WO1995004828A1 - Enzymes a activite nitrile-hydratase, outils genetiques et micro-organismes hotes permettant leur obtention et procede d'hydrolyse mettant en ×uvre lesdites enzymes - Google Patents

Enzymes a activite nitrile-hydratase, outils genetiques et micro-organismes hotes permettant leur obtention et procede d'hydrolyse mettant en ×uvre lesdites enzymes Download PDF

Info

Publication number
WO1995004828A1
WO1995004828A1 PCT/FR1994/000993 FR9400993W WO9504828A1 WO 1995004828 A1 WO1995004828 A1 WO 1995004828A1 FR 9400993 W FR9400993 W FR 9400993W WO 9504828 A1 WO9504828 A1 WO 9504828A1
Authority
WO
WIPO (PCT)
Prior art keywords
ala
leu
val
glu
gly
Prior art date
Application number
PCT/FR1994/000993
Other languages
English (en)
Inventor
Edith Cerbelaud
Sophie Levy-Schil
Dominique Petre
Fabienne Soubrier
Original Assignee
Rhone Poulenc Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie filed Critical Rhone Poulenc Chimie
Priority to JP7506261A priority Critical patent/JPH08504599A/ja
Priority to EP94925508A priority patent/EP0665889A1/fr
Publication of WO1995004828A1 publication Critical patent/WO1995004828A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes

Definitions

  • the field of the invention is that of the enzymatic production of amide derivatives from compounds containing nitrile groups.
  • the present invention relates to new enzymes exhibiting nitrile hydratase activity, the genetic material involved in their production, as well as microorganisms containing this genetic material and exhibiting this activity.
  • the subject of the invention is also a process for the enzymatic hydrolysis of nitriles into amides in which these new enzymes or microorganisms synthesizing them are used, including, in particular, the above-mentioned host microorganisms.
  • the nitriles which are more particularly interested in the context of the invention, are: adiponitrile, cyano-5-valeramide, cyano-5-valerate of any cation, preferably chosen from the list of following compounds: alkali, alkaline earth, amines, ammonium, the latter compound being particularly preferred.
  • the aim is the enzymatic transformation of the nitrile functions into amide functions, so as to obtain an adipamate, e. g. ammonium, convertible into diammonium adipate.
  • an adipamate e. g. ammonium
  • diammonium adipate e.g. ammonium
  • NH nitrile hydratase
  • Ni nitrilase
  • A amidase
  • R (CH Î )
  • n being an integer equal to 4 in the case of adipic compounds.
  • the patent FR 2245585 describes bacteria with nitrilase activity chosen, preferably, from the genera Bacillus, Bacteridium within the meaning of PREVOST, Micrococcus and Brevibacterium as defined by BERGE Y.
  • Brevibacterium R 312 is the same germ as another corynebacterium, namely: Rhodococcus N 774.
  • Patent application EP 0178106 teaches, too, that Rhodococcus N 774 (or Brevibacterium R 312) has a nitrile hydratase active only on one of the nitrile functions of the dinitriles and ineffective with respect to the carboxylated mononitriles.
  • INGVORSEN et al describe, in CIBA Found. Symp., 140, 16-31, 1988, a strain identified as being a Rhodococcus sp CH5, having the characteristic of having, in its enzymatic heritage, a nitrile hydratase which also hydrolyzes, preferably, only one of the CN functions of malononitrile. This strain is even presented as not hydrolyzing 2-cyanoacetic acid.
  • one of the essential objectives of the present invention is to provide new enzymes with nitrile hydratase activity, genetic material allowing their production and microorganisms containing this genetic material, said enzymes and microorganisms being characterized, times, by satisfactory yields of production of amides from substrates of nitrile type of various natures (mono or dinitriles) and by nitrile hydratase activity, vis-à-vis carboxylated mononitriles, specific and significant.
  • Such activity is capable of giving access to an enzymatic pathway for the production of dicarboxylic acids from dinitriles, which is industrially advantageous because it is very efficient.
  • These enzymes are used, either as such or, and preferably, in the form of recombinant microorganisms generating them.
  • the present invention therefore relates to new enzymes having a nitrile hydratase activity, capable of hydrolyzing nitriles into amides and having an enzymatic activity with respect to substrates having a nitrile function and a carboxylate function greater than that vis-à-vis substrates having at least two nitrile functions and that vis-à-vis substrates having at least one nitrile function and at least one other function different from the carboxylate function.
  • One of the very advantageous features of the enzymes according to the invention is expressed by a specific enzymatic activity (U s ), with respect to cyano-5-valerate, expressed in moles of amide appeared xh "1 x kg ' 1 of enzyme used and under given measurement conditions, greater than or equal to 400, preferably at
  • This enzyme was isolated from a strain of Comamonas testosteroni. More specifically, this enzyme is prepared by extraction and purification from cultures of natural or recombinant microorganisms, the purification being carried out by a succession of steps consisting in preparing an enzymatic extract from cell culture, in precipitating this extract with ammonium sulphate and to purify it by different stages of chromatography and gel filtration. These steps, which use techniques well known to those skilled in the art, are described in detail in the illustrative examples below.
  • nitrile hydratase activity denotes, in the present description, the enzymatic hydrolysis of a nitrile -mono or dinitrile, such as adiponitrile cyano-5 valeramide and cyano-5-valerate of a cation Z, to a amide, namely, in this example, respectively, cyano-5 valeramide, adipamide and adipamate of Z.
  • the cation Z can be any, but it is preferably chosen from the following compounds: alkali, alkaline - earthy, amino, ammonium, the latter compound being particularly preferred.
  • Another subject of the invention is a DNA sequence coding for an enzyme having nitrile hydratase activity capable of hydrolyzing nitriles to amides and chosen from the following list of sequences:
  • the wild-type microorganism Comamonas testosteroni NI isolated by the Applicant, contains one of the above sequences in its genome.
  • the DNA sequences coding for the enzyme were identified using nucleotic probes from the partial peptide sequences of the a and ⁇ subunits (FIGS. 1a and 1b) of the purified enzyme.
  • the invention also relates to the expression cassettes which carry, with the signals ensuring its expression, one of the DNA sequences defined above.
  • These expression cassettes can either be naturally present, either integrated into the host genome or localized on an expression vector, such as a plasmid preferably containing a means of selection.
  • These expression cassettes include, in particular, transcription and translation initiation regions, which contain a promoter sequence and a ribosome binding site. These regions can be homologous or heterologous to the microorganism naturally producing the enzyme. The choice of these regions depends, in particular, on the host used. In particular, when it is a question of prokaryotic host microorganisms, the heterologous promoter can be chosen from strong bacterial promoters, such as the promoter of the tryptophan operon Ptrp ⁇ scherichia coli, the promoter of the lactose operon Plac of E.
  • thermosensitive form P R CIts is preferred.
  • the promoters may be those of the yeast glycolytic genes, such as the genes coding for phospho-glycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GPD), or many more genes coding for lactase (LAC4), enolase (ENO).
  • PGK phospho-glycerate kinase
  • GPD glyceraldehyde-3-phosphate dehydrogenase
  • ENO enolase
  • the ribosome binding sites that derived from the lambda CII gene, as well as those derived from Comamonas or Pseudomonas genes or those derived from Corynebacteria genes are preferably used when the host microorganism is prokaryotic.
  • a region allowing termination of translation and functional transcription of the intended host, can be positioned 3 'to the coding sequence.
  • the expression cassette can also comprise one or more markers making it possible to select the recombinant host.
  • the preferred markers are dominant markers, that is to say which confer resistance to antibiotics such as ampicillin, tetracycline or kanamycin or to other products toxic for host microorganisms.
  • a subject of the invention is also the microorganisms containing the DNA sequence according to the invention, as well as those capable of producing at least one enzyme according to the invention. These microorganisms may or may not contain at least one expression cassette, of the type described above.
  • these microorganisms there are hosts which can be used for the reception of an expression vector in accordance with the invention, there may be mentioned, in particular, enterobacteria such as E.
  • coli bacteria belonging to the genera Comamonas, Pseudomonas , Streptomyces, Bacillus or coryneform bacteria, such as those belonging to the genera Corynebacterium, Brevibacterium or Rhodococcus.
  • the latter also relates to the process for converting nitriles into amides using an enzyme according to the invention or a recombinant microorganism generating it.
  • This process consists in bringing together the nitrile to be transformed with an enzyme or a recombinant microorganism, as defined above.
  • the enzyme or the recombinant microorganism are immobilized on or in a solid support, according to a conventional technique, such as that described, for example, in American patent US 4,732,851.
  • the process of the invention is suitable for the transformation of nitriles into amides and, more particularly, for the transformation into amides of mono and dinitriles of formulas:
  • the process of the invention is particularly suitable for being integrated into the synthesis of adipates, such as ammonium adipate from a dinitrile, such as adiponitrile, via a mononitrile monoamide, such as cyano-5-valeramide, then either by a diamide, such as adipamide, or by a monocarboxylated mononitrile, such as cyano-5-valerate and, finally, by a monoamide monocarboxylate, such as ammonium adipamate .
  • adipates such as ammonium adipate from a dinitrile, such as adiponitrile
  • a mononitrile monoamide such as cyano-5-valeramide
  • the present invention can be used for the preparation of carboxylates (adipates) useful as raw materials in industrial syntheses (polyamides).
  • carboxylates adipates
  • polyamides useful as raw materials in industrial syntheses
  • Fig. 1a represents the peptide sequence of the ⁇ subunit of an enzyme in accordance with the invention (SEQ ID No: 1 :).
  • Fig. lb represents the peptide sequence of the ⁇ subunit of the above enzyme (SEQ ID No: 2:).
  • Fig. 2 represents a DNA sequence according to the invention (SEQ ID No: 3:).
  • Fig. 3 represents the electrophoresis on an SDS polyacrylamide gel of the fractions obtained at the various purification stages of Example 2.
  • Fig. 4 represents a curve of the relative activity of the nitrile hydratase according to the invention as a function of the pH.
  • Fig. 5 shows a curve of the specific activity of the nitrile hydratase according to the invention as a function of the temperature in ° C.
  • Fig. 6 represents a variation of the specific activity (millimoles of cyano-5-valerate xh '1 xg ' 1 of protein) of the nitrile hydratase according to the invention with respect to cyano-5-valerate, depending on its cyano-5-valerate concentration (millimoles xl '1 ).
  • Fig. 7 shows the restriction map of the plasmid pXL2120 containing the genes coding for the two subunits and ⁇ of the nitrile hydratase according to the invention.
  • Fig. 8 represents the sequence of a Ncol - Ncol - AccI fragment of 1713 bp containing the genes coding for the two subunits and ⁇ of the nitrile hydratase of Comamonas testosteroni NI 1.
  • Fig. 9 shows the restriction map of the plasmid pXL2160 containing the genes coding for the two subunits ⁇ and ⁇ of the nitrile hydratase (nthA and nthB ') according to the invention, the two genes being transcribed from the promoter Plac.
  • Fig. 10 shows the restriction map of plasmid pXL2205 containing the nthA and nthB genes. the two genes being transcribed from the Ptrp promoter.
  • Fig. 11 represents the SDS-PAGE gel electrophoresis showing the expression of the DNA sequence according to the invention in the E. coli TG 1 / pXL2160 and E. coli TG1 / pXL2205 strains.
  • Fig. 12 represents the restriction map of the plasmid pXL2222 containing all the sequences coding for the two subunits ⁇ and ⁇ and included in the strain E. coli TG1 deposited (G 4327).
  • EXAMPLE 1 CHARACTERISA ⁇ ON OF THE AC IVITY OF THE STRAIN Comamonas testosteroni NI 1.
  • the Comamonas testosteroni NI 1 strain is a strain isolated from a soil sample by microbiological screening. Its performance is evaluated on adiponitrile, cyanovaleramide, cyanovalerate, adipamide and adipamate.
  • the Comamonas testosteroni NI 1 strain is cultured, in a stirred flask, at 28 ° C., for 19 h, in medium A, the composition of which is as follows:
  • This preculture is used to inoculate a 2 liter flask filled to the tenth with medium A. After 22 h, 3.5 g ⁇ l '1 of cells expressed by wet weight are harvested. This corresponds to an OD ⁇ ⁇ of 1.4 and a dry weight of 0.9 gxl "1 .
  • the reaction medium is constituted by 50 mM phosphate buffer, pH 7 and the reaction temperature is 25 ° C.
  • the disappearing substrates are assayed by HPLC.
  • the specific activities U s are given in moles of disappeared substrate xh '1 x kg "1 of dry cells.
  • the measurements of the hydrolysis activities of adiponitrile and its hydration products by Comamonas NI 1 are listed in the table 1.
  • the Comamonas NI 1 strain has an enzyme which is very active on adiponitrile. It also has an enzyme capable of hydrolyzing cyanovalerate. Since the identified hydrolysis byproducts of cyanovalerate are adipamate and adipate, it follows that Comamonas NI 1 has, in its enzymatic heritage, a nitrile hydratase and an amidase.
  • EXAMPLE 2 PURIFICATION OF NITRILE HYDRATASE FROM Comamonas NI.
  • the Comamonas Testosteroni NI 1 strain is cultured, in a stirred flask, at 28 ° C., for 23 h, in medium B:
  • This preculture is used to seed a 20 liter fermenter containing 15 liters of the same medium B.
  • the air flow rate, the pressure and the agitation are, initially,
  • Lanes 3 to 7 correspond respectively to purification steps 4 to 0.
  • the reference molecular weights are indicated in the right margin in FIG. 3.
  • the supernatant is brought, by progressive addition of ammonium sulphate, to 15% of the saturation. After 1 h, the suspension is centrifuged for 30 min at 30,000 gmax. The supernatant is brought to 45% of the saturation. After 1 h, the suspension is centrifuged under the same conditions, the precipitate is recovered, then dialyzed against the buffer overnight.
  • the dialyzed fraction is loaded at a flow rate of 150 ml / h on a column (26 x 380 mm) of "Q Sepharose Fast Flow" balanced with buffer T at a flow rate of 250 ml / h.
  • the column is percolated at a flow rate of 250 ml / h, successively by the following solutions:. QSP of buffer T until the return to the baseline,. 500 ml of a 0 to 0.3 M KC1 gradient in buffer T,. 200 ml of buffer T supplemented with 0.3 M KC1,. 200 ml of buffer T supplemented with KC1 1 M.
  • the nitrile hydratase activity is eluted in a volume of 160 ml at a concentration of KC1 situated between 0.22 and 0.28 M.
  • Step 3 Column of hydrophobic interactions of Phenyl Sepharose CL4B: The active fraction, brought to 15% of the ammonium sulfate saturation, is loaded at a flow rate of 150 ml / min on the column (26 x 380 mm) , equilibrated with buffer T containing ammonium sulphate at 15% of saturation.
  • the column is percolated with:. 200 ml of balancing buffer at a flow rate of 150 ml / h,. 200 ml of buffer T containing ammonium sulphate at 10% of saturation at a flow rate of 200 ml / h,
  • the protein solution is loaded on the column (16 x 280 mm), equilibrated with buffer T containing ammonium sulfate at 15% of saturation at a flow rate of 26 ml / h.
  • the column is then percolated at a flow rate of 47 ml / h with the equilibration buffer T. During this operation, all of the activity is eluted in the form of a peak. Only the core of the active fraction is harvested.
  • This fraction analyzed in SDS-PAGE gel is composed of 90% of the nitrile hydratase in the form of two very close bands.
  • EXEMPIJS 3 CHARACTERIZATION OF THE HYDRATASE NT ⁇ ULE OF Comamonas NI 1.
  • nitrile hydratase gel filtration gives a single peak whose elution time corresponds to 92 +/- 10 kDa.
  • Analysis of this protein by polyacrylamide-SDS gel gives two bands of equal intensity from 26 to 25 kDa. This structure is that conventionally encountered in nitrile hydratases.
  • subunit SEQ ID No: 5: in the list of sequences below
  • the results of the nitrile hydratase activity measurements at different temperatures are listed in fig. 5. Between 10 and 30 ° C the ⁇ G of the reaction is 80 kJ / mole.
  • the substrate used is cyanovalerate. Its rate of hydrolysis to adipamate is determined at different cyanovalerate concentrations (0.5, 1, 2, 5, 10 and 20 mM) at 25 ° C and pH 7.2.
  • V M 35,000 moles or 5,000 kg of adipamate / h.kg of nitrile hydratase
  • k ç ,, the turnover of adipamate / h.kg of nitrile hydratase
  • this enzyme hydrolyzes mononitriles-monoacids and little dinitriles.
  • EXAMPLE 4 CLONING OF NITRILE HYDRATASE FROM Comamonas testosteroni NI 1.
  • nucleotide sequence of this first probe is designated by SEQ ID No: 7: and the corresponding amino acid sequence by SEQ ID No: 8:.
  • Comamonas dictated a choice for the third position of the codon in the case of alanines and in the case of lysine.
  • the probe (seq. 2264) is a 23 sea 144 times degenerate:
  • nucleotide sequence of this second ⁇ probe is designated by SEQ ID No: 9: and the corresponding amino acid sequence by SEQ ID No: 10:.
  • the strategy followed consisted, first of all, in verifying the specificity of the two probes and in determining the nature of the genomic DNA fragments to be cloned.
  • genomic DNA of Comamonas testosteroni NI 1 was digested with several restriction enzymes corresponding to sites which can be used for cloning. After electrophoresis on agarose gel and transfer to a nylon membrane, the various digestions were hybridized to the probes. The results show that the two probes have sufficient specificity under the hybridization conditions used (5x SSC, 5x Denhardt, 0.1% SDS, 50 mM NaPO 4 pH 6.5, 250 ⁇ g / ml ssDNA; hybridization temperature 50 ° C.
  • the hybridization fingerprints show, in particular, the existence of a fragment single BglII of approximately 4 kb.
  • the 2.5 to 4.5 kb fragments of a BglII digestion of genomic DNA were purified by preparative electrophoresis on agarose and electroelution, then ligated to the plasmid pUC19, itself digested with BamHI.
  • 800 white clones on LB amp X-gal were individually subcultured, transferred to a nylon membrane, then analyzed by hybridization with the seq 2264 probe under the same stringency conditions as during the hybridization of the " Southern blot ". A clone was thus identified as specifically hybridizing with the probe.
  • This clone was found to contain a plasmid (pXL2120), having inserted a fragment of approximately 4.2 kb, also hybridizing with the seq probe. 2273.
  • This plasmid was analyzed in more detail (restriction mapping, partial sequencing using the probe seq. 2264 as primer and "Southern blot"). It has thus been possible to show that the 5 ′ part of the gene coding for the ⁇ subunit, which hybridizes with the seq probe. 2264, is located on a fragment of Sphl-Kpnl of around 280 bp, oriented in the direction SphI towards Kpnl.
  • Fig. 7 shows a restriction map of this plasmid.
  • EXAMPLE 5 SEQUENCE DTJN FRAGMENT OF 1713 PB CONIENAN ⁇ LES GENES
  • the average GC% of the sequence obtained is 56.6%, which is close to the GC% of 61.5% described in other strains of Comamonas (TAMAOKA et al., Int. J; Syst. Bacteriol., 1987, 37, 52-59).
  • An analysis of the sequence obtained made it possible to characterize a first open phase of 645 bp potentially translated into a protein of 215 amino acids.
  • the NH 2 terminal sequence of the a subunit, used to synthesize the seq probe. 2273, is contained in this protein and makes it possible to locate the initiation codon of the gene coding for the ⁇ subunit, called nthA in the rest of the description.
  • This gene contains 621 bp, code for a protein of 207 residues corresponding to a molecular weight of 22,967 Da.
  • a second open phase of 621 bp is potentially translated into a polypeptide of 207 residues.
  • This polypeptide present in position NH 2 terminal, the terminal NH 2 sequence used to synthesize the probe seq. 2264, which makes it possible to identify the second phase open to the structural gene for the ⁇ subunit of the nitrile hydratase, called nthB in the rest of the description.
  • This protein has a theoretical molecular weight of 22,653 Da;
  • EXAMPLE 6 EXPRESSION OF N ⁇ RILE HYDRATASE FROM Comamonas testosteroni NI 1 IN E. coli.
  • the 779 bp Ncol / BglI fragment (containing the 282 bp located upstream of the nthA gene and the first 496 bp of nthA) and the 789 bp BglI / AhalI fragment (containing the 3 ′ part of nthA and all the nthB gene), fragments isolated from pXL2120, were cloned between the Ncol and CJal sites of pMTL22 (CHAMBERS et al., 1988, Gene, 68, 139-149).
  • pXL2160 therefore carries a gene conferring resistance to ampicillin and the nthA and nthB genes under the control of their own ribosome binding sites, the two genes being transcribed from the promoter of the lactose operon of E. coli.
  • pXL2160 carries, moreover, in the cloning multisite, downstream of the fragment of Comamonas testosteroni, a unique Xhol site.
  • an Ndel restriction site was created on the initiation codon of nthA and the 180 bp Ndel / HindIII fragment containing the 5 ′ part of the nthA gene was amplified by the PCR technique. This fragment was ligated to the HindIII / XhoI fragment of pXL2160 between the NdeI / Xhol sites of pMTL22, to result in the plasmid pXL2203.
  • the final plasmid pXL2205 therefore carries a gene conferring resistance to ampicillin, the nthA gene under control of the RBSCII ribosome binding site and the nthB gene under control of its own ribosome binding site, the two genes being transcribed from from the promoter Ptrp.
  • the expression of the nitrile hydratase was visualized in the E. coli TG 1 strain containing the plasmids pXL2160 and pXL2205.
  • the strain TG l / pXL2160, as well as the control strain TGl / pUC19, were cultivated for 16 h in LB medium at 37 ° C. (MILLER, JH 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY) containing 100 ⁇ g / ml ampicillin, then diluted 100 times in the same medium and at the same temperature. When the cultures reached an OD 610 of between 0.5 and 1, IPTG, at the final concentration of 1 mM, was added. After 2 h of culture, the bacteria were collected.
  • TG1 / pXL2205 strain as well as the control strain TG1 containing the vector pUC19, were cultivated for 16 h in M9 glucose medium at 30 ° C. (MILLER, JH 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), containing 100 ⁇ g / ml of ampicillin and 100 ⁇ g / ml of tryptophan, these cultures were diluted 100 times in the same medium in the absence of tryptophan and cultured for 6 h at the same temperature.
  • MILLER JH 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Each lane corresponds to an amount of protein equivalent to 60 ⁇ l of culture at an OD of 3 to 610 nm.
  • Lane G contains the following molecular weight markers: 97.5, 66.2, 45,
  • Plasmid PXL2222 groups together two fragments extracted from pXL2160, the 934 bp Nrul / Kpnl fragment containing the nthA gene and the 5 'part of nthB cloned in front of the 370 bp Kpnl / Stul fragment containing the 3' part of nthB.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

La présente invention concerne de nouvelles enzymes à activité nitrile-hydratase, capables de catalyser la transformation des nitriles en amides, caractérisées en ce qu'elles possèdent une activité enzymatique vis-à-vis des substrats présentant une fonction nitrile et une fonction carboxylate supérieure à celle vis-à-vis des substrats ayant au moins deux fonctions nitriles. Elle concerne, également, une séquence d'ADN codant pour une enzyme ayant une activité nitrile-hydratase capable d'hydrolyser les nitriles en amides, un analogue de cette séquence résultant de la dégénérescence du code génétique, ou une séquence d'ADN hybridant avec l'une de ces séquences ou un fragment de celles-ci et codant pour une enzyme ayant une activité nitrile-hydratase. Enfin, l'invention couvre les germes aptes à produire les susdites enzymes.

Description

ENZYMES λ ACΠVΓΓÉ NITRILE-HYDRATASE, OUΠLS GÉNÉTIQUES ET MICRO-ORGANISMES HÔTES
PERMETTANT LEUR OBTENTION ET PROCÉDÉ lΛiYI»CtYSE METTANT EN ŒUWE LESMTES E ZYNŒS
DOMAINE TECHNIQUE ;
Le domaine de l'invention est celui de la production enzymatique de dérivés amides à partir de composés contenant des groupements nitriles.
TECHNIQUE ANTERIEURE :
La présente invention concerne de nouvelles enzymes présentant une activité nitrile-hydratase, le matériel génétique impliqué dans leur production, ainsi que les micro-organismes contenant ce matériel génétique et présentant cette activité.
L'invention a également pour objet un procédé d'hydrolyse enzymatique de nitriles en amides dans lequel on met en oeuvre ces nouvelles enzymes ou des micro-organismes les synthétisant, dont, notamment, les susdits micro-organismes hôtes.
Sans que cela ne soit limitatif, les nitriles, auxquels on s'intéresse plus particulièrement dans le cadre de l'invention, sont : l'adiponitrile, le cyano-5 valéramide, le cyano-5-valérate d'un cation quelconque, de préférence choisi parmi la liste de composés suivants : alcalins, alcalino-terreux, aminés, ammonium, ce dernier composé étant particulièrement préféré. Le but visé est la transformation enzymatique des fonctions nitriles en fonctions amides, de manière à obtenir un adipamate, e. g. d'ammonium, transformable en adipate de diammonium. Et, comme chacun sait, tout l'intérêt industriel des adipates, et en particulier de l'adipate de diammonium, réside dans le fait qu'ils constituent l'une des bases fondamentales pour la fabrication du nylon-6,6.
L'action de ces nitriles hydratases s'intègre dans un schéma connu de synthèse enzymatique d'adipate de diammonium à partir d'adiponitrile. Ce schéma est le suivant :
Figure imgf000004_0002
NC COiNH,
Figure imgf000004_0001
NH = nitrile hydratase, Ni = nitrilase,
A = amidase, R = (CHÎ),,, n étant un nombre entier égal à 4 dans le cas de composés adipiques.
Dans le cadre de ce schéma, l'arsenal d'hydrolyse enzymatique des amides et des nitriles de nombreuses souches a été étudié.
Y. ASANO et al. ont ainsi décrit dans Agric. Biol. Chem., 45(5). 1165- 1174. 1982, VArthrobacter. Ce germe possède une nitrile hydratase uniquement active sur le malononitrile et non sur l'adiponitrile.
H. YAMADA et al. font état dant J. Ferment. Technol., 58, 495-500, 1980, de l'hydrolyse du glutaronitrile par la souche Pseudomonas sp. K9, la nitrile hydratase de cette souche hydrolyse, préferentiellement une des deux fonctions CN du dinitrile, tandis que l'autre n'est que peu hydrolysée par l'enzyme.
Le brevet FR 2245585 décrit des bactéries à activité nitrilasique choisies, de préférence, parmi les genres Bacillus, Bacteridium au sens de PREVOST, Micrococcus et Brevibacterium au sens de BERGE Y. La souche Brevibacterium R 312 décrite dans ce brevet, et plus particulièrement la nitrile hydratase comprise dans son patrimoine enzymatique, catalyse l'hydrolyse en amides des dinitriles du type malononitrile, fumaronitrile et succinonitrile. Cette enzyme est plus active vis-à-vis des dinitriles ou des mononitriles monoamides que vis-à-vis des mononitriles monocarboxylates .
Ce spectre d'activité a été confirmé par des études ultérieures, dont notamment celles de GALZY et al. dans J. Gen. Microbiol, 130, 89-93, 1984.
L'article de MAYAUX et al., paru dans J. Bacteriol, 172, 6764- 6773, 1990, enseigne que le Brevibacterium R 312 serait le même germe qu'une autre corynebactérie, à savoir : Rhodococcus N 774.
La demande de brevet EP 0178106 enseigne, elle aussi que Rhodococcus N 774 (ou Brevibacterium R 312) a une nitrile hydratase active seulement sur l'une des fonctions nitriles des dinitriles et peu performante vis-à-vis des mononitriles carboxylés.
INGVORSEN et al décrivent, dans CIBA Found. Symp., 140, 16-31, 1988, une souche identifiée comme étant un Rhodococcus sp CH5, ayant pour caractéristique d'avoir, dans son patrimoine enzymatique, une nitrile hydratase hydrolysant elle aussi, préferentiellement, une seule des fonctions CN du malononitrile. Cette souche est même présentée comme n'hydrolysant pas l'acide cyano-2 acétique.
On connaît, également, par le brevet JP 03 019 695, la souche Corynebacterium sp C5, qui hydrolyse le valéronitrile en transcyano-4-cyclohexane acide amide. Cette nitrile hydratase ne dépasse pas, elle aussi, le stade mononitrile monocarboxylique.
Dans Ann. N. Y. Acad. Sci., 613, 142-154, 1990, YAMADA et al ont décrit un Pseudomonas chlororaphis intervenant dans l'hydrolyse de l'acrylonitrile en acrylamide.
Dans la famille des champignons, KUWAHARA et al. (J. Ferment. Technol., 58, 573-577, 1980) ont isolé Fusarium solani qui s'est avéré apte à dégrader le succinodinitrile en acide succinique, en passant par un mononitrile monoamide, puis un diamide et, enfin, un monoamide monocarboxylique.
Cette revue de l'état de la technique montre, d'une part, que la collection enzymatique connue de NH n'offre pas de moyens réellement performants d'hydrolyse de la deuxième fonction nitrile sur des substrats du type dinitrile et, d'autre part, que les NH connues déterminent une voie enzymatique de passage d'un dinitrile à l'acide dicarboxylique correspondant, qui ne fait intervenir que des nitriles amides et des diamides. Et on peut regretter que les activités enzymatiques qui caractérisent cette voie, bien que significatives sur le plan du laboratoire, ne soient pas satisfaisantes dans une perspective industrielle. Ainsi, l'un des objectifs essentiels de la présente invention est de proposer de nouvelles enzymes à activité nitrile hydratase, un matériel génétique permettant leur production et des micro-organismes contenant ce matériel génétique, lesdits enzymes et micro-organismes se caractérisant, à la fois, par des rendements satisfaisants de production d'amides à partir de substrats de type nitrile de natures diverses (mono ou dinitriles) et par une activité nitrile-hydratase, vis-à-vis des mononitriles carboxylés, spécifique et significative. Une telle activité est susceptible de donner accès à une voie enzymatique de production de diacides carboxyliques à partir de dinitriles, industriellement intéressante, car très performante.
Après de nombreux essais et recherches, la Demanderesse est parvenue à atteindre, entre autres, cet objectif en isolant, purifiant et caractérisant de nouvelles enzymes : - - aptes à hydrolyser les nitriles en amides avec de fortes activités, - et ayant les mononitriles carboxylés comme substrat préféré.
Ces enzymes sont utilisées, soit telles quelles, soit, et de préférence, sous la forme de micro-organismes recombinés les générant.
EXPOSE DE L'INVENTION ;
La présente invention a donc pour objet de nouvelles enzymes ayant une activité nitrile hydratase, capables d'hydrolyser les nitriles en amides et possédant une activité enzymatique vis-à-vis des substrats présentant une fonction nitrile et une fonction carboxylate supérieure à celle vis-à-vis des substrats ayant au moins deux fonctions nitriles et à celle vis-à-vis des substrats ayant au moins une fonction nitrile et au moins une autre fonction différente de la fonction carboxylate.
L'une des particularités très avantageuse des enzymes selon l'invention est exprimée par une activité enzymatique spécifique (Us), vis-à-vis du cyano-5- valérate, exprimée en moles d'amide apparu x h"1 x kg'1 d'enzyme mis en oeuvre et dans des conditions de mesure données, supérieure ou égale à 400, de préférence à
1 000 et, plus préferentiellement encore, à 10 000.
Les susdites conditions de mesure sont : - milieu réactionnel = tampon HEPES 10 mM,
- volume = 3 ml,
- température = 25° C,
- concentration en enzyme = 16 μg/ml
L'une de ces nouvelles enzymes a été isolée à partir d'une souche de Comamonas testosteroni. Plus précisément, cette enzyme est préparée par extraction et purification à partir de cultures de micro-organismes naturels ou recombinants, la purification étant réalisée par une succession d'étapes consistant à préparer un extrait enzymatique à partir de la culture cellulaire, à précipiter cet extrait avec du sulfate d'ammonium et à le purifier par différentes étapes de chromatographie et filtration sur gel. Ces étapes, qui font appel à des techniques bien connues de l'homme du métier, sont décrites en détail dans les exemples illustratifs ci-après.
Par activité nitrile hydratase, on désigne, dans le présent exposé, l'hydrolyse enzymatique d'un nitrile -mono ou dinitrile, tel que l'adiponitrile cyano-5 valéramide et le cyano-5-valérate d'un cation Z, en un amide, à savoir, dans cet exemple, respectivement, le cyano-5 valéramide, l'adipamide et l'adipamate de Z. Le cation Z peut être quelconque, mais on le choisit, de préférence, parmi les composés suivants : alcalins, alcalino-terreux, aminés, ammonium, ce dernier composé étant particulièrement préféré.
Il est du mérite de la Demanderesse d'avoir pu isoler ces nouvelles enzymes et d'avoir pu mettre en évidence la nouvelle voie "mononitrile carboxylée" qui les caractérisent. Or, il est à souligner que cette nouvelle voie permet, pour autant que l'on associe une amidase à l'enzyme de l'invention, de préparer des acides dicarboxyliques à partir de dinitriles en passant exclusivement par des espèces solubles. Il est clair que cela est particulièrement avantageux dans la perspective d'une optimisation industrielle du procédé.
Cette caractéristique d'hydrolyse des mononitriles carboxylés se vérifie aussi bien pour les enzymes sous forme pure que pour les germes naturels ou recombinés exprimant ces enzymes.
Parmi les enzymes à activité nitrile hydratase, conformes à l'invention, figure une enzyme se caractérisant par deux sous-unités a et β dont les séquences peptidiques sont représentées, respectivement, aux fig. la et lb. (SEQ ID No : 1 : et SEQ ID No : 2 : dans la liste de séquences ci-après).
Un autre objet de l'invention est une séquence d'ADN codant pour une enzyme ayant une activité nitrile hydratase capable d'hydrolyser les nitriles en amides et choisie parmi la liste de séquences suivante :
- la séquence d'ADN, telle que représentée à la fig. 2, (SEQ ID No : 3 : dans la liste des séquences ci-après) et codant pour une enzyme (SEQ ID No : 4 : dans la liste de séquences ci-après) ayant une activité nitrile hydratase,
- un analogue de cette séquence résultant de la dégénérescence du code génétique, - une séquence d'ADN hybridant avec l'une de ces séquences ou un fragment de celles-ci et codant pour une enzyme ayant une activité nitrile hydratase.
Les enzymes résultant de l'expression de l'une des séquences d'ADN ci- dessus sont compris dans le champ de l'invention.
Le micro-organisme sauvage Comamonas testosteroni NI 1, isolé par la Demanderesse, contient l'une des séquences ci-dessus dans son génome.
Les séquences d'ADN codant pour l'enzyme ont été identifiées à l'aide de sondes nucléotiques à partir des séquences peptidiques partielles des sous-unités a et β (fig. la et lb) de l'enzyme purifiée.
L'invention concerne, également, les cassettes d'expression qui portent, avec les signaux assurant son expression, l'une des séquences d'ADN définie précédemment. Ces cassettes d'expression peuvent être, soit naturellement présentes, soit intégrées dans le génome de l'hôte ou localisées sur un vecteur d'expression, tel qu'un plasmide contenant, de préférence, un moyen de sélection.
Ces cassettes d'expression comportent, notamment, des régions d'initiation de la transcription et de la traduction, qui contiennent une séquence promotrice et un site de fixation des ribosomes. Ces régions peuvent être homologues ou hétérologues du micro-organisme produisant naturellement l'enzyme. Le choix de ces régions dépend, notamment, de l'hôte utilisé. En particulier, lorsqu'il s'agit de micro-organismes hôtes procaryotes, le promoteur hétérologue peut être choisi parmi les promoteurs bactériens forts, tels que le promoteur de l'opéron tryptophane Ptrp άΕscherichia coli, le promoteur de l'opéron lactose Plac de E. coli, le promoteur droit du phage lambda PR, le promoteur gauche du phage lambda PL, les promoteurs forts de Pseudomonas et Comamonas, les promoteurs forts de Corynébactéries. Plus particulièrement, dans le cas du promoteur droit du phage lambda, la forme thermosensible PRCIts est préférée. Dans le cas des micro-organismes eucaryotes, tels les levures, les promoteurs peuvent être ceux des gènes glycolytiques de levure, tels les gènes codant pour la phospho-glycérate kinase (PGK), la glycéraldéhyde-3-phosphate déshydrogénase (GPD), ou bien encore des gènes codant pour la lactase (LAC4), l'énolase (ENO). Concernant les sites de fixation des ribosomes, celui dérivé du gène CII de lambda, ainsi que ceux dérivés de gènes de Comamonas ou Pseudomonas ou ceux dérivés de gènes de Corynébactéries sont utilisés préferentiellement lorsque le micro- organisme hôte est procaryote.
Une région, permettant une terminaison de la traduction et de la transcription fonctionnelle de l'hôte envisagé, peut être positionnée en 3' de la séquence codante.
Avantageusement, la cassette d'expression peut comprendre, également, un ou plusieurs marqueurs permettant de sélectionner l'hôte recombinant. Les marqueurs préférés sont des marqueurs dominants, c'est-à-dire conférant une résistance à des antibiotiques comme l'ampicilline, la tétracycline ou la kanamycine ou à d'autres produits toxiques pour les microorganismes hôtes. L'invention a également pour objet les micro-organismes contenant la séquence d'ADN selon l'invention, ainsi que ceux aptes à produire au moins une enzyme selon l'invention. Ces micro-organismes comportent ou non au moins une cassette d'expression, du type de celle décrite ci-dessus. Parmi ces micro-organismes, on trouve les hôtes utilisables pour l'accueil d'un vecteur d'expression conforme à l'invention, on peut citer, notamment, les entérobactéries telles que E. coli, les bactéries appartenant aux genres Comamonas, Pseudomonas, Streptomyces, Bacillus ou les bactéries corynéformes, telles que celles appartenant aux genres Corynebacterium, Brevibacterium ou Rhodococcus. Un micro-organisme recombiné, contenant ladite séquence d'ADN sur une structure plasmidique, a été déposé le 9 juillet 1993 sous le n° I - 1330 à la Collection Nationale de Cultures de Micro-organismes (C. N. C. M.) (Institut Pasteur, 25 rue du Docteur Roux, PARIS). Ce micro-organisme est la souche E. Coli TG1 qui contient le plasmide pXL2222 (décrit ci-après). Ce micro-organisme est également identifié par la Demanderesse par la référence G 4327.
Il va de soi que les enzymes produites par les micro-organismes sont, également, comprises dans l'invention.
Cette dernière concerne aussi le procédé de transformation des nitriles en amides à l'aide d'une enzyme selon l'invention ou d'un micro-organisme recombiné le générant. Ce procédé consiste à mettre en présence le nitrile à transformer avec une enzyme ou un micro-organisme recombiné, tel que défini précédemment. On
- opère, généralement, à la température ambiante. Selon un mode particulier de réalisation de l'invention, l'enzyme ou le micro-organisme recombiné sont immobilisés sur ou dans un support solide, selon une technique classique, comme celle décrite, par exemple, dans le brevet américain US 4732851.
Le procédé de l'invention convient pour la transformation des nitriles en amides et, plus particulièrement, pour la transformation en amides des mono et dinitriles de formules :
NC - R - CN, NC - R - COO"Z+ et NC - R - CONH2- R - COO"Z+ dans lesquelles R est un groupe alkylène ou alcénylène linéaire ou ramifié, contenant 1 à 18 atomes de carbone, R étant, de préférence, égal à - (CH2)4 - et Z est choisi parmi la liste de composés suivants : alcalins, alcalino-terreux, aminés, ammonium, ce dernier composé étant particulièrement préféré.
Le procédé de l'invention est particulièrement approprié pour être intégré à la synthèse d'adipates, tels que l'adipate d'ammonium à partir d'un dinitrile, tel que l'adiponitrile, en passant par un mononitrile monoamide, tel que le cyano-5- valéramide, puis, soit par un diamide, tel que l'adipamide, soit par un mononitrile monocarboxylé, tel que le cyano-5-valérate et, enfin, par un monoamide monocarboxylate, tel que l'adipamate d'ammonium.
POSSIBILITE d' APPLICATION INDUSTRIELLE :
La présente invention peut être mise en oeuvre pour la préparation de carboxylates (adipates) utiles comme matières premières dans des synthèses industrielles (polyamides). Les exemples qui suivent permettent d'illustrer les caractéristiques et les avantages de la présente invention sans, toutefois, en limiter la portée.
DESCRIPTION DES FIGURES
La fig. la représente la séquence peptidique de la sous-unité a d'une enzyme conforme à l'invention (SEQ ID No : 1 :).
La fig. lb représente la séquence peptidique de la sous-unité β de la susdite enzyme (SEQ ID No : 2 : ).
La fig. 2 représente une séquence d'ADN selon l'invention (SEQ ID No : 3 : ).
La fig. 3 représente l'électrophorèse sur gel de polyacrylamide SDS des fractions obtenues aux différentes étapes de purification de l'exemple 2.
La fig. 4 représente une courbe de l'activité relative de la nitrile hydratase selon l'invention en fonction du pH. La fig. 5 représente une courbe de l'activité spécifique de la nitrile hydratase selon l'invention en fonction de la température en ° C. La fig. 6 représente une variation de l'activité spécifique (millimoles de cyano-5-valérate x h'1 x g'1 de protéine) de la nitrile hydratase selon l'invention vis-à- vis du cyano-5-valérate, en fonction de sa concentration en cyano-5-valérate (millimoles x l'1). La fig. 7 représente la carte de restriction du plasmide pXL2120 contenant les gènes codant pour les deux sous-unités et β de la nitrile hydratase selon l'invention.
La fig. 8 représente la séquence d'un fragment Ncol - Ncol - AccI de 1713 pb contenant les gènes codant pour les deux sous-unités et β de la nitrile hydratase de Comamonas testosteroni NI 1.
La fig. 9 représente la carte de restriction du plasmide pXL2160 contenant les gènes codant pour les deux sous-unités α et β de la nitrile hydratase (nthA et nthB') selon l'invention, les deux gènes étant transcrits à partir du promoteur Plac. La fig. 10 représente la carte de restriction du plasmide pXL2205 contenant les gènes nthA et nthB. les deux gènes étant transcrits à partir de promoteur Ptrp.
La fig. 11 représente l'électrophorèse sur gel SDS-PAGE montrant l'expression de la séquence d'AdN selon l'invention dans les souches E. coli TG l/pXL2160 et E. coli TGl/pXL2205.
La fig. 12 représente la carte de restriction du plasmide pXL2222 contenant l'ensemble des séquences codant pour les deux sous-unités α et β et inclus dans la souche E. coli TG1 déposée (G 4327).
La signification des abréviations utilisées dans la suite de la description est donnée ci-après.
- ssc : tampon couramment utilisé pour les hybridations, il contient du citrate de sodium et du NaCl (20XSSC = NaCl 3M-citrate de sodium pH 7, 0,3 M),
- SDS : dodécylsulfate de sodium, - FPLC : chromatographie liquide dénommée en langue anglaise "fast protein liquid chromatography", - SDS-PAGE : gel d'électrophorèse à base de dodécylsulfate de sodium et de polyacrylamide,
- IPTG : isopropyl β-D thio galactopyranoside,
- CLHP : chromatographie liquide haute performance, - PS : poids sec,
- X-gal. : 5 - bromo - 4 - chloro - 3 - indolyl - β D galactopyranoside.
MEILLEURE MANIERE DE REALISER L'INVENTION :
EXEMPLES
EXEMPLE 1 : CARACTÉRISAΉON DE L'AC IVITÉ DE LA SOUCHE Comamonas testosteroni NI 1.
La souche Comamonas testosteroni NI 1 est une souche isolée à partir d'un échantillon de terre par criblage microbiologique. Ses performances sont évaluées sur adiponitrile, cyanovaléramide, cyanovalérate, adipamide et adipamate.
1.1. Préparation des cellules :
La souche Comamonas testosteroni NI 1 est cultivée, en fiole agitée, à 28° C, pendant 19 h, dans le milieu A dont la composition est la suivante :
- Glycérol
Cyano-5-valérate de sodium - K2HPO4
- MgSO4, 7H2O
- MnSO4, H20
- FeSO4, 7H2O
- NaCl - Extrait de levure
- Extrait de boeuf
Figure imgf000013_0001
- HC1 3N QSP pH 5
Cette préculture sert à ensemencer une fiole de 2 litres remplie au dixième par le milieu A. Après 22 h, 3,5 gxl'1 de cellules exprimées en poids humide sont récoltés. Cela correspond à une DOÔ^ de 1,4 et un poids sec de 0,9 gxl"1.
1.2. Détermination de l'activité enzymatique :
Le milieu réactionnel est constitué par du tampon phosphate 50 mM, pH 7 et la température réactionnelle est de 25° C.
Les substrats disparaissant sont dosés par CLHP. Les activités spécifiques Us sont donnés en moles de substrat disparu x h'1 x kg"1 de cellules sèches. Les mesures des activités d'hydrolyse de l'adiponitrile et de ses produits d'hydratation par la Comamonas NI 1 sont répertoriées dans le tableau 1.
TABLEAU 1 : SPECTRE D'ACTIVITÉ DE LA SOUCHE Comamonas NI 1
Figure imgf000014_0001
La souche Comamonas NI 1 a une enzyme très active sur l'adiponitrile. Elle possède, également une enzyme capable d'hydrolyser le cyanovalérate. Etant donné que les sous-produits d'hydrolyse identifiés du cyanovalérate sont l'adipamate et l'adipate, il s'ensuit que Comamonas NI 1 possède, dans son patrimoine enzymatique, une nitrile-hydratase et une amidase. EXEMPLE 2 : PURIFICATION DE LA NITRILE HYDRATASE DE Comamonas NI.
2.1 Préparation des cellules :
La souche Comamonas Testosteroni NI 1 est cultivée, en fiole agitée, à 28° C, pendant 23 h, dans le milieu B :
- Glucose 5 x 103 mg/1
- Na2HPO4 3,5 x 103 mg/1
- KH2PO4 2,8 x 103 mg/1
- MgSO4, 7H2O 0,5 x 103 mg/1 - MnSO4, H2O 20 mg/1
- FeSO4, 7H2O 20 mg/1
- NaCl 10 mg/1
- Biotine 0,01 mg/1
- Acide nicotinique 1 mg/1 - Thiamine, HC1 0,5 mg/1
- Adiponitrile 1,05 x 103 g/1
- Adipate de sodium 5,7 x 103 g/1
- pH 7
Cette préculture sert à ensemencer un fermenteur de 20 1 contenant 15 1 du même milieu B. Le débit d'air, la pression et l'agitation sont, initialement, de
250 1/h, 1,1 atm et 250 rpm. Au cours de la fermentation, la pO2, le pH et la température sont régulés, respectivement, à 50 % de la valeur initiale, 6,8 et 28° C. Après 23 h, 189 g de cellules humides sont récoltés. Cela correspond à une teneur en cellules sèches de 2,3 g/1 (total 35 g) et à une DO^^ de 3,8.
2.2 Purification :
Toutes les étapes de la purification sont réalisées avec le tampon T (HEPES/KOH 0,1 M, pH 7,2, 40 mM en butyrate) sauf indication contraire. A chacune des étapes, l'activité nitrile hydratase des fractions est déterminée à pH 7 et à 25° C dans le tampon T/10, en présence de cyanovalérate 10 mM. La concentration en protéine des pools est déterminée par la méthode au bleu de Coomassie (kit PIERCE Protein assay). Le pannel de protéines est analysé par gel de polyacrylamide-SDS (Phastsystem PHARMACIA) (cf. fig. 3). Dans cette fig. 3, les pistes 1, 2, 8 et 9 contiennent chacune des étalons de poids moléculaires : - phosphorylase B = 97400
- Sérum Albumine Bovine = 66200
- Ovalbumine = 45000
- Anhydrase carbonique = 31100
- Inhibiteur de trypsine de soja = 21500 - Lysozyme = 14400.
Les pistes 3 à 7 correspondent respectivement aux étapes de purification 4 à 0. Les poids moléculaires de référence sont indiqués en marge de droite sur la fig. 3.
Les données de chacune des étapes de la purification sont regroupées dans le tableau 2. Les procédures de chacune des étapes sont commentées ci-après.
- Etape 0 : Extrait brut :
152 g de cellules humides sont repris dans 250 ml de tampon T et soniqués pendant 30 min (sonicateur "VIBRACELL" de BIOBLOCK : sonde 13 mm, puissance 7, 40 % du cycle actif). La O660_m passe ainsi de 175 à 50. Après centrifugation à 48 000 gmax pendant 60 min, le surnageant est récupéré.
- Etape 1 : Précipitation au sulfate d'ammonium :
Le surnageant est amené, par adjonction progressive de sulfate d'ammonium, à 15 % de la saturation. Après 1 h, la suspension est centrifugée 30 min à 30 000 gmax. Le surnageant est amené à 45 % de la saturation. Après 1 h, la suspension est centrifugée dans les mêmes conditions, le précipité est récupéré, puis dialyse contre le tampon pendant une nuit.
- Etape 2 : Colonne échangeuse d'ions (Q Sepharose Fast Flow) :
La fraction dialysée est chargée à un débit de 150 ml/h sur une colonne (26 x 380 mm) de "Q Sepharose Fast Flow" équilibrée avec le tampon T à un débit de 250 ml/h. La colonne est percolée à un débit de 250 ml/h, successivement par les solutions suivantes : . QSP de tampon T jusqu'au retour à la ligne de base, . 500 ml d'un gradient 0 à 0,3 M en KC1 dans le tampon T, . 200 ml de tampon T additionné de KC1 0,3 M, . 200 ml de tampon T additionné de KC1 1 M.
L'activité nitrile hydratase est éluée dans un volume de 160 ml à une concentration en KC1 située entre 0,22 et 0,28 M.
- Etape 3 : Colonne d'interactions hydrophobes de Phenyl Sepharose CL4B : La fraction active, amenée à 15 % de la saturation en sulfate d'ammonium, est chargée à un débit de 150 ml/min sur la colonne (26 x 380 mm), équilibrée avec du tampon T contenant du sulfate d'ammonium à 15 % de la saturation. La colonne est percolée avec : . 200 ml de tampon d'équilibrage à un débit de 150 ml/h, . 200 ml de tampon T contenant du sulfate d'ammonium à 10 % de la saturation à un débit de 200 ml/h,
. 200 ml de tampon T avec un gradient de sulfate d'ammonium de 10 à
0 % de la saturation en sulfate d'ammonium à un débit de 200 ml/h, . lavage de la colonne avec le tampon T jusqu'au retour à la ligne de base. La fraction active est éluée à une teneur en sulfate d'ammonium comprise entre 8, 1 et 6 % . Cette fraction active est concentrée par dialyse jusqu'à un volume de 12,5 ml.
- Etape 4 : Colonne d'interaction hydrophobe sur Octyl Sepharose :
La solution protéique est chargée sur la colonne (16 x 280 mm), équilibrée avec le tampon T contenant du sulfate d'ammonium à 15 % de la saturation à un débit de 26 ml/h. La colonne est ensuite percolée à un débit de 47 ml/h avec le tampon T d'équilibrage. Au cours de cette opération, la totalité de l'activité est éluée sous la forme d'un pic. Seul le coeur de la fraction active est récoltée. Cette fraction analysée en gel SDS-PAGE est composée à 90 % de la nitrile hydratase sous forme de deux bandes très proches. TABLEAU 2 : PURIFICATION DE LA NITRILE HYDRATASE DE Comamonas NI 1.
Figure imgf000018_0001
ABRÉVIATIONS : PF = coefficient de purification ; U = 1 mole/h.
EXEMPIJS 3 : CARACTÉRISATION DE LA NTΠULE HYDRATASE DE Comamonas NI 1.
3.1 Détermination de la structure :
La filtration sur gel de la nitrile hydratase donne un seul pic dont le temps d'élution correspond à 92 +/- 10 kDa. L'analyse de cette protéine par gel de polyacrylamide-SDS donne deux bandes d'égale intensité de 26 à 25 kDa. Cette structure est celle classiquement rencontrée chez les nitriles hydratases.
3.2 Détermination de séquences peptidiques N-terminales :
A partir de la protéine purifiée, la séquence N-terminale des deux sous-unités a été déterminée : sous-unité (SEQ ID No : 5 : dans la liste des séquences ci-après)
Thr-Asp-Asn-Ala-Val-Met-Glu-Gln-Arg-Val-Asp-Ala-Leu-Phe-Val-Leu-
(Thr ou Arg)-Lys-Glu-Leu-Gly-Leu-Val-Thr-Asp-Gln-Thr-Val-Pro-Asp-
Tyr-Glu-(Asp ou Pro)-Ala-Leu-Met-His-Asp sous-unité β (SEQ ID No : 6 : dans la liste des séquences ci-après)
Met-Asp-Gly-Met-His-Asp-Leu-Gly-Gly-Lys-Gln-Gly-Phe-Gly-Pro-Val- Ile-Lys-Thr-His-Asn-Ala-Lys-Ala-Phe-His-Glu-Glu-(Trp)-(Glu)-Val-Lys- Met-Asn-Ala-Ile
3.3 Influence du pH : Les conditions expérimentales sont les suivantes :'T° C = 25 ; concentration en cyanovalérate = 10 mM ; concentration en nitrile hydratase = 1,5 μg/1 ; volume réactionnel = 2 ml ; cinétique sur 10 min ; activité de référence : pH 7,2, 17 000 oles/h.kg de protéine ; tampon acétate (3,5 à 5,5), tampon phosphate (6,5 à 8,5), tampon Tris (7 et 9), tampon carbonate (9,2 et 10,2). Les conditions et résultats des mesures de l'activité de la nitrile hydratase sur le cyanovalérate à différents pH sont répertoriés dans la fig. 4. La courbe de variation de l'activité en fonction du pH est, classiquement, en cloche avec un optimum proche de 7,5.
3.4 Influence de la température :
Les conditions expérimentales sont les suivantes : concentration en cyanovalérate = 10 mM ; concentration en nitrile hydratase = 1,5 μg/1 ; volume réactionnel = 2 ml ; cinétique sur 10 min ; activité de référence pH 7,2, 17 000 moles/h.kg de protéine ; tampon HEPES/KOH 10 mM, pH 7,2. Les résultats des mesures de l'activité de la nitrile hydratase à différentes températures sont répertoriés dans la fig. 5. Entre 10 et 30° C le ΔG de la réaction est de 80 kJ/mole.
3.5 Détermination des constantes cinétiques : Le substrat utilisé est le cyanovalérate. Sa vitesse d'hydrolyse en adipamate est déterminée à différentes concentrations en cyanovalérate (0,5, 1, 2, 5, 10 et 20 mM) à 25° C et pH 7,2.
Conditions expérimentales : T° C = 25, concentration en nitrile hydratase = 1 μg/1 (sauf 0,5 μg/1 pour une concentration en cyanovalérate = 1 et 2 mM et 3,3 μg/1 pour une concentration en cyanovalérate = 20 mM) ; volume réactionnel 10 ml sauf 5 et 3 ml pour une concentration en cyanovalérate = 0,5 et 20 mM, respectivement ; cinétique sur 20 min ; activité de référence pH 7,2 17 moles/h. g de protéine ; tampon HEPES/KOH 10 mM, pH 7,2. Les KM et VM calculés pour la transformation de HANES-WOOLF ou de LINEWEAVER-BURK sont de : KM = 2,5 mM
VM = 35 000 moles ou 5 000 kg d'adipamate/h.kg de nitrile hydratase D'après VM et le poids de l'enzyme (92 kDa), on peut calculer le turnover (kç,,) de l'enzyme ainsi que la vitesse de formation du complexe enzyme- substrat (ICC/KM) : e., = 900 s"1 kJKu ≈ 36 000 l.mole-1 s"1
3.6 Spectre d'activité :
Les activités d'une préparation purifiée de la nitrile hydratase ont été mesurées sur différents nitriles. Les conditions et résultats sont donnés dans le tableau 3.
Le spectre d'activité de cette enzyme est tout à fait particulier. Contrairement à toutes les nitriles hydratases connues, cette enzyme hydrolyse les mononitriles-monoacides et peu les dinitriles.
TABLEAU 3 ACΠVΠÉ RELATIVE D'UNE PRÉPARAΉON PIMFIÉEDELA NΠRILE HYDRATASE DE Comamonas NI 1 SUR DDTFÉRENTS NITRILES
Figure imgf000021_0001
CONDITIONS COMMUNES : Tampon HEPES 10 mM, pH 7,2 ; volume réactionnel de
3 ml ; T (° C) = 25 ; concentration en protéines de 16 μg/ml.
ABRÉVIATIONS : TR = temps de réaction : Us = 1 mole d'amide apparu/h.kg de nitrile hydratase.
EXEMPLE 4 : CLONAGE DE LA NITRILE HYDRATASE DE Comamonas testosteroni NI 1.
A partir des séquences NH2 terminal présentées dans l'exemple 3, deux sondes nucléotidiques ont été synthétisées.
Pour le choix de la première sonde (sous-unité α), l'usage des codons n'a pas été biaisé. Le mélange d'oligonucléotides (seq. 2273) est un 23 mer 32 fois dégénéré contenant 2 inosines. D N A V M E Q R (SEQ ID No : 8 : )
5' GAYAAYGCNGTNATGGARCARMG 3' (SEQ ID No : 7 : )
Dans la liste de séquences ci-après, la séquence nucléotidique de cette première sonde est désignée par SEQ ID No : 7 : et la séquence d'aminoacides correspondante par SEQ ID No : 8 : .
Pour la deuxième sonde (sous-unité β), le pourcentage en GC élevé des souches de
Comamonas a dicté un choix pour la troisième position du codon dans le cas des alanines et dans le cas de la lysine. La sonde (seq. 2264) est un 23 mer 144 fois dégénéré :
H N A K A F H E (SEQ ID No : 10 : )
5' CAYAAYGCBAAGGCBTTYCAYGA 3' (SEQ ID No : 9 : )
Dans la liste de séquence ci-après, la séquence nucléotidique de cette deuxième sonde β est désignée par SEQ ID No : 9 : et la séquence d'aminoacides correspondante par SEQ ID No : 10 : .
La stratégie suivie a consisté, tout d'abord, à vérifier la spécificité des deux sondes et à déterminer la nature des fragments d'AdN génomique à cloner. Brièvement, l'AdN génomique de Comamonas testosteroni NI 1 a été digéré par plusieurs enzymes de restriction correspondant à des sites utilisables pour le clonage. Après électrophorèse sur gel d'agarose et transfert sur membrane de nylon, les diverses digestions ont été hybridées aux sondes. Les résultats montrent que les deux sondes ont une spécificité suffisante dans les conditions d'hybridation utilisées (5x SSC, 5x Denhardt, 0,1 % SDS, 50 mM NaPO4 pH 6,5, 250 μg/ml ssDNA ; température d'hybridation 50° C. Conditions de lavage : 1 h, 6x SSC, température ambiante et 5 min en 2x SSC, 0,1 % SDS à 50° C). Dans ces conditions, les deux sondes nous ont permis d'obtenir des signaux spécifiques. Notamment dans le cas des digestions par SstI, BglII et PstI où les signaux d'hybridation obtenus avec les deux sondes sont superposables.
Les empreintes d'hybridation montrent, en particulier, l'existence d'un fragment unique BglII d'environ 4 kb. Afin de cloner ce fragment, les fragments de 2,5 à 4,5 kb d'une digestion BglII de l'AdN génomique ont été purifiés par électrophorèse préparative sur agarose et électroélution, puis ligaturés au plasmide pUC19, lui même digéré par BamHI. Après transformation dans la souche DH5α, 800 clones blancs sur LB amp X-gal ont été repiqués individuellement, transférés sur membrane de nylon, puis analysés par hybridation avec la sonde seq 2264 dans les mêmes conditions de stringence que lors de l'hybridation du "Southern blot". Un clone a ainsi été repéré comme hybridant spécifiquement avec la sonde. Ce clone s'est avéré contenir un plasmide (pXL2120), ayant inséré un fragment d'environ 4,2 kb, hybridant aussi avec la sonde seq. 2273. Ce plasmide a été analysé plus en détail (cartographie de restriction, séquençage partiel en utilisant la sonde seq. 2264 comme amorce et "Southern blot"). Il a ainsi pu être montré que la partie 5' du gène codant pour la sous-unité β, qui hybride avec la sonde seq. 2264, est localisée sur un fragment de Sphl-Kpnl de 280 pb environ, orienté dans le sens SphI vers Kpnl. La fig. 7 présente une carte de restriction de ce plasmide.
EXEMPLE 5 : SÉQUENCE DTJN FRAGMENT DE 1713 PB CONIENANΓ LES GÈNES
CODANT POUR LES DEUX SOUSUNTIÉS DE LA NTIRILE HYDRATASE
DE Comamonas testosteroni NI 1.
La localisation du fragment NcoI-NcoI-AccI de 1713 pb séquence, contenant les
• gènes codant pour les deux sous-unités de la nitrile hydratase de Comamonas testosteroni NI 1, est indiquée sous l'insert clone sur la fig. 8. La stratégie de séquençage de ce fragment, réalisé selon les méthodes classiques connues par l'homme de métier, est indiquée sur la même figure. Les diverses séquences ont toutes été obtenues par la méthode de terminaison de chaîne (kit sequenase en présence de 7-deaza dGTP ; (35S)dATP), soit sur des matrices simple brin de M13 recombinant portant des sous-fragments, soit directement sur le plasmide pXL2120. Plusieurs amorces spécifiques ont également été synthétisées dans ce but. La séquence est présentée sur la fig.2. Le GC % moyen de la séquence obtenue est de 56,6 %, ce qui est proche du GC % de 61,5 % décrit chez d'autres souches de Comamonas (TAMAOKA et al., Int. J; Syst. Bacteriol., 1987, 37, 52-59). Une analyse de la séquence obtenue a permis de caractériser une première phase ouverte de 645 pb potentiellement traduite en une protéine de 215 acides aminés. La séquence NH2 terminale de la sous-unité a, utilisée pour synthétiser la sonde seq. 2273, est contenue dans cette protéine et permet de localiser le codon d'initiation du gène codant pour la sous-unité α, appelé nthA dans la suite de l'exposé. Ce gène comporte 621 pb, code pour une protéine de 207 résidus correspondant à un poids moléculaire de 22 967 Da. Une deuxième phase ouverte de 621 pb est potentiellement traduite en un polypeptide de 207 résidus. Ce polypeptide présente, en position NH2 terminal, la séquence NH2 terminale utilisée pour synthétiser la sonde seq. 2264, ce qui permet d'identifier la deuxième phase ouverte au gène de structure de la sous-unité β de la nitrile hydratase, appelé nthB dans la suite de l'exposé. Cette protéine a un poids moléculaire théorique de 22 653 Da;
EXEMPLE 6 : EXPRESSION DE LA NΠRILE HYDRATASE DE Comamonas testosteroni NI 1 DANS E. coli.
Afin de confirmer l'identité entre les gènes nthA et nthB et les gènes codant pour les deux sous-unités de la nitrile hydratase de Comamonas testosteroni NI 1, les plasmides d'expression pXL2160 et pXL2205, présentés sur les fig. 9 et 10, ont été construits en plusieurs étapes.
Tout d'abord, le fragment Ncol/Bgll de 779 pb (contenant les 282 pb localisées en amont du gène nthA et les 496 premières pb de nthA) et le fragment BglI/AhalI de 789 pb (contenant la partie 3' de nthA et tout le gène nthB), fragments isolés à partir de pXL2120, ont été clones entre les sites Ncol et CJal de pMTL22 (CHAMBERS et al., 1988, Gène, 68, 139-149).
Le plasmide résultant, pXL2160, porte donc un gène conférant la résistance à l'ampicilline et les gènes nthA et nthB sous le contrôle de leurs propres sites de fixation des ribosomes, les deux gènes étant transcrits à partir du promoteur de l'opéron lactose de E. coli. pXL2160 porte, par ailleurs, dans le multisite de clonage, en aval du fragment de Comamonas testosteroni, un site unique Xhol. Parallèlement, un site de restriction Ndel a été créé sur le codon d'initiation de nthA et le fragment de 180 pb Ndel/HindIII contenant la partie 5' du gène nthA a été amplifié par la technique de PCR. Ce fragment a été ligué au fragment HindlII/XhoI de pXL2160 entre les sites Ndel/Xhol de pMTL22, pour aboutir au plasmide pXL2203.
Le fragment Ndel/Xhol de pXL2203, portant les gènes nthA et nthB, a été introduit derrière le fragment EcoRI/Ndel contenant le promoteur dé l'opéron tryptophane de E. coli et le site de fixation des ribosomes du gène Cil du bactériophage λ (Ptrp- RBSCII), entre les sites EçrjRI et Sali du plasmide pXL534 (LATTA et al., 1990, DNA Cell. Biol., 9, 129-137).
Le plasmide pXL2205 final porte donc un gène conférant la résistance à l'ampicilline, le gène nthA sous contrôle du site de fixation des ribosomes RBSCII et le gène nthB sous contrôle de son propre site de fixation des ribosomes, les deux gènes étant transcrits à partir du promoteur Ptrp. L'expression de la nitrile hydratase a été visualisée chez la souche E. coli TG 1 contenant les plasmides pXL2160 et pXL2205.
Dans ce but, La souche TG l/pXL2160, ainsi que la souche témoin TGl/pUC19, ont été cultivées 16 h en milieu LB à 37° C (MILLER, J. H. 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.) contenantlOO μg/ml d'ampicilline, puis diluées au lOOème dans le même milieu et à la même température. Lorsque les cultures ont atteint une DO610 comprise entre 0,5 et 1, de l'IPTG, à la concentration finale de 1 mM, a été ajouté. Après 2 h de culture, les bactéries ont été collectées. Par ailleurs, la souche TGl/pXL2205, ainsi que la souche témoin TG1 contenant le vecteur pUC19 ont été cultivées 16 h en milieu M9 glucose à 30° C (MILLER, J. H. 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.), contenant 100 μg/ml d'ampicilline et 100 μg/ml de tryptophane, ces cultures ont été diluées 100 fois dans le même milieu en absence de tryptophane et cultivées pendant 6 h à la même température. L'expression de la nitrile hydratase de Comamonas testosteroni NI 1 a été visualisée, après sonication des cellules, en gel de polyacrylamide-SDS, dans la fraction brute ou après centrifugation dans le culot et dans le surnageant. Les résultats sont présentés sur la fig. 11.
Chaque piste correspond à une quantité de protéines équivalente à 60 μl de culture à une DO de 3 à 610 nm.
La piste G contient les marqueurs de poids moléculaires suivants : 97.5, 66.2, 45,
31, 21.5 et 14.4 kDa.
Le contenu des autres pistes est indiqué sur le tableau suivant.
Figure imgf000026_0001
Il ressort de la fig. 7 que les extraits cellulaires, contenant le plasmide pXL2205 (cf. pistes D, E, F), expriment fortement les deux sous-unités de la nitrile hydratase (indiquées et β à côté du gel), essentiellement sous forme soluble. Ces deux sous- unités sont aussi exprimées dans des extraits cellulaires contenant le plasmide pXL2160 (cf. pistes H, I, J), après induction à l'IPTG. L'expression est alors plus faible et, en grande partie, dans la fraction insoluble. ~~Par ailleurs, le plasmine pXL2222, contenant l'ensemble des séquences codant pour les deux sous-unités de la nitrile hydratase et présenté sur la fig. 12, a été transformé dans la souche E. coli TG 1. La souche résultante, appelée G4327, a été déposée à la Collection Nationale de Culture de Micro-organismes à PARIS (INSTITUT PASTEUR, 25, rue du Docteur Roux), sous le n° 11 330. Le plasmide PXL2222 regroupe deux fragments extraits de pXL2160, le fragment de 934 pb Nrul/Kpnl contenant le gène nthA et la partie 5' de nthB clone devant le fragment de 370 pb Kpnl/Stul contenant la partie 3' de nthB. Ces deux fragments sont insérés entre les sites Nael et EcoRV de pMTL22 (CHAMBERS et al., 1988, Gène, 68, 139-149). Le site EcoRV utilisé est celui localisé en aval de lacZ' et non celui dans le multisite. EXEMPLE 7 : DÉTERMINATION DE L'ACTIVITÉ DES SOUCHES RECOMBINANTES.
Différentes souches recombinantes, dans lesquelles les gènes codant pour la nitrile hydratase ont été clones, sont testées pour l'hydrolyse du CVA et/ou de l'AdN. Les cultures des souches sont répertoriées dans le tableau 4.
TABLEAU 4 : CULTURE DES SOUCHES
Figure imgf000027_0001
Milieu M9 :
. Glucose . . . .
. Na2HPO4,2H2O
. K_H. PO4 . . . .
. NaCl
. NI^Cl
. Casaminoacides
. Thiamine, HC1
. MgSO4 . . . .
. CaCl2, 2H2O .
. Ampicilline
Figure imgf000027_0002
Milieu LBAI :
. milieu LB
. IPTG 1 mM
. Ampicilline . 0,1 x 103 mg/1 - Milieu LB :
. Tryptone 10 x 103 mg/1
. Extrait de levure 5 x 103 mg/1
. NaCl 5 x 103 mg
CONDITIONS COMMUNES : ensemencement au l/100ème à partir d'une préculture âgée de 17 h ; T° C = 37, sauf M9 à 30° C.
Les activités des souches recombinantes et de la souche hôte sont répertoriées dans le tableau 5.
TABLEAU 5 : DÉTERMINATION DES ACTIVITÉS NITRILE HYDRATASES DE E. coli (pXL2205) ET E. coli (pXL2160).
Figure imgf000028_0001
_ ABRÉVIATIONS : CVA = cyanovalérate ; AdN = adiponitrile. CONDITIONS COMMUNES : T (° C) = 28 ; tampon phosphate 50 mM, H 7 ; [S] = 50 mM ; cinétique sur 2 h. LISTE DE SEQUENCES
(1) INFORMATION GENERALE:
(i) DEPOSANT:
(A) NOM: RHONE-POULENC CHIMIE
(B) RUE: 25, Quai Paul Doumer
(C) VILLE: Courbevoie
(E) PAYS: France
(F) CODE POSTAL: 92400
(G) TELEPHONE: 7 68 12 3 (H) TELECOPIE: 7 68 1656
(ii) TITRE DE L' INVENTION: Enzymes à activité nitrile-hydratase, outils génétiques et micro-organismes hôtes permettant leur obtention et procédé d'hydrolyse mettant en oeuvre lesdites enzymes
(iii) NOMBRE DE SEQUENCES: 10
(iv) FORME LISIBLE PAR ORDINATEUR:
(A) TYPE DE SUPPORT: Floppy disk
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
(D) LOGICIEL: Patentln Release #1.0, Version #1.25 (OEB)
(vi) DONNEES DE LA DEMANDE ANTERIEURE:
(A) NUMERO DE DEPOT: FR 93 09990
(B) DATE DE DEPOT: 10-AUG-1993
(2) INFORMATION POUR LA SEQ ID NO: 1:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 207 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: protéine
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:
Met Thr Asp Asn Ala Val Met Glu Gin Arg Val Asp Ala Leu Phe Val 1 10 15
Leu Thr Lys Glu Leu Gly Leu Val Thr Asp Gin Thr Val Pro Asp Tyr 20 25 30 Glu Asp Ala Leu Met His Asp Trp Leu Pro Gin Asn Gly Ala Lys Leu
35 40 45
Val Ala Lys Ala Trp Thr Asp Pro Val Phe Lys Ala Gin Leu Leu Ser
50 55 60
Glu Gly Val Ala Ala Ser Glu Ser Leu Gly Phe Ser Phe Pro Lys His 65 70 75 80
His Lys His Phe Val Val Leu Glu Asn Thr Pro Glu Leu His Asn Val
85 90 95
Ile Cys Cys Ser Leu Cys Ser Cys Thr Ala Phe Thr Ile Ile Gly Met
100 105 110
Ala Pro Asp Trp Tyr Lys Glu Leu Glu Tyr Arg Ala Arg Ile Val Arg
115 120 125
Gin Ala Arg Thr Val Leu Lys Glu Ile Gly Leu Asp Leu Pro Glu Ser
130 135 140
Ile Asp Ile Arg Val Trp Asp Thr Thr Ala Asp Thr Arg Tyr Met Val 145 150 155 160
Leu Pro Leu Arg Pro Gin Gly Thr Glu Asp Trp Ser Glu Ala Gin Leu
165 170 175
Ala Thr Leu Ile Thr Gin Asp Cys Leu Ile Gly Val Ser Arg Leu Glu
180 185 190
Ala Pro Phe Ala Ala Leu Pro Ala Pro Ala Val Ala Leu Gly Ala 195 200 205
(2) INFORMATION POUR LA SEQ ID N0: 2:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 207 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: protéine
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:
Met Asp Gly Met His Asp Leu Gly Gly Lys Gin Gly Phe Gly Pro Val
1 5 10 15
Ile Lys Thr His Asn Ala Lys Ala Phe His Glu Glu Trp Glu Val Lys
20 25 30
Met Asn Ala Ile Ser Gly Ala Leu Val Ser Lys Gly Ile Tyr Asn Met
35 ko 45
Asp Glu Tyr Arg His Gly Ile Glu Arg Met Glu Pro Arg His Tyr Leu
50 55 60
Thr Ala Ser Tyr Phe Glu Arg Val Phe Thr Thr Ala Val Thr Leu Cys 65 70 75 80
Ile Glu Lys Gly Val Phe Thr Ala Ala Glu Leu Glu Ala Lys Leu Gly 85 90 95 Thr Ser Val Pro Leu Ser Leu Pro Ser Ser Pro Gly Arg Gin' Pro Ala
100 105 no
Lys Gly Pro Glu Gly Gly Phe Lys Leu Gly Gin Arg Val His Val Lys
115 120 125
Asn Glu Phe Val Pro Gly His Thr Arg Phe Pro Ala Tyr Ile Arg Gly
130 135 10
Lys Ala Gly Val Val Val Gly Ile Ser Pro Ala Tyr Pro Tyr Pro Asp 145 150 155 - 160
Ala Ala Ala His Gly Glu Tyr Gly Phe Ser Glu Pro Thr Tyr Asp Val
165 170 175
Cys Phe Lys Ser Lys Asp Leu Trp Pro Asp Gly Cys Glu Ala Ala Asp
180 185 190
Val His Val Gly Val Phe Gin Ser Tyr Leu Leu Ser Ala Glu Glu 195 200 205
(2) INFORMATION POUR LA SEQ ID N0: 3:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 1713 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: join(283- -903. 90 -.1 9)
(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: intron
(B) EMPLACEMENT: 904..908
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:
CCATGGAGAA GATGGGGGAG TGGGGCGTGA GCGAAAAGCT GCTGAATCGT GCACCCAAGG 60
TGAGTCGGCT CGCCAACATC CAACTCGCCC GCTCAGTTGA CACCGAGATG GCTAAGAGCG 120
ACTTCGACTG GCGCTCGGTG AAGGTCAAGG TTGCCTGAGC CCCGTCTGCC TGACTCCATC 180
CCTGTTGCAG GCGCGTGTAG CACAGAGATA CCCCCTTATC ACACAGACTC AGCGCAAGCT 240
GGTCGCAATC TGCATCAAAT GTCGCGAATA GGAGAAACCC AG ATG ACT GAT AAC 294
Met Thr Asp Asn 1 GCC GTA ATG GAA CAA CGC GTG GAC GCA CTC TTT GTG CTC ACC AAA GAG 342 Ala Val Met Glu Gin Arg Val Asp Ala Leu Phe Val Leu Thr Lys Glu 5 10 15 20
CTT GGT TTG GTA ACT GAC CAA ACC GTG CCC GAC TAC GAA GAC GCC CTC 30 Leu Gly Leu Val Thr Asp Gin Thr Val Pro Asp Tyr Glu Asp Ala Leu 25 30 35
ATG CAC GAC TGG CTG CCG CAA AAT GGT GCC AAG CTG GTG GCC AAA GCT 38 Met His Asp Trp Leu Pro Gin Asn Gly Ala Lys Leu Val Ala Lys Ala 40 45 50
TGG ACC GAT CCA GTC TTC AAA GCT CAA CTG CTC AGT GAA GGT GTG GCA 486 Trp Thr Asp Pro Val Phe Lys Ala Gin Leu Leu Ser Glu Gly Val Ala 55 60 65
GCG TCT GAA AGC CTT GGC TTT AGT TTT CCC AAA CAC CAC AAG CAC TTC 534 Ala Ser Glu Ser Leu Gly Phe Ser Phe Pro Lys His His Lys His Phe 70 75 80
GTG GTG CTG GAG AAC ACC CCC GAG TTG CAT AAC GTG ATT TGC TGT TCA 582 Val Val Leu Glu Asn Thr Pro Glu Leu His Asn Val Ile Cys Cys Ser 85 90 95 100
CTG TGT TCG TGT ACG GCA TTC ACC ATC ATT GGC ATG GCG CCC GAT TGG 630 Leu Cys Ser Cys Thr Ala Phe Thr Ile Ile Gly Met Ala Pro Asp Trp 105 no 115
TAC AAA GAG CTT GAG TAC CGC GCC CGC ATT GTG CGT CAG GCA CGT ACC 678 Tyr Lys Glu Leu Glu Tyr Arg Ala Arg Ile Val Arg Gin Ala Arg Thr 120 125 130
GTG CTG AAG GAA ATA GGC CTG GAT CTG CCA GAG TCC ATC GAT ATC CGC 726 Val Leu Lys Glu Ile Gly Leu Asp Leu Pro Glu Ser Ile Asp Ile Arg 135 1^0 145
GTG TGG GAC ACC ACA GCA GAC ACC CGC TAC ATG GTG CTG CCC CTA CGC 774 Val Trp Asp Thr Thr Ala Asp Thr Arg Tyr Met Val Leu Pro Leu Arg 150 155 160
CCC CAA GGC ACC GAG GAC TGG AGT GAA GCT CAA CTT GCC ACA CTC ATC 822 Pro Gin Gly Thr Glu Asp Trp Ser Glu Ala Gin Leu Ala Thr Leu Ile 165 170 175 180 ACG CAA GAC TGT CTG ATT GGC GTG AGC CGC TTG GAA GCA CCG TTC GCT 870 Thr Gin Asp Cys Leu Ile Gly Val Ser Arg Leu Glu Ala Pro Phe Ala 185 1 0 195
GCA CTG CCA GCA CCC GCT GTT GCT TTA GGA GCC TGACC ATG GAC GGC 917 Ala Leu Pro Ala Pro Ala Val Ala Leu Gly Ala Met Asp Gly 200 205 210
ATG CAC GAT TTG GGG GGC AAG CAA GGC TTT GGC CCC GTA ATC AAA ACG 965 Met His Asp Leu Gly Gly Lys Gin Gly Phe Gly Pro Val Ile Lys Thr 215 220 225
CAC AAC GCT AAG GCC TTC CAC GAA GAG TGG GAG GTG AAG ATG AAC GCT 1013 His Asn Ala Lys Ala Phe His Glu Glu Trp Glu Val Lys Met Asn Ala 230 235 240
ATC AGC GGT GCG CTG GTT AGC AAG GGC ATC TAC AAC ATG GAC GAG TAT 106l Ile Ser Gly Ala Leu Val Ser Lys Gly Ile Tyr Asn Met Asp Glu Tyr 245 250 255
CGG CAC GGA ATT GAG CGC ATG GAG CCG CGC CAT TAC CTG ACT GCC TCG 1109 Arg His Gly Ile Glu Arg Met Glu Pro Arg His Tyr Leu Thr Ala Ser 260 265 270
TAT TTC GAG CGC GTG TTC ACC ACA GCT GTG ACC TTG TGT ATT GAA AAA 1157 Tyr Phe Glu Arg Val Phe Thr Thr Ala Val Thr Leu Cys Ile Glu Lys 275 280 285 290
GGC GTT TTC ACC GCC GCA GAG TTG GAG GCC AAG CTG GGT ACC TCG GTG 1205 Gly Val Phe Thr Ala Ala Glu Leu Glu Ala Lys Leu Gly Thr Ser Val 295 300 305
CCC TTG TCT CTG CCC AGC TCA CCC GGT CGC CAA CCT GCC AAA GGC CCT 1253 Pro Leu Ser Leu Pro Ser Ser Pro Gly Arg Gin Pro Ala Lys Gly Pro 310 315 320
GAG GGT GGC TTC AAG CTG GGT CAG AGA GTG CAT GTG AAG AAC GAG TTT 1301 Glu Gly Gly Phe Lys Leu Gly Gin Arg Val His Val Lys Asn Glu Phe 325 330 335
GTA CCC GGC CAC ACA CGT TTT CCG GCC TAC ATC CGT GGC AAA GCA GGT 1349 Val Pro Gly His Thr Arg Phe Pro Ala Tyr Ile Arg Gly Lys Ala Gly 340 345 350 GTT GTA GTG GGT ATC TCG CCT GCC TAC CCC TAT CCA GAC GCG GCG GCG 1397 Val Val Val Gly Ile Ser Pro Ala Tyr Pro Tyr Pro Asp Ala Ala Ala 355 360 365 370
CAC GGC GAG TAC GGC TTT TCG GAA CCG ACG TAT GAC GTG TGC TTC AAG 14 His Gly Glu Tyr Gly Phe Ser Glu Pro Thr Tyr Asp Val Cys Phe Lys 375 380 385
TCG AAA GAC CTG TGG CCA GAC GGC TGC GAA GCC GCG GAT GTA CAC GTT 1493 Ser Lys Asp Leu Trp Pro Asp Gly Cys Glu Ala Ala Asp Val His Val 390 395 00
GGC GTA TTC CAA AGT TAC CTG TTG TCC GCA GAG GAG TGATGTCATG 153
Gly Val Phe Gin Ser Tyr Leu Leu Ser Ala Glu Glu 405 410
AGCCATGCTT CTGCCTTGCT CGATTCCGAC GCCGTTGACG CTGCTGCGTT CAGCAGCGTA 1599 ACGGAAATTC TCCACTGGTA TGGCTCTGGA AAGCGCACAC CTTCGACGGT GGTTGAAGTG 1659 TATTTGCAGC GCCTTGAAAA GCTGAATGAG CACTACAACG CTTACGTGGT CTAC 1713
(2) INFORMATION POUR LA SEQ ID NO: 4:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 4l4 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: protéine
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:
Met Thr Asp Asn Ala Val Met Glu Gin Arg Val Asp Ala Leu Phe Val
1 5 10 15
Leu Thr Lys Glu Leu Gly Leu Val Thr Asp Gin Thr Val Pro Asp Tyr
20 25 30
Glu Asp Ala Leu Met His Asp Trp Leu Pro Gin Asn Gly Ala Lys Leu
35 40 5
Val Ala Lys Ala Trp Thr Asp Pro Val Phe Lys Ala Gin Leu Leu Ser
50 55 60
Glu Gly Val Ala Ala Ser Glu Ser Leu Gly Phe Ser Phe Pro Lys His 65 70 75 80
His Lys His Phe Val Val Leu Glu Asn Thr Pro Glu Leu His Asn Val
85 90 95
Ile Cys Cys Ser Leu Cys Ser Cys Thr Ala Phe Thr Ile Ile Gly Met 100 105 110 Ala Pro Asp Trp Tyr Lys Glu Leu Glu Tyr Arg Ala Arg Ile Val Arg
115 120 125
Gin Ala Arg Thr Val Leu Lys Glu Ile Gly Leu Asp Leu Pro Glu Ser
130 135 140
Ile Asp Ile Arg Val Trp Asp Thr Thr Ala Asp Thr Arg Tyr Met Val 145 150 155 160
Leu Pro Leu Arg Pro Gin Gly Thr Glu Asp Trp Ser Glu Ala Gin Leu
165 70 175
Ala Thr Leu Ile Thr Gin Asp Cys Leu Ile Gly Val Ser Arg Leu Glu
180 185 190
Ala Pro Phe Ala Ala Leu Pro Ala Pro Ala Val Ala Leu Gly Ala Met
195 200 205
Asp Gly Met His Asp Leu Gly Gly Lys Gin Gly Phe Gly Pro Val Ile
210 215 220
Lys Thr His Asn Ala Lys Ala Phe His Glu Glu Trp Glu Val Lys Met 225 230 235 240
Asn Ala Ile Ser Gly Ala Leu Val Ser Lys Gly Ile Tyr Asn Met Asp
245 250 255
Glu Tyr Arg His Gly Ile Glu Arg Met Glu Pro Arg His Tyr Leu Thr
260 265 270
Ala Ser Tyr Phe Glu Arg Val Phe Thr Thr Ala Val Thr Leu Cys Ile
275 280 285
Glu Lys Gly Val Phe Thr Ala Ala Glu Leu Glu Ala Lys Leu Gly Thr
290 295 300
Ser Val Pro Leu Ser Leu Pro Ser Ser Pro Gly Arg Gin Pro Ala Lys 305 310 315 320
Gly Pro Glu Gly Gly Phe Lys Leu Gly Gin Arg Val His Val Lys Asn
325 330 335
Glu Phe Val Pro Gly His Thr Arg Phe Pro Ala Tyr Ile Arg Gly Lys
340 345 350
Ala Gly Val Val Val Gly Ile Ser Pro Ala Tyr Pro Tyr Pro Asp Ala
355 360 365
Ala Ala His Gly Glu Tyr Gly Phe Ser Glu Pro Thr Tyr Asp Val Cys
370 375 380
Phe Lys Ser Lys Asp Leu Trp Pro Asp Gly Cys Glu Ala Ala Asp Val 385 390 395 400
His Val Gly Val Phe Gin Ser Tyr Leu Leu Ser Ala Glu Glu 405 410
(2) INFORMATION POUR LA SEQ ID NO: 5'
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 38 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: peptide
(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: Modified-site
(B) EMPLACEMENT: 17
(D) AUTRES RENSEIGNEMENTS: /note≈ "Xaa = Thr ou Arg"
(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: Modified-site
(B) EMPLACEMENT: 33
(D) AUTRES RENSEIGNEMENTS: /note≈ "Xaa ≈ Àsp ou Pro"
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:
Thr Asp Asn Ala Val Met Glu Gin Arg Val Asp Ala Leu Phe Val Leu
1 5 10 15
Xaa Lys Glu Leu Gly Leu Val Thr Asp Gin Thr Val Pro Asp Tyr Glu
20 25 30
Xaa Ala Leu Met His Asp 35
(2) INFORMATION POUR LA SEQ ID NO: 6:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 36 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: peptide
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:
Met Asp Gly Met His Asp Leu Gly Gly Lys Gin Gly Phe Gly Pro Val
1 10 15
Ile Lys Thr His Asn Ala Lys Ala Phe His Glu Glu Trp Glu Val Lys
20 25 30
Met Asn Ala Ile 35
(2) INFORMATION POUR LA SEQ ID NO: 7:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 23 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: modified_base
(B) EMPLACEMENT: 9
(D) AUTRES RENSEIGNEMENTS: /note≈ "N ≈ inosine"
(ix) CARACTERISTIQUE ADDITIONELLE:
(A) NOM/CLE: modified_base
(B) EMPLACEMENT: 12
(D) AUTRES RENSEIGNEMENTS: /note≈ "N = inosine"
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:
GAYAAYGCNG TNATGGARCA RMG 23
(2) INFORMATION POUR LA SEQ ID NO: 8:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 8 acides aminés.
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: peptide
(vii) SOURCE IMMEDIATE:
(B) CLONE: séquence déduite de la sonde SEQ ID NO: 7
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:
Asp Asn Ala Val Met Glu Gin Arg 1 5
(2) INFORMATION POUR LA SEQ ID NO: 9:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 23 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(iii) ANTI-SENS: NON
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:
CAYAAYGCBA AGGCBTTYCA YGA 23
(2) INFORMATION POUR LA SEQ ID NO: 10:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 8 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: peptide
(vii) SOURCE IMMEDIATE:
(B) CLONE: séquence déduite de la sonde SEQ ID NO: 9
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:
His Asn Ala Lys Ala Phe His Glu 1 5

Claims

REVENDICATIONS :
1 - Enzymes ayant une activité nitrile-hydratase, capables de catalyser la transformation des nitriles en amides, caractérisées en ce qu'elles possèdent une activité enzymatique vis-à- vis des substrats présentant une fonction nitrile et une fonction carboxylate, supérieure à celle vis-à-vis des substrats ayant au moins deux fonctions nitriles.
2 - Enzymes selon la revendication 1, caractérisées par une activité enzymatique spécifique (Us), vis-à-vis du cyano-5-valérate, exprimée en moles d'amide apparu x h'1 x kg"1 d'enzyme mis en oeuvre et dans des conditions de mesure données, supérieure ou égale à 400, de préférence à 1 000 et, plus préferentiellement encore, à 10 000.
3 - Enzyme selon la revendication 1 ou la revendication 2, caractérisée en ce qu'elle est constituée par deux sous-unités, , β, dont les séquences peptidiques sont telles que représentées aux fig. la et lb (SEQ ID No : 1 : et : 2 :) 4 - Séquence d'ADN codant pour une enzyme ayant une activité nitrile- hydratase, capable d'hydrolyser les nitriles en amides, caractérisée en ce qu'elle est choisie parmi la liste des séquences suivantes :
- la séquence d'ADN, telle que représentée à la fig. 2 (SEQ ID No : 3 : ) et codant pour une enzyme (SEQ ID No : 4 : ) ayant une activité nitrile-hydratase,
- un analogue de cette séquence résultant de la dégénérescence du code génétique,
- une séquence d'ADN hybridant avec l'une de ces séquences ou un fragment de celles-ci et codant pour une enzyme ayant une activité nitrile hydratase.
5 - Enzymes résultant de l'expression d'une séquence d'ADN selon la revendication 4 et ayant une activité nitrile hydratase.
6 - Micro-organisme constitué par la souche E. coli contenant le plasmide pXL2222, souche référencée et déposée dans la Collection Nationale de Cultures de
Micro-organismes sous le n° I - 1 330 le 9 juillet 1993. 7 - Micro-organisme apte à produire au moins une enzyme selon l'une quelconque des revendications 1 à 3 et 5.
8 - Micro-organisme selon la revendication 7, caractérisé en ce qu'il contient au moins une cassette d'expression comprenant la séquence d'ADN selon la revendication 4 et, en amont de celle-ci, une séquence promotrice et un site de fixation des ribosomes.
9 - Micro-organisme selon la revendication 8, caractérisé en ce qu'il appartient à la famille des procaryotes et en ce que le promoteur est choisi parmi les promoteurs suivants : promoteur de l'opéron tryptophane Ptrp de E. coli, promoteur de l'opéron lactose Plac de E. coli, promoteur droit du phage lambda PR, promoteur gauche du phage lambda P , promoteurs forts de Pseudomonas, Comamonas ou de corynébactéries.
10 - Micro-organisme selon la revendication 8, caractérisé en ce qu'il appartient à la famille des procaryotes et en ce que le site de fixation des ribosomes est choisi parmi celui dérivé du gène Cil de lambda, ceux dérivés de gènes de Comamonas ou Pseudomonas, ou ceux dérivés de gènes de corynébactéries.
11 - Micro-organisme selon la revendication 8, caractérisé en ce qu'il appartient à la famille des eucaryotes, tels que les levures et en ce que les promoteurs sont choisis parmi ceux des gènes glycolytiques de levure, tels les gènes codant pour la phospho-glycérate kinase, le glycéraldéhyde-3-phosphate déshydrogénase, ou ceux de la lactase ou l'énolase.
12 - Micro-organisme selon l'une des revendications 7 à 11, caractérisé en ce que la cassette d'expression est portée par un plasmide.
13 - Micro-organisme selon la revendication 12, caractérisé en ce qu'il est sélectionné parmi la liste suivante de souches :
E. coli, Comamonas, Pseudomonas, Corynebacterium, Brevibacterium, Rhodococcus, Streptomyces, Bacillus.
14 - Enzymes, caractérisées en ce qu'elles sont produites par les micro¬ organismes selon l'une quelconque des revendications 7 à 13. 15 - Procédé d'hydrolyse enzymatique de nitriles en amides, caractérisé en ce qu'il consiste : - à mettre les mono ou di-nitriles répondant à l'une des formules générales suivantes : NC - R - CN, NC - R - COO"Z+, NC - R - CONH2 dans lesquelles R est un groupe alkylène ou alcénylene, linéaire ou ramifié, ayant de 1 à 18 atomes de carbone et Z est choisi parmi la liste de composés suivants : alcalins, alcalino- terreux, aminés, ammonium, ce dernier composé étant particulièrement préféré, en présence d'enzymes selon l'une quelconque des revendications 2, 3 et 14, ou en présence d'un micro-organisme selon l'une quelconque des revendications 7 à 13. 16 - Procédé selon la revendication 15, caractérisé en ce que R = - (CH^ -.
PCT/FR1994/000993 1993-08-10 1994-08-09 Enzymes a activite nitrile-hydratase, outils genetiques et micro-organismes hotes permettant leur obtention et procede d'hydrolyse mettant en ×uvre lesdites enzymes WO1995004828A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7506261A JPH08504599A (ja) 1993-08-10 1994-08-09 ニトリルヒドラターゼ活性を有する酵素、それらの製造のための遺伝学的ツール及び宿主微生物、並びに該酵素を用いる加水分解工程
EP94925508A EP0665889A1 (fr) 1993-08-10 1994-08-09 Enzymes a activite nitrile-hydratase, outils genetiques et micro-organismes hotes permettant leur obtention et procede d'hydrolyse mettant en uvre lesdites enzymes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9309990A FR2708936B1 (fr) 1993-08-10 1993-08-10 Enzymes à activité nitrile-hydratase, outils génétiques et micro-organismes hôtes permettant leur obtention et procédé d'hydrolyse mettant en Óoeuvre lesdites enzymes.
FR93/09990 1993-08-10

Publications (1)

Publication Number Publication Date
WO1995004828A1 true WO1995004828A1 (fr) 1995-02-16

Family

ID=9450218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000993 WO1995004828A1 (fr) 1993-08-10 1994-08-09 Enzymes a activite nitrile-hydratase, outils genetiques et micro-organismes hotes permettant leur obtention et procede d'hydrolyse mettant en ×uvre lesdites enzymes

Country Status (5)

Country Link
EP (1) EP0665889A1 (fr)
JP (1) JPH08504599A (fr)
CA (1) CA2146656A1 (fr)
FR (1) FR2708936B1 (fr)
WO (1) WO1995004828A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728556A (en) * 1996-03-14 1998-03-17 E. I. Du Pont De Nemours And Company Production of ω-cyanocarboxamides from aliphatic α,ω-dinitriles using pseudomonas putida-derived biocatalysts
US5811286A (en) * 1995-10-06 1998-09-22 E. I. Du Pont De Nemours And Company Nucleic acid fragments encoding stereospecific nitrile hydratase and amidase enzymes and recombinant organisms expressing those enzymes useful for the production of chiral amides and acids
US5866379A (en) * 1997-01-28 1999-02-02 Novus International Enzymatic conversion of α-hydroxynitriles to the corresponding .alpha.
US5998180A (en) * 1995-12-12 1999-12-07 Ciba Specialty Chemicals Water Treatments Limited Nitrilase from Rhodoccus rhodochrous for converting acrylonitrile directly to acrylic acid
WO2006049618A1 (fr) * 2004-11-01 2006-05-11 E. I. Du Pont De Nemours And Company Nitrile hydratase et amidase de comamonas testoteroni 5-mgam-4d
US7285406B2 (en) 2003-05-08 2007-10-23 E.I. Du Pont De Nemours And Company Nucleic acid fragments encoding nitrile hydratase and amidase enzymes from Comamonas testosteroni 5-MGAM-4D and recombinant organisms expressing those enzymes useful for the production of amides and acids
US8981142B2 (en) 2010-04-14 2015-03-17 Strategic Enzyme Applications, Inc. Process of producing phosphinothricin employing nitrilases
CN116574750A (zh) * 2023-04-21 2023-08-11 大连理工大学 一种提高腈类化合物生物转化效率的腈水合酶重组质粒及其构建方法与应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200634151A (en) * 2004-12-09 2006-10-01 Asahi Chemical Ind Transformant expressing nitrile hydratase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178106A2 (fr) * 1984-10-01 1986-04-16 Novo Nordisk A/S Procédé enzymatique
EP0444639A2 (fr) * 1990-02-28 1991-09-04 Nitto Chemical Industry Co., Ltd. Gène codant pour une polypeptide avec une activité nitrile hydratase, transformant contenant un gène et procédé de production d'amides avec ce transformant
EP0502476A2 (fr) * 1991-03-04 1992-09-09 Nitto Chemical Industry Co., Ltd. Vecteurs plasmidiques hybrides contenant des gènes codant pour des enzymes qui dégradent des nitriles et utilisation pour la préparation d'amides et d'acides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178106A2 (fr) * 1984-10-01 1986-04-16 Novo Nordisk A/S Procédé enzymatique
EP0444639A2 (fr) * 1990-02-28 1991-09-04 Nitto Chemical Industry Co., Ltd. Gène codant pour une polypeptide avec une activité nitrile hydratase, transformant contenant un gène et procédé de production d'amides avec ce transformant
EP0502476A2 (fr) * 1991-03-04 1992-09-09 Nitto Chemical Industry Co., Ltd. Vecteurs plasmidiques hybrides contenant des gènes codant pour des enzymes qui dégradent des nitriles et utilisation pour la préparation d'amides et d'acides

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811286A (en) * 1995-10-06 1998-09-22 E. I. Du Pont De Nemours And Company Nucleic acid fragments encoding stereospecific nitrile hydratase and amidase enzymes and recombinant organisms expressing those enzymes useful for the production of chiral amides and acids
US5888785A (en) * 1995-10-06 1999-03-30 E. I. Du Pont De Nemours And Company Method for using hydratase or a hydratase-amidase fusion for stereospecifically bioconverting certain racemic nitriles to the corresponding enatiomeric R--or S-amide or s-carboxylic acid
US6133421A (en) * 1995-10-06 2000-10-17 E. I. Du Pont De Nemours & Company Polypeptides and polypeptide subunits of a stereospecific nitrile hydratase enzyme
US6251650B1 (en) 1995-10-06 2001-06-26 E. I. Du Pont De Nemours And Company Pseudomonas putida amidase polypeptide useful for the production of chiral amides and acids
US5998180A (en) * 1995-12-12 1999-12-07 Ciba Specialty Chemicals Water Treatments Limited Nitrilase from Rhodoccus rhodochrous for converting acrylonitrile directly to acrylic acid
US5728556A (en) * 1996-03-14 1998-03-17 E. I. Du Pont De Nemours And Company Production of ω-cyanocarboxamides from aliphatic α,ω-dinitriles using pseudomonas putida-derived biocatalysts
US5866379A (en) * 1997-01-28 1999-02-02 Novus International Enzymatic conversion of α-hydroxynitriles to the corresponding .alpha.
US7285406B2 (en) 2003-05-08 2007-10-23 E.I. Du Pont De Nemours And Company Nucleic acid fragments encoding nitrile hydratase and amidase enzymes from Comamonas testosteroni 5-MGAM-4D and recombinant organisms expressing those enzymes useful for the production of amides and acids
US7294493B2 (en) * 2003-05-08 2007-11-13 E. I. Du Pont De Nemours And Company Nucleic acid fragments encoding nitrile hydratase and amidase enzymes from Comamonas testosteroni 5-MGAM-4D and recombinant organisms expressing those enzymes useful for the production of amides and acids
US7405064B2 (en) 2003-05-08 2008-07-29 E. I. Du Pont De Nemours And Company Nucleic acid fragments encoding nitrile hydratase and amidase enzymes from Comamonas testosteroni 5-MGAM-4D and recombinant organisms expressing those enzymes useful for the production of amides and acids
WO2006049618A1 (fr) * 2004-11-01 2006-05-11 E. I. Du Pont De Nemours And Company Nitrile hydratase et amidase de comamonas testoteroni 5-mgam-4d
US8981142B2 (en) 2010-04-14 2015-03-17 Strategic Enzyme Applications, Inc. Process of producing phosphinothricin employing nitrilases
US9683001B2 (en) 2010-04-14 2017-06-20 Stragegic Enzyme Applications, Inc. Process of producing phosphinothricin employing nitrilases
US10428092B2 (en) 2010-04-14 2019-10-01 Strategic Enzyme Applications, Inc. Process of producing phosphinothricin employing nitrilases
CN116574750A (zh) * 2023-04-21 2023-08-11 大连理工大学 一种提高腈类化合物生物转化效率的腈水合酶重组质粒及其构建方法与应用
CN116574750B (zh) * 2023-04-21 2023-12-05 大连理工大学 一种提高腈类化合物生物转化效率的腈水合酶重组质粒及其构建方法与应用

Also Published As

Publication number Publication date
EP0665889A1 (fr) 1995-08-09
FR2708936A1 (fr) 1995-02-17
JPH08504599A (ja) 1996-05-21
CA2146656A1 (fr) 1995-02-16
FR2708936B1 (fr) 1995-11-10

Similar Documents

Publication Publication Date Title
EP0596812B1 (fr) Nitrilase recombinante et son utilisation
US6645746B1 (en) Carbonyl reductase, gene thereof and method of using the same
US5338676A (en) Cephalosporin acetylhydrolase gene and protein encoded by said gene
US5629190A (en) Polypeptides possessing a nitrilase activity and method of converting nitriles to carboxylates by means of said polypeptides
EP0610517B1 (fr) Adn codant pour la decarbamylase a thermostabilite accrue et utilisation de cet adn
US20030113880A1 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
US8460902B1 (en) DNA encoding hydantoinase, DNA encoding N-carbamyl-L-amino acid hydrolase, recombinant DNA, transformed cell, method of producing protein, and method of producing optically active amino acid
WO1995004828A1 (fr) Enzymes a activite nitrile-hydratase, outils genetiques et micro-organismes hotes permettant leur obtention et procede d'hydrolyse mettant en ×uvre lesdites enzymes
FR2655660A1 (fr) Nouveaux polypeptides, sequences d'adn permettant leur expression, procede de preparation et leur utilisation.
JP5903298B2 (ja) N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ
US6815195B2 (en) 5-substituted hydantoin racemase, DNA coding for the racemase, and processes for producing optically active amino acids
JPH0851992A (ja) D−α−アミノ酸の製造方法
US20030148472A1 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
FR2764303A1 (fr) Proteine a activite d'aspartase, adn la codant, plasmide contenant l'adn et procede de production de la proteine et d'acide l-aspartique
EP0488916B1 (fr) Procédé de synthèse enzymatique d'adipate d'ammonium
WO1997004083A1 (fr) Enzymes et micro-organismes a activite amidase hydrolysant les polyamides
EP0681610A1 (fr) Polypeptides a activite amidase, outils genetiques et micro-organismes hotes permettant leur obtention
AU773130B2 (en) Method for isolating and selecting genes coding for enzymes, and suitable culture medium
US20030186412A1 (en) Novel carbonyl reductase, gene thereof and method of using the same
EP1070132B1 (fr) L-n-carbamoylase recombinee issue d'arthrobacter aurescens, procede de preparation de l-aminoacides avec ladite l-n-carbamoylase recombinee
FR2728905A1 (fr) Nouvelle acide amine amidohydrolase, sequence nuclotidique correspondant et leurs utilisations
AU669951B2 (en) Polypeptides possessing a nitrilase activity, DNA sequence coding for said polypeptides, expression cassettes and host microorganisms enabling them to be obtained, and method of converting nitriles to carboxylates by means of said polypeptides
JPH099973A (ja) ロードコッカス属細菌由来のニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子
JPH0779775A (ja) Nad(h)結合型酸化還元不均化酵素およびその遺伝子
JP2000245471A (ja) ギ酸脱水素酵素遺伝子、それを含有する組換えベクター、その組換えベクターを含有する形質転換体及びその形質転換体を用いたギ酸脱水素酵素の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1994925508

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2146656

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994925508

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1995 416672

Country of ref document: US

Date of ref document: 19951003

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1994925508

Country of ref document: EP