WO1995006851A1 - Systeme permettant de mesurer le profil de roue dentee - Google Patents

Systeme permettant de mesurer le profil de roue dentee Download PDF

Info

Publication number
WO1995006851A1
WO1995006851A1 PCT/JP1994/001403 JP9401403W WO9506851A1 WO 1995006851 A1 WO1995006851 A1 WO 1995006851A1 JP 9401403 W JP9401403 W JP 9401403W WO 9506851 A1 WO9506851 A1 WO 9506851A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
point
tooth
optical sensor
detected
Prior art date
Application number
PCT/JP1994/001403
Other languages
English (en)
Japanese (ja)
Inventor
Naoki Fujita
Masanori Kobayashi
Original Assignee
Naoki Fujita
Masanori Kobayashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naoki Fujita, Masanori Kobayashi filed Critical Naoki Fujita
Publication of WO1995006851A1 publication Critical patent/WO1995006851A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2416Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of gears

Definitions

  • the present invention relates to a gear shape measuring method for measuring a finished shape of a processed gear, and particularly to a gear shape measuring method for measuring a finished shape of a processed gear using a numerical controller.
  • Fig. 4 is a diagram showing a conventional gear shape measurement method using skip cutting feed.
  • the gear 41 is a work on which, for example, eight teeth 4 11 to 4 18 are formed, and its rotation is controlled around a center point ⁇ .
  • the sensor 42 is an evening sensor or an optical limit sensor, and is fixed at a position at a predetermined distance r from the center point 0 of the gear 41. This distance r is a position near the middle between the teeth 4 11 to 4 18 of the gear 41.
  • the sensor 42 turns on the detection signal when an obstacle is detected, and turns off the signal when no obstacle is detected.
  • each tooth 4 1 2 to 4 1 is a conventional measurement method.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a gear shape measuring method that can be performed easily and in a short time.
  • the present invention provides a gear shape measuring method for measuring a finished shape of a processed gear, wherein: a gear rotation control means for rotating the gear in a fixed direction; and A sensor that is fixed at a position where a tooth portion of the gear passes and outputs different signals when an obstacle is detected and when an obstacle is not detected, and a rotation position detecting means that detects a rotation position of the gear when the signal changes.
  • a gear shape measuring method comprising:
  • a sensor that outputs different signals when an obstacle is detected and when no obstacle is detected is fixed at a position where teeth of the gear pass when the gear rotates, and the gear is rotated in a fixed direction by gear rotation control means. Then, the rotational position of the gear when the sensor signal changes is detected by the rotational position detecting means. Thereby, the passing positions of the sensors at both side edges of each tooth of the gear are detected only by rotation in one direction.
  • FIG. 1 is a plan view illustrating a specific procedure of the gear shape measuring method according to the present embodiment.
  • FIG. 2 is a schematic diagram of the hardware inside the CNC for implementing the present invention
  • FIG. 3 is a diagram showing a configuration of a measuring unit on the machine tool side for performing the gear shape measuring method of the present embodiment.
  • Fig. 4 is a diagram showing a conventional gear shape measurement method using skip cutting feed.
  • FIG. 2 is a schematic configuration diagram of the hardware inside the CNC for implementing the present invention.
  • the processor 11 controls the entire numerical controller according to the system program stored in the ROM 12.
  • ROM 12 EP ROM, EP R ⁇ M or the like is used.
  • the RAM I3 uses SRAM or the like, and stores various data or input / output signals.
  • the non-volatile memory 14 uses a CM ⁇ S backed up by a battery (not shown) and stores parameters to be retained even after the power is turned off, a pitch error correction amount, a tool correction amount, and the like. ing. Also, the non-volatile memory 14 does not show a program for executing the gear shape measurement method of the present embodiment (not shown). It is read and stored from a floppy disk. Further, the nonvolatile memory 14 stores the data of the gear shape measurement.
  • the graphic control circuit 15 converts the digital signal into a signal for display and supplies the signal to the display device 16.
  • a CRT or a liquid crystal display device is used for the display device 16.
  • the display device 16 displays the shape, the machining conditions, the generated machining program, and the like when creating the machining program in an interactive manner.
  • a machining program can be created by inputting data according to the contents (interactive data input screen) displayed on the display device 16. At the top of the screen are displayed figures that represent the meaning of the data, and at the bottom are the types of data to be entered.
  • the work or data that can be received on the screen is displayed in a menu format. The item to be selected from the menu is selected by pressing the software key 23 below the menu. The meaning of the software key 23 changes for each screen.
  • the keyboard 17 consists of symbolic keys, numerical keys, etc., and necessary figures and data are input using these keys.
  • the PMC (programmable 'machine' controller) 22 receives the M function signal and the like via the bus 21, processes the signal by a sequence program, outputs an output signal, and controls the machine tool 20. In addition, the PMC 22 receives the input signal from the machine side, performs processing by a sequence ⁇ program, and transfers the necessary input signal to the processor 11 via the bus 21.
  • the axis control circuit 18 receives the axis movement command from the processor 11 and outputs the axis command to the servo amplifier 19.
  • the servo amplifier 19 receives this movement and drives the machine tool 20's servo motor. Move.
  • the machine tool 20 is provided with an optical sensor 24 for measuring a gear shape.
  • the detection signal of the optical sensor 24 is input to the numerical controller via the bus 21.
  • FIG. 3 is a diagram showing a configuration of a measuring unit on the machine tool 20 side for performing the gear shape measuring method of the present embodiment.
  • the processed gear 3 is fixed to, for example, the Z-axis, and is controlled to rotate in a fixed direction by a skip cutting function.
  • An optical sensor 24 is provided near the rotating gear 3.
  • the optical sensor 24 includes a light emitting unit 24a and a light receiving unit 24b.
  • the light emitting section 24a and the light receiving section 24b are fixed so as to sandwich the gear 3 from above and below, and to face each other.
  • Light 24c is output from the light emitting unit 24a, and when there is no obstacle, the light 24c is received by the light receiving unit 24b.
  • the light receiving section 24b sends a detection signal to the numerical controller.
  • the numerical controller always monitors the on / off switching of the detection signal, and controls the rotation of the gear 3 as described later in accordance with the evening.
  • FIG. 1 is a plan view for explaining a specific procedure of the gear shape measuring method of the present embodiment.
  • the optical sensor 24 is fixed at a distance R from the center 0 of the gear 3.
  • the gear 3 has eight teeth 31 to 38 and is controlled to rotate counterclockwise around the center 0 from the position shown in the figure. Therefore, the optical sensor 24 moves on the circumference of the circle S having the radius R relatively to the gear 3.
  • the rotation of the gear 3 is performed by using a skip cutting feed function. Therefore, first, the gear 3 is moved and opened by the optical sensor 24. The rotation is controlled so as to be at the angle c, from the starting point. This angle C, is the point at which the optical sensor 24 intersects the left end of the tooth 31 with the circle S ⁇ ! The angle is set to be moderately larger than 0
  • the optical sensor 24 When the optical sensor 24 reaches the point of the tooth 31 while the gear 3 is rotating, the detection signal switches from on to off. At this time, the numerical controller temporarily stops the rotation of the gear 3, recognizes that the stop point P, is the intersection of the left side of the tooth 31 and the circle S, and sets the angular position 0! Store them in memory 14.
  • G 3 1 C 4 T 1 Where C. Is the angular position of gear 1 at the start of shape measurement.
  • G 31 is the execution order of skip cutting, and commands movement to angles C 1, C 2 , C 3 ,.
  • T is a command for a change in the detection signal of the sensor 23
  • T0 is a command to stop rotation and detect the position when the detection signal changes from off to on
  • T1 is When the detection signal changes from ON to OFF, the rotation stops and the position is detected.
  • the gear 3 is rotated so that the angular position when the detection signal of the optical sensor 24 changes from on to off and the angular position when the detection signal changes from off to on are alternately detected.
  • the shape measurement can be performed accurately by simply rotating the gear 3 once in a fixed direction.
  • the optical sensor 24 is used as the sensor, but an evening sensor may be used.
  • the rotational position of the gear when the signal of the sensor changes is detected. Accurately detected.
  • gear shape measurement can be performed easily and in a short time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

Système permettant d'effectuer facilement et rapidement la mesure du profil d'une roue dentée. Un capteur optique (24) est fixé à un emplacement situé à une distance R du centre O d'une roue dentée (3) qui doit être soumise à un mouvement de rotation, dans le sens inverse des aiguilles d'une montre, par l'intermédiaire de son centre O, et à partir d'une position montrée par la figure. Lorsque le capteur optique (24) atteint le point P1 d'une dent (31) pendant la rotation de la roue dentée (3), un signal de détection passe de 'Marche' à 'Arrêt'. A cet instant, un contrôleur numérique reconnaît l'existence dudit point P1 au point d'intersection entre l'arête latérale gauche de la dent (31) et un cercle S, et l'angle υ1 est stocké dans une mémoire. Ensuite, lorsque le capteur optique (24) atteint le point Q1 de la dent (31), le signal de détection passe d''Arrêt' à 'Marche'. A cet instant, le contrôleur numérique reconnaît que le point Q1 est le point d'intersection entre l'arête latérale droite de la dent (31) et le cercle S, et l'angle υ2 est stocké dans ladite mémoire. Ensuite, les positions des points P1 à P8 et les points Q1 à Q8 sont détectés selon le même procédé, et le profil de la roue dentée (3) est mesuré.
PCT/JP1994/001403 1993-09-03 1994-08-24 Systeme permettant de mesurer le profil de roue dentee WO1995006851A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/219461 1993-09-03
JP21946193A JPH0771950A (ja) 1993-09-03 1993-09-03 ギア形状測定方式

Publications (1)

Publication Number Publication Date
WO1995006851A1 true WO1995006851A1 (fr) 1995-03-09

Family

ID=16735796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001403 WO1995006851A1 (fr) 1993-09-03 1994-08-24 Systeme permettant de mesurer le profil de roue dentee

Country Status (2)

Country Link
JP (1) JPH0771950A (fr)
WO (1) WO1995006851A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492834A (zh) * 2010-09-15 2014-01-01 吴乃恩 用于检测回转部件质量的自动器具及检验方法
CN103769692A (zh) * 2014-02-18 2014-05-07 南京工业大学 大型齿轮齿距偏差在机测量装置和方法
CN105783769A (zh) * 2015-12-30 2016-07-20 南京理工大学 基于线激光扫描的齿轮三维轮廓测量系统及方法
CN106862975A (zh) * 2017-02-20 2017-06-20 重庆机床(集团)有限责任公司 一种激光自动对齿方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341584A (zh) * 2018-11-02 2019-02-15 西安工业大学 一种齿轮齿面三维形貌表征方法
CN113376647B (zh) * 2021-06-08 2024-04-26 东北大学 一种炮孔测量辅助设备及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135909A (ja) * 1982-02-09 1983-08-12 Mitsubishi Heavy Ind Ltd 回転角度検出方法
JPS6130683B2 (fr) * 1978-11-16 1986-07-15 Oosakafu
JPH0191213U (fr) * 1987-12-07 1989-06-15

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130683B2 (fr) * 1978-11-16 1986-07-15 Oosakafu
JPS58135909A (ja) * 1982-02-09 1983-08-12 Mitsubishi Heavy Ind Ltd 回転角度検出方法
JPH0191213U (fr) * 1987-12-07 1989-06-15

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492834A (zh) * 2010-09-15 2014-01-01 吴乃恩 用于检测回转部件质量的自动器具及检验方法
CN103769692A (zh) * 2014-02-18 2014-05-07 南京工业大学 大型齿轮齿距偏差在机测量装置和方法
CN105783769A (zh) * 2015-12-30 2016-07-20 南京理工大学 基于线激光扫描的齿轮三维轮廓测量系统及方法
CN106862975A (zh) * 2017-02-20 2017-06-20 重庆机床(集团)有限责任公司 一种激光自动对齿方法

Also Published As

Publication number Publication date
JPH0771950A (ja) 1995-03-17

Similar Documents

Publication Publication Date Title
WO1992008574A1 (fr) Dispositif commande numeriquement a fonction de simulation d'usinage
JP2819367B2 (ja) マニピュレータの安全操作システム
JP4044105B2 (ja) 系統毎に運転手段を切り替える機能を有する数値制御装置
WO1990006544A1 (fr) Procede de correction de programmes d'usinage
WO1995006851A1 (fr) Systeme permettant de mesurer le profil de roue dentee
JPH0392248A (ja) 数値制御装置の操作順序表示装置
WO1992009018A1 (fr) Procede d'execution d'une fonction auxiliaire dans un equipement a commande numerique
JP3433967B2 (ja) リジッドタップ制御装置
JP2628914B2 (ja) 加工シミュレーション方式
JPS6055406A (ja) ロボツトの原点合わせ良否判別方法並びにその装置
JPH07104810A (ja) 数値制御装置
JPH0749246A (ja) エンコーダシステム
JP3181522B2 (ja) ダイレクトドライブモータの等分割位置出力制御装置
WO2022249304A1 (fr) Dispositif de commande pour machine industrielle
JPH0876827A (ja) 加減速制御方式
JPH0863215A (ja) Cncの傾斜軸制御方式
JPH04123105A (ja) 電動機制御方式
JPH0895623A (ja) Cncの工具移動制御方式
JP2687639B2 (ja) モータの制御装置
JPH06324731A (ja) 数値制御装置
JPH0675004U (ja) 機械原点2重チェック機能付数値制御装置
JPH08263120A (ja) Cncの現在位置表示方式
JPH0863212A (ja) Cncの原点復帰方式
JP2796335B2 (ja) 数値制御装置
JPH03212704A (ja) 数値制御装置における回転軸零点復帰方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US VN

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 411780

Date of ref document: 19950407

Kind code of ref document: A

Format of ref document f/p: F