WO1995017018A1 - Elektrolumineszierende anordnungen - Google Patents

Elektrolumineszierende anordnungen Download PDF

Info

Publication number
WO1995017018A1
WO1995017018A1 PCT/EP1994/004076 EP9404076W WO9517018A1 WO 1995017018 A1 WO1995017018 A1 WO 1995017018A1 EP 9404076 W EP9404076 W EP 9404076W WO 9517018 A1 WO9517018 A1 WO 9517018A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
crystalline
charge transport
layers
transport compounds
Prior art date
Application number
PCT/EP1994/004076
Other languages
English (en)
French (fr)
Inventor
Dirk Funhoff
Karl Siemensmeyer
Lukas HÄUSSLING
Karl-Heinz Etzbach
Dieter Haarer
Jürgen SIMMERER
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to KR1019960703226A priority Critical patent/KR960706693A/ko
Priority to EP95903326A priority patent/EP0734592A1/de
Priority to JP7516507A priority patent/JPH09506646A/ja
Publication of WO1995017018A1 publication Critical patent/WO1995017018A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • An electroluminescent (EL) arrangement is characterized in that it emits light under current flow when an electrical voltage is applied.
  • Such arrangements have long been known in the art under the name “light emitting diodes” (LEDs).
  • the emission of light comes about by the fact that positive charges (“holes”, holes) and negative charges (“electrons”, electrons) combine while emitting light.
  • the LEDs commonly used in technology all consist predominantly of inorganic semiconductor materials.
  • EL arrangements have been known for some years, the essential components of which are organic materials.
  • organic EL arrangements usually contain one or more layers of organic charge transport compounds.
  • the basic structure is shown in Figure 1.
  • the numbers 1 to 10 mean:
  • an EL arrangement consists of two electrodes, between which there is an organic layer that fulfills all functions, including the emission of light.
  • organic layer that fulfills all functions, including the emission of light.
  • the invention now relates to electroluminescent arrangements with one or more organic layers which contain at least one layer or one or more liquid-crystalline charge transport compounds.
  • organic layers correspond to layers 3 to 7 in FIG. 1; when setting up the EL arrangement, e.g. the electron conductor layer and the electron-injecting layer can be dispensed with.
  • the EL arrangement would then e.g. consist of layers 3 to 5.
  • charge transport compounds are understood to mean all liquid-crystalline compounds which in some way transport charges (holes and / or electrons). This also explicitly includes those compounds which are components of the emitter layer, that is to say photoluminescent materials, such as e.g. Fluorescent dyes. Liquid crystalline photoconductors are e.g. described in European patent applications 527 376 AI and P 93104832.6.
  • the charge transport compounds according to the invention can be low-molecular (“monomeric") liquid-crystalline compounds, oligomers, oligomer mixtures, polymers or polymer networks and mixtures of the compounds mentioned.
  • liquid-crystalline charge transport compounds are discotically liquid-crystalline compounds from the series of triphenylenes, phthalocyanines, tricycloquinazolines, perylenes, peryleneimides, decacyclenes or porphyrins, and also calamitically liquid-crystalline from the series of oxadiazoles, thiadiazoles, biphenyls, ilipenyls, ilipenyls , Terphenyls, quaterphenyls or oxazolines.
  • the liquid-crystalline charge transport compounds are preferably used for layers 4 and 6 or 3 and 7. They are particularly well suited for this because of their high charge carrier mobility in the liquid-crystalline phase.
  • the liquid-crystalline charge transport compounds are particularly preferred in the molecular order present in a liquid-crystalline phase used. This order can be set, for example, by heating the sample. This order can be fixed, for example in the case of polymers which do not crystallize but solidify in a glass-like manner, by freezing into the glass state. It is also possible to fix the liquid-crystalline order by crosslinking in accordance with the method described in German patent application P 4339711.5.
  • those layers which do not contain any liquid-crystalline charge-transporting compounds are produced in the customary manner, for example by vapor deposition of low molecular charge transport compounds or by pouring or spinning on solutions of low molecular charge transport compounds in a polymeric binder or directly from solutions of polymeric charge transport compounds or their precursors.
  • Layers in which the components of the individual layers are thermally or particularly preferably crosslinked with actinic radiation are particularly preferred. This can e.g. similar to the methods described in German patent applications P 4325885.9 and P 4339711.5.
  • the liquid-crystalline charge transport compound is then in the isotropic phase, i.e. e.g. poured as a thin melt.
  • the glass plates can have other layers (e.g. orientation layers), which, however, must be thermally so stable that they are not destroyed when the liquid-crystalline charge transport compound, which may be hot, is filled.
  • Networked layers as in the German
  • Patent application P 4325885.9 are generally suitable.
  • liquid crystalline charge transport bond expediently applied to the substrate from solution, for example by casting or spin coating; application in bulk is of course also possible with a sufficiently low melting point.
  • the liquid-crystalline order can generally be set by simply heating the sample to convert it to the isotropic state and then cooling it to form the liquid-crystalline phase.
  • the liquid-crystalline order can be frozen in the glass state by quenching or fixed by crosslinking (see also German patent application P 43 39 711.5).
  • the layers which contain one or more of the liquid-crystalline compounds according to the invention can additionally contain one or more auxiliaries.
  • auxiliaries e.g. non-liquid crystalline charge transport compounds, e.g. Emitter dyes, or polymerization initiators and leveling agents, as are known to the person skilled in the art from coating technology.
  • FIG. 2 A diagram of the arrangement is shown in FIG. 2, the designations are explained in the following text:
  • a solution of 50 mg oxadiazole and 100 mg poly [cinnamic acid vinyl ester] in 1070 mg toluene was first spun onto a glass substrate ("1") vapor-coated with aluminum (20 nm, "2" in FIG. 2). The layer was then crosslinked by exposure to an HBO lamp for five minutes (* 3'1.
  • the cavity of the resulting arrangement was finally filled with hexapentyloxytriphenylene at 130 ° C ("7").
  • the electroluminescence of this probe was observed at 80 ° C. At this temperature, hexapentyloxytriphenylene is present in the liquid-crystalline DO phase. The light emitted was orange-red at a voltage of 150 V.
  • Hexapentyloxytriphenylene (phase sequence k 69 ° C Dho 122 ° C i) is diffused into a cell (see FIG. 3) at a temperature of 130 ° C.
  • the cell consists of a cross-shaped arrangement of two electrodes on glass substrates (see FIG. 3), one of which consists of transparent indium tin oxide (ITO) and the other of aluminum (thickness: 60 nm).
  • the active area is approximately 2 mm x 2 mm with a thickness of approximately 1.3 ⁇ m.
  • the two electrodes After the cell has been filled, the two electrodes are contacted with a conductive two-component adhesive. After applying a voltage of 69 V (positive to ITO) at a temperature of 80 ° C, the arrangement lights up bluish. The emission can be clearly seen in a dark room. Even after a few hours of lighting, no decrease in brightness is discernible.
  • the substance 2 capable of forming liquid-crystalline phases is allowed to diffuse into a cell (see FIG. 3) at a temperature of 120 ° C.
  • the phase sequence is g34 ° Ck66 ° Cnl02 ° Ci.
  • the cell consists of a cross-shaped arrangement of two electrodes, one of which consists of transparent indium-tin oxide and the other of aluminum (thickness: 60 nm).
  • the active area is approximately 2 mm x 2 mm with a thickness of approximately 3.0 ⁇ m.
  • the two electrodes are contacted with a conductive two-component adhesive. After applying a DC voltage of 200 V (positive to ITO) at a temperature of 85 ° C, the arrangement lights up bluish.
  • Figure 3 mean: 1 glass, 2 aluminum, 3 ITO and 4 glue.
  • 2,3,6,7, 10, 11-Hexabutyl-oxytriphenylene is allowed to flow into a cell analogous to Example 2 at a temperature of 155 ° C., after contacting as described in Example 2, the cell is adjusted to adjust the isotropic phase up to heated to a temperature of 155 ° C and cooled to 118 ° C after a waiting time of 5 minutes at a cooling rate of 1 K / min.
  • a DC voltage of 45 V ITO electrode positive, aluminum electrode negative, the arrangement lights up orange. No light emission can be observed at a voltage of 5 V.
  • the isotropic phase is adjusted by heating to a temperature of 120 ° C., and after a waiting time of 5 minutes, the mixture is cooled to 60 ° C. at a cooling rate of 1 K / min.
  • a DC voltage of 40 V, ITO electrode positive, aluminum electrode negative is applied, the arrangement lights up orange. At a voltage of 5 V, no light emission can be observed.
  • the isotropic phase is adjusted by heating to a temperature of 120 ° C., and after a waiting time of 5 minutes, the mixture is cooled to 20 ° C. at a cooling rate of 1 K / min.
  • a DC voltage of 65 V ITO electrode positive, aluminum electrode negative, the arrangement lights up orange. No light emission can be observed at a voltage of 5 V.
  • the isotropic phase is set at a temperature of 150 ° C. and after a waiting time of 5 minutes, the mixture is cooled to 100 ° C. at a cooling rate of 1 K / min.
  • a DC voltage of 50 V ITO electrode positive, aluminum electrode negative, the arrangement lights up orange. At a voltage of 5 V, no light emission can be observed.

Abstract

Die Erfindung betrifft elektrolumineszierende Anordnungen, enthaltend eine oder mehrere organische Schichten, wobei eine oder mehrere Schichten flüssigkristalline Ladungstransportverbindungen enthalten.

Description

Elektrolumineszierende Anordnungen
Beschreibung
Eine elektrolumineszierende (EL) Anordnung ist dadurch charakte¬ risiert, daß sie unter Anlegung einer elektrischen Spannung unter Stromfluß Licht aussendet. Derartige Anordnungen sind unter der Bezeichnung "Leuchtdioden" (LEDs = light emitting diodes) seit langem in der Technik bekannt. Die Emission von Licht kommt da¬ durch zustande, daß positive Ladungen ("Löcher", holes) und nega¬ tive Ladungen ("Elektronen", electrons) unter Aussendung von Licht kombinieren.
Die in der Technik gebräuchlichen LEDs bestehen alle zum überwie¬ genden Teil aus anorganischen Halbleitermaterialien. Seit einigen Jahren sind jedoch EL-Anordnungen bekannt, deren wesentliche Be¬ standteile organische Materialien sind.
Diese organischen EL-Anordnungen enthalten in der Regel eine oder mehrere Schichten aus organischen Ladungstransportverbindungen. Der prinzipielle Aufbau ist in Figur 1 dargestellt. Die Zahlen 1 bis 10 bedeuten dabei:
1 Träger, Substrat
2 Basiselektrode
3 Löcher-injizierende Schicht
4 Löcher-transportierende Schicht
5 Emitter-Schicht 6 Elektronen-transportierende Schicht
7 Elektronen-injizierende Schicht
8 Topelektrode
9 Kontakte
10 Umhüllung, Verkapselung
Dieser Aufbau stellt den allgemeinsten Fall dar und kann verein¬ facht werden, indem einzelne Schichten weggelassen werden, so daß eine Schicht mehrere Aufgaben übernimmt. Im einfachsten Fall be¬ steht eine EL-Anordnung aus zwei Elektroden, zwischen denen sich eine organische Schicht befindet, die alle Funktionen - inkl. der der Emission von Licht - erfüllt. Derartige Systeme sind z.B. in WO 9013148 auf der Basis von Poly- [p-phenylenvinylen] beschrie¬ ben.
Aus der Veröffentlichung (D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, K. Siemensmeyer, Phys. Rev. Lett. 70, 457 (1993) ist bekannt, daß in der flüssig- kristallinen Phase eine besonders hohe Ladungsbeweglichkeit vor¬ liegen kann.
Die Erfindung betrifft nun elektrolumineszierende Anordnungen mit einer oder mehreren organischen Schichten, die zumindest in einer Schicht eine oder mehrere flüssigkristalline Ladungstransportver¬ bindungen enthalten.
Diese organischen Schichten entsprechen in Figur 1 den Schichten 3 bis 7; beim Aufbau der EL-Anordnung kann aber z.B. auf die Elektronenleiterschicht und die elektronen-injizierende Schicht verzichtet werden. Die EL-Anordnung würde dann z.B. aus den Schichten 3 bis 5 bestehen.
Erfindungsgemäß werden unter Ladungstransportverbindungen alle flüssigkristallinen Verbindungen verstanden, die in irgendeiner Art und Weise Ladungen (Löcher und/oder Elektronen) transportie¬ ren. Darunter fallen auch ausdrücklich diejenigen Verbindungen, die Bestandteile der Emitter-Schicht sind, also photolumineszie- rende Materialien darstellen, wie z.B. Fluoreszenzfarbstoffe. Flüssigkristalline Photoleiter sind z.B. in den europäischen Pa¬ tentanmeldungen 527 376 AI und P 93104832.6 beschrieben.
Die erfindungsgemäßen Ladungstransportverbindungen können hierbei niedermolekulare ("monomere") flüssigkristalline Verbindungen, Oligomere, Oligomerengemische, Polymere oder polymere Netzwerke sowie Mischungen der genannten Verbindungen sein.
Beispiele derartiger flüssigkristalliner Ladungstransportverbin- düngen sind diskotisch flüssigkristalline Verbindungen aus der Reihe der Triphenylene, Phthalocyanine, Tricyclochinazoline, Pe- rylene, Perylenimide, Decacyclene oder Porphyrine sowie kalami- tisch flüssigkristalline aus der Reihe der Oxadiazole, Thiadia- zole, Biphenyle, S ilbene, Pyrimidine, Terphenyle, Quaterphenyle oder Oxazoline.
Besonders bevorzugt sind diskotisch flüssigkristalline Tri¬ phenylene und Tricyclochinazoline wie sie in den deutschen Anmel¬ dungen P 4339711.5 und P 4325238.9 beschrieben sind.
In der erfindungsgemäßen Ausführung werden die flüssig¬ kristallinen Ladungstransportverbindungen bevorzugt für die Schichten 4 und 6 oder 3 und 7 verwendet. Dazu sind sie wegen ih¬ rer hohen Ladungsträgerbeweglichkeit in der flüssigkristallinen Phase besonders gut geeignet. Besonders bevorzugt werden die flüssigkristallinen Ladungstransportverbindungen in der in einer flüssigkristallinen Phase vorliegenden molekularen Ordnung verwendet. Diese Ordnung kann z.B. durch Erwärmung der Probe ein¬ gestellt werden. Eine Fixierung dieser Ordnung kann z.B. bei Po¬ lymeren, die nicht kristallisieren, sondern glasartig erstarren, durch Einfrieren in den Glaszustand erfolgen. Ebenfalls möglich ist die Fixierung der flüssigkristallinen Ordnung durch Vernet¬ zung gemäß dem in der deutschen Patentanmeldung P 4339711.5 be¬ schriebenen Verfahren.
Bei dem erfindungsgemäßen schichtweisen Aufbau der EL-Anordnung werden diejenigen Schichten, die keine flüssigkristallinen la- dungstransportierenden Verbindungen enthalten, in der üblichen Art und Weise hergestellt, so z.B. durch Aufdampfen von nieder¬ molekularen Ladungstransportverbindungen oder durch Aufgießen oder Aufschleudern von Lösungen niedermolekularer Ladungstrans- portverbindungen in einem polymeren Bindemittel oder direkt von Lösungen polymerer Ladungstransportverbindungen oder deren Vor¬ stufen. Besonders bevorzugt sind Schichten, bei denen die Be¬ standteile der einzelnen Schichten nach dem Aufbringen thermisch oder besonders bevorzugt mit aktinischer Strahlung (UV-Licht, sichtbares Licht, Elektronenstrahlen oder Röntgenstrahlen) ver¬ netzt werden. Dies kann z.B. analog zu den in den deutschen Pa¬ tentanmeldungen P 4325885.9 und P 4339711.5 beschriebenen Metho¬ den geschehen.
Zur Herstellung von Schichten, welche flüssigkristalline Ladungs¬ transportverbindungen enthalten, gibt es mehrere Möglichkeiten. So können z.B. aus festen Substraten, wie Gläsern, Zellen kon¬ struiert werden. Dabei werden leitfähig (z.B. mit Aluminium oder ITO = Indium-Zinn-Oxid) beschichtete Gläser verwendet, die bei- spielsweise mit AbStandshaltern (Spacern) auf einen bestimmten Abstand voneinander eingestellt werden. In den Hohlraum wird dann die flüssigkristalline Ladungstransportverbindung in isotroper Phase, d.h. z.B. als dünnflüssige Schmelze, eingefüllt. In der Regel gelingt dies bereits durch die Kapillarwirkung der in engem Abstand zueinander befindlichen Glasplättchen. Die Glasplättchen können, neben der leitfähigen Beschichtung, weitere Schichten aufweisen (z.B. Orientierungsschichten), die allerdings thermisch so stabil sein müssen, daß sie beim Einfüllen der gegebenenfalls heißen flüssigkristallinen Ladungstransportverbindung nicht zer- stört werden. Vernetzte Schichten, wie sie in der deutschen
Patentanmeldung P 4325885.9 beschrieben sind, sind in der Regel geeignet.
Bei thermisch nicht belastbaren Substraten oder flexiblen Sub- straten wie Folien kann - sofern höhere Temperaturen notwendig sind - das oben beschriebene Verfahren nicht angewendet werden. In diesen Fällen wird die flüssigkristalline Ladungstransportver- bindung zweckmäßigerweise aus Lösung auf das Substrat aufge¬ bracht, z.B. durch Gießen oder Aufschleudern; ein Aufbringen in Substanz ist bei genügend niedrigem Schmelzpunkt natürlich auch möglich.
Die Einstellung der flüssigkristallinen Ordnung kann im allgemei¬ nen durch einfaches Erwärmen der Probe zur Überführung in den isotropen Zustand und anschließende Abkühlung zur Bildung der flüssigkristallinen Phase vorgenommen werden. Wenn die flüssig- kristalline Ordnung eingestellt ist, kann sie durch Abschrecken im Glaszustand eingefroren oder durch Vernetzung fixiert werden (s. auch deutsche Patentanmeldung P 43 39 711.5).
Die Schichten, die eine oder mehrere der erfindungsgemäßen flüssigkristallinen Verbindungen enthalten, können zusätzlich einen oder mehrere Hilfsstoffe enthalten. Hierunter fallen z.B. nicht-flüssigkristalline Ladungstransportverbindungen, wie z.B. Emitterfarbstoffe, oder Polymerisations-Initiatoren und Verlaufs¬ mittel, wie sie dem Fachmann aus der Lacktechnologie bekannt sind.
Die folgenden Beispiele sollen die erfindungsgemäße Ausführung erläutern.
Beispiel 1
Ein Schema der Anordnung zeigt Figur 2, die Bezeichnungen sind im folgenden Text erklärt:
Auf ein mit Aluminium (20 nm, "2" in Figur 2) bedampftes Glassub¬ strat ("1") wurde zunächst eine Lösung aus 50 mg Oxadiazol und 100 mg Poly[zimtsäurevinylester] in 1070 mg Toluol aufgeschleu¬ dert. Dann wurde die Schicht durch fünfminütige Bestrahlung mit einer HBO-Lampe vernetzt (*3'1.
Anschließend wurde auf diese Schicht eine Lösung von 1 mg DCM und 100 mg Poly[zimtsäurevinylester] in 1348 mg Toluol aufgeschleu¬ dert ("4"). Auf die so erhaltene Schicht wurde ein 12 μm dicker Spacer aufgebracht ("5"), der danach mit einem ITO ("6") be- schichteten Glas ("1") abgedeckt wurde. Die entstandene Anordnung wurde sodann verklebt und 23 Stunden bei 100°C im Vakuumtrocken- schrank getrocknet; die gesamte Dicke der Schichten betrug ca. 13 μ .
Der Hohlraum der so entstandenen Anordnung wurde schließlich bei 130°C mit Hexapentyloxytriphenylen gefüllt ("7"). Die Elektrolumineszenz dieser Prohe wurde bei 80°C beobachtet. Bei dieser Temperatur liegt Hexapentyloxytriphenylen in der flüssig¬ kristallinen D o-Phase vor. Das emittierte Licht war orange-rot bei einer Spannung von 150 V.
Figure imgf000007_0001
Hexapentyloxytriphenylen
Figure imgf000007_0002
Oxadiazol
Figure imgf000007_0003
Beispiel 2
In eine Zelle (siehe Figur 3) läßt man Hexapentyloxytriphenylen (Phasenfolge k 69°C Dho 122°C i) bei einer Temperatur von 130°C eindiffundieren. Die Zelle besteht aus einer kreuzförmigen Anord¬ nung zweier Elektroden auf Glassubstraten (s. Figur 3) , von denen die eine aus transparentem Indium-Zinn-Oxid (ITO) und die andere aus Aluminium (Dicke: 60 nm) besteht. Die aktive Fläche beträgt etwa 2 mm x 2 mm bei einer Dicke von ungefähr 1.3 μm. Nach dem Füllen der Zelle werden die beiden Elektroden mit einem leitfähi¬ gen Zweikomponentenkleber kontaktiert. Nach Anlegen einer Spannung von 69 V (positiv an ITO) bei einer Temperatur von 80°C leuchtet die Anordnung bläulich. Die Emission ist in einem dunk¬ len Raum deutlich zu sehen. Auch nach einigen Stunden Leuchtdauer ist noch kein Nachlassen der Helligkeit erkennbar.
Beispiel 3
In eine Zelle (siehe Figur 3) läßt man die zur Ausbildung flüssigkristalliner Phasen fähige Substanz 2 bei einer Temperatur von 120°C eindiffundieren. Die Phasenfolge lautet g34°Ck66°Cnl02°Ci. Die Zelle besteht aus einer kreuzförmigen An¬ ordnung zweier Elektroden, von denen die eine aus transparentem Indium-Zinn-Oxid und die andere aus Aluminium (Dicke: 60 nm) be- steht. Die aktive Fläche beträgt etwa 2 mm x 2 mm bei einer Dicke von etwa 3,0 μm. Nach dem Füllen der Zelle werden die beiden Elek¬ troden mit einem leitfähigen Zweikomponentenkleber kontaktiert. Nach Anlegen einer Gleichspannung von 200 V (positiv an ITO) bei einer Temperatur von 85°C leuchtet die Anordnung bläulich.
In Figur 3 bedeuten: 1 Glas, 2 Aluminium, 3 ITO und 4 Kleber.
Figure imgf000008_0001
Verbindung 2 Beispiel 4
In eine Zelle analog Beispiel 2 läßt man 2-Butanoyl-3, 6, 7, 10, 11- pentapentyloxy-triphenylen bei einer Temperatur von 185°C einflie- ßen, nach Kontaktierung wie in Beispiel 2 beschrieben, wird die Zelle zur Einstellung der isotropen Phase bis zu einer Temperatur von 185°C erhitzt und nach einer Wartezeit von 5 Minuten mit einer Kühlrate von 1 K/min auf 70°C abgekühlt. Beim Anlegen einer Gleichspannung von 45 V, ITO-Elektrode positiv, Aluminiumelek- trode negativ, leuchtet die Anordnung rot. Bei einer Spannung von 5 V ist keinerlei Lichtemission beobachtbar.
Beispiel 5
In eine Zelle analog Beispiel 2 läßt man 2,3,6,7, 10, 11-Hexabutyl- oxytriphenylen bei einer Temperatur von 155°C einfließen, nach Kontaktierung wie in Beispiel 2 beschrieben, wird die Zelle zur Einstellung der isotropen Phase bis zu einer Temperatur von 155°C erhitzt und nach einer Wartezeit von 5 Minuten mit einer Kühlrate von 1 K/min auf 118°C abgekühlt. Beim Anlegen einer Gleichspannung von 45 V, ITO-Elektrode positiv, Aluminiumelektrode negativ, leuchtet die Anordnung orange. Bei einer Spannung von 5 V ist keinerlei Lichtemission beobachtbar.
Beispiel 6
Eine Lösung von 3 mg der Verbindung der Formel
Figure imgf000009_0001
Figure imgf000009_0002
in 100 mg Toluol wird auf eine mit ITO beschichtete Glasplatte aufgeschleudert. Die Probe wird drei Stunden bei 50°C getrocknet. Durch Erhitzen bis auf 150°C wird die isotrope Phase eingestellt und anschließend durch langsames Abkühlen mit 1 K/min wird die Probe orientiert. Danach wird die Aluminium-Deckelektrode auf die Schicht aufgedampft. Die Dicke der Aluminiumelektrode beträgt ca. 60 nm. Beim Anlegen einer Gleichspannung von 10 V, ITO-Elek¬ trode positiv, Aluminiumelektrode negativ, leuchtet die Anordnung bläulich. Bei einer Spannung unterhalb von drei Volt ist keiner- lei Lichtemission beobachtbar.
Beispiel 7
Eine Zelle analog Beispiel 2 füllt man mit der Verbindung der Formel
Figure imgf000010_0001
bei einer Temperatur von 120°C. Nach Kontaktierung wie in Bei¬ spiel 2 wird die isotrope Phase durch Erhitzen bis zu einer Temperatur von 120°C eingestellt, und nach einer Wartezeit von 5 Minuten wird mit einer Kühlrate von 1 K/min auf 60°C abgekühlt. Beim Anlegen einer Gleichspannung von 40 V, ITO-Elektrode posi¬ tiv, Alumini melektrode negativ, leuchtet die Anordnung orange. Bei einer Spannung von 5 V ist keinerlei Lichtemission beobacht¬ bar.
Beispiel 8
In eine Zelle analog zu Beispiel 2 läßt man die Verbindung der Formel
Figure imgf000011_0001
bei einer Temperatur von 120°C einfließen. Nach Kontaktierung wie in Beispiel 2 beschrieben wird die isotrope Phase durch Erhitzen bis zu einer Temperatur von 120°C eingestellt, und nach einer War- tezeit von 5 Minuten wird mit einer Kühlrate von 1 K/min auf 20°C abgekühlt. Beim Anlegen einer Gleichspannung von 65 V, ITO-Elek¬ trode positiv, Aluminiumelektrode negativ, leuchtet die Anordnung orange. Bei einer Spannung von 5 V ist keinerlei Lichtemission beobachtbar.
Beispiel 9
In eine Zelle analog zu Beispiel 2 läßt man die Verbindung der Formel
Figure imgf000011_0002
bei einer Temperatur von 15C-C einfließen. Nach Zwischenabkühlung und Kontaktierung wie in Beispiel 2 beschrieben, wird die iso- trope Phase bei einer Temperatur von 150°C eingestellt und nach einer Wartezeit von 5 Minuten wird mit einer Kühlrate von 1 K/min auf 100°C abgekühlt. Beim Anlegen einer Gleichspannung von 50 V, ITO-Elektrode positiv, Aluminiumelektrode negativ, leuchtet die Anordnung orange. Bei einer Spannung von 5 V ist keinerlei Lich- temission beobachtbar.

Claims

Patentansprüche
1. Elektrolumineszierende Anordnung, enthaltend eine oder meh- rere organische Schichten, dadurch gekennzeichnet, daß eine oder mehrere Schichten flüssigkristalline Ladungstransport- verbindungen entha11en.
2. Elektrolumineszierende Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, daß eine oder mehrere Schichten diskotisch flüssigkristalline Ladungstransportverbindungen enthalten.
3. Elektrolumineszierende Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, daß eine oder mehrere Schichten diskotisch flüssigkristalline Triphenylene, Pht alocyanine, Tricyclochi¬ nazoline, Perylene, Perylenimide, Decacyclene oder Porphyrine als Ladungstransportverbindungen enthalten.
4. Elektrolumineszierende Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, daß eine oder mehrere Schichten kalamitisch flüssigkristalline Ladungstransportverbindungen enthalten.
5. Elektrolumineszierende Anordnung gemäß Anspruch 1, dadurch gekennzeichnet, daß eine oder mehrere Schichten kalamitisch flüssigkristalline Oxadiazole, Thiadiazole, Biphenyle, Stil- bene, Pyrimidine, Terphenyle, Quaterphenyle oder Oxazoline als Ladungstransportverbindungen enthalten.
Zeichn.
PCT/EP1994/004076 1993-12-18 1994-12-08 Elektrolumineszierende anordnungen WO1995017018A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019960703226A KR960706693A (ko) 1993-12-18 1994-12-08 전계 발광 장치(electroluminescent devices)
EP95903326A EP0734592A1 (de) 1993-12-18 1994-12-08 Elektrolumineszierende anordnungen
JP7516507A JPH09506646A (ja) 1993-12-18 1994-12-08 エレクトロルミネセンス装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4343412.6 1993-12-18
DE4343412A DE4343412A1 (de) 1993-12-18 1993-12-18 Elektrolumineszierende Anordnungen

Publications (1)

Publication Number Publication Date
WO1995017018A1 true WO1995017018A1 (de) 1995-06-22

Family

ID=6505488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/004076 WO1995017018A1 (de) 1993-12-18 1994-12-08 Elektrolumineszierende anordnungen

Country Status (6)

Country Link
EP (1) EP0734592A1 (de)
JP (1) JPH09506646A (de)
KR (1) KR960706693A (de)
CN (1) CN1137841A (de)
DE (1) DE4343412A1 (de)
WO (1) WO1995017018A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847228A2 (de) * 1996-12-09 1998-06-10 Toyo Ink Manufacturing Co., Ltd. Stoff für organische Elektrolumineszensvorrichtung, und deren Verwendung
EP0915144A1 (de) * 1997-11-04 1999-05-12 Dai Nippon Printing Co., Ltd. Fluoreszent flüssigkristall Ladungstransportmaterial
WO2001029908A1 (de) * 1999-10-21 2001-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente organische elektrolumineszenzanordnungen
DE10257711B4 (de) 2001-12-27 2019-09-26 Merck Patent Gmbh Polymerisierbare monocyclische Verbindungen enthaltende Flüssigkristallmischungen

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19715054A1 (de) * 1997-04-11 1998-10-15 Bosch Gmbh Robert Elektrolumineszierendes Bauelement
JPH11273859A (ja) * 1998-03-24 1999-10-08 Sony Corp 有機電界発光素子及びその製造方法
JP2001089681A (ja) * 1999-09-21 2001-04-03 Canon Inc ディスコチック液晶化合物及びそれを用いた有機エレクトロルミネセンス素子
JP4558153B2 (ja) * 2000-07-27 2010-10-06 三星モバイルディスプレイ株式會社 有機エレクトロルミネッセンス素子
JP2002343572A (ja) * 2001-03-14 2002-11-29 Canon Inc ポルフィリン誘導体化合物を用いた発光素子および表示装置
CN100433235C (zh) * 2005-12-20 2008-11-12 陕西科技大学 一种分立式结构的场致发射显示器件
JP5543891B2 (ja) * 2010-09-30 2014-07-09 ユー・ディー・シー アイルランド リミテッド 有機電界発光表示装置の製造方法及び有機電界発光表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000343A1 (en) * 1985-06-28 1987-01-15 Ksv-Chemicals Oy Film aggregate and new compounds therefor
EP0527376A1 (de) * 1991-08-10 1993-02-17 BASF Aktiengesellschaft Organische Photoleiter mit flüssigkristallinen Eigenschaften
EP0563768A1 (de) * 1992-04-03 1993-10-06 BASF Aktiengesellschaft Organische Photoleiter mit flüssigkristallinen Eigenschaften

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000343A1 (en) * 1985-06-28 1987-01-15 Ksv-Chemicals Oy Film aggregate and new compounds therefor
EP0527376A1 (de) * 1991-08-10 1993-02-17 BASF Aktiengesellschaft Organische Photoleiter mit flüssigkristallinen Eigenschaften
EP0563768A1 (de) * 1992-04-03 1993-10-06 BASF Aktiengesellschaft Organische Photoleiter mit flüssigkristallinen Eigenschaften

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. ADAM ET AL.: "Transient photoconductivity in a discotic liquid crystal", PHYSICAL REVIEW LETTERS, vol. 70, no. 4, 25 January 1993 (1993-01-25), NEW YORK US, pages 457 - 460 *
H. SUZUKI ET AL.: "Electroluminescent devices based on Poly(methylphenylsilane)", ADVANCED MATERIALS, vol. 5, no. 10, October 1993 (1993-10-01), WEINHEIM, DE, pages 743 - 746 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847228A2 (de) * 1996-12-09 1998-06-10 Toyo Ink Manufacturing Co., Ltd. Stoff für organische Elektrolumineszensvorrichtung, und deren Verwendung
EP0847228A3 (de) * 1996-12-09 1998-09-02 Toyo Ink Manufacturing Co., Ltd. Stoff für organische Elektrolumineszensvorrichtung, und deren Verwendung
US6150042A (en) * 1996-12-09 2000-11-21 Toyo Ink Manufacturing Co., Ltd. Material for organoelectro-luminescence device and use thereof
US6245449B1 (en) 1996-12-09 2001-06-12 Toyo Ink Manufacturing Co., Ltd. Material for organoelectroluminescence device and use thereof
EP1191020A2 (de) * 1996-12-09 2002-03-27 Toyo Ink Manufacturing Co., Ltd. Material für eine organische Elektrolumineszenzvorrichtung und seine Verwendung
EP1191020A3 (de) * 1996-12-09 2003-01-15 Toyo Ink Manufacturing Co., Ltd. Material für eine organische Elektrolumineszenzvorrichtung und seine Verwendung
EP0915144A1 (de) * 1997-11-04 1999-05-12 Dai Nippon Printing Co., Ltd. Fluoreszent flüssigkristall Ladungstransportmaterial
WO2001029908A1 (de) * 1999-10-21 2001-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparente organische elektrolumineszenzanordnungen
DE10257711B4 (de) 2001-12-27 2019-09-26 Merck Patent Gmbh Polymerisierbare monocyclische Verbindungen enthaltende Flüssigkristallmischungen

Also Published As

Publication number Publication date
DE4343412A1 (de) 1995-06-22
EP0734592A1 (de) 1996-10-02
CN1137841A (zh) 1996-12-11
JPH09506646A (ja) 1997-06-30
KR960706693A (ko) 1996-12-09

Similar Documents

Publication Publication Date Title
EP1162238B1 (de) Leitfähige Beschichtungen hergestellt aus Mischungen enthaltend Polythiophen und Lösemittel
DE60127497T2 (de) Lumineszenzvorrichtung
DE69635803T2 (de) Bipolares, elektrolumineszentes bauteil
DE69933529T2 (de) Elektrolumineszenzmaterial, elektrolumineszente Vorrichtung und Farbfilter
DE69815576T2 (de) Organisches elektrolumineszentes Bauteil
KR100189398B1 (ko) 전계발광 소자
EP0831676B1 (de) Organisches Elektrolumineszentes Bauelement mit Exciplex
DE69729931T2 (de) Organische elektrolimineszente vorrichtung
DE102006020525B4 (de) Organische lichtemittierende Vorrichtungen, enthaltend eine dotierte Triazin-Elektronentransportschicht
DE69815349T2 (de) Dünnschicht-elektrode für flache organische lichtabgebende vorrichtungen
EP1578885A2 (de) Organisches elektrolumineszenzelement
EP0637899A1 (de) Elektrolumineszierende Anordnung
EP0686662A2 (de) Leitfähige Beschichtungen
DE112008002067T5 (de) Verfahren zum Herstellen eines organischen Elektrolumineszenzbauelements
WO1995017018A1 (de) Elektrolumineszierende anordnungen
DE112008002066T5 (de) Verfahren zum Herstellen eines organischen Elektrolumineszenzbauelements
JP2002352961A (ja) 有機電界発光装置
DE19832644C1 (de) Organische lichtemittierende Dioden (OLED) mit Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylen-1,2-ethenylen-2,5-dimethoxy-1,4-phenylen-1,2-ethenylen] als Elektrolumineszenzmaterial
DE69723776T2 (de) Leuchtemittierende Vorrichtung
DE69911303T2 (de) Organische elektrolumineszente Vorrichtung
JPH0714675A (ja) 有機薄膜el素子
JPH0696858A (ja) 有機薄膜el素子
JP2002367786A (ja) 発光素子
DE60112849T2 (de) Polymere fluoreszierende Substanz und diese verwendende organische Elektrolumineszenzvorrichtung
JP2837171B2 (ja) 透明導電性フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94194540.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995903326

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 646339

Country of ref document: US

Date of ref document: 19960613

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1995903326

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995903326

Country of ref document: EP