WO1995018984A1 - Appareil permettant de former un rayon laser carre ou rectangulaire a profil uniforme d'intensite - Google Patents

Appareil permettant de former un rayon laser carre ou rectangulaire a profil uniforme d'intensite Download PDF

Info

Publication number
WO1995018984A1
WO1995018984A1 PCT/US1995/000115 US9500115W WO9518984A1 WO 1995018984 A1 WO1995018984 A1 WO 1995018984A1 US 9500115 W US9500115 W US 9500115W WO 9518984 A1 WO9518984 A1 WO 9518984A1
Authority
WO
WIPO (PCT)
Prior art keywords
spot
halves
intensity
intensity distribution
create
Prior art date
Application number
PCT/US1995/000115
Other languages
English (en)
Inventor
Dale E. Koop
Original Assignee
Coherent, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coherent, Inc. filed Critical Coherent, Inc.
Publication of WO1995018984A1 publication Critical patent/WO1995018984A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the subject invention relates to a device for converting a round beam having a gaussian-like intensity profile into a square beam with a uniform intensity profile.
  • a square beam with a uniform intensity profile can be used to more uniformly treat a workpiece.
  • Lasers are presently being used for treating materials in a wide variety of applications.
  • One area of interest includes medical applications where large regions of tissue are to be ablated.
  • tissue it is desirable to deliver a relatively high power pulse in a short period of time (one the order of one millisecond or less) .
  • a short period of time one the order of one millisecond or less.
  • the energy is delivered in a short period of time, diseased surface tissue can be ablated with minimal thermal damage to the underlying healthy tissue. Damage to the underlying tissue is minimized since most of the energy is utilized in vaporizing surface tissue. Because of the short time period, little energy is conducted to the underlying healthy tissue.
  • the radiant exposure (or fluence) at the surface must be at least three to four joules/cm 2 .
  • this level of fluence can be obtained by controlling the spot size of a beam.
  • spot sizes are used to insure that desired fluence level is achieved.
  • the size of the spot can be increased, while maintaining the desired level of fluence.
  • a larger spot size allows larger areas of tissue to be treated in a shorter period of time.
  • gaussian or gaussian-like shall refer to any beam wherein the energy is high near the center axis and tends to decrease towards the radially outer portions thereof.
  • a beam be provided with a more uniform intensity profile.
  • Such an intensity profile is illustrated in Figure 2. Because of the rectangular appearance of this profile, this energy distribution is often referred to a "top hat” profile.
  • the advantages of using a beam with a top hat profile for irradiating tissue was discussed in "Model Simulation of Biological Damage In Tissue Exposed to C0 2 Laser Irradiation," Gerstmann et. al, Optical Engineering, Feb. 1993, Vol 32. No 2, Page 291. In the latter article, it was noted that the zone of thermal damage surrounding a treatment region could be reduced by using a beam having a top hat profile.
  • a circular beam is suitable for treating small circular target regions.
  • regions much larger than the spot size need to be treated. Therefore, the surgeon is required to juxtapose a plurality of contiguous spots to fully treat the region.
  • circular spots had to be partially overlapped. Even with the most skilled hands, some of the regions would receive too much energy while other regions too little. Accordingly, it is an object of the subject invention to overcome these problems by creating a beam which can be used to more uniformly treat a larger region of tissue.
  • the subject invention provides a method and apparatus for creating a beam having both a uniform intensity distribution and a square or rectangular cross- section.
  • the uniform intensity distribution will allow for uniform treatment of tissue within the spot. More significantly, the square beam will facilitate treatment of larger areas of tissue because a large region can be more uniformly treated with a beam having at least two opposed straight edges.
  • the subject apparatus includes an optical means configured to convert a conventional round beam having a gaussian-like intensity profile into a beam having at least two opposed straight edges and a uniform intensity profile.
  • the apparatus includes a pair of optical elements aligned with the center axis of the beam.
  • the optical elements can consist of a pair of fold mirrors, prisms or diffractive optical elements (DOE) .
  • the pair of optical elements function to divide the beam in half with each beam half having one straight side edge defined by the original centerline of the beam.
  • the pair of optical elements also cause the two beam halves to overlap so that the two straight sides are pushed to the outer edges of the configured spot.
  • the intensity of the radiation at the newly defined straight outer edges of the beam is equivalent to the intensity at the center of the original gaussian beam.
  • the regions of both original tails overlap in the center of the reconfigured spot so that the energy density in this region represents the sum of the energy in both tails.
  • a beam having two opposed straight edges and a uniform intensity distribution along the axis extending therebetween can be very useful where the beam is being scanned over the work surface in a direction parallel to the straight edges.
  • fluence in the direction of the scan can be controlled by the scan rate.
  • a smooth treatment region along the edges perpendicular to the direction of the scan is achieved due to the straight edges of the beam.
  • a second pair of optical elements similar to the first pair is provided.
  • the second pair of optical elements is oriented in a manner to divide the beam along a centerline perpendicular to the division created by the first pair of optical elements.
  • the two pairs of optical elements divide the beam into four quadrants and cause the quadrants to overlap to define a reconfigured beam spot.
  • the edges of the quadrants define two pairs of opposed straight edges in the reconfigured beam.
  • a uniform intensity distribution is created over the entire spot.
  • a square or rectangular beam can be used to treat multiple contiguous spots without overlap providing for more uniform treatment.
  • a lens is used to collimate the overlapping sections of the beam. In this manner, the depth of field can be increased such that the beam diameter will remain relatively constant over a larger range .
  • Figure 1 is an illustration of the intensity distribution for a gaussian laser beam.
  • Figure 2 is an illustration of a laser beam having a rectangular or top hat intensity distribution.
  • Figure 3 is a three dimensional view of a round laser beam having a top hat intensity distribution.
  • Figure 4 is a schematic view illustrating the use of a prism and lens to reconfigure a round beam having a gaussian energy distribution into a beam having two straight side edges and a uniform intensity pattern along the axis extending therebetween.
  • Figure 5 is a diagram of the energy distribution which is achieved with the optical elements of Figure 4.
  • Figure 6 is an illustration of the scanning of a beam having an intensity distribution created by the optical elements of Figure 4.
  • Figure 7 is a schematic view illustrating the use of a folded mirror pair and a lens to create a beam having two straight side edges and a uniform intensity pattern along the axis extending therebetween.
  • Figure 8 is a schematic view illustrating the use of a diffractive optical element and a lens to create a beam having two straight side edges and a uniform intensity pattern along the axis extending therebetween.
  • Figure 9 is an illustration of a pair of prisms used to create a square beam with a uniform intensity profile.
  • Figure 10 is an illustration of a pair of fold mirrors used to create a square beam with a uniform intensity profile.
  • Figure 11 is an illustration of a four segment, composite prism used to create a square beam with a uniform intensity profile.
  • Figure 12 is an illustration of a four segment, composite fold mirror used to create a square beam with a uniform intensity profile.
  • Figure 13 is an illustration of a four segment, composite diffractive optical element used to create a square beam with a uniform intensity profile.
  • Figure 14 is a cross sectional view, taken along the line 14-14 of Figure 15, of a preferred form of apparatus utilizing two pairs of fold mirrors for converting a round laser beam having a gaussian intensity profile into a square beam with a uniform intensity profile.
  • Figure 15 is a perspective view of the apparatus of Figure 14.
  • FIG 4 there is illustrated a first embodiment of the subject invention.
  • a round laser beam 10 having a gaussian-like intensity profile (indicated at 12) is shown propagating from the left to the right.
  • the beam is generated by a conventional laser 13.
  • the beam 10 is directed to a target plane 15 via an optical delivery system.
  • the delivery system includes a prism 20, having two facets, 22 and 24.
  • Prism 20 functions to divide the beams in two halves (14 and 16) and redirect the halves on a converging path.
  • a lens 30 is located downstream from the prism 20 for recollimating and focusing the beam to a spot in the target plane.
  • the intensity distribution across the center of a beam which is created by the elements of Figure 4 is illustrated in Figure 5.
  • the dotted lines 32 represent the respective contributions from the two halves of the original gaussian beam.
  • the tail from the right half 14 of the beam extends from the peak at the left edge 34 to a low intensity level at the right edge 36.
  • the left half 16 of the beam has been laterally shifted to the right, so that the original centerline of the gaussian beam now defines the straight, right edge 36 of the reconfigured beam.
  • the tail from the left half 16 extends from the peak at the right edge to a low intensity level at the left edge.
  • the intensity levels at the two edges corresponds to the intensity peak at the center of the original gaussian beam.
  • the intensity of the beam between the opposed side edges represents a combination of the intensity of the tails of the two halves.
  • the intensity of tail 16 increases.
  • the intensity from tail 16 drops from right to left, the intensity of tail 14 increases.
  • the total intensity represented by the sum of the intensity of the two tails taken along an axis extending between two straight edges remains relatively constant as indicated by the solid line 38 of Figure 5.
  • the elements shown in Figure 4 can be used to create a beam spot with two straight side edges and a relatively uniform intensity pattern across the axis extending perpendicular to the side edges.
  • the subject approach will work best with any beam having something similar to a gaussian-like intensity distribution. Even with some beams that have an original profile significantly different from a gaussian distribution, some beneficial homogenizing effects on the intensity distribution might be achieved using the subject invention.
  • the subject invention is intended to be applicable to any situation where the intensity profile of the reconfigured beam is more uniform than the intensity profile of the original beam.
  • the subject invention also includes an optical system for creating a square beam having two sets of opposed straight edges.
  • a beam having only one set of opposed straight edges and a uniform intensity profile in the axis extending between the edges can also be very useful, particularly when the beam is being scanned.
  • Figure 6 illustrates how a beam having only one set of opposed straight edges might be beneficially used. More specifically, Figure 6 illustrates a beam spot 40 where the intensity distribution along the central horizontal axis A is the same that shown in Figure 5 (as indicated at the top of Figure 6) . However, since the distribution along the central vertical axis B has not been reconfigured, it remains gaussian as indicated at the right hand side of Figure 6. Thus, if spot 40 were to be used to treat tissue at a fixed position, the upper and lower regions of the spot (as viewed in Figure 6) would receive less fluence than the center region.
  • This control of the fluence by a time integration scheme can only be used to correct for non-uniformities of intensity distribution in the direction of the scan. If the energy distribution in a direction perpendicular to the scan direction (axis A) were gaussian, the level of fluence delivered to the tissue near the left and right edges of the beam would be much less than in the center of the spot. This problem is overcome by the subject invention since the intensity distribution across the horizontal axis is substantially uniform (as shown in the top of Figure 6) . Thus, by reconfiguring the beam in only one axis, and scanning the beam in the other axis, substantially uniform treatment over the scanned area 42 can be easily achieved. For larger areas, the beam can be scanned along multiple, parallel and contiguous scan lines.
  • a pair of mirrors 50 and 52 could be used to split and fold the beam 10 in a manner similar to the prism 20 of Figure 4.
  • Lens 30 would be used to focus the halves of the beam into a spot having two opposed straight edges and a uniform intensity pattern along the axis extending between the side edges.
  • a diffractive optical element is similar to a grating having a number of steps at different heights. Light is diffracted off the edges of the steps creating an effect which is directly analogous to the refractive properties of a lens or prism.
  • DOE diffractive optical element
  • a DOE 60 having two segments 62, 64 is used to replace prism 20 of Figure 4.
  • the construction of a DOE to diffract light in a manner equivalent to a prism is well within the abilities of one skilled in the art and need not be discussed herein.
  • lens 30 is used to focus the beam into a spot with two opposed straight edges.
  • FIG 9 illustrates this approach using a pair of identical prisms 70 and 72.
  • Each prism includes two facets 74, 76, 78 and 80. As can be seen, the two prisms are oriented orthogonally with respect to each other.
  • Prism 70 will function to divide the beam in the horizontal axis in the same manner as prism 20 in Figure 4.
  • Prism 72 will divide the beam along the vertical axis.
  • a lens (not shown) can be used to focus the beam segments to create an intensity distribution as shown in Figure 5 in both the horizontal and vertical axes.
  • the beam will have a square footprint with a substantially uniform intensity pattern throughout.
  • a square beam with a uniform intensity pattern is that it can be used to uniformly treat individual spots without scanning. Of course, such a beam can also be scanned. Having a uniform intensity distribution in both axes would allow the beam to be scanned in any direction while maintaining uniform fluence levels.
  • two pairs of fold mirrors 84 and 86 could be used. As can be seen, the center axes (88 and 90) of the fold mirrors as well as the mirror surfaces are orthogonally disposed. The two sets of fold mirrors will create a uniform intensity pattern in both axes.
  • Figures 9 and 10 two separate optical elements are illustrated.
  • Figures 11 to 13 illustrate embodiments where the two optical elements are combined into a single composite structure. More specifically, Figure 11 illustrates a prism 110 having four facets 112, 114, 116 and 118. The facets are formed in a pyramidal arrangement with two orthogonal axes 120 and 122. The four facets function to split the beam in quadrants. The overlapping quadrants can then be focused by a lens to create a square beam ' having a uniform intensity distribution.
  • Figure 12 illustrates a composite fold mirror 130 having four segments 132, 134, 136 and 138 arranged in a pyramidal configuration.
  • Figure 13 illustrates a composite diffractive optical element 140 having four quadrants 142, 144, 146, and 148. A lens is used with either composite mirror 130 or DOE 140 to form a square beam having a uniform intensity distribution.
  • FIGs 14 and 15 illustrate a preferred embodiment of the subject invention which has been fabricated and tested.
  • This embodiment is intended to be used with a beam generated by a carbon dioxide laser such as the type manufactured by the assignee herein under the Ultrapulse trademark.
  • the latter system includes a carbon dioxide laser which emits an output that is passed through optical elements to generate a beam having a generally circular cross section and a gaussian energy distribution.
  • the beam is coupled into an articulated arm and then into a handpiece selected based upon the particular surgical procedure to be performed.
  • the embodiment shown in Figures 14 and 15 includes a housing 150 which is intended to be interconnected between the delivery end of the articulated arm 152 and the handpiece (not shown) .
  • Housing 150 includes a coupler 154 for connection to the articulated arm. The beam enters the housing and into a channel 160. The beam is then reflected off two sets of fold mirrors having a configuration similar to that shown in Figure 10.
  • the first pair of fold mirrors 162 is mounted at one end of the housing. Fold mirrors 162 function to divide the beam in half and redirect the beam to a second pair of fold mirrors 164. (Only one mirror in each pair 162, 164 is seen in the cross-sectional view of Figure 14. ) Fold mirrors 164 are oriented along an axis perpendicular to fold mirrors 162 and also divide the beam in half.
  • the beam which now consists of four converging segments, exits housing 150 through coupler 170.
  • a lens (not shown) in the handpiece could be used to focus the beam into a form having a square configuration and a uniform intensity pattern.
  • the subject invention could be used in a variety of other medical procedures where large area ablation is desired.
  • the subject invention could also be utilized in non-medical applications such as material processing where uniform treatment of a workpiece is desired.

Abstract

Appareil optique servant à reconfigurer un rayon laser circulaire présentant une distribution d'intensité de type gaussien en un rayon de section carrée ou rectangulaire présentant une distribution d'intensité uniforme. Un premier élément optique sert à diviser le faisceau par moitiés le long d'un premier axe. Un second élément optique sert à diviser le faisceau par moitiés le long d'un second axe perpendiculaire à la division créée par le premier élément optique. Les quatre segments du faisceau sont dirigés de façon à se recouvrir partiellement. Une lentille sert à focaliser le faisceau dans un plan cible. Le spot du faisceau laissera ainsi une empreinte carrée présentant deux groupes de bords droits opposés et la distribution d'intensité sera sensiblement uniforme à travers le spot, ce qui permettra un travail plus régulier sur une pièce.
PCT/US1995/000115 1994-01-07 1995-01-04 Appareil permettant de former un rayon laser carre ou rectangulaire a profil uniforme d'intensite WO1995018984A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17851694A 1994-01-07 1994-01-07
US08/178,516 1994-01-07

Publications (1)

Publication Number Publication Date
WO1995018984A1 true WO1995018984A1 (fr) 1995-07-13

Family

ID=22652843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/000115 WO1995018984A1 (fr) 1994-01-07 1995-01-04 Appareil permettant de former un rayon laser carre ou rectangulaire a profil uniforme d'intensite

Country Status (1)

Country Link
WO (1) WO1995018984A1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309088A (en) * 1996-01-12 1997-07-16 Synectix Ltd Image exposing apparatus
EP0861917A1 (fr) * 1997-02-25 1998-09-02 LSP Technologies, Inc. Traitement par chocs laser utilisant un angle oblique
DE19724060A1 (de) * 1997-06-07 1998-12-10 Univ Stuttgart Strahlwerkzeuge Verfahren zur Erzeugung eines homogenen, über den gesamten Strahlquerschnitt im wesentlichen konstante Energiedichte aufweisenden Laserstrahles sowie Vorrichtung zur Durchführung dieses Verfahrens
GB2329036A (en) * 1997-09-05 1999-03-10 Sharp Kk Optical system for redistributing optical extent and illumination source
WO2000010049A1 (fr) * 1998-08-13 2000-02-24 Asclepion-Meditec Ag Piece a main a usage medical pour source de rayonnement laser
WO2000028910A1 (fr) * 1998-11-12 2000-05-25 Asclepion-Meditec Ag Piece a main dermatologique
US6121996A (en) * 1998-05-04 2000-09-19 Creo Srl Laser recording method
US6155688A (en) * 1997-09-05 2000-12-05 Sharp Kabushiki Kaisha Dark field projection display
US6266080B1 (en) * 1999-04-30 2001-07-24 Creo Srl Thermal recording with variable power density
US6607523B1 (en) 1999-03-19 2003-08-19 Asah Medico A/S Apparatus for tissue treatment
WO2004000420A1 (fr) * 2002-06-25 2003-12-31 Riancorp Pty Ltd Homogeneiseurs a faisceau laser dans des applications medicales
DE10231969A1 (de) * 2002-07-15 2004-02-05 Siemens Ag Optisches Element zur Formung eines Lichtstrahls und Verfahren zum Bearbeiten von Objekten mittels Laserstrahlen
FR2849509A1 (fr) * 2002-12-31 2004-07-02 Jobin Yvon Sas Systeme d'eclairement d'une surface et microscope comportant un tel systeme
DE10049557B4 (de) * 2000-10-06 2004-09-02 Microlas Lasersystem Gmbh Vorrichtung zum Umwandeln der Intensitätsverteilung eines Laserstrahls
US6887233B2 (en) * 2001-03-22 2005-05-03 Lumenis, Inc. Scanning laser handpiece with shaped output beam
EP1748471A1 (fr) * 1999-03-10 2007-01-31 Mitsubishi Denki Kabushiki Kaisha Appareil pour le traitement thermique par laser
CN1305631C (zh) * 2003-08-21 2007-03-21 莱斯特加工技术公司 同时加热材料的方法和装置
US7263255B2 (en) 2002-04-08 2007-08-28 Lumenis Inc. System, method and apparatus for providing uniform illumination
WO2007149602A2 (fr) * 2006-02-01 2007-12-27 The General Hospital Corporation Procédés et systèmes d'application d'un rayonnement électromagnétique sur au moins une partie d'un échantillon au moyen de procédures thérapeutiques laser conformationnelles
WO2009012913A1 (fr) * 2007-07-21 2009-01-29 Keming Du Dispositif optique destiné à la production de faisceaux multiples
ES2313806A1 (es) * 2004-12-30 2009-03-01 Universidad De Granada Procedimiento de calibrado de laser considerando el solapamiento de los pulsos.
KR101054339B1 (ko) * 2003-12-04 2011-08-04 삼성전자주식회사 다결정용 마스크 및 이를 이용한 규소 결정화 방법
EP2275051A3 (fr) * 2005-04-18 2011-11-23 Pantec Biosolutions AG Dispositif laser de formation de micropores dans un tissu biologique
WO2012004713A1 (fr) 2010-07-08 2012-01-12 Koninklijke Philips Electronics N.V. Système de projection comprenant une source lumineuse à semi-conducteurs et un matériau électroluminescent
WO2012004705A1 (fr) 2010-07-08 2012-01-12 Koninklijke Philips Electronics N.V. Système de projection comprenant une source de lumière à semi-conducteurs et un matériau luminescent
US20130064706A1 (en) * 2009-12-04 2013-03-14 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
EP2808708A1 (fr) * 2013-05-30 2014-12-03 Ricoh Company, Ltd. Élément optique, système optique de projection et détecteur d'objet
WO2016120327A1 (fr) * 2015-01-28 2016-08-04 Precitec Gmbh & Co. Kg Dispositif d'usinage de matériau par rayonnement laser
CN106291949A (zh) * 2016-11-09 2017-01-04 中国航空工业集团公司北京航空制造工程研究所 一种激光束的整形装置
CN107052581A (zh) * 2017-05-02 2017-08-18 中国工程物理研究院机械制造工艺研究所 一种基于束斑能量分布调控的激光修饰焊接方法
CN108957765A (zh) * 2018-08-27 2018-12-07 华中科技大学 一种改变激光聚焦光斑空间方向的方法及装置
CN110679045A (zh) * 2017-07-13 2020-01-10 极光先进雷射株式会社 激光系统
CN114535786A (zh) * 2022-04-22 2022-05-27 江苏联赢激光有限公司 一种激光装置及激光加工方法
CN115407518A (zh) * 2022-10-31 2022-11-29 成都莱普科技股份有限公司 矩形平顶光斑的发生系统、方法及设备
CN116931286A (zh) * 2023-09-15 2023-10-24 成都莱普科技股份有限公司 一种光束整形模组、方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213471A2 (fr) * 1985-08-12 1987-03-11 Kabushiki Kaisha Toshiba Appareil de traitement thermique de surface
GB2220502A (en) * 1988-07-09 1990-01-10 Exitech Ltd Excimer laser beam homogenizer system
SU1697042A1 (ru) * 1990-02-23 1991-12-07 Центральное Конструкторское Бюро Уникального Приборостроения Научно-Технического Объединения Ан Ссср Устройство дл фокусировки гауссова пучка в пр моугольник с равномерным распределением интенсивности

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213471A2 (fr) * 1985-08-12 1987-03-11 Kabushiki Kaisha Toshiba Appareil de traitement thermique de surface
GB2220502A (en) * 1988-07-09 1990-01-10 Exitech Ltd Excimer laser beam homogenizer system
SU1697042A1 (ru) * 1990-02-23 1991-12-07 Центральное Конструкторское Бюро Уникального Приборостроения Научно-Технического Объединения Ан Ссср Устройство дл фокусировки гауссова пучка в пр моугольник с равномерным распределением интенсивности
SU1697041A1 (ru) * 1990-02-23 1991-12-07 Центральное Конструкторское Бюро Уникального Приборостроения Научно-Технического Объединения Ан Ссср Устройство дл фокусировки гауссова пучка в пр моугольник с равномерным распределением интенсивности

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GIRARDEAU-MONTAUT ET AL: "Optical Device Analysis for Uniform Intensity Irradiation from a High Energy Gaussian Laser Beam", OPTICS COMMUNICATIONS, vol. 57, no. 3, 1 March 1986 (1986-03-01), AMSTERDAM NL, pages 161 - 165 *
IWASAKI ET AL: "Square and Uniform Laser Output Device: Theory and Applications", APPLIED OPTICS., vol. 29, no. 20, April 1990 (1990-04-01), NEW YORK US, pages 1736 - 1744 *
JUN-CHANG LI: "Etude Théorique d'un Dispositif Optique et de ses Variantes pour Uniformiser l'Eclairement d'un Faisceau Gaussien TEMoo", JOURNAL OF OPTICS, vol. 18, no. 2, March 1987 (1987-03-01), PARIS FR, pages 73 - 80 *
KAWAMURA ET AL: "A Simple Optical Device for Generating Square Flat-Top Intensity Irradiation From a Gaussian Laser Beam", OPTICS COMMUNICATIONS, vol. 48, no. 1, 1 November 1983 (1983-11-01), AMSTERDAM NL, pages 44 - 46 *
LI JUNCHANG ET AL: "Etude Théorique d'un Dispositif Permettant de Condenser un Faisceau Laser Gaussien en une Tache Carrée de Dimension Variable avec une Répartition d'Energie Homogène", REVUE DE PHYSIQUE APPLIQUEE, vol. 24, no. 12, December 1989 (1989-12-01), PARIS FR, pages 1111 - 1118 *
MERLIN ET AL: "Modification par Recombinaison de Faisceaux de l'Éclairement Délivré par une Source Laser de Puissance: Étude Théorique et Expérimentale", JOURNAL OF OPTICS, vol. 21, no. 2, March 1990 (1990-03-01), PARIS FR, pages 51 - 61 *

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309088A (en) * 1996-01-12 1997-07-16 Synectix Ltd Image exposing apparatus
EP0861917A1 (fr) * 1997-02-25 1998-09-02 LSP Technologies, Inc. Traitement par chocs laser utilisant un angle oblique
DE19724060C2 (de) * 1997-06-07 2001-09-13 Univ Stuttgart Strahlwerkzeuge Verfahren zur Erzeugung eines homogenen, über den gesamten Strahlquerschnitt im wesentlichen konstante Energiedichte aufweisenden Laserstrahles sowie Vorrichtung zur Durchführung dieses Verfahrens
DE19724060A1 (de) * 1997-06-07 1998-12-10 Univ Stuttgart Strahlwerkzeuge Verfahren zur Erzeugung eines homogenen, über den gesamten Strahlquerschnitt im wesentlichen konstante Energiedichte aufweisenden Laserstrahles sowie Vorrichtung zur Durchführung dieses Verfahrens
GB2329036A (en) * 1997-09-05 1999-03-10 Sharp Kk Optical system for redistributing optical extent and illumination source
US6155688A (en) * 1997-09-05 2000-12-05 Sharp Kabushiki Kaisha Dark field projection display
US6121996A (en) * 1998-05-04 2000-09-19 Creo Srl Laser recording method
WO2000010049A1 (fr) * 1998-08-13 2000-02-24 Asclepion-Meditec Ag Piece a main a usage medical pour source de rayonnement laser
US6537270B1 (en) 1998-08-13 2003-03-25 Asclepion-Meditec Ag Medical hand piece for a laser radiation source
WO2000028910A1 (fr) * 1998-11-12 2000-05-25 Asclepion-Meditec Ag Piece a main dermatologique
US6682524B1 (en) 1998-11-12 2004-01-27 Asclepion Laser Technologies Gmbh Dermatological hand piece
EP1748471A1 (fr) * 1999-03-10 2007-01-31 Mitsubishi Denki Kabushiki Kaisha Appareil pour le traitement thermique par laser
US6607523B1 (en) 1999-03-19 2003-08-19 Asah Medico A/S Apparatus for tissue treatment
US6266080B1 (en) * 1999-04-30 2001-07-24 Creo Srl Thermal recording with variable power density
DE10049557B4 (de) * 2000-10-06 2004-09-02 Microlas Lasersystem Gmbh Vorrichtung zum Umwandeln der Intensitätsverteilung eines Laserstrahls
US7824396B2 (en) 2001-03-22 2010-11-02 Lumenis Ltd. Scanner laser handpiece with shaped output beam
US6887233B2 (en) * 2001-03-22 2005-05-03 Lumenis, Inc. Scanning laser handpiece with shaped output beam
US7438713B2 (en) 2001-03-22 2008-10-21 Lumenis, Inc. Scanning laser handpiece with shaped output beam
US7263255B2 (en) 2002-04-08 2007-08-28 Lumenis Inc. System, method and apparatus for providing uniform illumination
WO2004000420A1 (fr) * 2002-06-25 2003-12-31 Riancorp Pty Ltd Homogeneiseurs a faisceau laser dans des applications medicales
US7758570B2 (en) 2002-06-25 2010-07-20 Riancorp Pty Ltd Laser beam homogenisers in medical applications
DE10231969A1 (de) * 2002-07-15 2004-02-05 Siemens Ag Optisches Element zur Formung eines Lichtstrahls und Verfahren zum Bearbeiten von Objekten mittels Laserstrahlen
DE10231969B4 (de) * 2002-07-15 2004-09-30 Siemens Ag Optisches Element zur Formung eines Lichtstrahls und Verfahren zum Bearbeiten von Objekten mittels Laserstrahlen
FR2849509A1 (fr) * 2002-12-31 2004-07-02 Jobin Yvon Sas Systeme d'eclairement d'une surface et microscope comportant un tel systeme
CN1305631C (zh) * 2003-08-21 2007-03-21 莱斯特加工技术公司 同时加热材料的方法和装置
KR101054339B1 (ko) * 2003-12-04 2011-08-04 삼성전자주식회사 다결정용 마스크 및 이를 이용한 규소 결정화 방법
ES2313806A1 (es) * 2004-12-30 2009-03-01 Universidad De Granada Procedimiento de calibrado de laser considerando el solapamiento de los pulsos.
EP2275051A3 (fr) * 2005-04-18 2011-11-23 Pantec Biosolutions AG Dispositif laser de formation de micropores dans un tissu biologique
WO2007149602A3 (fr) * 2006-02-01 2008-04-03 Gen Hospital Corp Procédés et systèmes d'application d'un rayonnement électromagnétique sur au moins une partie d'un échantillon au moyen de procédures thérapeutiques laser conformationnelles
WO2007149602A2 (fr) * 2006-02-01 2007-12-27 The General Hospital Corporation Procédés et systèmes d'application d'un rayonnement électromagnétique sur au moins une partie d'un échantillon au moyen de procédures thérapeutiques laser conformationnelles
WO2009012913A1 (fr) * 2007-07-21 2009-01-29 Keming Du Dispositif optique destiné à la production de faisceaux multiples
US20130064706A1 (en) * 2009-12-04 2013-03-14 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
US9221100B2 (en) * 2009-12-04 2015-12-29 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
WO2012004713A1 (fr) 2010-07-08 2012-01-12 Koninklijke Philips Electronics N.V. Système de projection comprenant une source lumineuse à semi-conducteurs et un matériau électroluminescent
WO2012004705A1 (fr) 2010-07-08 2012-01-12 Koninklijke Philips Electronics N.V. Système de projection comprenant une source de lumière à semi-conducteurs et un matériau luminescent
EP2407826A1 (fr) 2010-07-08 2012-01-18 Koninklijke Philips Electronics N.V. Système de projection avec source de lumière semi-conducteur et matériau luminescent
EP2407825A1 (fr) 2010-07-08 2012-01-18 Koninklijke Philips Electronics N.V. Système de projection avec source de lumière semi-conducteur et matériau luminescent
EP2808708A1 (fr) * 2013-05-30 2014-12-03 Ricoh Company, Ltd. Élément optique, système optique de projection et détecteur d'objet
WO2016120327A1 (fr) * 2015-01-28 2016-08-04 Precitec Gmbh & Co. Kg Dispositif d'usinage de matériau par rayonnement laser
US10444521B2 (en) 2015-01-28 2019-10-15 Precitec Gmbh & Co. Kg Device for machining material by means of laser radiation
KR20170106475A (ko) * 2015-01-28 2017-09-20 프레시텍 게엠베하 운트 코 카게 레이저 방사 수단에 의한 재료 가공 장치
JP2018505782A (ja) * 2015-01-28 2018-03-01 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー レーザ放射による材料加工のための装置
KR101862298B1 (ko) 2015-01-28 2018-06-29 프레시텍 게엠베하 운트 코 카게 레이저 방사 수단에 의한 재료 가공 장치
CN106291949B (zh) * 2016-11-09 2018-09-07 中国航空工业集团公司北京航空制造工程研究所 一种激光束的整形装置
CN106291949A (zh) * 2016-11-09 2017-01-04 中国航空工业集团公司北京航空制造工程研究所 一种激光束的整形装置
CN107052581A (zh) * 2017-05-02 2017-08-18 中国工程物理研究院机械制造工艺研究所 一种基于束斑能量分布调控的激光修饰焊接方法
CN110679045A (zh) * 2017-07-13 2020-01-10 极光先进雷射株式会社 激光系统
JPWO2019012642A1 (ja) * 2017-07-13 2020-05-07 ギガフォトン株式会社 レーザシステム
US11217962B2 (en) 2017-07-13 2022-01-04 Gigaphoton Inc. Laser system
CN110679045B (zh) * 2017-07-13 2022-08-16 极光先进雷射株式会社 激光系统
CN108957765A (zh) * 2018-08-27 2018-12-07 华中科技大学 一种改变激光聚焦光斑空间方向的方法及装置
CN108957765B (zh) * 2018-08-27 2020-05-19 华中科技大学 一种改变激光聚焦光斑空间方向的方法及装置
CN114535786A (zh) * 2022-04-22 2022-05-27 江苏联赢激光有限公司 一种激光装置及激光加工方法
CN115407518A (zh) * 2022-10-31 2022-11-29 成都莱普科技股份有限公司 矩形平顶光斑的发生系统、方法及设备
CN116931286A (zh) * 2023-09-15 2023-10-24 成都莱普科技股份有限公司 一种光束整形模组、方法及装置
CN116931286B (zh) * 2023-09-15 2023-11-24 成都莱普科技股份有限公司 一种光束整形模组、方法及装置

Similar Documents

Publication Publication Date Title
WO1995018984A1 (fr) Appareil permettant de former un rayon laser carre ou rectangulaire a profil uniforme d'intensite
US5546214A (en) Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
US5178617A (en) System for controlled distribution of laser dosage
US8287524B2 (en) Apparatus and method for performing radiation energy treatments
US5258989A (en) Solid state laser diode light source
US6537270B1 (en) Medical hand piece for a laser radiation source
AU671607B2 (en) Corneal surgery device and method
US8317780B2 (en) Fractional scanner for dermatological treatments
US7738176B2 (en) Lenslet array for beam homogenization
US5369659A (en) Fault tolerant optical system using diode laser array
US20130041309A1 (en) Apparatus and method for performing radiation energy treatments
DE3902985A1 (de) Einrichtung und verfahren zur behandlung von werkstuecken mittels eines laserstrahls
KR100821532B1 (ko) 레이저 핸드피스
US6575964B1 (en) Selective aperture for laser delivery system for providing incision, tissue ablation and coagulation
US5995265A (en) Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
Wang et al. Beam shaping technology for laser diode arrays
AU2255192A (en) Lights-pumped high power medical system
CN217886196U (zh) 一种高功率光学治疗仪
WO1998025528A1 (fr) Dispositif servant a effectuer le traitement esthetique d'un tissu
WO1994015238A1 (fr) Methode pour mettre en forme un faisceau laser
CN113381270A (zh) 一种激光器及具有其的激光理疗装置
JPS63243218A (ja) レ−ザ焼入法
JP2000135112A (ja) レーザー脱毛法とその脱毛装置
US20150351842A1 (en) Apparatus and method for producing very small microchannels in tissue
JPH0298349A (ja) 半導体レーザ治療装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase