WO1995027849A1 - Dispositif de traitement de combustibles - Google Patents

Dispositif de traitement de combustibles Download PDF

Info

Publication number
WO1995027849A1
WO1995027849A1 PCT/JP1995/000684 JP9500684W WO9527849A1 WO 1995027849 A1 WO1995027849 A1 WO 1995027849A1 JP 9500684 W JP9500684 W JP 9500684W WO 9527849 A1 WO9527849 A1 WO 9527849A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel processing
aqueous solution
ceramic
activated
Prior art date
Application number
PCT/JP1995/000684
Other languages
English (en)
French (fr)
Inventor
Shinji Makino
Mitsuhiro Sakamoto
Original Assignee
I.B.E. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9366594A external-priority patent/JPH07224730A/ja
Application filed by I.B.E. Co., Ltd. filed Critical I.B.E. Co., Ltd.
Priority to DE69529449T priority Critical patent/DE69529449T2/de
Priority to AU21480/95A priority patent/AU2148095A/en
Priority to EP95914537A priority patent/EP0708237B1/en
Priority to US08/556,975 priority patent/US5695531A/en
Priority to KR1019950705498A priority patent/KR960702887A/ko
Publication of WO1995027849A1 publication Critical patent/WO1995027849A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/06Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by rays, e.g. infrared and ultraviolet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/5109Convertible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/5327Hydrant type
    • Y10T137/5333Water crane type
    • Y10T137/5339Spout operated valve

Definitions

  • the present invention relates to a fuel processing device used for processing fuel.
  • Conventional technology is a fuel processing device used for processing fuel.
  • this type of fuel processing has a fuel plate (2) with a fuel inlet (3) at one end and a fuel outlet (4) at the other end.
  • a fuel treatment device (1) is provided in which a granulated fuel treatment material (7) such as activated carbon, zeolite, ceramic or the like is filled between the perforated plates (5, 6). I have.
  • the fuel processing material in the fuel processing vessel (2) is used to improve the contact efficiency between the fuel and the fuel processing material (7) in order to completely perform the fuel processing. It is necessary to increase the packing density of the fuel treatment material (7). If the packing density of the fuel treatment material (7) is increased in this way, the pressure loss due to the resistance of the fuel treatment material (7) packed bed increases, and the fuel Had to be introduced into the fuel processor (1) at high pressure.
  • the present invention provides a fuel processing container (12) having a fuel inlet (14, 24, 34) at one end and a fuel outlet (15, 25, 35) at the other end. , 22, 32) to provide a fuel treatment device (11, 21, 31, 31) in which a fuel treatment material (16, 26, 36) is movably moved by the fuel flow.
  • a fuel treatment material (16, 26, 36) is movably moved by the fuel flow.
  • light oil, gasoline, kerosene, etc. and the arrangement state of the fuel processing material (16, 26, 36) in the fuel processing container (12, 22, 32) includes the fuel processing material (16).
  • the fuel processing vessel (11) in an open state, or roughly fill the granulated fuel processing material (26) to such an extent that it can be moved by the fuel flow.
  • a plurality of the perforated small containers (27) are filled in the fuel processing container (22), or the fuel processing material (36) is formed into a blade shape, and Others to place the fuel processing vessel (32) in towards the plurality upstream direction desired.
  • the fuel processing material (16, 26, 36) is preferably a ceramic solid, and as the ceramic solid, ferric chloride is dissolved in a large amount of aqueous caustic soda, and then neutralized with hydrochloric acid.
  • the crystals obtained by concentration and Z or ferrous sulfate are dissolved in a large amount of hydrochloric acid aqueous solution and then immersed in an aqueous solution of crystals obtained by concentration and / or passed through the aqueous solution. It is desirable to use activated ceramics that have been contacted with air.
  • fuel is introduced into the fuel processing vessel (12, 22, 32) from the inlet (14, 24, 34).
  • the fuel is processed by contacting the fuel processing material (16, 26, 36).
  • the fuel processing material (16, 26, 36) moves in the fuel processing vessel (12, 22, 32) due to the fluid pressure of the fuel, and moves due to the movement of the fuel processing material (16, 26, 36).
  • the fuel is agitated, and as a result, the contact efficiency between the fuel processing material (16, 26,) and the fuel is greatly improved.
  • the fuel processing material (16) is moved by the fluid pressure of the fuel. Rolling or moving within (12), the fuel is agitated by rolling or moving the fuel processing material (16), and as a result, the contact efficiency between the fuel processing material (16) and the fuel is reduced. Improve greatly.
  • the far-infrared effect of the ceramic causes the molecules of the fuel to become small molecules, or the clusters of the molecules to become small, resulting in a decrease in the fuel cluster.
  • the processing fluid is modified.
  • the activated iron chloride aqueous solution When the ceramic is immersed or the air passing through the aqueous solution is brought into contact with the ceramic, the above-described effect of the ceramic is amplified.
  • Examples of the ceramic used in the present invention include well-known ceramics such as, for example, gay oxide, aluminum oxide, zirconium oxide, titanium oxide, gay nitride, boron nitride, and gay carbide, and these are two types.
  • the mixture may be mixed as described above, and a desirable combination is a mixed ceramic of a gay oxide and an aluminum oxide.
  • 1 and 2 relate to a first embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view.
  • FIG. 2 is a cross-sectional view.
  • FIG. 3 and FIG. 4 relate to a second embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view.
  • FIG. 4 is a perspective view of the perforated small container in an opened state.
  • FIGS. 5 and 6 relate to a third embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view.
  • FIG. 6 is a sectional view taken along line AA in FIG.
  • FIG. 7 is an explanatory sectional view of a conventional example. Detailed description of the invention
  • FIG. 1 and FIG. 2 show a first embodiment of the present invention.
  • a fuel reformer (11) which is a fuel processor shown in the figure, includes a disc-shaped fuel processing vessel (12), a flow path (13) formed on the periphery of the fuel processing vessel (12), A fuel inlet (14) obliquely connected to the flow path (13), a fuel outlet (15) connected to the flow path (13) from above, and an open filling in the flow path (13) And a plurality of granular ceramic solids (16).
  • the ceramic solid (16) is usually formed into granules having a particle size of about 3 to 10 particles, preferably 5 to 7 mm.
  • the fuel F is stirred in the flow path (13) by the movement of the ceramic solid (16), makes efficient contact with the ceramic solid, and is radiated from the ceramic solid (16). Is decomposed and degraded to lower molecular weight by energy. So low Molecularized fuel F has very good combustion efficiency, and almost no C or C0 is generated during combustion.
  • the porous small container (27) is spherical and comprises a pair of net cages (27B, 27C) divided so as to be openable and closable via a hinge (27A).
  • the basket (27B, 27C) is closed by superimposing the flanges (27D, 27E) on the periphery and fitting a rock band (27F)
  • the ceramic solid (26) filled in the small porous container (27) is usually formed into granules having a particle size of about 3 to about 10 and preferably 5 to 7 mm, so that the closest packing can be achieved. If it is set to 100%, the packing density is usually about 60 to 90%, so that the fuel processing material (26) can move in the small porous container (27).
  • FIGS. 5 and 6 show a third embodiment of the present invention.
  • a fuel reformer (31) which is a fuel processor of the present embodiment, is connected to a cylindrical fuel processor (32) having a flow path (33) formed therein and one end of the fuel processor (32).
  • the number of blades of the blade-shaped ceramic solid material is not particularly limited, but it is preferable that the blades are arranged as densely as possible unless the fluid resistance is significantly increased. It is preferable that the diameter of the blade of the blade-shaped ceramic solid is set slightly smaller than the inner diameter of the fuel processing container (32). Although two blades are used in this embodiment, three blades, four blades, or more blades may be used.
  • the ceramic solid (36) is changed by the fluid pressure of the fuel F.
  • the fuel F rotates, and the fuel F is stirred by the rotation of the ceramic solid (36), and efficiently comes into contact with the ceramic solid (36) to be depolymerized. .
  • the fuel F thus treated is discharged from the fuel outlet (35).
  • the results obtained by processing the vehicle fuel using the fuel processor (11, 21, 31) of the present invention and the conventional fuel processor (1) as a comparison and performing an actual vehicle running test are shown below.
  • the two types of fuels A, A2, B, B2, C, C2, D, D2, E, E2 and F, F2 used in the fuel processor (11, 21, 31) The treatment material (16, 26, 36) and the fuel treatment material (7) G used in the conventional fuel treatment device (1) were prepared as follows.
  • the crystals were collected, dried in a desiccator under reduced pressure overnight, dissolved in 10 ml of a mixed solvent of isopropanol / water at a weight ratio of 80:20, and filtered with filter paper (No. 5C). The solution is filtered, concentrated under reduced pressure to remove the solvent and dried. The above extraction-concentration-drying operation is repeated several times to purify Activated iron chloride crystals are obtained.
  • the crystals are dissolved in distilled water to make a 2 ppm aqueous solution.
  • Fuel processing materials A, A2 Polyvinyl alcohol and water were mixed in a 1: 1 weight ratio mixed powder of gay oxide and aluminum oxide. The mixture is added and kneaded, and the kneaded material is formed into spherical particles having an average particle diameter of 6 and baked at 1000 ° C. for 3 hours to produce a ceramic solid.
  • Fuel treatment material C, C 2 Polyvinyl alcohol and water are added to a 1: 1 weight ratio mixed powder of zirconium oxide and titanium oxide and kneaded, and the kneaded product is formed into spherical particles having an average particle diameter of 6 Then, it is baked at 1000 ° C for 3 hours to produce a ceramic solid.
  • Fuel processing materials E, E 2 Polyvinyl alcohol and water are added to a powder mixture of 1: 1 by weight of gay nitride and boron nitride and kneaded, and the kneaded product is formed into a blade shape as shown in the third embodiment. Then, it is baked at 1000 ° C. for 3 hours to produce a ceramic solid.
  • the above-mentioned ceramic solids A, C, and E are immersed in the aqueous solution, left for 2 hours, collected, and dried at 100 ° C. for 2 hours to obtain an activated ceramic solid.
  • the aqueous solution was added to the ceramic solids A2, C2 and E2.
  • the activated air is passed through at a flow rate of 51 / min for 3 hours to obtain activated ceramic solids.
  • the crystals were collected and dried under reduced pressure overnight in a desiccator, dissolved in 10 ml of a mixed solvent of isopropanol-water at a weight ratio of 80:20, and filtered with filter paper (No. 5C). The solution is filtered, concentrated under reduced pressure to remove the solvent and dried. The above operation of extraction, concentration and drying is repeated several times to obtain purified activated iron chloride crystals.
  • the crystals are dissolved in distilled water to make a 2 ppm aqueous solution.
  • Fuel treatment materials B, B2 Polyvinyl alcohol and water were added to a 1: 1 weight ratio mixed powder of gay oxide and aluminum oxide. Is added and kneaded, and the kneaded material is formed into spherical particles having an average particle size of 6 and baked at 1000 ° C. for 3 hours to produce a ceramic solid.
  • Fuel treatment materials D, D 2 zirconium oxide and titanium oxide
  • Polyvinyl alcohol and water were added to the 1: 1 weight ratio mixed powder and kneaded, and the kneaded product was formed into spherical particles having an average particle diameter of 6 cm, and baked at 1000 for 3 hours. Make a solid compact.
  • Fuel treatment materials F, F 2 Polyvinyl alcohol and water are added to a 1: 1 weight ratio mixed powder of gay nitride and boron nitride and kneaded, and the kneaded product is shaped into a blade shape as shown in the third embodiment. Then, it is baked at 1000 for 3 hours to produce a ceramic solid.
  • Each of the above-mentioned ceramic solids is immersed in the aqueous solution, left for 2 hours, collected and dried for 100 hours to obtain an activated ceramic solid.
  • the above-mentioned ceramic solids B, D, and F are immersed in the aqueous solution, left to stand for 2 hours, collected, dried for 100 hours and dried for 2 hours to obtain an activated ceramic solid.
  • activated ceramic solids are obtained by passing the air passing through the aqueous solution through the ceramic solids B2, D2, and F2 at a flow rate of 51 / min for 3 hours.
  • Polyvinyl alcohol and water are added to a 1: 1 weight ratio mixed powder of gay oxide and aluminum oxide and kneaded, and the kneaded product is formed into spherical particles having an average particle diameter of 6 Bake for 3 hours at ° C to produce a ceramic solid.
  • the fuel processing materials A, A 2, B and B 2 are filled in the fuel processing container (12) of the first embodiment in an open state as shown in FIGS. 1 and 2, and the fuel processing materials C, C As shown in Figs. 3 and 4, 2, D and D2 are filled in the porous small container (27) of the second embodiment at a filling density of 80%, and then the fuel treatment container (22) is filled.
  • the fuel processing materials E, E 2, F and F 2 are arranged in the fuel processing container (32) of the third embodiment as shown in FIGS. 5 and 6.
  • Comparative Example 1 The fuel processing container (2) of the conventional example in which the fuel processing material G is densely filled as shown in Fig. 7 is referred to as Comparative Example 1, and the fuel processing material A treated with an aqueous solution containing activated iron is referred to as Comparative Example 1. As shown in Fig. 7, the conventional fuel processing container (2), which was densely packed, was used as Comparative Example 2.
  • Comparative Example 2 in which the fuel treatment material A treated with the activated iron-containing aqueous solution was densely packed, the fuel efficiency was improved as compared with Comparative Example 1, but the fuel efficiency improvement effect of each embodiment of the present invention. Did not reach.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Compounds Of Iron (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

明 細 書
燃料処理装置
産業上の利用分野
本発明は燃料を処理するために用いられる燃料処理装 置に関するものである。 従来の技術
従来、 この種の燃料処理としては第 7図に示すように 一端部に燃料導入口(3) 、 他端部に燃料排出口(4) を設 けた燃料処理容器(2) 内に目皿(5, 6) を張設し、 該目皿 (5, 6) 間に活性炭、 ゼォライ ト、 セラミ ック等の粒状の 燃料処理材(7) を充填した燃料処理装置(1) が提供され ている。 しかしながら上記従来の燃料処理装置(1) にあ つては、 燃料処理を完全に行なうために燃料と燃料処理 材(7) との接触効率を高めるために燃料処理容器(2) 内 における燃料処理材(7) の充填密度を高くする必要があ り、 このように燃料処理材(7) の充塡密度を高くすると 、 燃料処理材(7) 充塡層の抵抗による圧力損失が大きく なり、 燃料を高圧で燃料処理装置(1) に導入する必要が あった。
また活性炭、 ゼォライ ト、 セラミ ック等による燃料処 理効果は不十分なものであった。 発明の開示
本発明は上記従来の課題を解決するための手段として 、 一端部に燃料導入口(14, 24, 34)、 他端部に燃料排出口 (15, 25, 35)を有する燃料処理容器(12, 22, 32)内に、 燃料 処理材(16, 26, 36)を該燃料流によって動きうるように存 在させた燃料処理装置(1 1, 21, 31 )を提供するものである 該燃料としては例えば軽油、 ガソリ ン、 灯油等であり 、 該燃料処理材(16, 26, 36)の燃料処理容器(12, 22, 32)内 での配置状態としては、 該燃料処理材(16)を粒状に成形 してその複数個を開離状態で燃料処理容器(11 )内に充填 するか、 あるいは該粒状に成形した燃料処理材(26)を該 燃料流によって動きうる程度に粗に充塡した多孔小容器 (27)の複数個を該燃料処理容器(22)内に充塡し、 あるい は該燃料処理材(36)を羽根状に成形してその一個または 複数個を上流方向に向けて燃料処理容器(32)内に配置す ることが望ましい。
該燃料処理材(16, 26, 36)としてはセラミ ック固形物で あることが望ましく、 該セラミ ツク固形物としては塩化 第二鉄を大量のカセィソーダ水溶液に溶かした後塩酸で 中和し、 濃縮して得られた結晶および Zまたは硫酸第一 鉄を大量の塩酸水溶液に溶かした後濃縮して得られた結 晶の水溶液に浸漬処理および/または該水溶液に通した 空気に接触処理された活性化セラミ ックを使用すること が望ましい。
本発明の燃料処理装置(11, 21 , 31)においては、 燃料を 導入口 (14, 24, 34)から燃料処理容器(12, 22, 32)内に導入 する。 該燃料は燃料処理材(16,26,36)に接触して処理さ れる。 この際該燃料処理材(16, 26, 36)は燃料の流動圧に よって該燃料処理容器(12, 22, 32)内で動き、 該燃料処理 材(16, 26, 36)の動きによつて該燃料は攪拌されその結果 、 該燃料処理材(16, 26, )と該燃料との接触効率は大巾 に向上する。
この場合、 粒状の燃料処理材(16)の複数個が開離状態 で燃料処理容器(12)内に充塡されていれば、 燃料処理材 (16)は燃料の流動圧によって該燃料処理容器(12)内で転 動しあるいは移動し、 該燃料処理材(16)の転動、 あるい は移動によって該燃料は攪拌されその結果、 該燃料処理 材(16)と燃料との接触効率は大巾に向上する。
また粒状に成形した燃料処理材(26)を燃料流によって 動きうる程度に粗に充填した多孔小容器(27)の複数個が 燃料処理容器(22)内に充塡されていれば、 燃料処理材(2 6)は燃料の流動圧によって多孔小容器(27)内で動き該燃 料処理材(16)の動きによつて該燃料は攪拌されその結果 、 該燃料処理材(16)と燃料との接触効率は大巾に向上す る。 更に該燃料処理材(36)が羽根状に成形され上流方向に 向けて燃料処理容器(32)内に配置されている場合は、 該 羽根状の燃料処理材(36)は燃料の流動圧によつて燃料処 理容器(31 )内で回転し、 該回転によって燃料は攪拌され その結果、 該燃料処理材(36)と燃料との接触効率は大巾 に向上する。
また燃料処理材(16, 26, 36)としてセラミ ック固形物を 使用すると、 該セラミ ックの遠赤外線作用によって燃料 の分子が低分子になったり、 あるいは分子のクラスタ一 が小さくなり該燃料処理流体は改質される。
上記セラミ ックの作用をより活性化するためには以下 のような燃料処理を行なうことが望ましい。
塩化第二鉄を大量の力セイソ一ダ水溶液に溶かすと、 塩化第二鉄を構成する鉄が活性化するものと思われる。 このように活性化した鉄を含む水溶液を塩酸で中和する と、 活性化した鉄の塩化物が結晶として得られる。 また 硫酸第一鉄を大量の塩酸水溶液に溶かすと、 硫酸第一鉄 を構成する鉄が活性化するものと思われる。 このように 活性化した鉄を含む水溶液を濃縮すると、 活性化した鉄 の塩化物が結晶として得られる。 上記両方法で得られた 該結晶は望ましくは更にィソプロパノール一水混合液に 溶解させ、 濃縮再結晶することによって精製される。
そこでこのような活性化した鉄の塩化物の水溶液にセ ラミ ックを浸漬したり、 あるいは該水溶液を通した空気 をセラ ミ ツクに接触させたりすると、 セラミ ツクの上記 効果が増幅される。
本発明に用いられるセラミ ックとしては、 例えば酸化 ゲイ素、 酸化アルミニウム、 酸化ジルコニウム、 酸化チ タン、 窒化ゲイ素、 窒化ホウ素、 炭化ゲイ素等の周知の セラミ ックがあり、 これらは二種以上混合されても良く 、 望ましい組合せとしては酸化ゲイ素と酸化アルミニゥ ムとの混合セラミ ックがある。 図面の簡単な説明
第 1図および第 2図は本発明の第 1実施例に関するも のである。
第 1図は縦断面図である。
第 2図は横断面図である。
第 3図および第 4図は本発明の第 2実施例に関するも のである。
第 3図は縦断面図である。
第 4図は開いた状態の多孔小容器の斜視図である。 第 5図および第 6図は本発明の第 3実施例に関するも のである。
第 5図は縦断面図である。
第 6図は第 5図における A— A断面図である。 第 7図は従来例の説明断面図である。 発明の詳細な説明
本発明の第 1実施例を第 1図および第 2図に示す。 図 に示す燃料処理装置である燃料改質装置(11)は、 円盤状 の燃料処理容器(12)と、 該燃料処理容器(12)の周縁に形 成される流路(13)と、 該流路(13)に斜めに連絡する燃料 導入口(14)と、 該流路(13)に上方から連絡する燃料排出 口(15)と、 該流路(13)内に開離状態で充填されている粒 状のセラミ ック固形物(16)の複数個とからなる。
該セラミ ツク固形物(16)は通常粒径 3〜 1 0 画程度、 好ましくは粒径 5〜 7 mmの粒状に成形される。
上記構成においては第 1図矢印 aに示すように燃料 F を該装置(11 )の流路(13)内に導入すれば、 該燃料 Fは流 路(13)内を第 2図矢印 c方向に付勢されて略一巡し、 第 1図矢印 bに示すように燃料排出口(15)から排出される 。 この間該燃料 Fはセラミ ック固形物(16)に接触し、 該 セラミ ツク固形物(16)は該燃料 Fの流動圧によって転動 しあるいは移動する。
上記セラミ ック固形物(16)の動きによって該燃料 Fは 流路(13)内で攪拌され、 セラミ ック固形物と効率よく接 触し、 そしてセラミ ック固形物(16)から放射されるエネ ルギ一によつて分解され低分子化される。 このように低 分子化された燃料 Fは非常に燃焼効率が良く、 燃焼に際 しては殆んど Cや C 0が生成されない。
本発明の第 2実施例を第 3図および第 4図に示す。 本 実施例の燃料処理装置である燃料改質装置(21 )は一端部 に燃料導入口(24)、 他端部に燃料排出口(25)を有する筒 状の燃料処理容器(22)と、 該燃料処理容器(22)に充塡さ れている複数個の多孔小容器(27)と、 該多孔小容器(27) 内に充塡されている粒状のセラミ ック固形物(26)とから なり、 該多孔小容器(27)は第 4図に示すように球状であ り、 ヒンジ(27A) を介して開閉可能に分割された一対の 網籠(27B,27C) からなり、 該網籠(27B, 27C) 周縁のフラ ンジ(27D,27E) を重合してロックバン ド(27F) を嵌着す ることによって閉鎖される
該多孔小容器(27)内に充填されるセラミ ック固形物(2 6)は通常粒径 3〜 1 0 隨程度、 好ましくは粒径 5〜7 瞧 の粒状にされ、 最密充塡を 1 0 0 %とすると通常 6 0〜 9 0 %程度の充塡密度とされ、 該多孔小容器(27)内で該 燃料処理材(26)が動く ことが出来るようにされる。
上記構成において、 燃料導入口(24)から燃料 Fを燃料 処理容器(22)内に導入すると、 該燃料 Fは該多孔小容器 (27)に接触して流動方向を散乱され、 同時に該多孔小容 器(27)内を通り抜けて粒状の燃料処理材(26)に接触して 処理される。 この際、 該燃料処理材(26)は該多抗小容器 (27)内に粗に充塡されているから、 該流体の流動圧によ つて動いて攪拌され、 該燃料 Fと該燃料処理材(26)との 接触効率が向上する。
本発明の第 3実施例を第 5図および第 6図に示す。 本 実施例の燃料処理装置である燃料改質装置(31)は内部に 流路(33)を形成した筒状の燃料処理容器(32)と、 該燃料 処理容器(32)の一端に連絡する燃料導入口(34)と、 該燃 料処理容器(32)内部において支持枠(37)に回転自在に支 持されている羽根状のセラミ ック固形物(36)からなり、 該セラミ ック固形物(36)は上流方向に向けられている。
該羽根状のセラミ ック固形物の羽根の取付け個数は特 に限定されるものではないが、 流体抵抗が著しく増大し ないかぎり、 できるだけ密に配置することが望ましい。 また該羽根状のセラミ ック固形物の羽根の径は燃料処理 容器(32)の内径より若干小さく設定することが望ましい 。 また本実施例では二枚羽根を使用したが、 三枚羽根、 四枚羽根あるいはそれ以上の枚数の羽根が用いられても よい。
上記構成においては、 第 5図矢印 dに示すように燃料 Fを該装置(31 )の流路(33)内に導入すれば該セラミ ック 固形物(36)は該燃料 Fの流動圧によって回転し、 該燃料 Fは該セラミ ック固形物(36)の回転によって攪拌され、 セラミ ック固形物(36)と効率よく接触し低分子化される 。 このようにして処理された燃料 Fは燃料排出口(35)か ら排出される。
本発明の燃料処理装置(11 , 21, 31)および比較として従 来の燃料処理装置(1) によって自動車燃料を処理し、 実 車走行テストを行なった結果を以下に示す。 なお該燃料 処理装置(11,21,31)に使用する A, A 2, B, B 2, C , C 2 , D, D 2 , E, E 2並びに F, F 2の 1 2種類 の燃料処理材(16, 26, 36)並びに従来例の燃料処理装置(1 ) に使用する燃料処理材(7) Gを下記のように調製した ο
〔燃料処理材 A, A 2, C, C 2, E, E 2処理用活性 化鉄塩化物の結晶の調製〕
1 gの塩化第二鉄無水物を 1 2 Nカセイソーダ一水溶 液 5 ml中に入れて攪拌溶解せしめ 5時間以上室温に放置 する。 該水溶液を 1 2 N塩酸水溶液によって p H約 7に 中和し、 該中和液を濾紙 (N o. 5 C ) で濾過した後減圧 濃縮すると結晶が析出する。
該結晶を採取してデシケ一夕一中で減圧乾燥した後、 1 0 mlのイソプロパノール一水の 8 0 : 2 0重量比の混 合溶媒に溶解せしめ、 濾紙 (N o. 5 C ) によって該溶液 を濾過した後減圧濃縮して溶媒を除去し乾燥せしめる。 上記抽出一濃縮一乾燥の操作は数回繰返され、 精製され た活性化鉄塩化物の結晶が得られる。
該結晶を蒸留水に溶解し 2 ppm 水溶液とする。
〔燃料処理材 A, A 2, C , C 2 , E, E 2の作製〕 燃料処理材 A, A 2 :酸化ゲイ素と酸化アルミニウム の 1 : 1重量比混合粉末にポリビニルアルコールと水と を添加して混練し、 該混練物を平均粒子径 6隱の球状粒 子に成形し、 1 0 0 0 °C, 3時間焼成してセラミ ック固 形物を作製する。
燃料処理材 C, C 2 :酸化ジルコニウムと酸化チタン の 1 : 1重量比混合粉末にポリ ビニルアルコールと水と を添加して混練し、 該混練物を平均粒子径 6謹の球状粒 子に成形し、 1 0 0 0 °C, 3時間焼成してセラミ ック固 形物を作製する。
燃料処理材 E, E 2 :窒化ゲイ素と窒化ホウ素の 1 : 1重量比混合粉末にポリ ビニルアルコールと水とを添加 して混練し、 該混練物を第 3実施例に示す羽根状に成形 し、 1 0 0 0 °C , 3時間焼成してセラミ ック固形物を作 製する。
上記セラミ ック固形物 A, C, Eを該水溶液に浸潰し 2時間放置した後回収して 1 0 0 °C 2時間の乾燥を行な い、 活性化セラミ ック固形物を得る。
またセラミ ック固形物 A 2, C 2 , E 2に該水溶液を 通した空気を 5 1 /分の流速で 3時間送通して活性化セ ラ ミ ック固形物を得る。
〔燃料処理材 B, B 2, D, D 2 , F, F 2処理用活性 化鉄塩化物の結晶の精製〕
1 gの硫酸第一鉄を 1 2 N塩酸水溶液 5 ml中に入れて 攪拌溶解せしめ、 該溶液を濾紙 (N o. 5 C ) で濾過した 後減圧濃縮すると結晶が析出する。
該結晶を採取してデシケ一夕一中で減圧乾燥した後、 1 0 mlのイソプロパノール—水の 8 0 : 2 0重量比の混 合溶媒に溶解せしめ、 濾紙 (N o. 5 C ) によって該溶液 を濾過した後減圧濃縮して溶媒を除去し乾燥せしめる。 上記抽出一濃縮一乾燥の操作は数回繰返され、 精製され た活性化鉄塩化物の結晶が得られる。
該結晶を蒸留水に溶解し 2 ppm 水溶液とする。
〔燃料処理材 B, B 2 , D, D 2 , F, F 2の作製〕 燃料処理材 B, B 2 :酸化ゲイ素と酸化アルミニウム の 1 : 1重量比混合粉末にポリ ビニルアルコールと水と を添加して混練し、 該混練物を平均粒子径 6譲の球状粒 子に成形し、 1 0 0 0 °C, 3時間焼成してセラミ ック固 形物を作製する。
燃料処理材 D, D 2 :酸化ジルコニウムと酸化チタン の 1 : 1重量比混合粉末にポリビニルアルコールと水と を添加して混練し、 該混練物を平均粒子径 6讓の球状粒 子に成形し、 1 0 0 0で, 3時間焼成してセラミ ック固 形物を作製する。
燃料処理材 F, F 2 :窒化ゲイ素と窒化ホウ素の 1 : 1重量比混合粉末にポリ ビニルアルコールと水とを添加 して混練し、 該混練物を第 3実施例に示す羽根状に成形 し、 1 0 0 0で, 3時間焼成してセラミ ック固形物を作 製する。
上記各セラミ ック固形物を該水溶液に浸潰し 2時間放 置した後回収して 1 0 0 2時間の乾燥を行ない、 活性 化セラミ ック固形物を得る。
上記セラミ ック固形物 B, D, Fを該水溶液に浸潰し 2時間放置した後回収して 1 0 0て 2時間の乾燥を行な い、 活性化セラミ ック固形物を得る。
またセラミ ック固形物 B 2, D 2 , F 2に該水溶液を 通した空気を 5 1 /分の流速で 3時間送通して活性化セ ラ ミ ック固形物を得る。 〔燃料処理材 Gの作製〕
酸化ゲイ素と酸化アルミニウムの 1 : 1重量比混合粉 末にポリビニルアルコールと水とを添加して混練し、 該 混練物を平均粒子径 6薩の球状粒子に成形し、 1 0 0 0 °C, 3時間焼成してセラミ ック固形物を作製する。
燃料処理材 A, A 2 , B並びに B 2は第 1図および第 2図に示すように第 1実施例の燃料処理容器(12)内に開 離状態で充填され、 燃料処理材 C, C 2, D並びに D 2 は第 3図および第 4図に示すように第 2実施例の多孔小 容器(27)内に 8 0 %の充塡密度で充填されてから燃料処 理容器(22)内に充填され、 燃料処理材 E, E 2, F並び に F 2は第 3実施例の燃料処理容器(32)内に第 5図およ び第 6図に示すように配置される。
また燃料処理材 Gを第 7図に示すように密に充填した 従来例の燃料処理容器(2) を比較例 1 とし、 また活性化 した鉄を含む水溶液で処理された燃料処理材 Aを第 7図 に示すように密に充填した従来例の燃料処理容器(2) を 比較例 2として用いた。
上記 1 4種類の燃料処理装置を用いて 2 8 0 0 ccディ —ゼルエンジン車により、 6 O KmZ h定地走行燃費試験 を行なった。 本試験において、 平均負荷は 2 0 Kg、 3 0 Kg、 4 0 Kg、 5 0 Kgの 4段階とし、 走行距離は 5 Kmとし た。 平均負荷と燃費との関係を第 1表に示した。 第 1表
本発明の燃料処理装置が自動車の燃費に及ぼす影響
Figure imgf000016_0001
ネ 1〜* 4 :平均負荷
- :測定不能 第 1表によれば本発明の燃料処理装置(11 , 21 , 31 )はい ずれを用いた場合でも、 従来例の燃料処理装置(1 ) に従 来例の燃料処理材 Gを密に充填した比較例 1に比して大 巾に燃費が向上していることが明らかになった。
また活性化した鉄を含む水溶液で処理された燃料処理 材 Aを密に充填した比較例 2では、 比較例 1に比して燃 費は向上したが、 本発明の各実施例の燃費改善効果には およばなかった。
したがって本発明においては圧力損失が小さく、 しか も燃料と燃料処理材との接触効率が高く、 燃料の改質効 果の高い燃料処理装置が得られる。

Claims

請 求 の 範 囲
1 . 一端部に燃料導入口、 他端部に燃料排出口を有する 燃料処理容器内に、 燃料処埋材を該燃料流によって動 きうるように存在させたことを特徴とする燃料処理装 置
2 . 該燃料処理材は粒状である請求の範囲 1に記載の燃 料処理装置
3 . 該燃料処理材の複数個が開離状態で燃料処理容器内 に充填されている請求の範囲 2に記載の燃料処理装置
4 . 該燃料処理材が燃料流によって動きうる程度に粗に 多孔小容器内に充塡され、 該多孔小容器の複数個が該 燃料処理容器内に充塡されている請求の範囲 2に記載 の燃料処理装置
5 . 該燃料処理材は羽根状であり、 その一個または複数 個が上流方向に向けて燃料処理容器内に配置されてい る請求の範囲 1 に記載の燃料処理装置
6 . 該燃料処理材がセラミ ック固形物である請求の範囲 1 、 2、 3、 4並びに 5に記載の燃料処理装置
7 . 該セラミ ック固形物は塩化第二鉄を大量のカセイソ 一ダ水溶液に溶かした後塩酸で中和し、 濃縮して得ら れた結晶の水溶液に浸漬処理された活性化セラミ ック からなる請求の範囲 6に記載の燃料処理装置
8 . 該セラミ ック固形物は塩化第二鉄を大量のカセイソ 一ダ水溶液に溶かした後塩酸で中和し、 濃縮して得ら れた結晶の水溶液に通した空気を接触せしめた活性化 セラミ ツクからなる請求の範囲 6に記載の燃料処理装 置
9 . 該セラミ ック固形物は硫酸第一鉄を大量の塩酸水溶 液に溶かした後濃縮して得られた結晶の水溶液に浸漬 燃料処理された活性化セラミ ックからなる請求の範囲 6に記載の燃料処理装置
1 0 . 該セラミ ック固形物は硫酸第一鉄を大量の塩酸水 溶液に溶かした後濃縮して得られた結晶の水溶液に通 した空気を接触せしめた活性化セラミ ックからなる請 求の範囲 6に記載の燃料処理装置
PCT/JP1995/000684 1994-04-06 1995-04-06 Dispositif de traitement de combustibles WO1995027849A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69529449T DE69529449T2 (de) 1994-04-06 1995-04-06 Brennstoffbehandlungsvorrichtung
AU21480/95A AU2148095A (en) 1994-04-06 1995-04-06 Fuel treatment device
EP95914537A EP0708237B1 (en) 1994-04-06 1995-04-06 Fuel treatment device
US08/556,975 US5695531A (en) 1994-04-06 1995-04-06 Fuel treating device
KR1019950705498A KR960702887A (ko) 1994-04-06 1995-04-06 연료처리장치(fuel treatment device)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9366594A JPH07224730A (ja) 1993-12-15 1994-04-06 燃料処理装置
JP6/93665 1994-04-06

Publications (1)

Publication Number Publication Date
WO1995027849A1 true WO1995027849A1 (fr) 1995-10-19

Family

ID=14088703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000684 WO1995027849A1 (fr) 1994-04-06 1995-04-06 Dispositif de traitement de combustibles

Country Status (7)

Country Link
US (1) US5695531A (ja)
EP (1) EP0708237B1 (ja)
KR (1) KR960702887A (ja)
AU (1) AU2148095A (ja)
DE (1) DE69529449T2 (ja)
TW (1) TW314573B (ja)
WO (1) WO1995027849A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791745A1 (en) * 1996-02-23 1997-08-27 Nobuyoshi Nishikawa Method of reforming fuel, fuel-reforming apparatus and thermal engine

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582709B2 (ja) * 2000-02-16 2004-10-27 基成 小山 燃焼促進装置
US6203586B1 (en) * 2000-01-12 2001-03-20 John W. Davis Fire enhancement system
US6623636B2 (en) * 2000-05-08 2003-09-23 Honeywell International Inc. Staged oil filter incorporating timed release oil conditioner
CA2408880A1 (en) 2000-05-08 2001-11-15 Ronald P. Rohrbach Staged oil filter incorporating pelletized basic conditioner
US6827750B2 (en) * 2001-08-24 2004-12-07 Dober Chemical Corp Controlled release additives in fuel systems
US6835218B1 (en) 2001-08-24 2004-12-28 Dober Chemical Corp. Fuel additive compositions
AU2002323231B2 (en) 2001-08-24 2008-01-31 Cummins Filtration Inc. Controlled release of additives in fluid systems
US7938277B2 (en) 2001-08-24 2011-05-10 Dober Chemical Corporation Controlled release of microbiocides
US7384896B2 (en) * 2002-07-16 2008-06-10 The Lubrizol Corporation Controlled release of additive gel(s) for functional fluids
US6843916B2 (en) * 2002-07-16 2005-01-18 The Lubrizol Corporation Slow release lubricant additives gel
PL373253A1 (en) * 2002-08-01 2005-08-22 Briggs & Stratton Corporation Drip feed apparatus for a fuel container
US6981532B2 (en) * 2002-08-01 2006-01-03 Briggs & Stratton Corporation Drip feed apparatus for a fuel container
US7534747B2 (en) * 2003-06-25 2009-05-19 The Lubrizol Corporation Gels that reduce soot and/or emissions from engines
US7563368B2 (en) 2006-12-12 2009-07-21 Cummins Filtration Ip Inc. Filtration device with releasable additive
US8022021B2 (en) * 2007-02-05 2011-09-20 The Lubrizol Corporation Low ash controlled release gels
US8591747B2 (en) 2008-05-27 2013-11-26 Dober Chemical Corp. Devices and methods for controlled release of additive compositions
US7883638B2 (en) 2008-05-27 2011-02-08 Dober Chemical Corporation Controlled release cooling additive compositions
US8702995B2 (en) 2008-05-27 2014-04-22 Dober Chemical Corp. Controlled release of microbiocides
US20090294379A1 (en) * 2008-05-27 2009-12-03 Dober Chemical Corporation Controlled release of additive compositions
MX2019013783A (es) * 2019-11-19 2021-05-20 Carey Gipson Dispositivo para el tratamiento de combustible.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160847U (ja) * 1983-04-14 1984-10-27 弘保 亘 燃料油の磁化装置
JPH01116275A (ja) * 1987-10-28 1989-05-09 Kenji Yakura 燃料処理方法およびその燃料処理装置
JPH03213653A (ja) * 1990-01-19 1991-09-19 Nissho Rajiekoo Kk 燃焼機関の燃費向上方法
JPH0499289A (ja) * 1990-08-08 1992-03-31 Sumitomo Metal Ind Ltd エッチング方法
JPH062622A (ja) * 1992-06-18 1994-01-11 Mamoru Miyano 炭化水素系燃料の高燃焼化処理装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB524881A (en) * 1938-02-26 1940-08-16 Hellenique Ind Des Gazofacteur Improved process and apparatus for gasifying heavy hydrocarbon for use in internal combustion engines
US2955028A (en) * 1955-10-17 1960-10-04 Ethyl Corp Fuel systems for compression ignition engines
US3789096A (en) * 1967-06-01 1974-01-29 Kaman Sciences Corp Method of impregnating porous refractory bodies with inorganic chromium compound
GB1402207A (en) * 1972-03-03 1975-08-06 Siemens Ag Catalyst and its use in hydrocarbon cracking processes
US4106478A (en) * 1975-06-09 1978-08-15 Sunao Higashijima Packaged heat generator
US4282084A (en) * 1978-09-27 1981-08-04 Mobil Oil Corporation Catalytic cracking process
JPS5569684A (en) * 1978-11-20 1980-05-26 Akinobu Fujiwara Pyrogen
US4407967A (en) * 1979-08-16 1983-10-04 Frenchtown American Corp. Method for producing spheroidal ceramics
US4404152A (en) * 1980-11-24 1983-09-13 Phillips Petroleum Company Iron-containing refractory balls for retorting oil shale
US4478607A (en) * 1983-08-03 1984-10-23 Turra International, Inc. Device for atomizing and dispersing fuel in a fuel/air mixture
US5059217A (en) * 1990-10-10 1991-10-22 Arroyo Melvin L Fluid treating device
DE4129408C1 (ja) * 1991-09-04 1992-10-22 Chemische Betriebe Pluto Gmbh, 4690 Herne, De
US5305725A (en) * 1992-09-11 1994-04-26 Marlow John R Method and apparatus for treating fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160847U (ja) * 1983-04-14 1984-10-27 弘保 亘 燃料油の磁化装置
JPH01116275A (ja) * 1987-10-28 1989-05-09 Kenji Yakura 燃料処理方法およびその燃料処理装置
JPH03213653A (ja) * 1990-01-19 1991-09-19 Nissho Rajiekoo Kk 燃焼機関の燃費向上方法
JPH0499289A (ja) * 1990-08-08 1992-03-31 Sumitomo Metal Ind Ltd エッチング方法
JPH062622A (ja) * 1992-06-18 1994-01-11 Mamoru Miyano 炭化水素系燃料の高燃焼化処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0708237A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0791745A1 (en) * 1996-02-23 1997-08-27 Nobuyoshi Nishikawa Method of reforming fuel, fuel-reforming apparatus and thermal engine

Also Published As

Publication number Publication date
US5695531A (en) 1997-12-09
EP0708237A1 (en) 1996-04-24
KR960702887A (ko) 1996-05-23
TW314573B (ja) 1997-09-01
AU2148095A (en) 1995-10-30
DE69529449D1 (de) 2003-02-27
EP0708237B1 (en) 2003-01-22
DE69529449T2 (de) 2003-10-23
EP0708237A4 (en) 1997-12-29

Similar Documents

Publication Publication Date Title
WO1995027849A1 (fr) Dispositif de traitement de combustibles
Ahmad et al. Adsorption of Pb (II) and Cu (II) by Alginate-Au-Mica bionanocomposite: kinetic, isotherm and thermodynamic studies
JP7120650B2 (ja) 浄化剤の製造方法、浄化剤による浄化方法、及び浄化剤の再生方法
RO121424B1 (ro) Metodă de tratare a apei
Babakhani et al. Synthesis, characterization, and performance evaluation of ion-imprinted crosslinked chitosan (with sodium tripolyphosphate) for cadmium biosorption
CN109795992B (zh) 一种水溶性四价铂化合物及其制备方法和应用
CN110801830A (zh) 一种氢解脱苄Pd(OH)2/C催化剂中钯循环利用的方法
CN113117735A (zh) 一种处理含烃废水催化剂及其制备方法与应用
Lye et al. Application of nanoscale zero‐valent iron‐loaded natural zeolite for tetracycline removal process
Yue et al. Amidoxime functionalized low-cost cellulose-based adsorbent derived from waste cigarette filters for efficient heavy metal removal
Nasiri et al. New efficient and recyclable magnetic nanohybrid adsorbent for the metronidazole removal from simulated wastewater
CN110523398B (zh) 一种碳纳米片层负载TiO2分子印迹材料及其制备方法和应用
Wahab et al. A novel approach to remove ofloxacin antibiotic from industrial effluent using magnetic carbon nanocomposite prepared from sawdust of Dalbergia sissoo by batch and membrane hybrid technology
Bat-Amgalan et al. Adsorption of Cr (III) from an aqueous solution by chitosan beads modified with sodium dodecyl sulfate (SDS)
Mohammadi et al. Fe3O4/polystyrene-alginate nanocomposite as a novel adsorbent for highly efficient removal of dyes
Shaaban et al. Polyamidoamine dendrimers modified silica gel for uranium (VI) removal from aqueous solution using batch and fixed-bed column methods
Tang et al. Ni-chitosan/carbon nanotube: An efficient biopolymer-inorganic catalyst for selective hydrogenation of acetylene
JPH07224730A (ja) 燃料処理装置
JP2013011562A (ja) 金属原子を含有する廃液の処理方法、及び吸着剤
US4052302A (en) Process of forming catalytic surfaces for wet oxidation reactions
CN108404825B (zh) 一种纳米铁粉微胶囊化方法
KR910021254A (ko) 미립물질(particulate material)
US3006718A (en) Method of treating exhaust vapors containing unburned fuel hydrocarbons
JP3226565B2 (ja) 廃水の処理方法
Zhou et al. Facile preparation of BiVO4/Bi-MOF composites for photocatalytic dye removal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08556975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995914537

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995914537

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1995914537

Country of ref document: EP