressure and temperature during connection. Even if damage such as a crack occurs in the deformed portion 28 of the connection terminal 26, the fine particle layer 1 is appropriately deformed, thereby ensuring conduction.
また、 導電性接着剤 7を介在させることにより、 接続端子 25の凹凸 を補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。 また、 同時に、 導電性接着剤 7には接続 時の応力を緩和する効果もある。  Further, by interposing the conductive adhesive 7, the unevenness of the connection terminal 25 can be complemented to increase the connection area, reduce the connection resistance value, and stabilize the connection state. At the same time, the conductive adhesive 7 has an effect of relieving stress at the time of connection.
また、 導電性接着剤 7の導電材として、 0. l ζπ!〜 3/ mのカーポ ン粒子を使うこともでき、 この場合には接続抵抗値は A gの場合と比較 すると高くなるが、 材料費が安くなり、 またマイグレーション等の発生 防止対策としての防湿モールド材を省け、 安価で信頼性の高い端子接続 ができる。 In addition, as the conductive material of the conductive adhesive 7, 0.1 lζπ! ~ 3 / m capo In this case, the connection resistance value is higher than in the case of Ag, but the material cost is low, and the moisture-proof mold material as a measure to prevent the occurrence of migration etc. is omitted, and the cost is low. Highly reliable terminal connection is possible.
〔実施例 25〕 (Example 25)
図 27は本発明に係る液晶表示装置の実施例 25の主要部分を示す断 面図である。 パネル基板 24に形成された接続端子 26の表面の一部分 または全部を微粒子層 1が覆っていて、 この接続端子 26上の微粒子層 1ともう一方の基板 20に形成された接続端子 2 δとが異方性導鼋材 8 を介して接続されている。  FIG. 27 is a cross-sectional view showing a main part of Embodiment 25 of the liquid crystal display device according to the present invention. Particulate layer 1 covers part or all of the surface of connection terminal 26 formed on panel substrate 24, and fine particle layer 1 on connection terminal 26 and connection terminal 2 δ formed on another substrate 20 are connected. They are connected via an anisotropic conductive material 8.
図 14は液晶表示装置の斜視図であり、 図 15は図 14の液晶表示装 置の主要部分の拡大斜視図であり、 パネル基板 24の接続端子 26 (図 示せず) と基板 20の接続端子 25とが接続している。 図 15'の断面 Β — Βは図 27に対応している。 液晶パネル 18に液晶駆動用半導体チヅ ブ 19を搭載した基板 20が X側、 Υ側に複数個接続されている。  FIG. 14 is a perspective view of the liquid crystal display device, and FIG. 15 is an enlarged perspective view of a main part of the liquid crystal display device of FIG. 14, in which connection terminals 26 (not shown) of the panel substrate 24 and connection terminals of the substrate 20 are connected. 25 and are connected. Sections Β — の in Figure 15 'correspond to Figure 27. A plurality of substrates 20 on which a liquid crystal driving semiconductor chip 19 is mounted on a liquid crystal panel 18 are connected to the X side and the X side.
本実施例では、 0. 1mm厚のプラスチック基材の基板 24に形成さ れた 1000 Aの厚さの I T 0 ( I nd i um Tin Oxide) の接続端子 26が形成されている。 この接続端子 26の表面上に、 Au の超微粒子を堆積させてなる微粒子層 1が図 18に示すガス中蒸発法に より形成されている。 ここで、 超微粒子生成室と膜形成室との差圧を 1 O OTorrとし、 膜形成室の温度は 120。Cの条件で成膜した。 この Auの超微粒子は平均 3 m位の粒子径で形成されていた。 微粒子層 1 の厚さは 3〜 8 xmである。  In the present embodiment, a 1000 A-thick connection terminal 26 of ITO (Indium Tin Oxide) having a thickness of 1000 A formed on a substrate 24 of a plastic base material having a thickness of 0.1 mm is formed. On the surface of the connection terminal 26, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber is 1 O OTorr, and the temperature of the film formation chamber is 120. The film was formed under the condition of C. The ultrafine particles of Au were formed with an average particle diameter of about 3 m. The thickness of the fine particle layer 1 is 3 to 8 xm.
この接続端子 26上の微粒子層 1上に、 50 m厚のポリイミ ドベー スフイルムの基板 20に 25 //m厚の銅箔をパターニングした接続端子 •25が異方性導電材 8を介して接続されている。 On the fine particle layer 1 on the connection terminal 26, a connection terminal obtained by patterning a 25 / m-thick copper foil on a 50-m-thick polyimide base film substrate 20 • 25 are connected via the anisotropic conductive material 8.
ここで使用する異方性導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成されている。 この導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独又は複数の混合物、 合金、 また はメツキ等による複合金属粒子、 ブラスチック粒子 (ボリスチレン系、 ポリカーボネート系、 アクリル系、 ジべニルベンゼン系樹脂等) に Ni、 Au、 Cu、 Fe等の単独又は複数のメツキをした粒子、 カーボン粒子 等である。 また、 この接着剤 10はスチレンブタジエンスチレン (SB S) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単 独又は複数の混合物若しくは化合物である。  The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, etc., plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzene-based resin, etc.), and particles of single or multiple platings of Ni, Au, Cu, Fe, etc., and carbon particles. The adhesive 10 is a single or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電膜をパネル基板 2 および接続端子 26の表面上の微粒子層 1と基板 20の接続端子 25との間に配置し、 異方性導電膜に熱硬化性または熱可塑性と熱硬化性とのブレンドタイプ の接着剤を使った場合には加熱加圧へッ ドを基板 20に押し iてること によって硬化接続させる。 また、 異方性導電膜に UV硬化性夕イブの接 着剤を使った場合には加圧へッ ドを基板 20に押し当て、 接続端子 26 側から UV照射して硬化させる。  The anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the panel substrate 2 and the connection terminals 26 and the connection terminals 25 of the substrate 20, and is thermoset into the anisotropic conductive film. When a thermosetting or thermoplastic and thermosetting blend type adhesive is used, the connection is cured by pressing the heating and pressing head against the substrate 20. When a UV-curable adhesive is used for the anisotropic conductive film, a pressure head is pressed against the substrate 20 and UV is irradiated from the connection terminal 26 side to be cured.
ここでは、 粒子径が 8 m〜 15 //mのポリスチレン系のブラスチヅ ク粒子に 2 m厚の N iメツキと 0. 5 m厚の Auメツキをした導電 粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散さ せた異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 135 °C、 圧力 0. 3MPa、 時間 20秒の条件で行った。 接続端子の形成ビ ヅチは 250 / mで、 合計 560個の端子を備えたもの (表示容量が 3 20 X 240ドットの液晶表示装置に対応するもの) である。 この導電 接続部に、 耐湿放置試験 (60 C、 90 RH) 200時間、 冷熱サイ クル試験 (一 20°Cで 30分、 60eCで 30分) 200サイクルを実施 した。 その結果、 これらの接続信頼性評価後も安定した接続状態が確保 されていた。 Here, conductive particles 9 made of a polystyrene-based plastic particle having a particle diameter of 8 m to 15 // m and a 2-m thick Ni plating and a 0.5 m-thick Au plating are mainly composed of epoxy resin. An anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed at 5% by weight in the adhesive 10 is used. The heating and pressing are performed at a temperature of 135 ° C, a pressure of 0.3 MPa, and a time of 20 seconds. went. The number of connection terminals is 250 / m, with a total of 560 terminals (corresponding to a liquid crystal display device with a display capacity of 320 x 240 dots). 200 hours of humidity resistance test (60 C, 90 RH) and 200 cycles of cooling / heating cycle (30 minutes at 20 ° C, 30 minutes at 60 eC ) did. As a result, a stable connection state was maintained even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電接着剤があり、 主に導電粒子 と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 プラスチック粒子 (ボリスチレン系、 ポリ カーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 A u、 Cu、 F e等の単独または複数のメツキをした粒子、 カーボン粒子 等乙 *ある。  Another anisotropic conductive material 8 is an anisotropic conductive adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles may be solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, Diphenylbenzene-based resin), Ni, Au, Cu, Fe and other particles or carbon particles.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。  The adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 パネル基板 24および接続端子 26の接続部分に配置する。 異方性導電接着剤に熱硬化性または熱可塑性と熱硬化性とのブレンド夕 イブの接着剤を使った場合には加熱加圧へッ ドを基板 20に押し当てる ことによって硬化接続させる。 また、 異方性導電接着剤に UV硬化性夕 イブの接着剤を使った場合には加圧へッ ドを基板 20に押し当て、 パネ ル基板 24側から UV照射して硬化させる。  The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is formed by a known method such as a printing method or a dispensing method using a dispenser. To place. When an adhesive of thermosetting or a blend of thermoplastic and thermosetting is used as the anisotropic conductive adhesive, a hardening connection is made by pressing a heating and pressing head against the substrate 20. When a UV-curable adhesive is used as the anisotropic conductive adhesive, a pressure head is pressed against the substrate 20 and the panel substrate 24 is irradiated with UV to cure the adhesive.
なお、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体をモールド 23で覆って もよい。  In addition, in order to protect this connection portion from an external environment (for example, humidity, corrosive gas, dust, etc.), a mold 23 may cover the terminals or the entire connection portion.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sri系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sri, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. Also, Ultrafine particles with a particle diameter of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
また、 パネル基板 2 4の基材としては、 ボリカーボネート (P C ) の 他にポリエーテルサルフォン (P E S ) 、 アクリル、 ポリアリレートま たはポリヒドロキシポリエーテル等の厚み 1 8 mから 5 0 0 mのブ ラスチックフィルムまたはブラスチック板も使用できる。  The base material of the panel substrate 24 is not only polycarbonate (PC) but also polyethersulfone (PES), acrylic, polyarylate or polyhydroxypolyether, etc., in a thickness of 18 m to 500 m. A plastic film or a plastic plate can also be used.
上述のような構成によれば、 微粒子層 1により、 接続時の圧力や温度 等に起因する異方性導電材 8の導電粒子により受ける局部的な応力を緩 和させる効果があるため I T O簿膜への影響を減少させ、 万が一 I T O 薄膜に生ずる局部的な変形部 2 8に亀裂等のダメージを生じても、 この 微粒子層 1の適度な変形により、 導通が確保される。  According to the above-described configuration, the fine particle layer 1 has an effect of relaxing local stress received by the conductive particles of the anisotropic conductive material 8 due to pressure, temperature, and the like at the time of connection. Even if damage such as a crack occurs in the locally deformed portion 28 generated in the ITO thin film, conduction is ensured by appropriate deformation of the fine particle layer 1.
また、 異方性導電材 8を介在させることにより、 接続端子 2 5の凹凸 を補完して導電粒子 9の接続面積を大きくとることができ、 接続抵抗値 を低減でき、 また接続状態を安定化できる。 '  In addition, by interposing the anisotropic conductive material 8, the connection area of the conductive particles 9 can be increased by complementing the unevenness of the connection terminals 25, thereby reducing the connection resistance value and stabilizing the connection state. it can. '
〔実施例 2 6〕 (Example 26)
図 2 9は本発明に係る液晶表示装置の実施例 2 6の主要部分を示す断 面図である。 パネル基板 2 4に形成された入力配線 3 1、 出力配線 3 2 の表面の一部分または全部を微粒子層 1が覆っていて、 この入力配線 3 1、 出力配線 3 2上の微粒子層 1と液晶駆動用半導体チップ 1 9に形成 されたバンプ 3 0とが接着剤 6を介して接続されている。  FIG. 29 is a cross-sectional view showing a main part of Example 26 of the liquid crystal display device according to the present invention. A part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal drive are driven. The bumps 30 formed on the semiconductor chip 19 for use are connected via the adhesive 6.
図 2 8は液晶表示装置の斜視図であり、 パネル基板 2 4上の入力配線 3 1、 出力配線 3 2、 パス配線 3 3等は図示してないが、 パネル基板 2 4上に液晶駆動用半導体チップ 1 9が接続されている。 図 2 8の断面 A 一 Aは図 2 9に対応している。 液晶パネル 1 8に液晶駆動用半導体チッ ブ 1 9が X側、 Y側に複数個接続されている。 本実施例では、 1. 1 mmのガラス基材の基板 24に、 100 OAの 厚さの I TO ( I nd i um Tin 0 x i d e ) の入力配線 31、 出力配線 32が形成されている。 この入力配線の表面上に、 Agの超微 粒子を堆積してなる微粒子層 1が図 10、 図 18に示す方法と同様の方 法で、 ガス中蒸発法により形成される。 ここで、 超微粒子生成室と膜形 '成室との差圧を Ι Ο Ο Τ Ο Γ Γとし、 膜形成室の温度は室温 (約 25。C) の条件で成膜を行った。 この A gの微粒子層 1は平均 60 nm位の粒子 径の超微粒子間に隙間がある状態で形成されていた。 微粒子層 1の厚さ は 0. 1〜: L. 5 mである。 FIG. 28 is a perspective view of the liquid crystal display device. Although input wiring 31, output wiring 32, and path wiring 33 on the panel substrate 24 are not shown, the liquid crystal driving device is provided on the panel substrate 24. The semiconductor chip 19 is connected. The cross section A-A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides. In this embodiment, an input wiring 31 and an output wiring 32 of ITO (Indium Tin Oxide) having a thickness of 100 OA are formed on a 1.1 mm glass substrate 24. On the surface of this input wiring, a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by a gas evaporation method in the same manner as the method shown in FIGS. Here, the pressure difference between the ultrafine particle generation chamber and the film forming chamber was set to 差 Ο 、 、 、, and the film was formed under the conditions of room temperature (about 25.C). The Ag fine particle layer 1 was formed with gaps between ultrafine particles having an average particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to: L. 5 m.
この入力配線 31、 出力配線 32上の微粒子層 1の上に、 液晶駆動用 半導体チップ 19に形成されたバンプ 30が接着剤 6を介して接続され ている。  On the fine particle layer 1 on the input wiring 31 and the output wiring 32, a bump 30 formed on the liquid crystal driving semiconductor chip 19 is connected via an adhesive 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ポキシ系、 アクリル系、 ポリエステル系、 ウレタン系の単独 έたは複数 の混合物若しくは化合物である。  The adhesive 6 is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single compound or a mixture or a plurality of compounds.
この接着剤 6を入力配線 31、 出力配線 32の微粒子層 1と液晶駆動 用半導体チップ 19およびバンプ 30との間に配置し、 この接着剤 6に 熱硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着剤を使つ た場合には加熱加圧へッドを液晶駆動用半導体チップ 19に押し当てる ことによって硬化接続させる。 また、 この接着剤 6に UV硬化性夕イブ の接着剤を使った場合には加圧へッ ドを液晶駆動用半導体チップ 19に 押し当て、 パネル基板 24側から UV照射して硬化させる。  This adhesive 6 is arranged between the fine particle layer 1 of the input wiring 31 and the output wiring 32 and the semiconductor chip 19 for driving the liquid crystal and the bump 30, and the thermosetting or thermoplastic and thermosetting adhesive is applied to the adhesive 6. When a blend-type adhesive is used, the connection is cured by pressing the heating / pressing head against the liquid crystal driving semiconductor chip 19. When a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the liquid crystal driving semiconductor chip 19, and is cured by irradiating UV from the panel substrate 24 side.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 175。C、 圧力 10 gf/バンプ、 時間 30秒の条件で行った。 こ の接続端子及びバンプの形成ピッチは最小 120 zmで、 表示容量が 6 40 X 480ドットの液晶表示装置に対応するものである。 この導電接 続部に、 耐湿放置試験 (60°C、 90% H) 200時間、 冷熱サイク ル試験 (一 20。Cで 30分、 60。Cで 30分) 200サイクルを実施し た。 その結果、 これらの接続信頼性評価後も安定した接続状態が維持確 保されていた。 Here, an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed at a temperature of 175. C, pressure 10 gf / bump, time 30 seconds. The connection terminals and bumps are formed at a minimum pitch of 120 zm and correspond to a liquid crystal display device having a display capacity of 640 × 480 dots. This conductive contact The connected part was subjected to a humidity resistance test (60 ° C, 90% H) for 200 hours and a thermal cycle test (120 ° C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and maintained after these connection reliability evaluations.
本実施例では、 入力配線 31、 出力配線 32上の微粒子層 1とバンプ 30が直接接触し電気的導通をとられており、 その状態を接着剤 6が機 械的に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐 食性ガス、 塵埃等から保護し接続状態を安定化している。  In this embodiment, the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the bump 30 are in direct contact with each other to establish electrical continuity, and the adhesive 6 mechanically fixes and holds the state. This connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 /imのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. Ultrafine particles with a particle size of 60 nm to 3 / im can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 入力配線 31、 出力配線 32の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 バンプ 30との接続面積を最大限に確保でき、 接続抵抗値を低減で き、 また接続状態を安定化できる。 特に、 I TO等の薄膜接続端子の補 修、 補強、 低抵抗化が、 湿式メツキ法のような複雑な処理工程を必要と せず簡単にできるというメリッ トがある。 また、 超微粒子の粒子径を 6 Onm位の微細にし、 粒子間に隙間がある状態に形成することにより、 微粒子層 1がクッション材的な働きをして、 バンプ 30の凹凸を緩和し て接続面積を大きくとることができ、 接続抵抗値を低減でき、 また接続 状態を安定化できる。 また、 入力配線 31、 出力配線 32の表面上の微 粒子 1とバンプ 30とが直接接続するため、 端子位置合わせズレゃ加圧 接続時のズレによる端子間ショートを除けば、 接続不良となる他の要因 が入らないだけ、 接続ピッチの微細化が可能である。 〔実施例 27〕 According to the above-described configuration, the narrowing or disconnection of the terminal width of the input wiring 31 and the output wiring 32 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 30 can be maximized. The connection resistance can be reduced, and the connection state can be stabilized. In particular, it has the advantage that it can easily repair, reinforce, and reduce the resistance of thin-film connection terminals such as ITO without the need for complicated processing steps such as the wet plating method. Also, by making the particle size of the ultrafine particles as small as about 6 Onm and forming a state in which there is a gap between the particles, the fine particle layer 1 acts as a cushion material and reduces the bumps and bumps on the bump 30 for connection. The area can be increased, the connection resistance can be reduced, and the connection state can be stabilized. In addition, since the fine particles 1 on the surfaces of the input wiring 31 and the output wiring 32 are directly connected to the bumps 30, a misalignment of the terminals will occur unless a short circuit between the terminals due to misalignment at the time of pressure connection is caused. Since the above factors are not included, the connection pitch can be reduced. (Example 27)
図 30は本発明に係る液晶表示装置の実施例 27の主要部分を示す断 面図である。 パネル基板 24に形成された入力配線 31、 出力配線 32 の表面の一部分または全部を微粒子層 1が覆っていて、 この入力配線 3 1、 出力配線 32上の微粒子層 1と液晶駆動用半導体チップ 19に形成 されたバンプ 30とが導電性接着剤 7を介して接続されている。  FIG. 30 is a cross-sectional view showing a main part of Embodiment 27 of the liquid crystal display device according to the present invention. The fine particle layer 1 covers part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal driving semiconductor chip 19. The bump 30 formed on the substrate is connected via the conductive adhesive 7.
図 28は液晶表示装置の斜視図であり、 パネル基板 24上の入力配線 31、 出力配線 32、 バス配線 33等は図示してないが、 パネル基板 2 4上に液晶駆動用半導体チップ 19が接続されている。 図 28の断面 A 一 Aは図 30に対応している。 液晶パネル 18に液晶駆動用半導体チッ ブ 19が X側、 Y側に複数個接続されている。  FIG. 28 is a perspective view of the liquid crystal display device, and the input wiring 31, output wiring 32, bus wiring 33, etc. on the panel substrate 24 are not shown, but the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. Have been. The cross section A-A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
本実施例では、 1. 1mm厚のガラス基材からなる基板 24上に、 1 000 A厚の I TO ( I nd i um Tin Oxide) の入力配線 31、 出力配線 32が形成されている。 これらの入力配線及び出力配線 の表面上に、 Auの超微粒子を堆積してなる微粒子層 1が図 10、 図 1 8に示すガス中蒸発法により形成されている。 ここで、 超微粒子生成室 と膜形成室との差圧を 3気圧とし、 膜形成室の温度は 100eCの条件で 行った。 この Auの超微粒子は平均 1 zm位の粒子径で形成されていた c 微粒子層 1の厚さは l〜3/ mである。 In this embodiment, an input wiring 31 and an output wiring 32 of 1000 Å thick ITO (Indium Tin Oxide) are formed on a substrate 24 made of a 1.1 mm thick glass base material. A fine particle layer 1 formed by depositing ultrafine particles of Au is formed on the surfaces of these input wirings and output wirings by the gas evaporation method shown in FIGS. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 eC . The ultrafine particles of Au were formed with an average particle diameter of about 1 zm. The thickness of the c fine particle layer 1 is 1 to 3 / m.
この入力配線 31、 出力配線 32の微粒子層 1上に、 液晶駆動用半導 体チップ 19に形成されたバンプ 30が導電性接着剤 7を介して接続さ れている。  The bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the input wiring 31 and the output wiring 32 on the fine particle layer 1 via the conductive adhesive 7.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレ夕ン系等の単独または複数の混合物若しくは化合物の接着剤の中に、 0. 1〜5 111の粒子径の A g等の導電性物質を混合分散したものであ る o The conductive adhesive 7 may be an epoxy, acrylic, polyester, urethane-based adhesive or a mixture or compound of a plurality of such adhesives. Mixed and dispersed O
この導電性接着剤 7を入力配線 31、 出力配線 32上に印刷法やディ スペンス法等の公知の方法により載置し、 合わせて接着剤 6を介しても よく、 この導電性接着剤 7と接着剤 6を液晶駆動用半導体チップ 19お よびバンプ 30との間に配置し、 この導電性接着剤 7または接着剤 6に 熱硬化性または熱可塑性と熱硬化性とのブレンドタイプの接着剤を使つ た場合には加熱加圧へッ ドを液晶駆動用半導体チップ 19に押し当てる ことによって硬化接続させる。 また、 この導電性接着剤 7または接着剤 6に U V硬化性夕ィブの接着剤を使つた場合には加圧へッ ドを液晶駆動 用半導体チップ 19に押し当て、 パネル基板 24側から UV照射して硬 化させる。 また、 図示してないが、 この接続部分および入力配線 31、 出力配線 3.2の露出部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃 等) から保護するために、 端子間または接続部全体をモールドで覆って もよい。  The conductive adhesive 7 may be placed on the input wiring 31 and the output wiring 32 by a known method such as a printing method or a dispensing method, and may be put together via an adhesive 6. The adhesive 6 is placed between the semiconductor chip 19 for driving the liquid crystal and the bump 30, and a thermosetting or a blend of thermoplastic and thermosetting is applied to the conductive adhesive 7 or the adhesive 6. When used, the connection is hardened by pressing the heating / pressing head against the semiconductor chip 19 for driving liquid crystal. When a UV-curable adhesive is used for the conductive adhesive 7 or the adhesive 6, the pressure head is pressed against the liquid crystal driving semiconductor chip 19, and the UV light is applied from the panel substrate 24 side. Irradiate to cure. Although not shown, to protect the connection portion and the exposed portion of the input wiring 31 and the output wiring 3.2 from an external environment (for example, humidity, corrosive gas, dust, etc.), the connection between the terminals or the entire connection portion is performed. It may be covered with a mold.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2/zmの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 17 5°C、 圧力 10 gf/バンプ、 時間 30秒の条件で接続を行った。 この 接続端子の形成ピッチは最小 120; mで、 表示容量が 640 x 480 ドットの液晶装置に対応するものである。 この導電接続部に、 耐湿放置 試験 (60。C、 90%RH) 200時間、 冷熱サイクル試験(一 20。C で 30分、 60°Cで 30分) 200サイクルを実施した。 その結果、 こ れらの接続信頼性評価後も安定した接続状態が確保されていた。  Here, a conductive adhesive 7 in which silver powder with a particle size of l to 2 / zm is mixed and dispersed in an epoxy-based adhesive is used, and heating and pressing are performed at a temperature of 175 ° C and a pressure of 10 ° C. The connection was made under the conditions of gf / bump and time of 30 seconds. The formation pitch of the connection terminals is a minimum of 120; m, which corresponds to a liquid crystal device having a display capacity of 640 x 480 dots. The conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 200 hours and a thermal cycle test (120.C for 30 minutes, 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 を適宜選定することによって使用可能である。 Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. In addition, ultrafine particles with a particle size of 60 nm to 3 m are used for gas deposition. Can be used by appropriately selecting.
上述のような構成によれば、 入力配線 3 1、 出力配線 3 2の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 またバンプ 3 0との接続面積を最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 ガラス基板の表面に形成 された I T O等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理 工程を必要とせず簡単にできるというメリットがある。  According to the above-described configuration, repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30. The connection resistance can be reduced as much as possible, and the connection state can be stabilized. In particular, there is an advantage that repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate can be easily performed without requiring complicated processing steps.
また、 導電性接着剤 7を介在させることにより、 バンプ 3 0の凹凸を 補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 ま た接続状態を安定化できる。  In addition, by interposing the conductive adhesive 7, the connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
また、 導電性接着剤 7の中の導電材として、 0 . 1 111〜3 ^ 111のカ 一ボン粒子を使うこともでき、 この場合には接続抵抗値は A gの場合と 比較すると高くなるが、 材料費が安くなり、 またマイグレーション等の 発生防止対策としての防湿モールド材を省け、 安価で信頼性の高い端子 接続ができる。  Also, as the conductive material in the conductive adhesive 7, carbon particles of 0.1111 to 3 ^ 111 can be used, and in this case, the connection resistance value is higher than that of Ag. However, the material cost is reduced, and a moisture-proof mold material as a measure for preventing the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
〔実施例 2 8〕 (Example 28)
図 3 1は本発明に係る液晶表示装置の実施例 2 8の主要部分を示す断 面図である。 パネル基板 2 4に形成された入力配線 3 1、 出力配線 3 2 の表面の一部分または全部を微粒子層 1が覆っていて、 この入力配線 3 1、 出力配線 3 2上の微粒子層 1ともう一方の液晶駆動用半導体チップ 1 9に形成されたパンブ 3 0とが異方性導電材 8を介して接続されてい ο  FIG. 31 is a sectional view showing a main part of Example 28 of the liquid crystal display device according to the present invention. Partial or entire surface of the input wiring 31 and output wiring 3 2 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the input wiring 31 and the output wiring 3 2 and the other. The liquid crystal driving semiconductor chip 19 is connected to a pump 30 formed through an anisotropic conductive material 8.
図 2 8は液晶表示装置の斜視図であり、 パネル基板 2 4上の入力配線 3 1、 出力配線 3 2、 バス配線 3 3等は図示していないが、 パネル基板 2 4上に液晶駆動用半導体チップ 1 9が接続されている。 図 2 8の断面 A— Aは図 31に対応している。 液晶パネル 18に液晶駆動用半導体チ ップ 19が X側、 Y側に複数個接続されている。 FIG. 28 is a perspective view of the liquid crystal display device. The input wiring 31, output wiring 32, and bus wiring 33 on the panel substrate 24 are not shown, but the liquid crystal driving device is provided on the panel substrate 24. The semiconductor chip 19 is connected. Figure 28 Section A—A corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
本実施例では、 0. 7mm厚のガラス基材のパネル基板 24上に、 1 000 A厚の I TO ( I nd i um Tin Oxide) の入力配線 31、 出力配線 32が形成されている。 これらの表面上には、 Auの超 微粒子を堆積してなる微粒子層 1が図 10、 図 18に示すガス中蒸発法 により形成されている。 ここで、 超微粒子生成室と膜形成室との差圧を l O OTorrとし、 膜形成室の温度は 120 °Cの条件で成膜を行った c この Auの超微粒子は平均 3 m位の粒子径で形成されていた。 微粒子 層 1の厚さは 3〜8 mである。 In this embodiment, an input wiring 31 and an output wiring 32 of 1000 Å thick ITO (Indium Tin Oxide) are formed on a 0.7 mm thick glass substrate panel substrate 24. On these surfaces, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIGS. Here, the differential pressure between the ultrafine particles producing chamber and film forming chamber and l O OTorr, the temperature of the film forming chamber of ultrafine particles the average 3 m-position of 120 ° C c The Au which a film was formed under the conditions of It was formed with a particle size. The thickness of the fine particle layer 1 is 3 to 8 m.
この入力配線 31、 出力配線 32上の微粒子層 1に、 液晶駆動用半導 体チップ 19に形成されたバンプ 30が異方性導電材 8を介して接続さ れている。  The bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the fine particle layer 1 on the input wiring 31 and the output wiring 32 via the anisotropic conductive material 8.
ここで使用する異方性導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成されている。 この導電粒子 9は半田粒子、 Ni、 The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 are solder particles, Ni,
Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 ま たはメツキ等による複合金属粒子、 プラスチック粒子 (ボリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、Single or multiple mixtures of Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles by plating, plastic particles (polystyrene-based, polycarbonate-based, acrylic-based, dibenylbenzene-based resins, etc.)
Au、 Cu、 Fe等の単独または複数のメツキをした粒子、 カーボン粒 子等である。 また、 この接着剤 10はスチレンブタジエンスチレン (SThese include particles of Au, Cu, Fe, etc. with one or more platings, and carbon particles. The adhesive 10 is made of styrene butadiene styrene (S
BS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の 単独または複数の混合物若しくは化合物である。 BS), epoxy-based, acrylic-based, polyester-based, urethane-based, etc., or a mixture or compound of two or more.
この異方性導電材 8の異方性導電膜をパネル基板 24および入力配線 The anisotropic conductive film of the anisotropic conductive material 8 is connected to the panel substrate 24 and the input wiring.
31、 出力配線 32の表面上の微粒子層 1と液晶駆動用半導体チップ 1 9およびバンプ 30との間に配置し、 異方性導電膜に熱硬化性または熱 可塑性と熱硬化性とのブレンドタイブの接着剤を使つた場合には加熱加 圧へッ ドを液晶駆動用半導体チップ 19に押し当てることによって硬化 接続させる。 また、 異方性導電膜に UV硬化性タイプの接着剤を使った 場合には加圧へッ ドを液晶駆動用半導体チップ 19に押し当て、 パネル 基板 24側から UV照射して硬化させる。 31, placed between the fine particle layer 1 on the surface of the output wiring 32 and the semiconductor chip 19 for driving the liquid crystal and the bump 30, and the anisotropic conductive film is thermosetting or a blend type of thermoplastic and thermosetting. When using an adhesive of The pressure head is pressed against the liquid crystal driving semiconductor chip 19 to make a hardened connection. When a UV-curable adhesive is used for the anisotropic conductive film, a pressure head is pressed against the semiconductor chip 19 for driving liquid crystal, and is cured by irradiating UV from the panel substrate 24 side.
ここでは、 粒子径が 2 m〜3^mのスチレン系のプラスチック粒子 に 2 厚の N iメツキと 0. 5〃m厚の Auメツキをした導電粒子 9 をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散させた異 方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 175°C、 圧 力 10 gf/バンプ、 時間 30秒の条件で行った。 接続端子及びバンプ の形成ピッチは最小 120 mで、 表示容量が 640 x 480ドットの 液晶表示装置に対応するものである。 この導電接続部に、 耐湿放置試験 ( 60 °C, 90 RH) 200時間、 冷熱サイクル試験 (一 20。Cで 3 0分、 60°Cで 30分) 200サイクルを実施した。 その結果、 これら の接続信頼性評価後も安定した接続状態が確保されていた。  Here, an electrically conductive particle 9 composed of a styrene-based plastic particle with a particle diameter of 2 m to 3 ^ m and a Ni plating with a thickness of 2 m and a Au plating with a thickness of 0.5 m is used as an epoxy-based adhesive. Using an anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed in 5% by weight in 10, heating and pressing were performed at a temperature of 175 ° C, a pressure of 10 gf / bump, and a time of 30 seconds. Was. The minimum forming pitch of the connection terminals and bumps is 120 m, and it corresponds to a liquid crystal display device with a display capacity of 640 x 480 dots. The conductive connection was subjected to a humidity resistance test (60 ° C, 90 RH) for 200 hours and a thermal cycle test (120 ° C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電材接着剤があり、 主に導電粒 子と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 プラスチック粒子 (ポリスチレン系、 ポリ 力一ポネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 A u、 Cu、 F e等の単独または複数のメツキをした粒子、 カーボン粒子 守 fぁ  Another anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles include solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles by plating, etc., plastic particles (polystyrene-based, polystyrene-based, acrylic , Ni-, Au-, Cu-, Fe-, etc. particles or carbon particles
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。  The adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 入力配線 3 1、 出力配線 3 2の接続部分に配置する。 異方性 導電接着剤に熱硬化性または熱可塑性と熱硬化性とのブレンドタイプの 接着剤を使った場合には加熱加圧へッ ドを液晶駆動用半導体チップ 1 9 に押し当てることによって硬化接続させる。 また、 異方性導電性接着剤 に UV硬化性夕イブの接着剤を使った場合には加圧へッドを液晶駆動用 ' 半導体チップ 1 9に押し当て、 パネル基板 2 4側から U V照射して硬化 させる。 The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is known in the art such as a printing method and a dispensing method using a dispenser. According to the method, it is arranged in the connection part of the input wiring 31 and the output wiring 32. When a thermosetting or thermoplastic and thermosetting adhesive is used as the anisotropic conductive adhesive, it is cured by pressing the heating / pressing head against the LCD drive semiconductor chip 19. Connect. When a UV-curable adhesive is used as the anisotropic conductive adhesive, the pressure head is pressed against the semiconductor chip 19 for driving the liquid crystal, and UV is irradiated from the panel substrate 24 side. And cure.
なお、 図示はしていないが、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体を モールドで覆ってもよい。  Although not shown, a mold may cover the terminals or the entire connection to protect the connection from the external environment (for example, humidity, corrosive gas, dust, etc.).
ここで超微粒子の材質としては、 その他に A g、 C u、 Z n、 P d、 S n等の金属や C u— Z n系、 A u— S n系、 ー卩 系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Further, a metal substance such as a high-temperature superconducting substance or a conductive substance can be used. Ultrafine particles with a particle diameter of 60 nm to 3 m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 入力配線 3 1、 出力配線 3 2の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 またバンプ 3 0との接続面積を最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 ガラス基板の表面に形成 された I T O等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理 工程を必要とせず簡単にできるというメリットがある。  According to the above-described configuration, repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30. The connection resistance can be reduced as much as possible, and the connection state can be stabilized. In particular, there is an advantage that repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate can be easily performed without requiring complicated processing steps.
また、 異方性導電材 8を介在させることにより、 バンプ 3 0の凹凸を 補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 ま た接続状態を安定化できる。  Further, by interposing the anisotropic conductive material 8, the connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
〔実施例 2 9〕 図 29は本発明に係る液晶表示装置の実施例 29の主要部分を示す断 面図である。 パネル基板 24に形成された入力配線 31、 出力配線 32 の表面の一部分または全部を微粒子層 1が覆っていて、 この入力配線 3 1、 出力配線 32上の微粒子層 1と液晶駆動用半導体チップ 19に形成 されたバンプ 30とが接着剤 6を介して接続されている。 (Example 29) FIG. 29 is a cross-sectional view showing a main part of Embodiment 29 of the liquid crystal display device according to the present invention. The fine particle layer 1 covers part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal driving semiconductor chip 19. The bump 30 formed on the substrate is connected via the adhesive 6.
図 28は液晶表示装置の斜視図であり、 パネル基板 24上の入力配線 31、 出力配線 32、 パス配線 33等は図示してないが、 パネル基板 2 4上に液晶駆動用半導体チップ 19が接続されている。 図 28の断面 A 一 Aは図 29に対応している。 液晶パネル 18に液晶駆動用半導体チッ プ 19が X側、 Y側に複数個接続されている。  FIG. 28 is a perspective view of the liquid crystal display device. The input wiring 31, output wiring 32, and path wiring 33 on the panel substrate 24 are not shown, but the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. Have been. The cross section A-A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
本実施例では、 0. 1mm厚のポリカーボネート基材からなるパ^ル 基板 24上に、 700 A厚の I TO ( I nd i um Tin Ox i d e) の入力配線 31、 出力配線 32が形成されている。 これらの表面上 に、 A gの超微粒子を堆積させた微粒子層 1が図 10、 図 ι έに示すガ ス中蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成室 との差圧を l O OTo rrとし、 膜形成室の温度は室温 (約 25°C) の 条件で行った。 この A gの微粒子層 1は 60 nm位の粒子径の超微粒子 に隙間がある状態で形成されていた。 微粒子層 1の厚さは 0. 1〜1. 5 である。  In this embodiment, an input wiring 31 and an output wiring 32 of 700 A thick ITO (Indium Tin Oxide) are formed on a pallet substrate 24 made of a 0.1 mm thick polycarbonate base material. I have. On these surfaces, a fine particle layer 1 on which ultrafine particles of Ag are deposited is formed by a gas evaporation method shown in FIG. 10 and FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was defined as lOOTorr, and the temperature of the film formation chamber was set at room temperature (about 25 ° C). This Ag fine particle layer 1 was formed with gaps between ultrafine particles having a particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to 1.5.
この入力配線 31、 出力配線 32上の微粒子層 1の上に、 液晶駆動用 半導体チップ 19に形成されたバンプ 30が接着剤 6を介して接続され ている。  On the fine particle layer 1 on the input wiring 31 and the output wiring 32, a bump 30 formed on the liquid crystal driving semiconductor chip 19 is connected via an adhesive 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ポキシ系、 アクリル系、 ポリエステル系、 ウレタン系の単独または複数 の混合物若しくは化 物である。  The adhesive 6 is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single or a mixture or compound of a plurality of them.
この接着剤 6を入力配線 31、 出力配線 32の微粒子層 1と液晶駆動 用半導体チップ 19およびバンプ 30との間に配置し、 この接着剤 6に 熱硬化性または熱可塑性と熱硬化性とのブレンドタイプの接着剤を使つ た場合には加熱加圧へッ ドを液晶駆動用半導体チップ 19に押し当てる ことによって硬化接続させる。 また、 この接着剤 6に UV硬化性夕イブ の接着剤を使った場合には加圧へッ ドを液晶駆動用半導体チップ 19に 押し当て、 パネル基板 24側から UV照射して硬化させる。 Apply this adhesive 6 to the fine particle layer 1 of the input wiring 31 and output wiring 32 and drive the liquid crystal. When a thermosetting or a blend of thermoplastic and thermosetting is used as the adhesive 6, the heating and pressing head is used. A hardening connection is made by pressing against the liquid crystal driving semiconductor chip 19. When a UV-curable adhesive is used as the adhesive 6, a pressure head is pressed against the liquid crystal driving semiconductor chip 19, and is cured by irradiating UV from the panel substrate 24 side.
ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 135°C、 圧力 10 gf /バンプ、 時間 30秒の条件で行った。 こ の接続端子及びバンプの形成ピッチは最小 120/ mで、 表示容量が 3 20 X 240ドッ トの液晶表示装置に対応するものである。 この導電接 続部に、 耐湿放置試験 (60 、 90%RH) 200時間、 冷熱サイク ル試験 (一 20°Cで 30分、 60°Cで 30分) 200サイクルを実施し た。 その結果、 これらの接続信頼性評価後も安定した接続状態が確保さ れていた。  Here, an adhesive 6 containing an epoxy-based component as a main component was used, and heating and pressing were performed at a temperature of 135 ° C, a pressure of 10 gf / bump, and a time of 30 seconds. The connection terminals and bumps are formed at a minimum pitch of 120 / m, which corresponds to a liquid crystal display device having a display capacity of 320 × 240 dots. This conductive connection was subjected to a humidity resistance test (60, 90% RH) for 200 hours and a thermal cycle test (at 20 ° C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
本実施例では、 入力配線 31、 出力配線 32上の微粒子層 1とパンブ 30が直接接触し電気的導通がとられており、 その状態を接着剤 6が機 械的に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐 食性ガス、 塵埃等から保護し接続状態を安定化している。  In the present embodiment, the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the pump 30 are in direct contact with each other to establish electrical continuity, and the adhesive 6 is mechanically fixed and held in this state. This connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.) to stabilize the connection.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 のものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 can be used by appropriately selecting the conditions for gas deposition.
また、 パネル基板 24の基材としては、 ポリカーボネート (PC) の 他にポリエーテルサルフォン (PES) 、 アクリル、 ポリアリレートま たはヒ ドロキシポリエーテル等の厚み 18 zmから 500 / mのプラス チックフィルムまたはプラスチック板も使用できる。 The base material of the panel substrate 24 is, in addition to polycarbonate (PC), a polyethersulfone (PES), acrylic, polyarylate, or hydroxypolyether or the like having a thickness of 18 to 500 / m. Tick films or plastic plates can also be used.
上述のような構成によれば、 入力配線 3 1、 出力配線 3 2の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 バンプ 3 0との接続面積を最大限に確保でき、 接続抵抗値を低減で き、 また接続状態を安定化できる。  According to the configuration as described above, the narrowing or disconnection of the terminal width of the input wiring 31 and the output wiring 32 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 30 can be reduced. The maximum connection can be ensured, the connection resistance can be reduced, and the connection state can be stabilized.
特に、 プラスチック基材の基板の表面に形成された I T O等の薄膜接 続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単に できるというメリッ トがある。 低抵抗化の方法としては、 一般的に湿式 法によるメツキ処理があるが、 このブラスチック基板の表面に形成され た I T O等の薄膜接続端子についてはこの湿式法によるメツキ処理をす ると使用するアルカリ性や酸性の薬品により変色、 腐食、 浸食等の悪影 響を強く受.けるため好ましくない。 これに対して本実施例の方法は、 こ のような薄膜接続端子の補修、 補強、 低抵抗化に最適な方法である。 さらに、 微粒子層 1には、 接続時の圧力や温度等による I T O薄膜へ の影響を減少させ、 万が一 I T O薄膜に亀裂等のダメージを生じても、 この微粒子層 1が適度に変形することにより、 導通が確保される。 また、 超微粒子の粒子径を 6 O n m位の微細にし、 粒子間に隙間があ る状態に形成することにより、 微粒子層 1がクッション材的な働きをし て、 バンプ 3 0の凹凸を緩和して接続面積を大きくとることができ、 接 続抵抗値を低減でき、 また接続状態を安定化できる。 また、 入力配線 3 1、 出力配線 3 2の表面の微粒子層 1とパンブ 3 0とが直接接続するた め、 端子位置合わせズレゃ加圧接続時のズレによる端子間ショートを除 けば、 接続不良となる他の要因が入らないだけ、 接続ピッチの微細化が 可能である。  In particular, it has the advantage that it can easily repair, reinforce, and lower the resistance of thin-film connection terminals such as ITO formed on the surface of a plastic substrate without the need for complicated processing steps. As a method for lowering the resistance, there is generally a plating process by a wet method. However, the thin film connection terminals such as ITO formed on the surface of the plastic substrate can be used by a plating process by the wet method. It is not preferable because it is strongly affected by discoloration, corrosion, erosion, etc. by alkaline or acidic chemicals. On the other hand, the method of this embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal. Furthermore, the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure, temperature, and the like at the time of connection. Even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed. Conduction is ensured. In addition, the ultrafine particles have a fine particle diameter of about 6 O nm and are formed with gaps between the particles, so that the fine particle layer 1 acts as a cushion material, and alleviates the bumps and bumps 30. As a result, the connection area can be increased, the connection resistance value can be reduced, and the connection state can be stabilized. In addition, since the fine particle layer 1 on the surface of the input wiring 31 and the output wiring 32 is directly connected to the pump 30, there is no difference in terminal alignment. The connection pitch can be miniaturized as other factors that cause defects are not included.
〔実施例 3 0〕 ■ 図 30は本発明に係る液晶表示装置の実施例 30の主要部分を示す断 面図である。 パネル基板 24に形成された入力配線 31、 出力配線 32 の表面の一部分または全部を微粒子層 1が覆っていて、 この入力配線 3 1、 出力配線 32上の微粒子層 1と液晶駆動用半導体チップ 19に形成 されたバンプ 30とが導電性接着剤 7を介して接続されている。 (Example 30) FIG. 30 is a cross-sectional view showing a main part of Embodiment 30 of the liquid crystal display device according to the present invention. The fine particle layer 1 covers part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the liquid crystal driving semiconductor chip 19. The bump 30 formed on the substrate is connected via the conductive adhesive 7.
図 28は液晶表示装置の斜視図であり、 パネル基板 24上の入力配線 31、 出力配線 32、 パス配線 33等は図示してないが、 パネル基板 2 4上に液晶駆動用半導体チップ 19が接続されている。 図 28の断面 A 一 Aは図 30に対応している。 液晶パネル 18に液晶駆動用半導体チッ プ 19が X側、 Y側に複数個接続されている。  FIG. 28 is a perspective view of the liquid crystal display device. The input wiring 31, output wiring 32, and path wiring 33 on the panel substrate 24 are not shown, but the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. Have been. The cross section A-A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
本実施例では、 0. 1mm厚のポリカーボネート基材からなる基板 2 4上に、 70 OA厚の I TO (Ind ium Tin Oxide) の 入力配線 31、 出力配線 32が形成されている。 これらの表面上に、 A uの超微粒子を堆積させてなる微粒子層 1が図 10、 図 18に示すガス 中蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成室と の差圧を 3気圧とし、 膜形成室の温度は 100°Cの条件で行った。 この Auの超微粒子は平均 1 / m位の粒子径で形成されていた。 微粒子層 1 の厚さは 1〜 3 /zmである。  In this embodiment, an input wiring 31 and an output wiring 32 of 70 OA thick ITO (Indium Tin Oxide) are formed on a substrate 24 made of a 0.1 mm thick polycarbonate base material. On these surfaces, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIGS. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 3 atm, and the temperature of the film formation chamber was set at 100 ° C. The ultrafine particles of Au were formed with an average particle diameter of about 1 / m. The thickness of the fine particle layer 1 is 1-3 / zm.
この入力配線 31、 出力配線 32の微粒子層 1上に、 液晶駆動用半導 体チップ 19に形成されたバンプ 30が導電性接着剤 7を介して接続さ れている。  The bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the input wiring 31 and the output wiring 32 on the fine particle layer 1 via the conductive adhesive 7.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ボリエステル系、 ウレタン系等の単独または複数の混合物若しくは化合物の接着剤の中に、 0. 1〜 5 mの粒子径の A g等の導電性物質を混合分散したものであ る。 この導電性接着剤 7を入力配線 31、 出力配線 32上に印刷法ゃデ イスペンス法等の公知の方法により載置し、 合わせて接着剤 6を介して もよく、 この導電性接着剤 7と接着剤 6を液晶駆動用半導体チップ 19 およびバンプ 30との間に配置し、 この導電性接着剤 7または接着剤 6 に熱硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着剤を使 つた場合には加熱加圧へッ ドを液晶駆動用半導体チップ 19に押し当て ることによって硬化接続させる。 また、 この導電性接着剤 7または接着 剤 6に UV硬化性タイプの接着剤を使った場合には加圧へッドを液晶駆 動用半導体チップ 19に押し当て、 パネル基板 24側から UV照射して 硬化させる。 また、 図示していないが、 この接続部分および入力配線 3 1、 出力配線 32の露出部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体をモールドで覆 つてもよい。 The conductive adhesive 7 may be a single or multiple mixture or compound of epoxy-based, acrylic-based, polyester-based, and urethane-based adhesives, and may be a conductive material such as Ag having a particle diameter of 0.1 to 5 m. It is a substance in which an active substance is mixed and dispersed. The conductive adhesive 7 is placed on the input wiring 31 and the output wiring 32 by a known method such as a printing method and a dispensing method, and is put together via the adhesive 6. The conductive adhesive 7 and the adhesive 6 may be disposed between the semiconductor chip 19 for driving the liquid crystal and the bump 30, and the conductive adhesive 7 or the adhesive 6 may be thermoset or thermoplastic and thermoset. When an adhesive of a blend type with the property is used, a heating and pressing head is pressed against the liquid crystal driving semiconductor chip 19 to make a hardened connection. When a UV-curable adhesive is used as the conductive adhesive 7 or the adhesive 6, the pressure head is pressed against the semiconductor chip 19 for driving the liquid crystal, and UV is irradiated from the panel substrate 24 side. And cure. Although not shown, the connection portion and the exposed portions of the input wiring 31 and the output wiring 32 are protected from an external environment (for example, humidity, corrosive gas, dust, etc.). May be covered with a mold.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2^mの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 13 5。C、 圧力 10 gf/バンプ、 時間 30秒の条件で行った。 この接続端 子の形成ピッチは最小 120 mで、 表示容量が 320x 240ドット の液晶表示装置に対応するものである。 この導電接続部に、 耐湿放置試 験 (60°C、 90%RH) 200時間、 冷熱サイクル試験 (一 20。Cで 30分、 60。Cで 30分) 200サイクルを実施した。 その結果、 これ らの接続信頼性評価後も安定した接続状態が確保されていた。  Here, a conductive adhesive 7 in which silver powder having a particle diameter of l to 2 m is mixed and dispersed in an adhesive mainly composed of an epoxy resin is used, and heating and pressing are performed at a temperature of 135. C, pressure 10 gf / bump, time 30 seconds. The formation pitch of the connection terminals is a minimum of 120 m, which corresponds to a liquid crystal display device having a display capacity of 320 × 240 dots. The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20.C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 511等の金属ゃ(:11ー211系、 Au— Sn系、 八 ー卩(1系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3〃mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and 511 (alloys such as 11-211, Au—Sn, and octane (type 1), and high-temperature superconducting materials Metallic materials or conductive materials such as can be used, and ultrafine particles with a particle size of 60 nm to 3 μm can be used by appropriately selecting the conditions for gas deposition.
また、 パネル基板 24の基材としては、 ポリカーボネート (PC) の 他にポリエーテルサルフォン (PES) 、 アクリル、 ポリアリレートま たはポリヒドロキシボリエーテル等の厚み 1 から 5 0 0 / mのプ ラスチックフィルムまたはプラスチック板も使用できる。 The base material of the panel substrate 24 is not only polycarbonate (PC) but also polyethersulfone (PES), acrylic, and polyarylate. Alternatively, a plastic film or a plastic plate having a thickness of 1 to 500 / m such as polyhydroxy polyether can be used.
上述のような構成によれば、 入力配線 3 1、 出力配線 3 2の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 またバンプ 3 0との接続面積を最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。  According to the above-described configuration, repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30. The connection resistance can be reduced as much as possible, and the connection state can be stabilized.
特に、 ガラス基板の表面に形成された I T O等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リッ トがある。 低抵抗化の方法としては、 一般的に湿式法によるメツキ 処理があるが、 このブラスチック基板の表面に形成された I T O等の薄 膜接続端子についてはこの湿式法によるメツキ処理をすると使用するァ ルカリ性ゃ酸性の薬品により変色、 腐食、 浸食等の悪影響を強く受ける ため好ましくない。 これに対して本実施例の方法は、 このような薄膜接 続端子の補修、 補強、 低抵抗化に最適な方法である。  In particular, there is a merit that repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of the glass substrate can be easily performed without requiring complicated processing steps. As a method of lowering the resistance, there is generally a plating process by a wet method, but a thin film connection terminal such as ITO formed on the surface of the plastic substrate is used by a plating process by the wet method. It is not preferable because it has strong adverse effects such as discoloration, corrosion, and erosion due to luke-like and acidic chemicals. On the other hand, the method of the present embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such a thin film connection terminal.
さらに、 微粒子層 1には、 接続時の圧力や温度等による I T O薄膜へ の影響を減少させ、 万が一 I T O薄膜に亀裂等のダメージを生じても、 この微粒子層 1が適度に変形することにより、 導通が確保される。  Furthermore, the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure, temperature, and the like at the time of connection. Even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed. Conduction is ensured.
また、 導電性接着剤 7を介在させることにより、 バンプ 3 0の凹凸を 補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 ま た接続状態を安定化できる。  In addition, by interposing the conductive adhesive 7, the connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
また、 導電性接着剤 7の中の導電材として、 0 . 1 111〜3〃111のカ —ボン粒子を使うこともでき、 この場合には接続抵抗値は A gの場合と 比較すると高くなるが、 材料費が安くなり、 またマイグレーション等の 発生防止対策としての防湿モールド材を省け、 安価で信頼性の高い端子 接続ができる。 〔実施例 31〕 Also, as the conductive material in the conductive adhesive 7, carbon particles of 0.1 111 to 3〃111 can be used, and in this case, the connection resistance value is higher than that of Ag. However, the material cost is low, and the moisture-proof mold material as a measure to prevent the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved. (Example 31)
図 31は本発明に係る液晶表示装置の実施例 31の主要部分を示す断 面図である。 パネル基板 24に形成された入力配線 31、 出力配線 32 の表面の一部分または全部を微粒子層 1が覆っていて、 この入力配線 3 1、 出力配線 32上の微粒子層 1ともう一方の液晶駆動用半導体チップ 19に形成されたバンプ 30とが異方性導電材 8を介して接続されてい る ο  FIG. 31 is a sectional view showing a main part of Example 31 of the liquid crystal display device according to the present invention. A part or all of the surface of the input wiring 31 and the output wiring 32 formed on the panel substrate 24 is covered with the fine particle layer 1, and the fine particle layer 1 on the input wiring 31 and the output wiring 32 and the other liquid crystal drive. The bumps 30 formed on the semiconductor chip 19 are connected via the anisotropic conductive material 8
図 28は液晶表示装置の斜視図であり、 パネル基板 24上の入力配線 31、 出力配線 32、 バス配線 33等は図示していないが、 パネル基板 24上に液晶駆動用半導体チップ 19が接続されている。 図 28の断面 A— Aは図 31に対応している。 液晶パネル 18に液晶駆動用半導体チ ヅプ 19が X側、 Y側に複数個接続されている。  FIG. 28 is a perspective view of the liquid crystal display device. Although the input wiring 31, output wiring 32, bus wiring 33 and the like on the panel substrate 24 are not shown, the liquid crystal driving semiconductor chip 19 is connected on the panel substrate 24. ing. Section A—A in FIG. 28 corresponds to FIG. A plurality of liquid crystal driving semiconductor chips 19 are connected to the liquid crystal panel 18 on the X and Y sides.
本実施例では、 0. 4 mm厚のポリカーボネート基材からなるパネル 基板 24上に、 800 A厚の I TO (I nd ium Tin Oxid e) の入力配線 31、 出力配線 32が形成されている。 これらの表面上 に、 Auの超微粒子を堆積してなる微粒子層 1が図 10、 図 18に示す ガス中蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成 室との差圧を Ι Ο Ο Τ Ο Γ Γとし、 膜形成室の温度は 120°Cの条件で 行った。 この Auの超微粒子は平均 3 m位の粒子径で形成されていた c 微粒子層 1の厚さは 3〜8 111である。 In the present embodiment, an input wiring 31 and an output wiring 32 of 800 Å thick ITO (Indium Tin Oxide) are formed on a panel substrate 24 made of a polycarbonate substrate having a thickness of 0.4 mm. On these surfaces, a fine particle layer 1 formed by depositing ultra fine particles of Au is formed by the gas evaporation method shown in FIGS. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was set to 差, and the temperature in the film formation chamber was set to 120 ° C. The ultrafine particles of Au were formed with an average particle diameter of about 3 m, and the thickness of the c particle layer 1 is 3 to 8111.
この入力配線 31、 出力配線 32上の微粒子層 1に、 液晶駆動用半導 体チップ 19に形成されたバンプ 30が異方性導電材 8を介して接続さ れている。  The bumps 30 formed on the liquid crystal driving semiconductor chip 19 are connected to the fine particle layer 1 on the input wiring 31 and the output wiring 32 via the anisotropic conductive material 8.
ここで使用する異方性導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成されている。 この導電粒子 9は半田粒子、 Ni, Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 ま たはメツキ等による複合金属粒子、 プラスチック粒子 (ポリスチレン系、 ボリカーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 Au、 Cu、 Fe等の単独または複数のメツキをした粒子、 カーボン粒 子等である。 また、 この接着剤 10はスチレンブタジエンスチレン (S BS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の 単独または複数の混合物若しくは化合物である。 The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be solder particles, a single or plural mixture of Ni, Au, Ag, Cu, Pb, Sn, etc., an alloy, Or composite metal particles or plastic particles (polystyrene, polycarbonate, acrylic, diphenylbenzene-based resin, etc.) with Ni, Au, Cu, Fe, etc., or carbon particles, etc. It is. The adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電膜をパネル基板 24および入力配線 31、 出力配線 32の表面上の微粒子層 1と液晶駆動用半導体チップ 1 9およびバンプ 30との間に配置し、 異方性導電膜に熱硬化性または熱 可塑性と熱硬化性とのブレンド夕イブの接着剤を使った場合には加熱加 圧へッ ドを液晶駆動用半導体チップ 19に押し当てることによって硬化 接続させる。 また、 異方性導電膜に UV硬化性タイプの接着剤を使った 場合には加圧へッドを液晶駆動用半導体チップ 19に押し当て、 パネル 基板 24側から UV照射して硬化させる。 '  The anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the panel substrate 24 and the input wiring 31 and the output wiring 32, the liquid crystal driving semiconductor chip 19 and the bump 30, When a thermosetting or a blend of thermoplastic and thermosetting adhesive is used for the anisotropic conductive film, the connection is cured by pressing the heating pressure head against the liquid crystal drive semiconductor chip 19. Let it. When a UV-curable adhesive is used for the anisotropic conductive film, the pressure head is pressed against the liquid crystal driving semiconductor chip 19 and cured by UV irradiation from the panel substrate 24 side. '
ここでは、 粒子径が 2 >am〜 3 mのスチレン系のブラスチック粒子 に 2 m厚の N iメツキと 0. 5 111厚の八11メツキをした導電粒子 9 をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散させた異 方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 135°C、 圧 力 10 gf/バンプ、 時間 30秒の条件で行った。 接続端子及びバンプ の形成ピッチは最小 120 / mで、 表示容量が 320 X 240ドットの 液晶表示装置に対応するものである。 この導電接続部に、 耐湿放置試験 (60。C、 90%RH) 200時間、 冷熱サイクル試験 (一 20。Cで 3 0分、 60°Cで 30分) 200サイクルを実施した。 その結果、 これら の接続信頼性評価後も安定した接続状態が確保されていた。  Here, conductive particles 9 with 2 m thick Ni plating and 0.5111 thick 811 plating on styrene plastic particles with particle diameters of 2> am to 3 m are mainly composed of epoxy resin. Using an anisotropic conductive film (anisotropic conductive material 8) mixed and dispersed in adhesive 10 at 5% by weight, heating and pressing at a temperature of 135 ° C, pressure of 10 gf / bump, and time of 30 seconds I went in. The formation pitch of connection terminals and bumps is at least 120 / m, and it corresponds to a liquid crystal display device with a display capacity of 320 x 240 dots. The conductive connection was subjected to a humidity resistance test (60.C, 90% RH) for 200 hours and a thermal cycle test (120.C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
他の異方性導鼋材 8として、 異方性導電材接着剤があり、 主に導電粒 子と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 ブラスチック粒子 (ボリスチレン系、 ポリ カーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 A u、 Cu、 F e等の単独または複数のメツキをした粒子、 カーボン粒子 等である。 Another anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive. These conductive particles are solder particles, Ni, Au, Ag, Cu, Pb, Sn or other single or multiple mixtures, alloys, or composite metal particles and plastic particles (metals such as polystyrene, polycarbonate, acrylic, dibenylbenzene resins, etc.) made of nickel, Au , Cu, Fe, etc., particles having one or more platings, carbon particles and the like.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。  The adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 入力配線 31、 出力配線 32の接続部分に配置する。 異方性 導電接着剤に熱硬化性または熱可塑性と熱硬化性とのブレンド夕イブの 接着剤を使った場合には加熱加圧へッドを液晶駆動用半導体チップ 19 に押し当てることによって硬化接続させる。 また、 異方性導 性接着剤 に UV硬化性タイプの接着剤を使った場合には加圧へッドを液晶駆動用 半導体チップ 19に押し当て、 パネル基板 24側から UV照射して硬化 させる。  The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is connected to the input wiring 31 and the output wiring 32 by a known method such as a printing method or a dispensing method using a dispenser. To place. When using a thermosetting or a blend of thermoplastic and thermosetting adhesives for the anisotropic conductive adhesive, it is cured by pressing the heating / pressing head against the liquid crystal drive semiconductor chip 19. Connect. When a UV-curable adhesive is used as the anisotropic conductive adhesive, the pressure head is pressed against the semiconductor chip 19 for driving liquid crystal, and is cured by irradiating UV from the panel substrate 24 side. .
なお、 図示はしていないが、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体を モールドで覆ってもよい。  Although not shown, a mold may cover the terminals or the entire connection to protect the connection from the external environment (for example, humidity, corrosive gas, dust, etc.).
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 31 等の金属ゃ〇11ー21 系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 //mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, 31 and the like, alloys such as 11-21 system, Au-Sn system, Ag-Pd system, and metals such as high-temperature superconducting material Materials or conductive materials can be used. Ultrafine particles with a particle diameter of 60 nm to 3 // m can be used by appropriately selecting the conditions for gas deposition.
また、 パネル基板 24の基材としては、 ポリカーポネート (PC) の 他にボリエーテルサルフォン (P E S ) 、 アクリル、 ポリアリレートま たはポリヒドロキシポリエーテル等の厚み 1 から 5 0 Ο χί πιのプ ラスチックフィルムまたはブラスチック板も使用できる。 The base material of the panel substrate 24 is made of polycarbonate (PC). In addition, a plastic film or plastic plate having a thickness of 1 to 50 5ππι such as polyethersulfone (PES), acrylic, polyarylate, or polyhydroxypolyether can be used.
上述のような構成によれば、 入力配線 3 1、 出力配線 3 2の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 またバンプ 3 0との接続面積を最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。  According to the above-described configuration, repair can be performed by covering or filling the fine particle layer 1 with the narrowing or breaking of the terminal width of the input wiring 31 and the output wiring 32, and the connection area with the bump 30. The connection resistance can be reduced as much as possible, and the connection state can be stabilized.
特に、 ブラスチック基板の表面に形成された I T O等の薄膜接続端子 の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできる というメリツ 卜がある。 低抵抗化の方法としては、 一般的に湿式法によ るメヅキ処理があるが、 このブラスチック基板の表面に形成された I T 0等の薄膜接続端子についてはこの湿式法によるメツキ処理をすると使 用するアルカリ性や酸性の薬品により変色、 腐食、 浸食等の悪影響を強 く受けるため好ましくない。 これに対して本実施例の方法は、 このよう な薄膜接続端子の補修、 補強、 低抵抗化に最適な方法である。  In particular, there is a merit that repair, reinforcement, and low resistance of thin film connection terminals such as ITO formed on the surface of a plastic substrate can be easily performed without requiring a complicated processing step. As a method of lowering the resistance, there is generally a plating process by a wet method. However, for a thin film connection terminal such as IT0 formed on the surface of the plastic substrate, a plating process by this wet method is used. It is not preferable because the alkaline and acidic chemicals used adversely affect discoloration, corrosion, and erosion. On the other hand, the method of the present embodiment is the most suitable method for repairing, reinforcing, and reducing the resistance of such thin film connection terminals.
さらに、 微粒子層 1には、 接続時の圧力や温度等による I T O薄膜へ の影響を減少させ、 万が一 I T O簿膜に亀裂等のダメージを生じても、 この微粒子層 1が適度に変形することにより、 導通が確保される。 また、 異方性導電材 8を介在させることにより、 バンプ 3 0の凹凸を 補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 ま た接続状態を安定化できる。  Further, the fine particle layer 1 reduces the influence on the ITO thin film due to the pressure and temperature at the time of connection, and even if the ITO thin film is damaged by cracks or the like, the fine particle layer 1 is appropriately deformed. The conduction is ensured. Further, by interposing the anisotropic conductive material 8, the connection area can be increased by complementing the unevenness of the bump 30, the connection resistance value can be reduced, and the connection state can be stabilized.
〔実施例 3 2〕 (Example 32)
図 3 3は本発明に係る電子印字装置の実施例の主要部分を示す断面図 である。 サーマルプリン夕ヘッ ド 3 4に形成された接続端子 3 9の表面 の一部分または全部を微粒子層 1が覆っていて、 この接続端子 3 9上の 微粒子層 1ともう一方の基板 36に形成された接続端子 40とが接着剤FIG. 33 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. Part or all of the surface of the connection terminal 39 formed on the thermal print head 34 is covered with the fine particle layer 1. An adhesive is used between the fine particle layer 1 and the connection terminals 40 formed on the other substrate 36.
6を介して接続されている。 Connected via 6.
図 32は電子印字装置の斜視図であり、 図示はしていないが、 サーマ ルブリン夕へッド 34の接続端子 39と基板 36の接続端子 40とが接 続している。 図 32の断面 A— Aは図 33に対応している。 サーマルプ リン夕へヅド 34にサーマルブリン夕へヅド駆動用半導体チップ 35を 搭載した基板 36が複数個接続されていて、 それそれの配線 (図示を省 略) が施されている。  FIG. 32 is a perspective view of the electronic printing apparatus. Although not shown, the connection terminals 39 of the thermal lubricating head 34 and the connection terminals 40 of the substrate 36 are connected. The section A—A in FIG. 32 corresponds to FIG. A plurality of substrates 36 each mounted with a semiconductor chip 35 for driving a thermal bridging head are connected to the thermal printing head 34, and wiring (not shown) is provided for each of them.
本実施例では、 サーマルブリン夕ヘッド 34上に、 3>c m厚の Niの 接続端子 39が形成されている。 この接続端子 39の表面上に、 Agの 超微粒子を堆積してなる微粒子層 1が図 18に示すものと同様のガス中 蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成室との 差圧を l O OTorrとし、 膜形成室の温度は室温 (約 25。C) の条件 で行った。 この A gの微粒子層 1は平均 60 nm位の粒子径の超微粒子 間に隙間が存在するように形成されていた。 微粒子層 1の厚さは 0. 1 In this embodiment, Ni connection terminals 39 having a thickness of 3> cm are formed on the thermal printing head 34. On the surface of the connection terminal 39, a fine particle layer 1 formed by depositing ultrafine particles of Ag is formed by a gas evaporation method similar to that shown in FIG. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was l O OTorr, and the temperature of the film formation chamber was room temperature (about 25.C). The Ag fine particle layer 1 was formed such that gaps exist between the ultrafine particles having an average particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1
〜1. 5 tzmである。 ~ 1.5 tzm.
この接続端子 39上の微粒子層 1の上に、 5 O/zm厚のボリィミ ドべ On the fine particle layer 1 on the connection terminal 39, a 5 O / zm thick
—スフィルムの基板 36に 35 m厚の銅箔をパ夕一ニングした接続端 子 40が接着剤 6を介して接続されている。 A connection terminal 40 formed by coating a 35-m-thick copper foil on a film substrate 36 is connected via an adhesive 6.
この接着剤 6としてはスチレンブタジエンスチレン (SBS) 系、 ェ ポキシ系、 アクリル系、 ポリエステル系、 ウレタン系の単独または複数 の混合物若しくは化合物である。  The adhesive 6 is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single or a mixture or compound of a plurality of them.
この接着剤 6を接続端子 39と接続端子 40との間に配置し、 この接 着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンドタイブの接着 剤を使った場合には加熱加圧へッドを基板 36に押し当てることによつ て硬化接続させる。 ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 175°C、 圧力 3MPa、 時間 20秒の条件で行った。 接続端子の 形成ピッチは 200 /mで、 合計 960個の端子を有するものである。 この導電接続部に、 耐湿放置試験 (60°C、 90%RH) 200時間、 冷熱サイクル試験 (一 20°Cで 30分、 60°Cで 30分) 200サイク ルを実施した。 その結果、 これらの接続信頼性評価後も安定した接続状 態が確保されていた。 This adhesive 6 is disposed between the connection terminal 39 and the connection terminal 40, and when a thermosetting or a thermoplastic and thermosetting blend type adhesive is used for the adhesive 6, the heating is performed. A hardening connection is made by pressing the pressure head against the substrate 36. Here, the adhesive 6 mainly composed of an epoxy was used, and the heating and pressurizing were performed at a temperature of 175 ° C, a pressure of 3 MPa, and a time of 20 seconds. The formation pitch of the connection terminals is 200 / m, with a total of 960 terminals. The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (one cycle at 20 ° C for 30 minutes and 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was secured even after these connection reliability evaluations.
本実施例では、 接続端子 39上の微粒子層 1と接続端子 40が直接接 触し電気的導通がとられており、 その状態を接着剤 6が機械的に固定保 持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵 埃等から保護し接続状態を安定化している。  In this embodiment, the fine particle layer 1 on the connection terminal 39 and the connection terminal 40 are in direct contact with each other to establish electrical continuity, and the adhesive 6 is mechanically fixed and held in this state. The parts are protected from the external environment (eg, humidity, corrosive gas, dust, etc.) and the connection is stabilized.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 zmのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, as the material of the ultrafine particles, other metals such as Au, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 zm can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 接続端子 39の端子幅の細りや断線を微 粒子層 1が覆うことまたは充填することにより補修ができ、 接続端子 4 0との接続幅または接続長さを最大限に確保でき、 接続抵抗値を低減で き、 また接続状態を安定化できる。 特に、 N i等の金属簿膜接続端子の 補修、 補強、 低抵抗化が、 湿式メツキ法のような複雑な処理工程を必要 とせず簡単にできるというメリッ トがある。  According to the above-described configuration, the narrowing or disconnection of the terminal width of the connection terminal 39 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 40 can be maximized. The connection resistance can be reduced, and the connection state can be stabilized. In particular, it has the advantage that repair, reinforcement, and low resistance of metal film connection terminals such as Ni can be easily performed without the need for complicated processing steps such as the wet plating method.
また、 超微粒子の粒子径を 60 nm位の微細にし、 粒子間に隙間があ る状態に形成することにより、 微粒子層 1がクッション材的な働きをし て、 接続端子 40の凹凸を緩和して接続面積を大きくとることができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。 また、 接続端子 3 9の表面上の微粒子 1と接続端子 4 0とが直接接続 するため、 端子位置合わせズレゃ加圧接続時のズレによる端子間ショー トを除けば、 接続不良となる他の要因が入らないだけ、 接続ピッチの微 細化が可能である。 In addition, the ultrafine particles have a fine particle size of about 60 nm and are formed with a gap between the particles, so that the fine particle layer 1 acts as a cushion material, and alleviates the unevenness of the connection terminal 40. As a result, the connection area can be increased, the connection resistance value can be reduced, and the connection state can be stabilized. In addition, since the fine particles 1 on the surface of the connection terminal 39 and the connection terminal 40 are directly connected to each other, other than the terminal misalignment, a short-circuit between the terminals due to the misalignment due to the pressurized connection may cause a poor connection. Since the factors are not included, the connection pitch can be reduced.
〔実施例 3 3〕 (Example 33)
図 3 4は本発明に係る電子印字装置の実施例の主要部分を示す断面図 である。 サーマルプリン夕ヘッド 3 4に形成された接続端子 3 9の表面 の一部分ま.たは全部を微粒子層 1が覆っていて、 この接続端子 3 9上の 微粒子層 1ともう一方の基板 3 6に形成された接続端子 4 0とが導電性 接着剤 Ίを介して接続されている。  FIG. 34 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. The fine particle layer 1 covers a part or all of the surface of the connection terminal 39 formed on the thermal printing head 34, and the fine particle layer 1 on the connection terminal 39 and the other substrate 36 The formed connection terminals 40 are connected via a conductive adhesive Ί.
図 3 2は液晶表示装置の斜視図であり、 図示はしていないが、 サーマ ルブリン夕へッド 3 4上の接続端子 3 9と基板 3 6の接続端子 4 0とが 接続されている。 図 3 2の断面 A— Aは図 3 3に対応している。 サーマ ルブリン夕へッド 3 4にサーマルプリン夕へッド駆動用半導体チップ 3 5を搭載した基板 3 6が複数個接続されていて、 それそれの配線 (図示 を省略) が施されている。  FIG. 32 is a perspective view of the liquid crystal display device, and although not shown, the connection terminal 39 on the thermal lug head 34 and the connection terminal 40 on the substrate 36 are connected. Section A—A in FIG. 32 corresponds to FIG. A plurality of substrates 36 on which a semiconductor chip 35 for driving a thermal pudding head is mounted are connected to the thermal lubrication head 34, and wiring (not shown) is provided for each of them.
本実施例では、 サーマルブリン夕ヘッド 3 4上に、 3 >c/ m厚の N iの 接続端子 3 9が形成されている。 この表面上に、 A uの超微粒子を堆積 してなる微粒子層 1が図 1 8に示すガス中蒸発法により形成されている c ここで、 超微粒子生成室と膜形成室との差圧を 1気圧とし、 膜形成室の 温度は 2 0 0 °Cの条件で成膜を行った。 この A uの微粒子層 1は平均 1 m位の粒子径で形成されていた。 微粒子層 1の厚さは 1〜3 mであ In this embodiment, a connection terminal 39 of Ni having a thickness of 3> c / m is formed on the thermal printing head 34. On this surface, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by the gas evaporation method shown in FIG. 18c. Here, the differential pressure between the ultrafine particle generation chamber and the film formation chamber is The film was formed under the conditions of 1 atm and a temperature of 200 ° C. in the film forming chamber. The fine particle layer 1 of Au was formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 1 to 3 m.
-S) o -S) o
この接続端子 3 9上の微粒子層 1の上に、 5 0 m厚のポリイミ ドべ 一スフイルムの基板 3 6に 3 5 厚の銅箔をパターニングした接続端 子 40が導電性接着剤 7を介して接続されている。 On the fine particle layer 1 on the connection terminals 39, a 50-m thick polyimide base film substrate 36 is connected with a 35-mm thick copper foil patterned connection end. The terminals 40 are connected via the conductive adhesive 7.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレ夕ン系等の単独または複数の混合物若しくは化合物の接着剤の中に、 0. 1〜 5 mの粒子径の A g等の導電性物質を混合分散したものであ る c  The conductive adhesive 7 may be an epoxy, acrylic, polyester, urethane-based adhesive or a mixture or compound of a plurality of such adhesives. Is a mixture of conductive materials
' この導電性接着剤 7を接続端子 39に形成された微粒子層 1の一部分' または全部分に印刷法ゃデイスペンス法等の公知の方法により載置し、 合わせて接着剤 6を介してもよく、 この導電性接着剤 7と接着剤 6を接 続端子 40との間に配置する。 この導電性接着剤 7または接着剤 6に熱 硬化性または熱可塑性と熱硬化性とのブレンドタイプの接着剤を使った 場合には加熱加圧へッ ドを基板 36に押し当てることによって硬化接続 させる。 また、 この接続部分および接続端子 39の露出部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間ま たは接続部全体をモールド 23で覆っている。  'This conductive adhesive 7 is placed on a part of the fine particle layer 1 formed on the connection terminal 39 or on the entire part thereof by a known method such as a printing method or a dispensing method, and may be put together via the adhesive 6. Then, the conductive adhesive 7 and the adhesive 6 are arranged between the connection terminals 40. When a thermosetting or a blend of thermoplastic and thermosetting is used as the conductive adhesive 7 or the adhesive 6, the connection is cured by pressing the heating and pressing head against the substrate 36. Let it. Further, in order to protect this connection portion and the exposed portion of the connection terminal 39 from the external environment (for example, humidity, corrosive gas, dust, etc.), the mold 23 covers the terminals or the entire connection portion.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2;t/mの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 17 5°C、 圧力 4MPa、 時間 20秒の条件で行った。 この接続端子の形成 ビヅチは 200 mで、 合計 960個の端子を備えている。 この導電接 続部に、 耐湿放置試験 (60eC、 90%RH) 200時間、 冷熱サイク ル試験 (一 20°Cで 30分、 60°Cで 30分) 200サイクルを実施し、 その結果、 これらの接続信頼性評価後も安定した接続状態が確保されて いた。 Here, a conductive adhesive 7 in which silver powder having a particle diameter of l to 2; t / m is mixed and dispersed in an adhesive mainly composed of an epoxy resin is used, and heating and pressing are performed at a temperature of 175 ° C, The test was performed under the conditions of a pressure of 4 MPa and a time of 20 seconds. The connection terminals are 200 m long and have a total of 960 terminals. A moisture resistance test (60 eC , 90% RH) for 200 hours and a thermal cycle test (30 minutes at 20 ° C and 30 minutes at 60 ° C) were performed on this conductive connection for 200 hours. However, a stable connection state was maintained even after these connection reliability evaluations.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 Sn等の金属や Cu— Zn系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and metal materials such as high-temperature superconducting materials Alternatively, a conductive material can be used. In addition, ultrafine particles with a particle size of 60 nm to 3 m are used for gas deposition. It can be used by appropriately selecting the conditions.
上述のような構成によれば、 接続端子 3 9の端子幅の細りや断線を微 粒子層 1が覆うことまたは充填することにより補修ができ、 また接続端 子 4 0との接続幅または接続長さを最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。  According to the configuration described above, the narrowing or disconnection of the terminal width of the connection terminal 39 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 40 can be repaired. The connection resistance can be reduced, and the connection state can be stabilized.
特に、 N i等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理 工程を必要とせず簡単にできるというメリッ卜がある。  In particular, there is an advantage that repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without requiring complicated processing steps.
また、 導電性接着剤 7を介在させることにより、 接続端子 4 0の凹凸 を補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。  In addition, by interposing the conductive adhesive 7, the unevenness of the connection terminal 40 can be complemented to increase the connection area, reduce the connection resistance value, and stabilize the connection state.
また、 導電性接着剤 7の中の導電材として、 0 . 1 m〜3 mの力 ーポン粒子を使うこともでき、 この場合には接続抵抗値は A gの場合と 比較すると高くなるが、 材料費が安くなり、 またマイグレーション等の 発生防止対策としての防湿モールド材を省け、 安価で信頼性の高い端子 接続ができる。  In addition, as a conductive material in the conductive adhesive 7, 0.1 to 3 m of power-on particles can be used, and in this case, the connection resistance value is higher than that of Ag, The material cost is reduced, and the moisture-proof mold material as a measure to prevent the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connections can be made.
〔実施例 3 4〕 (Example 3 4)
図 3 5は本発明に係る電子印字装置の実施例の主要部分を示す断面図 である。 サーマルブリン夕へッド 3 4に形成された接続端子 3 9の表面 の一部分または全部を微粒子層 1が覆っていて、 この接続端子 3 9上の 微粒子層 1ともう一方の基板 3 6に形成された接続端子 4 0とが異方性 導電材 8を介して接続されている。  FIG. 35 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. A part or all of the surface of the connection terminal 39 formed on the thermal link head 34 is covered with the fine particle layer 1, and the fine particle layer 1 on the connection terminal 39 and the other substrate 36 are formed. The connected connection terminal 40 is connected via the anisotropic conductive material 8.
図 3 2は電子印字装置の斜視図であり、 図示はしていないが、 サ一マ ルブリン夕へッド 3 4上の接続端子 3 9と基板 3 6の接続端子 4 0とが 接続されている。 図 3 2の断面 A— Aは図 3 3に対応している。 サーマ ルブリン夕ヘッド 3 4にサーマルブリン夕へッド駆動用半導体チップ 3 5を搭載した基板 36が複数個接続されていて、 それそれの配線 (図示 を省略) が施されている。 FIG. 32 is a perspective view of the electronic printing apparatus. Although not shown, the connection terminals 39 on the thermal head 34 and the connection terminals 40 on the substrate 36 are connected. I have. Section A—A in FIG. 32 corresponds to FIG. Thermal lubricating head 3 4 A plurality of substrates 36 on which 5 is mounted are connected, and each wiring (not shown) is provided.
本実施例では、 サーマルプリン夕ヘッ ド 34上に、 3 111厚の 1;1の 接続端子 39が形成されている。 この表面上に、 Auの超微粒子を堆積 してなる微粒子層 1が図 18に示すガス中蒸発法により形成されている c ここで、 超微粒子生成室と膜形成室との差圧を Ι Ο Ο Τ Ο Γ Γとし、 膜 形成室の温度は 120°Cの条件で行った。 この Auの微粒子層 1は平均 3 / m位の粒子径で形成されていた。 微粒子層 1の厚さは 3〜8//mで ある o In this embodiment, a 3111-thick 1; 1 connection terminal 39 is formed on the thermal print head 34. On this surface, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by the gas evaporation method shown in FIG. 18c. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber is set to を Ο. Γ の Ο Γ 、, and the temperature of the film formation chamber was 120 ° C. The fine particle layer 1 of Au was formed with an average particle diameter of about 3 / m. The thickness of the fine particle layer 1 is 3 to 8 // m o
この接続端子 39上の微粒子層 1の上に、 50 m厚のポリイミ ドべ 一スフイルムの基板 36に 25 m厚の銅箔をパターニングした接続端 子 40が異方性導電材 8を介して接続されている。  On the fine particle layer 1 on the connection terminal 39, a connection terminal 40 obtained by patterning a 50-m thick polyimide base film substrate 36 with a 25-m-thick copper foil is connected via an anisotropic conductive material 8. Have been.
ここで使用する異方性導電材 8は異方性導電膜であり、 主に導電粒子 9と接着剤 10より構成されている。 この導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 ま たはメツキ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 Au、 Cu、 F e等の単独または複数のメツキをした粒子、 カーボン粒 子等である。  The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be composed of solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloys, composite metal particles formed by plating, plastic particles (polystyrene, polycarbonate, acrylic, etc.). Or diphenylbenzene-based resin), Ni, Au, Cu, Fe, etc., or particles with single or multiple plating, carbon particles, etc.
また、 この接着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または 複数の混合物若しくは化合物である。  The adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電膜をサーマルブリン夕へッド 34お よび接続端子 39の表面上の微粒子層 1と基板 36の接続端子 40との 間に配置し、 異方性導電膜に熱硬化性または熱可塑性と熱硬化性とのブ レンドタイプの接着剤を使った場合には加熱加圧へッドを基板 36に押 し当てることによって硬化接続させる。 The anisotropic conductive film of the anisotropic conductive material 8 is disposed between the fine particle layer 1 on the surface of the thermal binder 34 and the connection terminals 39 and the connection terminals 40 of the substrate 36, and When a thermosetting or thermoplastic and thermosetting blend type adhesive is used for the conductive film, the heating and pressing head is pressed onto the substrate 36. A hardening connection is made by pressing.
ここでは、 粒子径が !〜 10 /mのジベニルベンゼン系のプラス チヅク粒子に 2 /m厚の N iメツキと 0. 5 m厚の Auメツキをした 導電粒子 9をエポキシ系を主成分とする接着剤 10中に 5重量%混合分 散させた異方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 1 75 、 圧力 3MPa、 時間 20秒の条件で行った。 接続端子の形成ビ ツチは 200 ^mで、 合計 960個の端子を備えている。 この導電接続 部に、 耐湿放置試験 (60°C、 90%RH) 200時間、 冷熱サイクル 試験 (一 20°Cで 30分、 60。Cで 30分) 200サイクルを実施した。 その結果、 これらの接続信頼性評価後も安定した接続状態が確保されて いた。  Here, the particle size! Conductive particles 9 with a 2 / m thick Ni plating and a 0.5 m thick Au plating on diphenylbenzene-based plastic particles of ~ 10 / m 5% by weight in an adhesive 10 mainly composed of epoxy The mixed and dispersed anisotropic conductive film (anisotropic conductive material 8) was used, and the heating and pressing were performed at a temperature of 175, a pressure of 3 MPa, and a time of 20 seconds. The formation of the connection terminals is 200 m, with a total of 960 terminals. The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20 ° C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電材接着剤があり、 主に導電粒 子と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sh等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 ブラスチック粒子 (ポリスチレン系、 ポリ カーボネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 A u、 Cu、 F e等の単独または複数のメツキをした粒子、 カーボン粒子 等である。  Another anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles include solder particles, single or multiple mixtures of Ni, Au, Ag, Cu, Pb, Sh, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic). , Dibenylbenzene-based resin, etc.) and particles of one or more of Ni, Au, Cu, Fe, etc., and carbon particles.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。  The adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 接続端子 39の接続部分に配置する。 異方性導電接着剤に熱 硬化性または熱可塑性と熱硬化性とのプレンドタイプの接着剤を使った 場合には加熱加圧へッ ドを基板 36に押し当てることによつて硬化接続 'させる。 The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is disposed at the connection portion of the connection terminal 39 by a known method such as a printing method or a dispensing method using a dispenser. When a thermosetting or thermoplastic and thermosetting blend type adhesive is used for the anisotropic conductive adhesive, the connection is cured by pressing the heating and pressing head against the substrate 36. 'Let me.
また、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体をモールド 2 3で覆って もよい。  Further, in order to protect the connection portion from an external environment (for example, humidity, corrosive gas, dust, etc.), the terminals 23 or the entire connection portion may be covered with a mold 23.
ここで超微粒子の材質としては、 その他に A g、 C u、 Z n、 P d、 S n等の金属や C u— Z n系、 A u— S n系、 A g— P d系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 / mのものをガスデポジションの条 件を適宜選定することによって使用可能である。  Here, examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and Ag—Pd. Alloys, metal materials such as high-temperature superconducting materials, or conductive materials can be used. Ultrafine particles having a particle diameter of 60 nm to 3 / m can be used by appropriately selecting the conditions for gas deposition.
上述のような構成によれば、 接続端子 3 9の端子幅の細りや断線を微 粒子層 1が覆うことまたは充填することにより補修ができ、 また接続端 子 4 0との接続幅または接続長さを最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 N i等の薄膜接続端子の 補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできると いうメリットがある。  According to the configuration described above, the narrowing or disconnection of the terminal width of the connection terminal 39 can be repaired by covering or filling the fine particle layer 1, and the connection width or connection length with the connection terminal 40 can be repaired. The connection resistance can be reduced, and the connection state can be stabilized. In particular, there is an advantage that repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without the need for complicated processing steps.
また、 異方性導電材 8を介在させることにより、 接続端子 4 0の凹凸 を補完して導電粒子 9の接続面積を大きくとることができ、 接続抵抗値 を低減でき、 また接続状態を安定化できる。  In addition, by interposing the anisotropic conductive material 8, the connection area of the conductive particles 9 can be increased by complementing the unevenness of the connection terminal 40, the connection resistance value can be reduced, and the connection state can be stabilized. it can.
〔実施例 3 5〕 (Example 35)
図 3 7は本発明に係る電子印字装置の実施例の主要部分を示す断面図 である。 サーマルプリン夕へッド 3 4に形成された入力配線 4 1、 出力 配線 4 2の表面の一部分または全部を微粒子層 1が覆っていて、 この入 力配線 4 1、 出力配線 4 2上の微粒子層 1とサーマルプリン夕へッド駆 動用半導体チップ 3 5に形成されたバンプ 4 3とが接着剤 6を介して接 続されている。 図 3 6は電子印字装置の斜視図であり、 サーマルプリン夕ヘッド 3 4 の入力配線 4 1、 出力配線 4 2、 バス配線 4 4等は図示してないが、 サ 一マルブリン夕ヘッド 3 4上にサーマルブリン夕へッド駆動用半導体チ ヅブ 3 5が接続されている。 図 3 6の断面 A— Aは図 3 7に対応してい る。 FIG. 37 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. The fine particle layer 1 covers part or all of the surface of the input wiring 41 and the output wiring 42 formed on the thermal print head 34 and the fine particles on the input wiring 41 and the output wiring 42. The layer 1 and the bumps 43 formed on the semiconductor chip 35 for driving the thermal print head are connected via an adhesive 6. Fig. 36 is a perspective view of the electronic printing device. The input wiring 41, output wiring 42, bus wiring 44, etc. of the thermal printing head 34 are not shown, but they are above the thermal printing head 34. A semiconductor chip 35 for driving a thermal bridging head is connected thereto. Section A—A in FIG. 36 corresponds to FIG.
本実施例では、 サーマルブリン夕ヘッド 3 4上に、 3 m厚の N上の 入力配線 4 1、 出力配線 4 2が形成されている。 これらの表面上には、 A gの超微粒子を堆積させた微粒子層 1が図 1 0、 図 1 8に示すガス中 蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成室との 差圧を 1 0 0 T 0 r rとし、 膜形成室の温度は室温 (約 2 5 °C) の条件 で行った。 この A gの微粒子層 1は 6 0 n m位の粒子径の超微粒子に隙 間がある状態で形成されていた。 微粒子層 1の厚さは 0 . 1〜1 . 5 mである。  In this embodiment, the input wiring 41 and the output wiring 42 on the 3 m-thick N are formed on the thermal printing head 34. On these surfaces, a fine particle layer 1 on which ultrafine particles of Ag are deposited is formed by a gas evaporation method shown in FIGS. 10 and 18. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 100 T0 rr, and the temperature of the film formation chamber was room temperature (about 25 ° C.). The Ag fine particle layer 1 was formed in a state where there were gaps in the ultrafine particles having a particle diameter of about 60 nm. The thickness of the fine particle layer 1 is 0.1 to 1.5 m.
この入力配線 4 1、 出力配線 4 2上の微粒子層 1の上に、 サ一 ルブ リン夕へッド駆動用半導体チップ 3 5に形成されたパンブ 4 3が接着剤 6を介して接続されている。  On the fine particle layer 1 on the input wiring 41 and the output wiring 42, a pump 43 formed on a semiconductor chip 35 for driving a sub-line head is connected via an adhesive 6. I have.
• この接着剤 6としてはスチレンブタジエンスチレン (S B S ) 系、 ェ ポキシ系、 アクリル系、 ボリエステル系、 ウレタン系の単独または複数 の混合物若しくは化合物である。  • The adhesive 6 is a styrene-butadiene styrene (SBS) -based, epoxy-based, acrylic-based, polyester-based, or urethane-based single compound or a mixture or compound.
この接着剤 6を入力配線 4 1、 出力配線 4 2の微粒子層 1とサーマル プリンタヘッド駆動用半導体チッブ 3 5およびバンプ 4 3との間に配置 し、 この接着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンド夕 ィブの接着剤を使った場合には加熱加圧へッドをサ一マルプリン夕へッ ド駆動用半導体チヅプ 3 5に押し当てることによって硬化接続させる。 ここでは、 エポキシ系を主成分とする接着剤 6を使用し、 加熱加圧を 温度 1 7 5。C、 圧力 1 0 g f /バンプ、 時間 3 0秒の条件で行った。 こ の接続端子及びバンプの形成ピッチは最小 120 zmで、 印字容量が 9 60ドッ 卜の電子印字装置に対応する。 この導電接続部に、 耐湿放置試 験 (60°C、 90%RH) 200時間、 冷熱サイクル試験 (一 20°Cで 30分、 60°Cで 30分) 200サイクルを実施した。 その結果、 これ らの接続信頼性評価後も安定した接続状態が維持確保されていた。 This adhesive 6 is placed between the fine particle layer 1 of the input wiring 41 and the output wiring 42, the semiconductor chip 35 for driving the thermal printer head 35 and the bump 43, and the thermosetting or thermoplastic is applied to the adhesive 6. When an adhesive of a blend type and a thermosetting type is used, a heat and pressure head is pressed against a semiconductor chip 35 for driving a thermal pudding to form a hardened connection. Here, an adhesive 6 mainly composed of epoxy is used, and heating and pressing are performed at a temperature of 17.5. C, pressure was 10 gf / bump, and time was 30 seconds. This The minimum pitch for forming the connection terminals and bumps is 120 zm, which corresponds to an electronic printing device with a printing capacity of 960 dots. The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (one cycle at 20 ° C for 30 minutes and at 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained and secured even after these connection reliability evaluations.
本実施例では、 入力配線 41、 出力配線 42上の微粒子層 1とバンプ In this embodiment, the fine particle layer 1 on the input wiring 41 and the output wiring 42 and the bump
43が直接接触し電気的導通をとられており、 その状態を接着剤 6が機 械的に固定保持し、 また、 この接続部分を外部環境 (例えば、 湿度、 腐 食性ガス、 塵埃等から保護し接続状態を安定化している。 43 are in direct contact with each other for electrical continuity, and the adhesive 6 is mechanically fixed and held in this state, and this connection is protected from the external environment (for example, humidity, corrosive gas, dust, etc.). Connection state is stabilized.
ここで超微粒子の材質としては、 その他に Au、 Cu、 Zn、 Pd、 Here, the material of the ultrafine particles is Au, Cu, Zn, Pd,
5 n等の金属や Cu— Z n系、 Au— Sn系、 八 ー卩(1系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 60 nmから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 Metals such as 5n, Cu-Zn-based, Au-Sn-based, and octa-cured (alloys such as 1-based), and metallic or conductive materials such as high-temperature superconducting materials can be used. Can be used by selecting gas deposition conditions appropriately from 60 nm to 3 m.
上述のような構成によれば、 入力配線 41、 出力配線 42の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 バンプ 43との接続面積を最大限に確保でき、 接続抵抗値を低減で き、 また接続状態を安定化できる。 特に、 N i等の薄膜接続端子の補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできるというメ リッ トがある。 また、 超微粒子の粒子径を 60 nm位の微細にし、 粒子 間に隙間がある状態に形成することにより、 微粒子層 1がクッション材 的な働きをして、 バンプ 43の凹凸を緩和して接続面積を大きくとるこ とができ、 接続抵抗値を低減でき、 また接続状態を安定化できる。 また、 入力配線 41、 出力配線 42の表面の微粒子 1とバンプ 43とが直接接 続するため、 端子位置合わせズレゃ加圧接続時のズレによる端子間ショ ートを除けば、 接続不良となる他の要因が入らないだけ、 接続ピッチの 微細化が可能である。 〔実施例 3 6〕 According to the configuration described above, the narrowing or disconnection of the terminal width of the input wiring 41 and the output wiring 42 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 43 can be maximized. The connection resistance can be reduced, and the connection state can be stabilized. In particular, it has the advantage that repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without the need for complicated processing steps. Also, by making the particle size of the ultrafine particles as fine as about 60 nm and forming a state in which there is a gap between the particles, the fine particle layer 1 acts as a cushion material, and alleviates the bumps 43 bumps and connects. The area can be increased, the connection resistance can be reduced, and the connection state can be stabilized. In addition, since the fine particles 1 on the surface of the input wiring 41 and the output wiring 42 are directly connected to the bumps 43, a connection failure occurs unless a shortage between the terminals due to a misalignment due to misalignment of the terminals and a pressure connection. As other factors are not included, the connection pitch Miniaturization is possible. (Example 36)
図 3 8は本発明に係る電子印字装置の実施例の主要部分を示す断面図 である。 サ一マルブリン夕ヘッド 3 4に形成された入力配線 4 1、 出力 '配線 4 2の表面の一部分または全部を微粒子層 1が覆っていて、 この入' 力配線 4 1、 出力配線 4 2上の微粒子層 1とサーマルプリン夕へッド駆 動用半導体チップ 3 5に形成されたバンプ 4 3とが導電性接着剤 7を介 して接続されている。  FIG. 38 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. The fine particle layer 1 covers part or all of the surface of the input wiring 4 1 and output 'wiring 4 2' formed on the thermal head 3 4, and the input wiring 4 1 and output wiring 4 2 The fine particle layer 1 and the bumps 43 formed on the semiconductor chip 35 for driving the thermal print head are connected via a conductive adhesive 7.
図 3 6は電子印字装置の斜視図であり、 サーマルプリン夕ヘッド 3 4 上の入力配線 4 1、 出力配線 4 2、 パス配線 4 4等は図示してないが、 サーマルブリン夕へッド 3 4上にサーマルプリン夕へッド駆動用半導体 チップ 3 5が接続されている。 図 3 6の断面 A— Aは図 3 8に示してあ る。  Fig. 36 is a perspective view of the electronic printing device. The input wiring 41, output wiring 42, and pass wiring 44 on the thermal printing head 34 are not shown, but the thermal printing head 3 is not shown. The semiconductor chip 35 for driving the thermal print head is connected on 4. Section A—A in FIG. 36 is shown in FIG.
本実施例では、 サーマルブリン夕ヘッド 3 4上に、 3 ^ m厚の N iの 入力配線 4 1、 出力配線 4 2が形成されている。 これらの表面上に、 A uの超微粒子を堆積させてなる微粒子層 1が図 1 0、 図 1 8に示すガス 中蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成室と の差圧を 3気圧とし、 膜形成室の温度は 1 0 0。Cの条件で行った。 この A uの超微粒子は平均 1 m位の粒子径で形成されていた。 微粒子層 1 の厚さは 1〜 3 >t/ mである。  In this embodiment, a 3 入 力 m-thick Ni input wiring 41 and an output wiring 42 are formed on the thermal printing head 34. On these surfaces, a fine particle layer 1 formed by depositing ultrafine particles of Au is formed by a gas evaporation method shown in FIGS. 10 and 18. Here, the pressure difference between the ultrafine particle generation chamber and the film formation chamber was 3 atm, and the temperature of the film formation chamber was 100. C was performed under the condition of C. The ultrafine particles of Au were formed with an average particle diameter of about 1 m. The thickness of the fine particle layer 1 is 1 to 3> t / m.
この入力配線 4 1、 出力配線 4 2の微粒子層 1上に、 サーマルブリン 夕へッド駆動用半導体チップ 3 5に形成されたバンプ 4 3が導電性接着 剤 7を介して接続されている。  On the fine particle layer 1 of the input wiring 41 and the output wiring 42, a bump 43 formed on a semiconductor chip 35 for driving a thermal binder is connected via a conductive adhesive 7.
この導電性接着剤 7は、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数の混合物若しくは化合物の接着剤の中に、 0. 1〜 5 mの粒子径の A g等の導電性物質を混合分散したものであ る o This conductive adhesive 7 may be an epoxy-based, acrylic-based, polyester-based, urethane-based, etc. single or plural mixture or compound adhesive. 0.1 Mixed and dispersed conductive material such as Ag with particle diameter of 1 to 5 m o
この導電性接着剤 7を入力配線 41、 出力配線 42上に印刷法やディ スペンス法等の公知の方法により載置し、 合わせて接着剤 6を介しても よく、 この導電性接着剤 7と接着剤 6をサーマルブリン夕ヘッ ド駆動用 半導体チップ 35およびバンプ 43との間に配置し、 この導電性接着剤 7または接着剤 6に熱硬化性または熱可塑性と熱硬化性とのブレンド夕 イブの接着剤を使った場合には加熱加圧へッ ドをサ一マルブリン夕へッ ド駆動用半導体チップ 35に押し当てることによって硬化接続させる。 また、 この接続部分および入力配線 41、 出力配線 42の露出部分を外 部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端 子間または接続部全体をモールド 23で覆ってもよい。  The conductive adhesive 7 may be placed on the input wiring 41 and the output wiring 42 by a known method such as a printing method or a dispensing method, and may be put together via an adhesive 6. The adhesive 6 is arranged between the semiconductor chip 35 for driving the thermal head and the bump 43, and the conductive adhesive 7 or the adhesive 6 is thermoset or a blend of thermoplastic and thermosetting. When an adhesive of the type described above is used, the heating and pressurizing head is pressed against the semiconductor chip 35 for driving the thermal head to make a hardened connection. In addition, in order to protect this connection part and the exposed part of the input wiring 41 and the output wiring 42 from the external environment (for example, humidity, corrosive gas, dust, etc.), the terminal 23 or the whole connection part is covered with a mold 23. You may.
ここでは、 エポキシ系を主成分とする接着剤中に l〜2 zmの粒子径 の銀粉末を混合分散した導電性接着剤 7を使用し、 加熱加圧を温度 17 5°C、 圧力 10 gf/バンプ、 時間 30秒の条件で行った。 この接続端 子の形成ピッチは最小 120 zmで、 印字容量が 960ドットの電子印 字装置に対応する。 この導電接続部に、 耐湿放置試験 (60°C、 90% RH) 200時間、 冷熱サイクル試験 (一 20°Cで 30分、 60°Cで 3 0分) 200サイクルを実施した。 その結果、 これらの接続信頼性評価 後も安定した接続状態が確保されていた。  Here, a conductive adhesive 7 was used, in which silver powder with a particle size of l to 2 zm was mixed and dispersed in an epoxy-based adhesive, and heating and pressing were performed at a temperature of 175 ° C and a pressure of 10 gf. / Bump, time 30 seconds. This connection terminal has a minimum forming pitch of 120 zm and is compatible with an electronic printing device with a printing capacity of 960 dots. The conductive connection was subjected to a humidity resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20 ° C for 30 minutes and at 60 ° C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
ここで超微粒子の材質としては、 その他に Ag、 Cu、 Zn、 Pd、 S n等の金属や Cu— Z n系、 Au— Sn系、 Ag— Pd系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 上述のような構成によれば、 入力配線 41、 出力配線 42の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 またバンプ 43との接続面積を最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 N i等の薄膜接続端子の 補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできると いうメリッ卜がある。 Here, as the material of the ultrafine particles, other metals such as Ag, Cu, Zn, Pd, and Sn, alloys such as Cu—Zn, Au—Sn, and Ag—Pd, and high-temperature superconducting materials Metallic or conductive materials can be used. According to the configuration described above, the narrowing or disconnection of the terminal width of the input wiring 41 and the output wiring 42 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bump 43 can be maximized. And low connection resistance And the connection state can be stabilized. In particular, there is a merit that repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without requiring complicated processing steps.
また、 導電性接着剤 7を介在させることにより、 バンプ 4 3の凹凸を 補完して接続面積を大きくとることができ、 接続抵抗値を低減でき、 ま た接続状態を安定化できる。  In addition, by interposing the conductive adhesive 7, the bumps 43 can be supplemented with irregularities to increase the connection area, reduce the connection resistance value, and stabilize the connection state.
また、 導電性接着剤 7の中の導電材として、 0 . 1 111〜3 111の力 一ボン粒子を使うこともでき、 この場合には接続抵抗値は A gの場合と 比較すると高くなるが、 材料費が安くなり、 またマイグレーション等の 発生防止対策としての防湿モールド材を省け、 安価で信頼性の高い端子 接続ができる。  In addition, as the conductive material in the conductive adhesive 7, a force particle of 0.1111 to 3111 can be used, and in this case, the connection resistance value is higher than that of Ag. In addition, the material cost is reduced, and the moisture-proof mold material as a measure for preventing the occurrence of migration and the like can be omitted, so that inexpensive and highly reliable terminal connection can be achieved.
〔実施例 3 7 (Example 3 7
図 3 9は本発明に係る電子印字装置の実施例の主要部分を示す断面図 である。 サーマルプリンタヘッド 3 4に形成された入力配線 4 1、 出力 配線 4 2の表面の一部分または全部を微粒子層 1が覆っていて、 この入 力配線 4 1、 出力配線 4 2上の微粒子層 1とサーマルブリン夕へッド駆 動用半導体チップ 3 5に形成されたバンプ 4 3とが異方性導電材 8を介 して接続されている。  FIG. 39 is a sectional view showing a main part of an embodiment of the electronic printing apparatus according to the present invention. The particle layer 1 covers part or all of the surface of the input wiring 41 and the output wiring 42 formed on the thermal printer head 34, and the fine particle layer 1 on the input wiring 41 and the output wiring 42. The bumps 43 formed on the semiconductor chip 35 for driving the thermal binder are connected via the anisotropic conductive material 8.
図 3 6は電子印字装置の斜視図であり、 サーマルプリンタヘッド 3 4 上の入力配線 4 1、 出力配線 4 2、 パス配線 4 4等は図示していないが、 サーマルブリン夕へッド 3 4上にサーマルプリン夕へッド駆動用半導体 チップ 3 5が接続されている。 図 3 6の断面 A— Aは図 3 9に対応して いる。  Figure 36 is a perspective view of the electronic printing device. The input wiring 41, output wiring 42, and path wiring 44 on the thermal printer head 34 are not shown, but the thermal printing head 34 The semiconductor chip 35 for driving the thermal print head is connected above. Section A—A in FIG. 36 corresponds to FIG.
本実施例では、 サーマルプリン夕ヘッド 3 4上に、 3 m厚の N iの 入力配線 4 1、 出力配線 4 2が形成されている。 これらの表面上に、 A uの超微粒子を堆積してなる微粒子層 1が図 10、 図 18に示すガス中 蒸発法により形成されている。 ここで、 超微粒子生成室と膜形成室との 差圧を l O OTorrとし、 膜形成室の温度は 120°Cの条件で行った c この Auの超微粒子は平均 3 m位の粒子径で形成されていた。 微粒子 層 1の厚さは 3〜8 mである。 In this embodiment, a 3 m-thick Ni input wiring 41 and an output wiring 42 are formed on the thermal printing head 34. On these surfaces, A A fine particle layer 1 formed by depositing ultrafine particles of u is formed by the gas evaporation method shown in FIGS. Here, the differential pressure between the ultrafine particles producing chamber and film forming chamber and l O OTorr, the temperature of the film forming chamber c particle diameter of the ultrafine particles is the average 3 m-position of the Au was performed under the conditions of 120 ° C Had been formed. The thickness of the fine particle layer 1 is 3 to 8 m.
この入力配線 41、 出力配線 42上の微粒子層 1に、 サーマルプリン 夕へッ ド駆動用半導体チップ 35に形成されたバンプ 43が異方性導電 材 8を介して接続されている。 ここで使用する異方性導電材 8は異方性 導電膜であり、 主に導電粒子 9と接着剤 10より構成されている。 この 導電粒子 9は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 S n等の単独 または複数の混合物、 合金、 またはメツキ等による複合金属粒子、 ブラ スチック粒子 (ポリスチレン系、 ポリカーボネート系、 アクリル系、 ジ ベニルベンゼン系樹脂等) に Ni、 Au、 Cu、 Fe等の単独または複 数のメツキをした粒子、 カーボン粒子等である。  The bumps 43 formed on the thermal printhead driving semiconductor chip 35 are connected to the fine particle layer 1 on the input wiring 41 and the output wiring 42 via the anisotropic conductive material 8. The anisotropic conductive material 8 used here is an anisotropic conductive film, and is mainly composed of conductive particles 9 and an adhesive 10. The conductive particles 9 may be composed of solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, or the like, alloy metal, composite metal particles made of metal, etc., plastic particles (polystyrene, polycarbonate, acrylic, etc.). , Diphenylbenzene-based resin, etc.), and particles of carbon such as Ni, Au, Cu, Fe, etc., singly or in combination.
また、 この接着剤 10はスチレンブタジエンスチレン (SBS) 系、 エポキシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または 複数の混合物若しくは化合物である。  The adhesive 10 is a single compound or a mixture or compound of styrene butadiene styrene (SBS), epoxy, acrylic, polyester, urethane and the like.
この異方性導電材 8の異方性導電膜をサーマルプリン夕へッド 34お よび入力配線 41、 出力配線 42の表面上の微粒子層 1とサーマルブリ ン夕へッド駆動用半導体チップ 35およびバンプ 43との間に配置し、 異方性導電膜に熱硬化性または熱可塑性と熱硬化性とのブレンドタイプ の接着剤を使った場合には加熱加圧へッ ドをサ一マルプリン夕へッ ド駆 動用半導体チップ 35に押し当てることによって硬化接続させる。  The anisotropic conductive film of the anisotropic conductive material 8 is applied to the thermal print head 34 and the fine particle layer 1 on the surface of the input wiring 41 and the output wiring 42 and the semiconductor chip 35 for driving the thermal bridge head 35. When the thermosetting or thermoplastic and thermosetting blend type adhesive is used for the anisotropic conductive film, the heat and pressure A hardening connection is made by pressing against the head driving semiconductor chip 35.
ここでは、 粒子径が 2 π!〜 3 > mのスチレン系のプラスチック粒子 に 2/ m厚の N iメツキと 0. 5 m厚の Auメツキをした導電粒子 9 をエポキシ系を主成分とする接着剤 10中に 5重量%混合分散させた異 '方性導電膜 (異方性導電材 8) を使用し、 加熱加圧は温度 175°C、 圧 力 10 gf/バンプ、 時間 30秒の条件で行った。 接続端子及びバンプ の形成ピッチは最小 12 で、 印字容量が 960ドッ トの電子印字 装置に対応する。 この導電接続部に、 耐湿放置試験 (60°C、 90%R H) 200時間、 冷熱サイクル試験 (一 20。Cで 30分、 60。Cで 30 分) 200サイクルを実施した。 その結果、 これらの接続信頼性評価後 も安定した接続状態が確保されていた。 Here, the particle diameter is 2π! ~ 3> m styrene-based plastic particles mixed with 2 / m-thick Ni plating and 0.5 m-thick Au plating conductive particles 9 mixed in an epoxy-based adhesive 10% by weight Dispersed differences Using an isotropic conductive film (anisotropic conductive material 8), the heating and pressing were performed at a temperature of 175 ° C, a pressure of 10 gf / bump, and a time of 30 seconds. The minimum forming pitch of the connection terminals and bumps is 12, and it corresponds to an electronic printing device with a printing capacity of 960 dots. The conductive connection was subjected to a moisture resistance test (60 ° C, 90% RH) for 200 hours and a thermal cycle test (at 20.C for 30 minutes and 60.C for 30 minutes) for 200 cycles. As a result, a stable connection state was maintained even after these connection reliability evaluations.
他の異方性導電材 8として、 異方性導電材接着剤があり、 主に導電粒 子と接着剤より構成されている。 この導電粒子は半田粒子、 Ni、 Au、 Ag、 Cu、 Pb、 Sn等の単独または複数の混合物、 合金、 またはメ ツキ等による複合金属粒子、 プラスチヅク粒子 (ポリスチレン系、 ポリ カーポネート系、 アクリル系、 ジベニルベンゼン系樹脂等) に Ni、 A u、 Cu、 F e等の単独または複数のメツキをした粒子、 力一ボン粒子 等である。  Another anisotropic conductive material 8 is an anisotropic conductive material adhesive, which is mainly composed of conductive particles and an adhesive. The conductive particles may be solder particles, single or plural mixtures of Ni, Au, Ag, Cu, Pb, Sn, etc., alloy metal, composite metal particles such as metal, plastic particles (polystyrene, polycarbonate, acrylic, Diphenylbenzene-based resin), Ni, Au, Cu, Fe, etc., single or multiple plating particles, carbon particles, etc.
また、 この接着剤はスチレンブタジエンスチレン (SBS) 系、 ェポ キシ系、 アクリル系、 ポリエステル系、 ウレタン系等の単独または複数 の混合物若しくは化合物である。  The adhesive is a styrene-butadiene-styrene (SBS) -based, epoxy-based, acryl-based, polyester-based, urethane-based or other single or mixture or compound.
この異方性導電材 8の異方性導電接着剤は液状、 またはペースト状で あり、 印刷方法、 デイスペンザを使ったデイスペンス方法等の公知の方 法により、 入力配線 41、 出力配線 42の接続部分に配置する。 異方性 導電接着剤に熱硬化性または熱可塑性と熱硬化性とのブレンドタイプの 接着剤を使った場合には加熱加圧へッ ドをサ一マルブリン夕へッ ド駆動 用半導体チップ 35に押し当てることによって硬化接続させる。  The anisotropic conductive adhesive of the anisotropic conductive material 8 is in the form of a liquid or a paste, and is connected to the input wiring 41 and the output wiring 42 by a known method such as a printing method or a dispensing method using a dispenser. To place. When a thermosetting or a blend of thermoplastic and thermosetting adhesive is used for the anisotropic conductive adhesive, the heating and pressurizing head is replaced with a semiconductor chip 35 for driving the thermal head. A hardening connection is made by pressing.
また、 この接続部分を外部環境 (例えば、 湿度、 腐食性ガス、 塵埃等) から保護するために、 端子間または接続部全体をモールド 23で覆って もよい。 ここで超微粒子の材質としては、 その他に A g、 C u、 Z n、 P d、 S n等の金属や C u— Z n系、 A u— S n系、 A g— P d系等の合金、 また高温超電導物質等の金属物質または導電性物質が利用できる。 また、 超微粒子の粒子径が 6 0 n mから 3 mのものをガスデポジションの条 件を適宜選定することによって使用可能である。 In addition, in order to protect this connection portion from the external environment (for example, humidity, corrosive gas, dust, etc.), the mold 23 may cover the terminals or the entire connection portion. Here, examples of the material of the ultrafine particles include metals such as Ag, Cu, Zn, Pd, and Sn, Cu—Zn, Au—Sn, and Ag—Pd. Alloys, metal materials such as high-temperature superconducting materials, or conductive materials can be used. Ultrafine particles with a particle size of 60 nm to 3 m can be used by appropriately selecting the conditions of gas deposition.
上述のような構成によれば、 入力配線 4 1、 出力配線 4 2の端子幅の 細りや断線を微粒子層 1が覆うことまたは充填することにより補修がで き、 またバンプ 4 3との接続面積を最大限に確保でき、 接続抵抗値を低 減でき、 また接続状態を安定化できる。 特に、 N i等の薄膜接続端子の 補修、 補強、 低抵抗化が、 複雑な処理工程を必要とせず簡単にできると いうメリットがある。  According to the above-described configuration, the narrowing or disconnection of the terminal width of the input wiring 41 and the output wiring 42 can be repaired by covering or filling the fine particle layer 1, and the connection area with the bumps 4 3 The connection resistance can be reduced as much as possible, and the connection state can be stabilized. In particular, there is an advantage that repair, reinforcement, and low resistance of thin film connection terminals such as Ni can be easily performed without the need for complicated processing steps.
また、 異方性導電材 8を介在させることにより、 バンプ 4 3の凹凸を 補完して導電粒子 9の接続面積を大きくとることができ、 接続抵抗値を 低減でき、 また接続状態を安定化できる。 産業上の利用可能性  In addition, by interposing the anisotropic conductive material 8, the bumps 4 3 can be compensated for, and the connection area of the conductive particles 9 can be increased, the connection resistance value can be reduced, and the connection state can be stabilized. . Industrial applicability
本発明は、 2つの基体上にそれそれ形成された導電性端子部の間に超 微粒子を堆積してなる微粒子層を介在させることにより、 導電性端子部 の端子の細り、 端子切れ、 端子欠如等の欠陥、 或いは端子表面の凹凸、 段差等を補正することができ、 抵抗値を低減することができ、 また導通 に寄与する接続面積を大きくすることができるため、 接続部における電 機接続状態を確実にし、 安定化し信頼性の高い導電接続を確保すること ができる。  According to the present invention, the conductive terminal portion has a thinned terminal, a broken terminal, and a lack of terminal by interposing a fine particle layer formed by depositing ultrafine particles between the conductive terminal portions formed on two substrates. Defects, or irregularities and steps on the surface of the terminal can be corrected, the resistance value can be reduced, and the connection area contributing to conduction can be increased. And a stable and reliable conductive connection can be secured.
また、 微粒子層の柔軟性によって、 接続時に加わる導電性端子部への 応力を緩和することができ、 導電性端子部の変形、 亀裂等を防止するこ とができると共に、 仮に導電性端子部及びその周囲に亀裂等が発生して も、 微粒子層の変形に基づく補填によって、 導電接続を維持確保できる という効果を奏する。 In addition, the flexibility of the fine particle layer can alleviate the stress applied to the conductive terminal portion at the time of connection, thereby preventing the conductive terminal portion from being deformed or cracked. Cracks etc. around it This also has the effect that the conductive connection can be maintained and secured by the compensation based on the deformation of the fine particle layer.
さらに、 上記のような導電接続部の接続特性の向上によって、 導電接 続工程における適正な接続条件 (温度、 圧力、 機械精度等) の範囲を広 くとることができることから、 導電接続部を歩留まり良く、 効率的に形 成することができる。  Furthermore, by improving the connection characteristics of the conductive connection as described above, the range of appropriate connection conditions (temperature, pressure, mechanical accuracy, etc.) in the conductive connection process can be widened, so that the yield of the conductive connection can be reduced. It can be formed well and efficiently.

Claims

請求の範囲 The scope of the claims
1 . 第 1の基体に設けられた第 1の導電性端子部と、 第 2の基体 に設けられた第 2の導電性端子部とを導電接続した導電接続部の構造に おいて、 1. In the structure of the conductive connection portion in which the first conductive terminal portion provided on the first base and the second conductive terminal portion provided on the second base are conductively connected,
' 前記第 1の導電性端子部と前記第 2の導電性端子部との間に導電性 質の超微粒子を堆積してなる微粒子層を形成し、 該微粒子層を介して前 記第 1の導電性端子部と前記第 2の導電性端子部とを導電接続したこと を特徴とする導電接続部の構造。  '' A fine particle layer formed by depositing conductive ultrafine particles is formed between the first conductive terminal portion and the second conductive terminal portion, and the first fine particle layer is formed via the fine particle layer. A structure of a conductive connecting portion, wherein the conductive terminal portion and the second conductive terminal portion are conductively connected.
2 . 請求項 1において、 前記超微粒子の粒子平均径は約 6 0 nm から 3 z mであることを特徴とする導電接続部の構造。 2. The structure according to claim 1, wherein the ultrafine particles have an average particle diameter of about 60 nm to 3 zm.
3 . 請求項 1において、 前記第 1の導電性端子部の表面上に前記 微粒子層を被着し、 前記微粒子層に直接に、 前記第 2の導電性端子部を 接触させたことを特徴とする導電接続部の構造。 3. The method according to claim 1, wherein the fine particle layer is applied on a surface of the first conductive terminal portion, and the second conductive terminal portion is brought into direct contact with the fine particle layer. The structure of the conductive connection part.
4 . 請求項 1において、 前記微粒子層は、 ガス中蒸発法により形 成したものであることを特徴とする導電接続部の構造。 4. The structure of the conductive connection according to claim 1, wherein the fine particle layer is formed by a gas evaporation method.
5 . 請求項 4において、 前記微粒子層は、 不活性ガスにより搬送 される導電性物質の蒸気を前記第 1または第 2の導電性端子部にノズル を介して選択的に吹き付けることにより形成したものであることを特徴 とする導電性接続部の構造。 5. The method according to claim 4, wherein the fine particle layer is formed by selectively spraying a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal portion via a nozzle. A structure of a conductive connection portion, characterized in that:
6 . 請求項 1において、 前記第 1の導電性端子部の表面上に前記 微粒子層を被着し、 前記微粒子層に導電性接着剤を介して前記第 2の導 電性端子部を導電接続したことを特徴とする導電性接続部の構造。 6. The method according to claim 1, wherein the surface of the first conductive terminal portion is provided on a surface of the first conductive terminal portion. A structure of a conductive connection portion, wherein a fine particle layer is applied, and the second conductive terminal portion is conductively connected to the fine particle layer via a conductive adhesive.
7 . 請求項 1において、 前記第 1の導電性端子部の表面上に前記 微粒子層を被着し、 前記微粒子層に異方性導電材を介して前記第 2の導 電性端子部を導電接続したことを特徴とする導電接続部の構造。 7. The method according to claim 1, wherein the fine particle layer is applied on a surface of the first conductive terminal portion, and the second conductive terminal portion is electrically connected to the fine particle layer via an anisotropic conductive material. A structure of a conductive connecting portion, wherein the conductive connecting portion is connected.
8 . 請求項 1において、 前記第 1の基体は配線基板であり、 前記 第 2の基体は電子素子である導電接続部の構造。 8. The structure according to claim 1, wherein the first base is a wiring board, and the second base is an electronic element.
9 . 請求項 1において、 前記第 1及び第 2の基体の少なくとも一 方はガラス基板である導電接続部の構造。 9. The conductive connection structure according to claim 1, wherein at least one of the first and second substrates is a glass substrate.
1 0 . 請求項 9において、 前記第 1及び第 2の基体の他方は電子 素子である導電接続部の構造。 10. The structure according to claim 9, wherein the other of the first and second bases is an electronic element.
1 1 . 請求項 1において、 前記第 1及び第 2の基体の少なくとも 一方は可撓性ブラスチックフィルム基板またはブラスチック基板である 導電接続部の構造。 11. The structure of the conductive connection according to claim 1, wherein at least one of the first and second substrates is a flexible plastic film substrate or a plastic substrate.
1 2 . 請求項 1 1において、 前記第 1及び前記第 2の基体の他方 は電子素子である導電接続部の構造。 12. The structure of a conductive connection according to claim 11, wherein the other of the first and second bases is an electronic element.
1 3 . 前記第 1の基体は透明導電膜を形成した液晶表示装置のガ ラス、 プラスチック若しくはプラスチックフィルムで搆成された液晶基 板であり、 前記第 1の導電性端子部は、 前記透明導電膜に接続され、 前 記液晶基板の端部の露出面に導出された外部接続端子である請求項 1の 導電接続部の構造を備えた液晶表示装置。 13. The first base is a liquid crystal substrate formed of glass, plastic or a plastic film of a liquid crystal display device having a transparent conductive film formed thereon, and the first conductive terminal portion is formed of the transparent conductive film. Connected to the membrane, before 2. The liquid crystal display device having the structure of the conductive connection part according to claim 1, wherein the external connection terminal is an external connection terminal led out to an exposed surface at an end of the liquid crystal substrate.
1 4 . 請求項 1 3において、 前記第 2の基体は液晶駆動用の電子 素子である液晶表示装置。 14. The liquid crystal display device according to claim 13, wherein the second base is an electronic element for driving a liquid crystal.
1 5 . 請求項 1 3において、 前記微粒子層は、 ガス中蒸発法によ り形成したものであることを特徴とする液晶表示装置。 15. The liquid crystal display device according to claim 13, wherein the fine particle layer is formed by a gas evaporation method.
1 6 . 請求項 1 5において、 前記微粒子層は、 不活性ガスにより 搬送される導電性物質の蒸気を前記第 1又は第 2の導電性端子部にノズ ルを介して選択的に吹き付けることにより形成したものであることを特 徴とする液晶表示装置。 16. The particle according to claim 15, wherein the fine particle layer is formed by selectively blowing vapor of a conductive substance carried by an inert gas to the first or second conductive terminal portion through a nozzle. A liquid crystal display device characterized by being formed.
1 7 . 前記第 1の基体はサーマルブリン夕へヅドであり、 前記第 1の導電性端子部は、 該サーマルプリンタへッドの外部接続端子である 請求項 1の導電接続部の構造を備えた電子印字装置。 17. The structure of the conductive connecting part according to claim 1, wherein the first base is a thermal bridging head, and the first conductive terminal part is an external connecting terminal of the thermal printer head. Equipped electronic printing device.
1 8 . 請求項 1 7において、 前記第 2の基体は、 サーマルプリン 夕ヘッド駆動用半導体チップである電子印字装置。 18. The electronic printing apparatus according to claim 17, wherein the second base is a semiconductor chip for driving a thermal printing head.
1 9, 請求項 1 7において、 前記微粒子層は、 ガス中蒸発法によ り形成したものであることを特徴とする電子印字装置。 2 0 . 請求項 1 9において、 前記微粒子層は、 不活性ガスにより 搬送される導電性物質の蒸気を前記第 1又は第 2の導電性端子部にノズ ルを介して選択的に吹き付けることにより形成したものであることを特 徴とする電子印字装置。 19. The electronic printing apparatus according to claim 19, wherein the fine particle layer is formed by a gas evaporation method. 20. The method according to claim 19, wherein the fine particle layer sprays a vapor of a conductive substance carried by an inert gas onto the first or second conductive terminal. An electronic printing device characterized by being formed by selectively spraying through a nozzle.
PCT/JP1995/000976 1994-05-20 1995-05-22 Structure of conductive connecting portions, and liquid crystal display and electronic printer provided with the same WO1995032449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/106475 1994-05-20
JP10647594 1994-05-20

Publications (1)

Publication Number Publication Date
WO1995032449A1 true WO1995032449A1 (en) 1995-11-30

Family

ID=14434541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000976 WO1995032449A1 (en) 1994-05-20 1995-05-22 Structure of conductive connecting portions, and liquid crystal display and electronic printer provided with the same

Country Status (1)

Country Link
WO (1) WO1995032449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093826A (en) * 2003-09-18 2005-04-07 Ricoh Co Ltd Connection structure using conductive adhesive and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210316A (en) * 1988-06-29 1990-01-16 Sumitomo Bakelite Co Ltd Liquid crystal display device
JPH0479397A (en) * 1990-07-23 1992-03-12 Canon Inc Mutual connection of electrode terminals
JPH04180029A (en) * 1990-11-15 1992-06-26 Seiko Epson Corp Connecting structural body for circuit
JPH04251945A (en) * 1991-01-09 1992-09-08 Toshiba Corp Method for electrically connecting micropoint and semiconductor device formed by the method
JPH05119337A (en) * 1991-10-25 1993-05-18 Canon Inc Mutual connection method for electrode terminal
JPH05224222A (en) * 1992-02-13 1993-09-03 Ricoh Co Ltd Wiring substrate and its production
JPH06310243A (en) * 1993-04-22 1994-11-04 Fujitsu Ltd Manufacture of electric connecting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210316A (en) * 1988-06-29 1990-01-16 Sumitomo Bakelite Co Ltd Liquid crystal display device
JPH0479397A (en) * 1990-07-23 1992-03-12 Canon Inc Mutual connection of electrode terminals
JPH04180029A (en) * 1990-11-15 1992-06-26 Seiko Epson Corp Connecting structural body for circuit
JPH04251945A (en) * 1991-01-09 1992-09-08 Toshiba Corp Method for electrically connecting micropoint and semiconductor device formed by the method
JPH05119337A (en) * 1991-10-25 1993-05-18 Canon Inc Mutual connection method for electrode terminal
JPH05224222A (en) * 1992-02-13 1993-09-03 Ricoh Co Ltd Wiring substrate and its production
JPH06310243A (en) * 1993-04-22 1994-11-04 Fujitsu Ltd Manufacture of electric connecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093826A (en) * 2003-09-18 2005-04-07 Ricoh Co Ltd Connection structure using conductive adhesive and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6784554B2 (en) Semiconductor device and manufacturing method thereof
CN100539055C (en) Wiring board and semiconductor device
US7640655B2 (en) Electronic component embedded board and its manufacturing method
KR100382759B1 (en) Method of packaging semiconductor device using anisotropic conductive adhesive
WO2010050209A1 (en) Method and apparatus for bonding electronic component and flexible film substrate
US9756728B2 (en) Component-mounted structure
KR20020004866A (en) Flexible printed circuit board, integrated circuit chip mounting flexible printed circuit board, display apparatus incorporating, integrated circuit chip mounted structure, and bonding method of integrated circuit chip mounting flexible printed circuit board
JP2004266175A (en) Electronic component for adhering a plurality of electrodes and its mounting method
CN102208388A (en) Semiconductor device and semiconductor device manufacturing method
JP2014096531A (en) Method for manufacturing connection structure and connection method
KR100563502B1 (en) A cof semiconductor device and a manufacturing method for the same
KR20130113966A (en) Anisotropic conductive film and method of manufacturing same
JPH02180036A (en) Formation of electrode
US20090001571A1 (en) Semiconductor device and method of manufacturing the same
KR20070103185A (en) Anisotropic conductive film, electronic device, and packaging method of electronic parts
JPH05218137A (en) Manufacture of semiconductor device
WO1995032449A1 (en) Structure of conductive connecting portions, and liquid crystal display and electronic printer provided with the same
KR20140020767A (en) Chip-type electronic component and connecting structure
JP2755696B2 (en) Semiconductor device and manufacturing method thereof
JPH07321152A (en) Semiconductor device and manufacture thereof
JP2014013827A (en) Manufacturing system of electronic component mounting substrate and manufacturing method
JP2005175507A (en) Structure of conductive connections, electronic printer, conductive connection method and depositing method, liquid crystal display and manufacturing method of same
JPH11135567A (en) Anisotropic conductive film and manufacture of semiconductor device
JP2004136673A (en) Bonded structure, liquid crystal device, and electronic equipment
JPH02185051A (en) Tape carrier for double-side protective coat type tab

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase