WO1995016122A1 - Verfahren zur ermittlung von aussagen über den zustand einer tankentlüftungsanlage - Google Patents

Verfahren zur ermittlung von aussagen über den zustand einer tankentlüftungsanlage Download PDF

Info

Publication number
WO1995016122A1
WO1995016122A1 PCT/DE1994/001411 DE9401411W WO9516122A1 WO 1995016122 A1 WO1995016122 A1 WO 1995016122A1 DE 9401411 W DE9401411 W DE 9401411W WO 9516122 A1 WO9516122 A1 WO 9516122A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank ventilation
pressure
ventilation system
fuel
tank
Prior art date
Application number
PCT/DE1994/001411
Other languages
German (de)
English (en)
French (fr)
Inventor
Helmut Denz
Ernst Wild
Andreas Blumenstock
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1995016122A1 publication Critical patent/WO1995016122A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system

Definitions

  • the invention relates to a tank ventilation system for an internal combustion engine in a motor vehicle, in which statements about the state of the tank ventilation system are derived from the result of measurements of the pressure in the tank ventilation system.
  • statements about the state of the tank ventilation system statements about the filling state of the fuel tank or statements about the functionality of the tank ventilation system can serve.
  • REPLACEMENT LEAF A diagnostic method is known from DE P41 32 055.7, in which a vacuum is first generated in the tank ventilation system when the connection to the intake manifold is open. After the connection to the intake manifold has been closed, the loss of vacuum, ie the pressure increase, is used to determine the tightness and thus the functionality of the tank ventilation system. A leak can be identified by comparing the speed of the pressure rise (pressure gradient) with a threshold value. It is noticeable by a comparatively rapid increase in pressure, that is to say by a threshold being exceeded.
  • Both methods are sensitive to the evaporation of fuel in the tank ventilation system (TE system), which in a way influences the pressure measurements as an additional gas source.
  • TE system tank ventilation system
  • a strong outgassing is noticeable, for example, by enriching the air / fuel mixture of the internal combustion engine. If the outgassing is detected, the respective process is terminated. Since the outgassing occurs frequently, the diagnosis or the level determination is often aborted.
  • the object of the invention is to provide methods which provide information on the condition of a tank ventilation system which is independent of the influence of the outgassing of fuel, the information being derived from measured tank pressure profiles.
  • the invention solves this problem with the features of claim 1, in particular taking into account the influence of the evaporation of fuel on pressure changes within the tank ventilation system.
  • Advantageous developments of the invention are the subject of the dependent claims.
  • Advantages of the method according to the invention are that both the diagnosis and the level measurement can be carried out more frequently without the risk of false statements, because they do not have to be stopped even when the fuel is strongly gassing. Compared to disregarding the outgassing (evaporation), there is a higher level of measurement certainty when determining the fill level and a higher level of diagnostic certainty in the diagnosis.
  • Fig.l shows a known device which is suitable for performing an embodiment of the method according to the invention.
  • FIG 2 shows, by way of example, the time course of the pressure in the tank ventilation system in connection with the opening states of the valves according to the prior art.
  • FIG. 5 shows a flow chart for the first exemplary embodiment of the method according to the invention.
  • Fig. 6 shows waveforms as they occur in connection with a second embodiment of the invention.
  • Fig. 7 discloses a flow chart for the second embodiment.
  • Fig. 8 shows waveforms as they occur in a modification of the second embodiment.
  • a tank ventilation system which here has an activated carbon filter 5, a shut-off valve 6 (AV) arranged in the ventilation line of the activated carbon filter and a tank ventilation valve arranged in the line between the activated carbon filter and intake manifold 7 (TEV). Fuel vaporizing in the tank is stored in the activated carbon filter and fed to the combustion via the open tank ventilation valve and the intake manifold during operation of the internal combustion engine. Because of the pressure conditions that arise, the activated carbon filter is simultaneously flushed with fresh air when the shut-off valve is open.
  • a control device 8 is used to control the tank ventilation by opening and closing the aforementioned valves.
  • a pressure sensor 9 supplies a signal about the pressure inside the tank ventilation system, as is used to carry out the methods described above for determining statements about the state of the Tank ventilation system is required.
  • the control device is also supplied with signals which indicate the operating state of the internal combustion engine and the composition of the fuel / air mixture supplied to the internal combustion engine.
  • the number 10 represents the detection of the speed, the load and, if appropriate, other variables
  • the number 11 represents a sensor for detecting the exhaust gas composition in the exhaust pipe 12 of the internal combustion engine.
  • the control unit forms 8 integrated control functions, a fuel metering signal ti with which the fuel metering device 3 in the intake pipe of the internal combustion engine is controlled.
  • 2 a and b illustrate the opening and closing state of the tank ventilation valve (FIG. 2 a) and the shut-off valve (FIG. 2 b) over time t in processes known from the prior art.
  • FIG. 2 c shows the Corresponding course of the tank pressure, or the difference between the ambient and tank pressure.
  • the tank ventilation valve When the tank ventilation valve is open, the shut-off valve is closed and the supply of air to the tank ventilation system is thus interrupted. As a result, the tank pressure gradually drops until, for example, the tank ventilation valve is closed at a pressure difference of 10 hPa from the ambient pressure.
  • the slope of the pressure drop i.e. the extent of the rate of change in pressure, a measure of the level in the tank.
  • the extent of the pressure change that occurs further to the right when the shut-off and tank ventilation valve is closed is a measure of the tightness of the tank ventilation system.
  • the pressure In the ideal case of a completely sealed system, the pressure remains constant, as is illustrated by the continuous pressure curve in the time range t greater than t2.
  • a leaky system is characterized by the pressure increase shown in dashed lines. However, such an increase in pressure when the valves are closed can also be caused by the vaporization of fuel.
  • the outgassing weakens to a certain extent the suction pipe negative pressure acting on the tank when the tank ventilation valve is open, and between times t2 and t3, the outgassing accelerates the pressure equalization between the tank and ambient atmosphere when the valves are closed.
  • the influence of outgassing on the measured tank pressure curve is determined in a first step by determining the gradient gradO of the tank pressure curve between the times to and tl. In a second step, this gradO (positive) is subtracted from the gradl (negative) determined between times t1 and t2.
  • a third step the process of increasing the pressure is characterized
  • the gradient of the gradient of the tank pressure grad2 between times t2 and t3 is determined.
  • the value grad2corr, corrected for the influence of the outgassing, results from the difference between grad2 and gradO. Only when the corrected gradient value grad2corr " exceeds a threshold value SW to be matched to the tank ventilation system, is the system considered to be leaking.
  • This procedure is based on the knowledge that the size of the detectable leaks increases when the fuel is outgassed (grad0> 0). In other words, smaller leaks can be detected without outgassing than with outgassing.
  • Another design option is to divide the compensation gradient gradO into classes (0 ⁇ grad0 ⁇ SGl; SGl ⁇ gradO ⁇ SG2; ...) and to select the leak detection threshold SW depending on the assigned class and the level FS of the tank.
  • step S1 the pressure PO is detected with the tank ventilation valve closed and the shutoff valve open, before the shutoff valve is also closed in step S2.
  • gradO is a measure of the outgassing of the fuel.
  • step S5 values for gradl from the time interval t2-tl (step S5) and grad2 from the time interval t3-t2 can be used for the opening and closing states of the shut-off and tank ventilation valve explained in connection with FIG. 3 ⁇ vote (step S6).
  • step S7 gradl and grade 2 are corrected with gradO and in step 8 the fill level of the tank is read out from the characteristic curve according to FIG. 4 via gradlkorr.
  • step S9 is used to compare grad2korr with a threshold value SW. If this is exceeded, an error message is issued in step S10, which signals a leak. Otherwise the end of the procedure is reached.
  • FIG. 6a shows the time profile of a manipulated variable FR from a lambda control loop. It comes about by first comparing the signal L of the exhaust gas probe with a target value. If the comparison result reflects a fuel mixture that is too lean, FR is increased, which ultimately goes into the ti formation in such a way that the fuel portion is increased. If, on the other hand, the comparison result reflects a mixture that is too rich, FR is reduced.
  • the time course of the control factor FR shown in FIG. 6a is established. From the course of this control factor, as will be shown in the following, the influence of the outgassing of fuel on the course of the tank pressure can be concluded.
  • the flowchart in FIG. 7 shows examples of step sequences for obtaining the statements mentioned.
  • FR1 can be determined as the mean value of FR or also as the value of FR immediately before a proportional jump.
  • Steps S2 and S3 serve to open the tank ventilation valve and to close the shut-off valve.
  • a value FR2 is determined in a step S4 in a manner analogous to the determination of FR1.
  • dFR ⁇ 0 and thus the amount of gradlkorr becomes larger than gradl. As already described above, this compensates for the output falsifying the pressure measurement.
  • Grad2korr can be determined in a similar way.
  • the leak detection threshold SW can be changed as a function of the determined outgassing dFR, as is disclosed by FIG. In FIG. 4a, only the gradO would have to be replaced by dFR.
  • This process can be followed by a leak test and a second test of the outgassing. See FIG. 8, in which, at time t3, the tank ventilation valve is closed with the shutoff valve still closed and the subsequent pressure change is observed until time t4.
  • a degree 2 can be formed from the pressure values at times t4 and t3.
  • the influence of the outgassing on this gradient can be measured from the FR values at times t2 and t3. Opening the tank vent valve at time t4 with the shut-off valve still closed serves to safeguard the results obtained by the previous process sequence. If the pressure rises rapidly in the interval (t3, t4), this indicates a leak on the one hand.
  • an increased outgassing of fuel in the negative pressure phase can also be responsible for this.
  • a second outgassing test is carried out starting at t4.
  • the shut-off valve is also closed at the beginning of the second outgassing test.
  • the activated carbon filter is therefore not flushed with fresh air and as As a result, any remaining loading of the Aktov carbon filter with fuel has no influence on the following outgassing test. Otherwise, the conditions for the control factor FR for times t> t4 are analogous to those in FIG. 6a from time t1.
  • the fuel vapor generated during the vacuum reduction by sloshing the fuel to increase the amount of the vacuum reduction gradient, which incorrectly indicates a leak.
  • the test result is to be rejected.
  • the difference between the amounts of the dFR values is formed in the first vacuum build-up (dFRl) and the second vacuum build-up (dFR2) (FIG. 8d). If the difference exceeds a threshold value, the test result is rejected.
PCT/DE1994/001411 1993-12-11 1994-11-29 Verfahren zur ermittlung von aussagen über den zustand einer tankentlüftungsanlage WO1995016122A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934342431 DE4342431A1 (de) 1993-12-11 1993-12-11 Verfahren zur Ermittlung von Aussagen über den Zustand einer Tankentlüftungsanlage
DEP4342431.7 1993-12-11

Publications (1)

Publication Number Publication Date
WO1995016122A1 true WO1995016122A1 (de) 1995-06-15

Family

ID=6504859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001411 WO1995016122A1 (de) 1993-12-11 1994-11-29 Verfahren zur ermittlung von aussagen über den zustand einer tankentlüftungsanlage

Country Status (2)

Country Link
DE (1) DE4342431A1 (und)
WO (1) WO1995016122A1 (und)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518292C2 (de) * 1995-05-18 2003-07-17 Bosch Gmbh Robert Verfahren zur Diagnose eines Tankentlüftungssystems
DE19910486A1 (de) * 1999-03-10 2000-09-14 Bielomatik Leuze & Co Einrichtung und Verfahren zur Durchflußprüfung eines Behälter-Anschlusses
DE10217378B3 (de) * 2002-04-18 2004-01-29 Siemens Ag Verfahren zur Leckerkennung in einem Karftstoffbehälter
DE10335902B4 (de) * 2003-08-06 2015-12-31 Robert Bosch Gmbh Verfahren zur Tankentlüftung bei einer Brennkraftmaschine
DE502006000744D1 (de) 2005-08-31 2008-06-19 Audi Ag Verfahren zur Überprüfung der Gasdichtheit einer Kraftfahrzeug- Tankentlüftungsanlage
DE102006016339B4 (de) * 2006-04-05 2017-02-23 Robert Bosch Gmbh Verfahren zur Diagnose einer Tankentlüftungsanlage und Vorrichtung zur Durchführung des Verfahrens
DE102007012200A1 (de) * 2007-03-14 2008-09-18 Audi Ag Verfahren zur Bestimmung der Größe eines Lecks
DE102007018232A1 (de) 2007-04-18 2008-10-23 Robert Bosch Gmbh Verfahren zur Diagnose eines Tankentlüftungssystems eines Fahrzeugs und Vorrichtung zur Durchführung des Verfahrens
DE102008064345A1 (de) 2008-12-20 2010-06-24 Audi Ag Verfahren zur Prüfung der Funktion eines Tankentlüftungsventils
DE102014208987A1 (de) 2014-05-13 2015-11-19 Robert Bosch Gmbh Verfahren zur Diagnose eines Tankentlüftungsventils
WO2016035656A1 (ja) * 2014-09-01 2016-03-10 愛三工業株式会社 蒸発燃料処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2254318A (en) * 1991-04-02 1992-10-07 Nippon Denso Co Detecting abnormality in fuel tank transpiration preventing system.
DE4122975A1 (de) * 1991-07-11 1993-01-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
DE4132055A1 (de) * 1991-09-26 1993-04-01 Bosch Gmbh Robert Verfahren und vorrichtung zum pruefen der funktionsfaehigkeit einer tankentlueftungsanlage
DE4243983A1 (und) * 1991-12-28 1993-07-01 Suzuki Motor Co
JPH05180093A (ja) * 1991-12-27 1993-07-20 Honda Motor Co Ltd 内燃エンジンの蒸発燃料処理装置
WO1993015382A1 (de) * 1992-02-04 1993-08-05 Robert Bosch Gmbh Verfahren und vorrichtung zur tankfüllstandserkennung
WO1993015313A1 (de) * 1992-02-04 1993-08-05 Robert Bosch Gmbh Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage
US5259353A (en) * 1991-04-12 1993-11-09 Nippondenso Co., Ltd. Fuel evaporative emission amount detection system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2254318A (en) * 1991-04-02 1992-10-07 Nippon Denso Co Detecting abnormality in fuel tank transpiration preventing system.
US5259353A (en) * 1991-04-12 1993-11-09 Nippondenso Co., Ltd. Fuel evaporative emission amount detection system
DE4122975A1 (de) * 1991-07-11 1993-01-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
DE4132055A1 (de) * 1991-09-26 1993-04-01 Bosch Gmbh Robert Verfahren und vorrichtung zum pruefen der funktionsfaehigkeit einer tankentlueftungsanlage
JPH05180093A (ja) * 1991-12-27 1993-07-20 Honda Motor Co Ltd 内燃エンジンの蒸発燃料処理装置
DE4243983A1 (und) * 1991-12-28 1993-07-01 Suzuki Motor Co
WO1993015382A1 (de) * 1992-02-04 1993-08-05 Robert Bosch Gmbh Verfahren und vorrichtung zur tankfüllstandserkennung
WO1993015313A1 (de) * 1992-02-04 1993-08-05 Robert Bosch Gmbh Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 604 (M - 1506) 8 November 1993 (1993-11-08) *

Also Published As

Publication number Publication date
DE4342431A1 (de) 1995-06-14

Similar Documents

Publication Publication Date Title
EP0578795B1 (de) Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage
DE102004024628B4 (de) Fehlerdiagnosevorrichtung für Kraftstoffdampf-Verarbeitungssystem
WO1993006357A1 (de) Verfahren und vorrichtung zum prüfen der funktionsfähigkeit einer tankentlüftungsanlage
DE19713085C2 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
EP2122151B1 (de) Verfahren zur bestimmung der grösse eines lecks
DE102006006842B4 (de) Dynamische Druckkorrektur in einem System mit natürlichem Vakuum bei ausgeschaltetem Motor
DE4303997B4 (de) Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug
DE4427688A1 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
WO1993015382A1 (de) Verfahren und vorrichtung zur tankfüllstandserkennung
DE4317634A1 (de) Verfahren und Vorrichtung zum Überprüfen der Dichtheit einer Tankentlüfungsanlage
DE102005022121B3 (de) Verfahren zur Ermittlung der Einspritzkorrektur während der Überprüfung der Dichtheit einer Tankentlüftungsanlage
DE102006034076A1 (de) Verfahren zur Tankleckdiagnose in einer Tankentlüftungsvorrichtung
EP1760303B1 (de) Verfahren zur Überprüfung der Gasdichtheit einer Kraftfahrzeug- Tankentlüftungsanlage
WO1995016122A1 (de) Verfahren zur ermittlung von aussagen über den zustand einer tankentlüftungsanlage
DE102006056384A1 (de) Verfahren zur Funktionsüberprüfung eines Druckschalters einer Tankentlüftungsanlage, Steuereinrichtung und Brennkraftmaschine
DE4328090A1 (de) Kraftstoffdampf-Ablaßsystem für eine Brennkraftmaschine mit innerer Verbrennung und zugehöriges Diagnoseverfahren
DE102005003924B4 (de) Verfahren zur Ansteuerung eines Tankentlüftungsventils eines Kraftfahrzeuges während einer Dichtigkeitsprüfung
EP0548300B1 (de) Tankenlüftungsanlage für ein kraftfahrzeug sowie verfahren und vorrichtung zum überprüfen von deren funktionsfähigkeit
DE102016122235A1 (de) Kraftstoffdampfverarbeitungsvorrichtung
EP2960092B1 (de) Kraftstofftank mit einem aktivkohlefilter und verfahren zum anzeigen des kraftstofffüllstands im kraftstofftank mit signalunterdrückung bei einem kritischen unterdruck während der regeneration des aktivkohlefilters
DE10243807B4 (de) Verfahren und Vorrichtung zur Dichtheitsprüfung eines Behälters
EP4330536A1 (de) Dichtheitsprüfung und komponentenprüfung eines tanksystems
DE19830234C2 (de) Verfahren zum Prüfen einer Tankanlage in einem Kraftfahrzeug auf Dichtheit
DE19647409C2 (de) Verfahren zum Vermeiden von Fehldetektionen bei der Diagnose einer Tankentlüftungsanlage für ein Kraftfahrzeug
DE10254986B4 (de) Verfahren zur Tankleckdiagnose

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase