WO1995000283A1 - Verfahren und vorrichtung zur kontaktierung eines kontaktelements - Google Patents

Verfahren und vorrichtung zur kontaktierung eines kontaktelements Download PDF

Info

Publication number
WO1995000283A1
WO1995000283A1 PCT/DE1994/000677 DE9400677W WO9500283A1 WO 1995000283 A1 WO1995000283 A1 WO 1995000283A1 DE 9400677 W DE9400677 W DE 9400677W WO 9500283 A1 WO9500283 A1 WO 9500283A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact element
energy
substrate
optical waveguide
bonding head
Prior art date
Application number
PCT/DE1994/000677
Other languages
English (en)
French (fr)
Inventor
Ghassem Azdasht
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to DE4494299A priority Critical patent/DE4494299C1/de
Priority to US08/564,352 priority patent/US5938951A/en
Priority to DE4494299D priority patent/DE4494299D2/de
Publication of WO1995000283A1 publication Critical patent/WO1995000283A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4226Positioning means for moving the elements into alignment, e.g. alignment screws, deformation of the mount
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a method and a device for contacting a contact element on a substrate, in which the contact element is held with a connecting device, in particular in the form of a bonding head, and thermal contact is applied to the contact element or the substrate or both.
  • the present invention is therefore based on the object of providing a method and a device of the type mentioned at the outset which enable the contacting of a contact element with a substrate to be carried out with a substantially lower reject rate and thus contribute to reducing the production costs and makes a contribution to saving raw materials.
  • the contact element bears against the substrate during the application of energy, with a relative movement between the contact element and the substrate taking place at the same time.
  • a reference energy which originates from an emission surface and is transmitted to the contact element, is measured as a reference value for the quality of the relative position of the contact element.
  • a sufficient reference value which may have been previously determined in experiments or which may also be defined as the maximum of a number of measured reference values, the relative movement and the application of energy are terminated. The consequence of this is a "freezing" of the last given relative position of the contact element in relation to the emission surface.
  • the method according to the invention is reversed and sets the desired relative position while the contact areas are softened. By terminating the energy supply and the relative movement, the position reached is frozen without any significant changes in the position being able to take place.
  • an application of energy by means of a laser source proves to be particularly advantageous, since the laser energy can be introduced into the connection area at a precisely defined location by means of an optical waveguide arrangement, and the introduction of energy essentially by means of energy radiation Delay-free switching off without a buffer effect, as is the case with heat conduction, for example.
  • the method according to the invention is used in the coupling of an optical waveguide to a component emitting laser energy, for example a laser diode, the laser energy exit surface of the component arranged on the substrate serving as the emission surface and the contact element through the optical fiber is given.
  • the use of the method according to the invention enables an essentially lossless coupling of the optical waveguide to the laser diode.
  • the laser energy emitted from the laser energy exit surface of the laser diode, which is used for coupling, serves as reference energy optical fiber provided to the laser diode is introduced.
  • the reference energy emerging from the optical waveguide can be measured, the optimal relative position being reached when the emerging energy reaches its maximum.
  • the use of the method in the manufacture of a diode laser arrangement with optical fiber coupling enables an efficiency of the diode laser arrangement that has hitherto been unattainable.
  • the contact element cross section can be at least partially recorded in a positioning device.
  • This positioning device determines the limits within which the contact element can be positioned relative to the emission surface and thus avoids an excessively large positional deviation between the contact element and the emission surface, which would unnecessarily extend the duration of the method.
  • the positioning device can have at least two contact metallization increases known as so-called "bumps".
  • This type of design of the positioning device has the advantage that the positioning device itself serves to provide the connecting material required for the thermal connection between the contact element and the substrate.
  • the thermal energy is superimposed with ultrasonic energy in order to apply energy to the contact element.
  • a device which is particularly suitable for carrying out the above method has the features of claim 7.
  • a connecting device designed as a bonding head which is connected to a laser source via an optical waveguide arrangement, the bonding head being provided with a device, preferably designed as a vacuum device, for holding the contact element on the bonding head.
  • the device has an energy measuring device that can be connected to the contact element for measuring a reference energy, which is transmitted to the contact element by an energy emission device arranged on the substrate.
  • the device has a substrate carrier device for receiving the substrate.
  • the relative movement between the contact element and the substrate necessary for executing the method according to the invention can be made possible by a corresponding mobility of the bonding head.
  • a correspondingly movable substrate carrier device that is to say at least in one axis direction of the connection plane between the contact element and the substrate, which can be moved transversely to the direction of the emitted reference energy.
  • This makes it possible to make the bonding head itself relatively simple.
  • a conventional cross table or the like can be used, which enables extremely precise adjustments in the directions of the movement axes.
  • the optical waveguide arrangement in the bonding head can be guided on the inside up to an energy transmission part of the bonding head, the outer surface of which serves to apply pressure and heat to the contact element.
  • Such a design of the bonding head makes it possible, especially when using materials for the transfer part, which have the lowest possible heat capacity, to generate heat accumulation at the interface between the transfer part and the contact element, which can be used to connect the contact element to the substrate .
  • a design of the energy transmission part that is independent of the bond head also creates the possibility of adapting it to the respective material properties of the contact element and of exchanging it when using different contact elements on the bond head.
  • the use of energy transmission parts also has the advantage that, despite uniform application of pressure in the area of the connection point to the contact element, direct contact between the optical waveguide arrangement in the bonding head and the contact element is avoided, which is associated with wear on the End cross section of the optical waveguide arrangement prevented.
  • FIG. following drawings A preferred embodiment of the method according to the invention and advantageous embodiments of the device for carrying out the method are shown in FIG. following drawings explained in more detail. Show it:
  • FIG. 1 shows a schematic representation of a possible embodiment of a device for carrying out a variant of the method according to the invention
  • Fig. 2 is an enlarged partial view of the device shown in Fig. 1;
  • FIG. 3 shows a possible variation of the device shown in FIG. 1.
  • FIG. 1 shows in a first embodiment a contacting device 10 with a bonding head 11 and a substrate carrier table 12 arranged below the bonding head 11 and movable in the X, Y and Z axis directions.
  • a receiving bore of the bonding head 11 there is one with a not Radiation shielding provided fiber optic line 13 introduced, which is connected to a laser source 19.
  • the receiving bore 14 is expanded to form a vacuum chamber 15, from which a suction line 16 extends, which is connected to a suction device (not shown here).
  • the vacuum chamber 15 serves to suck and hold a contact element, which is designed here as an optical waveguide 17, against a lower surface 18 of the bonding head 11.
  • a substrate Arranged on the substrate support table 12 is a substrate, in this case designed as a support plate 20, on which there is firmly connected a laser diode 21 and at a distance from it two solder bumps 22, 23 (FIG. 2), which together form a positioning device 24 form.
  • a suction device To hold the carrier plate 20 securely on the substrate carrier table 12, it is provided with a suction device in a manner not shown here.
  • An energy measuring device 25 is connected to the optical waveguide 17, which can be connected to the bonding head 11 or can form a separate device and is connected in terms of signal technology on the one hand to the laser source 19 and on the other hand to the substrate support table 12.
  • a possible variant of the method for contacting the optical waveguide 17 with the carrier plate 20 will be explained in more detail below with reference to FIGS. 1 and 2.
  • the aim of the connection of the optical waveguide 17 to the carrier plate 20, which is explained here by way of example, is to produce a diode laser arrangement 26 in which a laser radiation emitted from the laser diode 21 is to be coupled into the optical waveguide 17 and to be passed on to an arbitrary radiation exit point. It is essential that a radiation entry cross section 27 of the optical waveguide 17 is aligned precisely with an emission surface 28 of the laser diode 21 in order to make the coupling of the laser radiation into the radiation entry cross section 27 as lossless as possible.
  • the emission surface 28 of the laser diode 21 which is only about 2 ⁇ m in diameter in the case of the exemplary laser diode selected, is aligned with the optical waveguide 17 in such a way that its projection within the radiation cross section 27 forming the radiation entrance
  • the core cross section of the optical waveguide 17 lies, which in this exemplary embodiment is approximately 5-6 ⁇ m in diameter.
  • the substrate carrier table 12 with the carrier plate 20 arranged thereon is moved in the Z-axis direction against the optical waveguide 17 held by vacuum on the bonding head 11 in such a way that the configuration shown in FIG. 2 is established.
  • a pre-adjustment is already given here in that the cross section of the optical waveguide 17 is partially received between the soldering bumps 22, 23 of the positioning device 24.
  • the solder bumps 22, 23 have an approximately square cross section; can, however, also be designed in any other way.
  • an end cross-section 38 of the glass fiber line 13 is at a short distance from the optical waveguide 17; can, however, also concern this.
  • the laser source 19 is activated, resulting in a
  • the laser diode 4 is activated and emits laser radiation via its emission surface 28 in the direction of the radiation entry cross section 27 of the optical waveguide 17.
  • the relative movement between the optical waveguide 17 and the substrate support table 12 is interrupted and the laser source 19 is switched off; Both take place via corresponding signals which are passed from the energy measuring device 25 to an adjusting device of the substrate carrier table 12 and the laser source 19, which is not shown in any more detail.
  • the positioning aids of the positioning device 24 made in the above example as solder bumps 22, 23 can be made of a corresponding plastic material be formed, which enables a thermal connection to the optical waveguide. It is also possible to use the method described above in a variant not only for the production of diode laser arrangements, but very generally when it comes to effecting the most accurate positioning of a contact element on a substrate. It is then possible not to use a laser diode but an energy emission device of a very general type, for example a current-carrying conductor with a contact cross section, as the emission surface.
  • the electrical current measured in the contact element can then also be measured in relation to the electrical current fed in, for example.
  • a contacting device 39 as shown in FIG. 3, can then also be used.
  • the energy required for the thermal connection is introduced via a glass fiber line 13 into a bond head 33 modified in comparison with the above exemplary embodiment.
  • the bond head 33 is provided with an energy transmission part 34, which is arranged between the end cross section 38 of the glass fiber line 13 and the circumference of the contact element designed here as a wire conductor 35.
  • the substrate is given by a chip 36 which has a solder bump 37 for connection to the wire conductor 35.
  • a non-melting partial surface of the solder bump 34 can be provided as the emission surface.
  • the device shown in FIG. 3 also has general advantages for the connection of contact elements to a substrate, regardless of the monitoring of the relative position of the contact element with respect to the substrate, as was explained in detail with reference to FIGS. 1 and 2 surface, which in turn can also be formed by a contact element, offers.
  • the energy transmission part 34 between the end cross section 38 of the fiber optic line 13 and the The circumference of the wire conductor 35 results in a heat build-up when the material for the transmission part is selected accordingly, and thus a local temperature increase in the contact area between the energy transmission part 34 and the wire conductor 35, as a result of which the connection can be carried out particularly effectively. This applies in particular if an additional exposure to ultrasound energy is superimposed on the thermal application of the connection point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Verfahren und Vorrichtung zur Kontaktierung eines Kontaktelements (17) auf einem Substrat (20), bei dem das Kontaktelement mit einer insbesondere als Bondkopf (11) ausgebildeten Verbindungseinrichtung gehalten und das Kontaktelement oder das Substrat oder beide mit thermischer Energie beaufschlagt werden, wobei das Kontaktelement während der Energiebeaufschlagung am Substrat anliegt und zwischen dem Kontaktelement und dem Substrat eine Relativbewegung erfolgt, während der Relativbewegung als Referenzwert für die Qualität der Relativposition des Kontaktelements (17) eine von einer Emissionsfläche (28) ausgehende, auf das Kontaktelement (17) übertragene Referenzenergie gemessen wird, und bei Messung eines ausreichenden Referenzwertes die Relativbewegung und die Energiebeaufschlagung abgebrochen wird.

Description

VERFAHREN UND VORRICHTUNG ZUR KONTAKTIERUNG EINES KONTAKTELEMENTS
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Kontaktierung eines Kontaktele¬ ments auf einem Substrat, bei dem das Kontaktelement mit einer insbesondere als Bondkopf ausgebildeten Verbindungseinrichtung gehalten und das Kσntaktele- ment oder das Substrat oder beide mit thermischer Energie beaufschlagt werden.
Verfahren und entsprechende Vorrichtungen zur Kon¬ taktierung eines Kontaktelements auf einem Substrat, wie etwa ein Drahtleiter auf einer Anschlußfläche einer Leiterplatte, sind hinlänglich bekannt und weisen einen entsprechend hohen Entwicklungsstandard auf. Trotz dieses hohen Standards gibt es immer noch besondere Anwendungsfälle, bei denen die Anwendung der konventionellen Verfahren und Vorrichtungen nur zu unbefriedigenden Ergebnissen führt. Dies ist ins¬ besondere dann der Fall, wenn es darum geht, nicht nur lediglich eine leitfähige Verbindung zwischen dem Kontaktelement und dem Substrat bzw. dessen An- schlußfläche herzustellen, sondern darüber hinaus, daß die Verbindung des Kontaktelements mit dem Sub¬ strat mit einer ganz bestimmten, eindeutigen Aus¬ richtung auf dem Substrat erfolgt. Zwar gibt es auch für diesen Fall Verfahren und Vorrichtungen, die eine genaue Kontrolle der Ausrichtung des Kontakt¬ elements auf dem Substrat ermöglichen, wobei diese jedoch im Wege einer Qualitätskontrolle erst nach erfolgter Verbindung des Kontaktelements mit dem Substrat erfolgt, mit der Folge, daß die erziel- te Ausrichtung irreversibel ist und bei einer Fehl¬ ausrichtung ein entsprechendes Bauteil als Ausschuß definiert werden muß. Hierdurch ergeben sich bei den bekannten Verfahren und Vorrichtungen relativ hohe Ausschußquoten, was einerseits zu hohen Herstel¬ lungskosten und andererseits zu einer Verschwendung von Rohstoffen führt.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung der eingangs genannten Art zu schaffen, das bzw. die die Durchführung der Kontaktierung eines Kontaktelements mit einem Substrat mit einer wesentlich geringeren Ausschußquote ermöglicht und somit dazu beiträgt, die Herstellungskosten zu reduzieren und einen Bei¬ trag zur Einsparung von Rohstoffen liefert.
Diese Aufgabe wird durch ein Verfahren mit den Merk¬ malen des Anspruchs 1 gelöst.
Bei dem erfindungsgemäßen Verfahren liegt das Kon¬ taktelement während der Energiebeaufschlagung am Substrat an, wobei gleichzeitig eine Relativbewegung zwischen dem Kontaktelement und dem Substrat er- folgt. Während dieser Relativbewegung wird als Refe¬ renzwert für die Qualität der Relativposition des Kontaktelements eine von einer Emissionsfläche aus¬ gehende, auf das Kontaktelement übertragene Referen¬ zenergie gemessen. Bei Messung eines ausreichenden Referenzwertes, der zuvor in Versuchen festgelegt worden sein kann oder der auch als das Maximum einer Anzahl gemessener Referenzwerte definiert sein kann, wird die Relativbewegung und die Energiebeaufschla¬ gung abgebrochen. Die Folge hiervon ist ein "Ein- frieren" der zuletzt gegebenen Relativposition des Kontaktelements gegenüber der Emissionsfläche. Im Gegensatz zu den bekannten Verfahren, bei denen die thermische Verbindung des Kontaktelements mit dem Substrat und die damit verbundene Erweichung von Kontaktbereichen zwischen dem Kontaktelement und dem Substrat erst nach der Definition der Relativposi¬ tion erfolgt, geht man bei dem erfindungsgemäßen Verfahren den umgekehrten Weg und stellt die ge¬ wünschte Relativposition ein, während die Kontaktbe¬ reiche erweicht sind. Durch Beendigung der Energie- zufuhr und der Relativbewegung wird die erreichte Position eingefroren, ohne daß dabei wesentliche Änderungen der Position erfolgen können.
Um die Energiezufuhr bwz. deren Abbruch besonders exakt steuern zu können, erweist sich eine Energie¬ beaufschlagung mittels einer Laserquelle als beson¬ ders vorteilhaft, da die Laserenergie mittels einer Lichtwellenleiteranordnung an genau definierter Stelle in den Verbindungsbereich eingeleitet werden kann, und die Energieeinbringung über Energiestrah¬ lung ein im wesentlichen verzögerungsfreies Abschal¬ ten ohne Pufferwirkung, wie es etwa bei Wärmeleitung der Fall ist, ermöglicht.
Besonders vorteilhaft ist es, wenn das erfindungs¬ gemäße Verfahren bei der Kopplung eines Lichtwellen¬ leiters mit einem Laserenergie emittierenden Bauele¬ ment, etwa einer Laserdiode, Anwendung findet, wobei als Emissionsfläche die Laserenergieaustrittsfläche des auf dem Substrat angeordneten Bauelements dient, und das Kontaktelement durch den Lichtwellenleiter gegeben ist. Hierbei ermöglicht die Anwendung des erfindungsgemäßen Verfahrens eine im wesentlichen verlustfreie Ankopplung des Lichtwellenleiters an die Laserdiode. Als Referenzenergie dient dabei die aus der Laserenergieaustrittsfläche der Laserdiode emittierte Laserenergie, die in den zur Ankopplung an die Laserdiode vorgesehenen Lichtwellenleiter eingeleitet wird. Zur Ermittlung der optimalen Rela¬ tivposition kann die aus dem Lichtwellenleiter aus¬ tretende Referenzenergie gemessen werden, wobei die optimale Relativposition erreicht ist, wenn die aus¬ tretende Energie ihr Maximum erreicht. Somit ermög¬ licht die Anwendung des Verfahrens bei der Herstel¬ lung einer Diodenlaseranordnung mit Lichtwellenlei- terankopplung einen bislang kaum erreichbaren Wir- kungsgrad der Diodenlaseranordnung.
Um eine einfache Möglichkeit der VorJustierung des Kontakte1ements, das bei Anwendung des Verfahrens zur Herstellung einer Diodenlaseranordnung dem Lichtwellenleiter entspricht, gegenüber der Emissi¬ onsfläche auf dem Substrat zu schaffen, kann der Kontaktelementquerschnitt zumindest teilweise in einer Positioniereinrichtung aufgenommen werden. Diese Positioniereinrichtung bestimmt die Grenzen, innerhalb derer eine Relativpositionierung des Kon¬ taktelements gegenüber der Emissionsfläche möglich ist und vermeidet somit eine übermäßig große Posi¬ tionsabweichung zwischen dem Kontaktelement und der Emissionsfläche, welche die Dauer der Durchführung des Verfahrens unnötig verlängern würde.
Im Fall einer metallischen Ausbildung der äußeren Peripherie des Kontaktelements, also etwa der Licht- wellenleiterummantelung, kann die Positionierein- richtung mindestens zwei als sogenannte "Bumps" be¬ kannte Kontaktmetallisierungserhöhungen aufweisen. Diese Art der Ausbildung der Positioniereinrichtung weist den Vorteil auf, daß die Positioniereinrich¬ tung selbst zur Bereitstellung des für die ther i- sehe Verbindung zwischen dem Kontaktelement und dem Substrat benötigten Verbindungsmaterials dient. Insbesondere in dem Fall, wenn das Verfahren zur Kontaktierung von einem als Drahtleiter ausgeführten Kontaktelement dient, kann es sich als vorteilhaft erweisen, wenn zur Energiebeaufschlagung des Kon- taktelements eine Überlagerung der thermischen Ener¬ gie mit Ultraschallenergie erfolgt.
Eine zur Durchführung des vorstehenden Verfahrens besonders geeignete Vorrichtung weist die Merkmale des Anspruchs 7 auf.
Bei dieser Vorrichtung ist eine als Bondkopf ausge¬ bildete Verbindungseinrichtung vorgesehen, die über eine Lichtwellenleiteranordnung mit einer Laserquel- le verbunden ist, wobei der Bondkopf mit einer vor¬ zugsweise als Vakuumeinrichtung ausgebildeten Ein¬ richtung zum Halten des Kontaktelements am Bondkopf versehen ist. Darüber hinaus weist die Vorrichtung eine an das Kontaktelement anschließbare Energiemeß- einrichtung zur Messung einer Referenzenergie auf, die von einer auf dem Substrat angeordneten Energie- Emissionseinrichtung auf das Kontaktelement übertra¬ gen wird. Weiterhin weist die Vorrichtung eine Sub¬ stratträgereinrichtung zur Aufnahme des Substrats auf.
Die zur Ausführung des erfindungsgemäßen Verfahrens notwendige Relativbewegung zwischen dem Kontaktele¬ ment und dem Substrat kann durch eine entsprechende Bewegbarkeit des Bondkopfs ermöglicht werden. Dar¬ über hinaus besteht aber auch die Möglichkeit, eine entsprechend bewegbare, also zumindest in einer Ach¬ senrichtung der Verbindungsebene zwischen dem Kon¬ taktelement und dem Substrat quer zur Richtung der emittierten Referenzenergie bewegbare Substratträ¬ gereinrichtung vorzusehen. Hierdurch wird es mög¬ lich, den Bondkopf selbst relativ einfach zu gestal- ten und für die bewegbare Substratträgeranordnung auf einen konventionellen Kreuztisch oder derglei¬ chen zurückzugreifen, der extrem präzise Ver¬ stellungen in den Bewegungsachsenrichtungen ermög- licht.
Die Lichtwellenleiteranordnung im Bondkopf kann in¬ nenseitig bis an einen Energieübertragungsteil des Bondkopfs herangeführt sein, dessen Außenfläche zur Beaufschlagung des Kontaktelements mit Druck und Wärme dient. Eine derartige Ausbildung des Bondkopfs ermöglicht es, insbesondere bei Verwendung von Mate¬ rialien für das Übertragungsteil, die eine möglichst geringe Wärmekapazität aufweisen, an der Grenzfläche zwischen dem Übertragungsteil und dem Kontaktelement einen Wärmestau zu erzeugen, der zur Verbindung des Kontaktelements mit dem Substrat nutzbar ist.
Durch eine vom Bondkopf unabhängige Ausbildung des Energieübertragungsteils wird darüber hinaus die Möglichkeit geschaffen, dieses auf die jeweilige Materialbeschaffenheit des Kontaktelements abzustim¬ men und bei Verwendung unterschiedlicher Kontaktele¬ mente am Bondkopf auszutauschen. Die Verwendung von Energieübertragungsteilen weist darüber hinaus den Vorteil auf, daß trotz gleichmäßiger Druckaufbrin¬ gung im Bereich der Verbindungsstelle auf das Kon¬ taktelement ein unmittelbarer Kontakt zwischen der Lichtwellenleiteranordnung im Bondkopf und dem Kon- taktelement vermieden wird, was einen damit einher¬ gehenden Verschleiß am Endquerschnitt der Lichtwel¬ lenleiteranordnung verhindert.
Insbesondere bei der Zwischenschaltung eines Über- tragungsteils zwischen der Lichtwellenleiteranord¬ nung und dem Kontaktelement kann es sich als vor¬ teilhaft erweisen, wenn der Bondkopf zusätzlich mit Ultraschallschwingungen beaufschlagt wird, um neben der thermischen Energie Ultraschallenergie in die Verbindungsstelle einzubringen.
Eine bevorzugte Ausführungsform des erfindungsgemä¬ ßen Verfahrens sowie vorteilhafte Ausführungen der Vorrichtung zur Durchführung des Verfahrens werden anhand der . nachfolgenden Zeichnungen näher er¬ läutert. Es zeigen:
Fig. 1 in schematischer Darstellung eine mögliche Ausführungsform einer Vorrichtung zur Durchführung einer Variante des erfindungsgemäßen Verfahrens;
Fig. 2 eine vergrößerte Teildarstellung der in Fig. 1 dargestellten Vorrichtung;
Fig. 3 eine mögliche Variation der in Fig. 1 darge¬ stellten Vorrichtung.
Fig. 1 zeigt in einer ersten Ausführungsform eine Kontaktierungsvorrichtung 10 mit einem Bondkopf 11 und einem unterhalb des Bondkopfs 11 angeordneten in X-, Y-, und Z-Achsenrichtung bewegbaren Substratträ- gertisch 12. In eine Aufnahmebohrung des Bondkopfs 11 ist eine mit einer nicht näher dargestellten Strahlungsabschirmung versehene Glasfaserleitung 13 eingeführt, die an eine Laserquelle 19 angeschlossen ist. An ihrem unteren Ende ist die Aufnahmebohrung 14 zu einer Vakuumkammer 15 erweitert, von der eine Saugleitung 16 abgeht, die an eine hier nicht näher dargestellte Saugeinrichtung angeschlossen ist. Die Vakuumkammer 15 dient zum Ansaugen und Halten eines hier als Lichtwellenleiter 17 ausgebildeten Kontakt- elements gegen eine Unterfläche 18 des Bondkopfs 11. Auf dem Substratträgertisch 12 ist ein in diesem Fall als Trägerplatte 20 ausgebildetes Substrat an¬ geordnet, auf dem sich fest mit diesem verbunden eine Laserdiode 21 und mit Abstand davon zwei Löt- bumps 22, 23 befinden (Fig. 2), die zusammen eine Positioniereinrichtung 24 bilden. Zum sicheren Halt der Trägerplatte 20 auf dem Substratträgertisch 12 ist diese auf hier nicht näher dargestellte Art und Weise mit einer Ansaugeinrichtung versehen.
An den Lichtwellenleiter 17 ist eine Energiemeßein¬ richtung 25 angeschlossen, die mit dem Bondkopf 11 verbunden sein oder eine separate Einrichtung bilden kann und signaltechnisch zum einen mit der Laser- quelle 19 und zum anderen mit dem Substratträger¬ tisch 12 verbunden ist.
Nachfolgend soll eine mögliche Variante des Verfah¬ rens zur Kontaktierung des Lichtwellenleiters 17 mit der Trägerplatte 20 anhand der Fig. 1 und 2 näher erläutert werden. Ziel der hier beispielhaft erläu¬ terten Verbindung des Lichtwellenleiters 17 mit der Trägerplatte 20 ist es, eine Diodenlaseranordnung 26 herzustellen, bei der eine aus der Laserdiode 21 emittierte Laserstrahlung in den Lichtwellenleiter 17 eingekoppelt und durch diesen an eine beliebige Strahlungsaustrittsstelle weitergeleitet werden soll. Dabei ist es wesentlich, daß ein Strahlungs¬ eintrittsquerschnitt 27 des Lichtwellenleiters 17 genau zu einer Emissionsfläche 28 der Laserdiode 21 ausgerichtet ist, um die Einkopplung der Laserstrah¬ lung in den Strahlungseintrittsquerschnitt 27 mög¬ lichst verlustfrei zu gestalten. Eine unmittelbare Verbindung der Emissionsfläche 28 mit dem Strahl- ungseintrittsquerschnitt 27 ist zu vermeiden, da hierbei möglicherweise auftretende Deformationen zu Strahlungsverlusten führen könnten. Für die Lei- stungsfähigkeit der Diodenlaseranordnung 26 ist es wesentlich, daß die im Fall der beispielhaft ausge¬ wählten Laserdiode etwa lediglich 2 μm im Durchmes¬ ser betragende Emissionsfläche 28 der Laserdiode 21 so zum Lichtwellenleiter 17 ausgerichtet ist, daß ihre Projektion innerhalb des den Strahlungsein¬ trittquerschnitt 27 bildenden Kernquerschnitts des Lichtwellenleiters 17 liegt, der bei diesem Ausfüh¬ rungsbeispiel etwa 5 - 6 μm im Durchmesser beträgt.
Zunächst wird der Substratträgertisch 12 mit der darauf angeordneten Trägerplatte 20 in in Z-Achsen- richtung so gegen den durch Vakuum am Bondkopf 11 gehaltenen Lichtwellenleiter 17 gefahren, daß sich die in Fig. 2 dargestellte Konfiguration einstellt. Hierbei ist schon eine Vorjustierung dadurch gege¬ ben, daß der Lichtwellenleiter 17 mit seinem Quer¬ schnitt teilweise zwischen den Lötbumps 22, 23 der Positioniereinrichtung 24 aufgenommen ist. Die Löt- bumps 22, 23 weisen bei dem dargestellten Ausfüh¬ rungsbeispiel einen etwa viereckigen Querschnitt auf; können jedoch auch beliebig anders ausgebildet sein. Zur Ausrichtung des Lichtwellenleiters 17 ge¬ genüber dem Bondkopf 11 ist dessen unteres Ende etwa trichterförmig ausgebildet und nimmt den Lichtwel¬ lenleiter 17 mit seinem Umfang zwischen zwei Kanal¬ rändern 29, 30 eines Lichtwellenleiterkanals 31 auf, der gleichzeitig die Öffnung der Vakuumkammer 15 nach außen bildet. Hierbei befindet sich ein End- querschnitt 38 der Glasfaserleitung 13 in geringem Abstand zum Lichtwellenleiter 17; kann jedoch auch an diesem anliegen.
Ausgehend von der in Fig. 2 dargestellten Konfigura- tion wird die Laserquelle 19 aktiviert, was zu einem
Austritt von Laserstrahlung aus dem Endquerschnitt
38 der Glasfaserleitung 13 und einer entsprechenden Erwärmung des darunter liegenden, bei diesem Ausfüh¬ rungsbeispiel mit einer Metallummantelung 32 verse¬ henen Lichtwellenleiters 17 führt. Über die Metall¬ ummantelung 32 wird die Wärme in die Lotbumps 22, 23 geleitet, was zu deren Erweichung führt. Die Erwei¬ chung der Lotbumps 22, 23 führt zu einer Auflösung der starren Positionierung, so daß nunmehr Bewegun¬ gen des Substratträgertischε 12 zusammen mit der darauf angeordneten Trägerplatte 20 in X-Achsenrich- tung möglich sind. Während dieser Bewegungen bleibt der Druckkontakt zwischen dem Bondkopf 11 und dem Substratträgertisch 12, der über den Lichtwellenlei¬ ter 17 geführt ist, erhalten, so daß auch die Posi¬ tionierung des Lichtwellenleiters 17 in Z-Achsen- richtung relativ zum Substratträgertisch 12 erhalten bleibt.
Während der Relativbewegung des Lichtwellenleiters 17 gegenüber dem Substratträgertisch 12 ist die La- serdiode 4 aktiviert und emittiert über ihre Emis¬ sionsfläche 28 Laserstrahlung in Richtung auf den Strahlungseintrittsquerschnitt 27 des Lichtwellen¬ leiters 17. Der Teil der emittierten Strahlungsener¬ gie, der in den Lichtwellenleiter 17 eintritt und durch diesen übertragen wird, wird durch die an den Lichtwellenleiter 17 angeschlossene Energiemeßein¬ richtung 25 gemessen. Bei Feststellung des Strah¬ lungsmaximums wird die Relativbewegung zwischen dem Lichtwellenleiter 17 und dem Substratträgertisch 12 abgebrochen und die Laserquelle 19 wird abgeschal¬ tet; beides geschieht über entsprechende Signale, die von der Energiemeßeinrichtung 25 an eine nicht näher dargestellte VerStelleinrichtung des Substrat- trägertischs 12 und die Laserquelle 19 geleitet wer- den. Durch das Abschalten der Laserquelle 19, die kon¬ stant oder im Pulsverfahren betrieben werden kann, und den Abbruch der Relativbewegung während des er¬ weichten Zustands der Lotbumps 22, 23 erfolgt quasi ein Einfrieren der optimalen, durch das gemessene Strahlungsmaximum definierten Relativposition des Strahlungseintrittsquerschnitt 27 vom Lichtwellen¬ leiter 17 zur Emissionsfläche 28 der Laserdiode 21. Nach der Erstarrung der Verbindung zwischen der Trä- gerplatte 20 und dem Lichtwellenleiter 17 ist somit eine extrem leistungsfähige Laserdiodenanordnung geschaffen. Es versteht sich, daß auf die gleiche Art, mit der eine Optimierung der Relativposition des Lichtwellenleiters 17 gegenüber der Laserdiode 21 in X-Achsenrichtung möglich ist, ebenso eine ent¬ sprechende optimale Positionierung in Y-Achsenrich- tung möglich ist.
Zur Verbindung eines Lichtwellenleiters mit der Trä- gerplatte 20, der nicht mit einer Metallummantelung sondern beispielsweise mit einer Acrylummantelung versehen ist, können die in dem vorstehenden Bei¬ spiel als Lotbumps 22, 23 ausgeführten Positionier¬ hilfen der Positioniereinrichtung 24 aus einem ent- sprechenden Kunststoffmaterial ausgebildet sein, das eine thermische Verbindung mit dem Lichtwellenleiter ermöglicht. Ebenso ist es möglich, das vorstehend in einer Variante beschriebene Verfahren nicht nur zur Herstellung von Diodenlaseranordnungen zu verwenden, sondern ganz allgemein dann, wenn es darum geht, eine möglichst genaue Positionierung eines Kontakt¬ elements auf einem Substrat zu bewirken. Dabei ist es dann möglich, nicht eine Laserdiode sondern eine Energie-Emissionseinrichtung ganz allgemeiner Art, beispielsweise einen stromdurchflossenen Leiter mit einem Kontaktquerschnitt als Emissionsfläche zu ver¬ wenden. Als Referenzwert für die korrekte Relativpo- sitionierung kann dann beispielsweise auch der im Kontaktelement gemessene elektrische Strom im Ver¬ hältnis zum eingespeisten elektrischen Strom gemes¬ sen werden. Dabei kann dann etwa auch eine Kontak- tierungsvorrichtung 39 zum Einsatz kommen, wie sie in Fig. 3 dargestellt ist. Hierbei wird in Abwand¬ lung eines an sich bekannten Wedge-Bond-Verfahrens die zur thermischen Verbindung notwendige Energie wie bei dem vorstehend geschilderten Ausführungsbei- spiel über eine Glasfaserleitung 13 in einen gegen¬ über dem vorstehenden Ausführungsbeispiel modifi¬ zierten Bondkopf 33 eingeleitet.
Im Unterschied zu dem vorstehend geschilderten Ver- fahren sowie der dabei verwendeten Vorrichtung ist der Bondkopf 33 mit einem Energieübertragungsteil 34 versehen, das zwischen dem Endquerschnitt 38 der Glasfaserleitung 13 und dem Umfang des hier als Drahtleiter 35 ausgebildeten Kontaktelements ange- ordnet ist. Bei dem hier dargestellten Ausführungs¬ beispiel ist das Substrat durch einen Chip 36 gege¬ ben, der zur Verbindung mit dem Drahtleiter 35 einen Lötbump 37 aufweist. Als Emissionsfläche kann bei dem hier dargestellten Ausführungsbeispiel eine nicht-schmelzende Teilfläche des Lotbumps 34 vorge¬ sehen sein.
Es versteht sich, daß die in Fig. 3 dargestellte Vorrichtung auch unabhängig von der Überwachung der Relativposition des Kontaktelements gegenüber dem Substrat, wie es anhand der Fig. 1 und 2 ausführlich erläutert wurde, ganz allgemein Vorteile für die Verbindung von Kontaktelementen mit einer Substrat¬ fläche, die wiederum auch durch ein Kontaktelement gebildet sein kann, bietet. Durch die Zwischenschal¬ tung des Energieübertragungsteils 34 zwischen den Endquerschnitt 38 der Glasfaserleitung 13 und dem Umfang des Drahtleiters 35 kommt es bei entsprechen¬ der Materialauswahl für das Übertragungsteil zu ei¬ nem Wärmestau und damit zu einer lokalen Temperatur¬ überhöhung im Kontaktbereich zwischen dem Energie- übertragungsteil 34 und dem Drahtleiter 35, wodurch die Verbindung besonders effektiv ausgeführt werden kann. Dies gilt insbesondere dann, wenn der thermi¬ schen Beaufschlagung der Verbindungsstelle noch eine Beaufschlagung mit Ultraschallenergie überlagert wird.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Kontaktierung eines Kontaktele- ments (17, 35) auf einem Substrat (20, 36), bei dem das Kontaktelement mit einer insbesondere als Bondkopf (11, 33) ausgebildeten Verbin¬ dungseinrichtung gehalten und das Kontaktele¬ ment oder das Substrat oder beide mit thermi- scher Energie beaufschlagt werden, wobei das Kontaktelement während der Energiebe¬ aufschlagung am Substrat anliegt und zwi¬ schen dem Kontaktelement und dem Substrat eine Relativbewegung erfolgt, - während der Relativbewegung als Referenz¬ wert für die Qualität der Relativposition des Kontaktelements (17, 35) eine von ei¬ ner Emissionsfläche (28) ausgehende, auf das Kontaktelement (17) übertragene Refe- renzenergie gemessen wird, und bei Messung eines ausreichenden Referenz¬ wertes die Relativbewegung und die Ener¬ giebeaufschlagung abgebrochen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Energiebeaufschlagung mittels einer Laserquelle (26) erfolgt, wobei die Laserener¬ gie mittels einer vorzugsweise an die Verbin- dungseinrichtung (11, 33) angeschlossenen
Lichtwellenleiteranordnung (13) übertragen wird.
3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch die Anwendung zur Kopplung eines Lichtwellen¬ leiters (17) mit einem Laserenergie emittieren- den Bauelement, vorzugsweise einer Laserdiode (21), wobei als Emissionsfläche (28) die Laser¬ energieaustrittsfläche des auf dem Substrat (20) angeordneten Bauelements dient und das Kontaktelement durch den Lichtwellenleiter (17) gegeben ist.
4. Verfahren nach einem oder mehreren der vorange¬ henden Ansprüche, dadurch gekennzeichnet, daß zur VorJustierung des Kontaktelements (17) gegenüber der Emissionsfläche (28) auf dem Sub¬ strat (20) eine den Kontaktelementquerschnitt zumindest teilweise zwischen sich aufnehmende Positioniereinrichtung (24) vorgesehen ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß im Fall einer metallischen Ausbildung einer Lichtwellenleiterummantelung (32) die Positio¬ niereinrichtung (24) mindestens zwei Kontaktme¬ tallisierungserhöhungen (Bumps 22, 23) auf¬ weist.
6. Verfahren nach einem oder mehreren der vorange¬ henden Ansprüche, dadurch gekennzeichnet, daß vorzugsweise zur Kontaktierung von als Drahtleiter (35) ausgeführten Kontaktelementen zur Energiebeaufschlagung eine Überlagerung der themischen Energie mit Ultraschallenergie er¬ folgt.
7. Vorrichtung zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 6, gekennzeichnet durch eine als Bondkopf (11) ausgebildete Verbin¬ dungseinrichtung, die über eine Lichtwellenlei¬ teranordnung (13) mit einer Laserquelle (26) verbunden ist, wobei der Bondkopf (11) mit ei- ner vorzugsweise als Vakuumeinrichtung (15, 16) ausgebildeten Einrichtung zum Halten des Kon¬ taktelements (17) am Bondkopf versehen ist, eine an das Kontaktelement (17) anschließbare Energiemeßeinrichtung (25) zur Messung einer Referenzenergie, die von einer auf dem Substrat
(20, 36) angeordneten Energie-Emissionseinrich¬ tung auf das Kontaktelement (17) übertragen wird, und eine Substratträgereinrichtung (12) zur Aufnahme des Substrats (20, 36).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Substratträgereinrichtung (12) zumin¬ dest in eine Achsenrichtung der Verbindungsebe- ne zwischen dem Kontaktelement (17) und dem
Substrat (20) quer zur Emissionsrichtung der Referenzenergie bewegbar ist.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Lichtwellenleiteranordnung (13) im Bondkopf (11) innenseitig an ein Energieüber¬ tragungsteil (34) des Bondkopfs (33) herange¬ führt ist, dessen Außenfläche zur Beaufschla- gung des Kontaktelements (35) mit Druck und
Wärme dient.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Bondkopf (33) zusätzlich mit Ultra¬ schallschwingungen beaufschlagbar ist.
PCT/DE1994/000677 1993-06-17 1994-06-16 Verfahren und vorrichtung zur kontaktierung eines kontaktelements WO1995000283A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE4494299A DE4494299C1 (de) 1993-06-17 1994-06-16 Verfahren und Vorrichtung zur Kontaktierung eines Kontaktelements
US08/564,352 US5938951A (en) 1993-06-17 1994-06-16 Method and apparatus for the bonding of a contact element
DE4494299D DE4494299D2 (de) 1993-06-17 1994-06-16 Verfahren und Vorrichtung zur Kontaktierung eines Kontaktelements

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4320057 1993-06-17
DEP4320057.5 1993-06-17
DE4320058 1993-06-17
DEP4320058.3 1993-06-17

Publications (1)

Publication Number Publication Date
WO1995000283A1 true WO1995000283A1 (de) 1995-01-05

Family

ID=25926847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000677 WO1995000283A1 (de) 1993-06-17 1994-06-16 Verfahren und vorrichtung zur kontaktierung eines kontaktelements

Country Status (3)

Country Link
US (1) US5938951A (de)
DE (1) DE4494299C1 (de)
WO (1) WO1995000283A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758145A2 (de) * 1995-08-08 1997-02-12 Taiyo Yuden Co., Ltd. Verfahren zum Herstellen eines Schaltungsmoduls
FR2740648A1 (fr) * 1995-10-31 1997-04-30 Hewlett Packard Co Connexion sans brasure de contacts electriques utlisant un systeme a combinaison de laser et connexion a poussee par fibre optique
US6236015B1 (en) 1995-10-31 2001-05-22 Hewlett-Packard Company Method for predicting and avoiding a bad bond when utilizing fiber push connect laser bonding
US6713714B1 (en) * 1999-01-18 2004-03-30 Pac Tech-Packaging Technologies Gmbh Method and device for thermally connecting the contact surfaces of two substrates
WO2020043230A1 (de) * 2018-08-27 2020-03-05 Hesse Gmbh Bondanordnung und bondwerkzeug

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100279755B1 (ko) * 1998-06-18 2001-02-01 정선종 다채널 광소자 모듈의 광정렬 보정방법
DE20106464U1 (de) * 2001-04-12 2001-08-02 Pac Tech - Packaging Technologies GmbH, 14641 Nauen Vorrichtung zum Aufbringen von Lotkugeln
US20040047571A1 (en) * 2002-09-06 2004-03-11 Boord Warren Timothy Hermetically sealed ferrule
US7311239B2 (en) * 2004-05-04 2007-12-25 Sv Probe Pte Ltd. Probe attach tool
US7872208B2 (en) * 2005-03-31 2011-01-18 Medtronic, Inc. Laser bonding tool with improved bonding accuracy
US20110309057A1 (en) * 2010-06-21 2011-12-22 Touch Micro-System Technology Corp. Laser heating apparatus for metal eutectic bonding
DE102015114129A1 (de) * 2015-08-26 2017-03-02 Pac Tech - Packaging Technologies Gmbh Vorrichtung zur Entfernung eines Prüfkontakts einer Prüfkontaktanordnung
DE102019124334A1 (de) * 2019-09-11 2021-03-11 Hesse Gmbh Bondanordnung und Bondwerkzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022280A (en) * 1978-01-28 1979-12-12 Plessey Co Ltd Improvements in or relating to sealing optical fibres into packages.
EP0314113A2 (de) * 1987-10-30 1989-05-03 Japan Aviation Electronics Industry, Limited Vorrichtung und Verfahren zur Justierung und zur Fixierung optischer Fasern
EP0356988A2 (de) * 1988-08-31 1990-03-07 Sumitomo Electric Industries, Ltd. Eine Vorrichtung für die Herstellung eines optischen Übertragungsmoduls
EP0423433A1 (de) * 1989-09-28 1991-04-24 International Business Machines Corporation Verfahren und Vorrichtung zum Verbinden von Bauteilleitungen an Anschlussflächen, die auf einem nichtstarren Substrat liegen
DE4200492A1 (de) * 1991-10-04 1993-04-08 Ghassem Dipl Ing Azdasht Vorrichtung zum elektrischen verbinden von kontaktelementen
DE4137508A1 (de) * 1991-11-14 1993-05-19 Siemens Ag Verfahren zum herstellen eines sendemoduls fuer lichtwellenleiter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463898A (en) * 1965-07-09 1969-08-26 Tokyo Shibaura Electric Co Welding device utilizing laser beams
US4357072A (en) * 1978-01-28 1982-11-02 Plessey Handel Und Investments Ag Sealing optical fibres into packages
JPS60162574A (ja) * 1984-02-06 1985-08-24 Canon Inc レ−ザ−はんだ付け装置
US4696104A (en) * 1985-06-07 1987-09-29 Vanzetti Systems, Inc. Method and apparatus for placing and electrically connecting components on a printed circuit board
JPS6223003A (ja) * 1985-07-24 1987-01-31 Matsushita Electric Ind Co Ltd レ−ザダイボンデイングツ−ル
JPS62134173A (ja) * 1985-12-06 1987-06-17 Matsushita Electric Ind Co Ltd レ−ザダイボンデイングツ−ル
EP0367705A3 (de) * 1988-10-31 1990-09-26 International Business Machines Corporation Laserunterstützte Ultraschallverbindung
US4970365A (en) * 1989-09-28 1990-11-13 International Business Machines Corporation Method and apparatus for bonding components leads to pads located on a non-rigid substrate
JPH07109934B2 (ja) * 1991-04-18 1995-11-22 松下電器産業株式会社 電子部品接続装置
US5178723A (en) * 1991-11-04 1993-01-12 At&T Bell Laboratories Method and apparatus for making optical devices
TW244378B (de) * 1992-05-15 1995-04-01 Philips Electronics Nv

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022280A (en) * 1978-01-28 1979-12-12 Plessey Co Ltd Improvements in or relating to sealing optical fibres into packages.
EP0314113A2 (de) * 1987-10-30 1989-05-03 Japan Aviation Electronics Industry, Limited Vorrichtung und Verfahren zur Justierung und zur Fixierung optischer Fasern
EP0356988A2 (de) * 1988-08-31 1990-03-07 Sumitomo Electric Industries, Ltd. Eine Vorrichtung für die Herstellung eines optischen Übertragungsmoduls
EP0423433A1 (de) * 1989-09-28 1991-04-24 International Business Machines Corporation Verfahren und Vorrichtung zum Verbinden von Bauteilleitungen an Anschlussflächen, die auf einem nichtstarren Substrat liegen
DE4200492A1 (de) * 1991-10-04 1993-04-08 Ghassem Dipl Ing Azdasht Vorrichtung zum elektrischen verbinden von kontaktelementen
DE4137508A1 (de) * 1991-11-14 1993-05-19 Siemens Ag Verfahren zum herstellen eines sendemoduls fuer lichtwellenleiter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758145A2 (de) * 1995-08-08 1997-02-12 Taiyo Yuden Co., Ltd. Verfahren zum Herstellen eines Schaltungsmoduls
EP0758145A3 (de) * 1995-08-08 1997-11-19 Taiyo Yuden Co., Ltd. Verfahren zum Herstellen eines Schaltungsmoduls
FR2740648A1 (fr) * 1995-10-31 1997-04-30 Hewlett Packard Co Connexion sans brasure de contacts electriques utlisant un systeme a combinaison de laser et connexion a poussee par fibre optique
US6236015B1 (en) 1995-10-31 2001-05-22 Hewlett-Packard Company Method for predicting and avoiding a bad bond when utilizing fiber push connect laser bonding
US6983539B2 (en) 1995-10-31 2006-01-10 Hewlett-Packard Development Company, L.P. Method of forming an electrical connection between electrical leads of a tab circuit and electrical contact bumps
US6713714B1 (en) * 1999-01-18 2004-03-30 Pac Tech-Packaging Technologies Gmbh Method and device for thermally connecting the contact surfaces of two substrates
WO2020043230A1 (de) * 2018-08-27 2020-03-05 Hesse Gmbh Bondanordnung und bondwerkzeug

Also Published As

Publication number Publication date
US5938951A (en) 1999-08-17
DE4494299C1 (de) 2001-07-05

Similar Documents

Publication Publication Date Title
DE3788455T2 (de) Bandstruktur für automatische Bandmontage, Mehrschichtpackung und universelle Chipverbindung.
DE69026188T2 (de) Elektrischer Verbinder
DE69211456T2 (de) Flip-Chip-Verfahren zur Verbindung eines Halbleiterchips
DE10065624C2 (de) Kopplungsanordnung zum optischen Koppeln eines Lichtwellenleiters mit einem elektro-optischen oder opto-elektrischen Halbleiterwandler
DE69525697T2 (de) Halbleiteranordnung vom Filmträgertyp mit Anschlusshöcher
DE102013011581B4 (de) Anordnung aus einem Substrat mit mindestens einem optischen Wellenleiter und einer optischen Koppelstelle und aus einem optoelektronischen Bauelement und Verfahren zur Herstellung einer solchen Anordnung
WO1995000283A1 (de) Verfahren und vorrichtung zur kontaktierung eines kontaktelements
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
DE102005017849B4 (de) Elektronisches Bauteil
DE10223850A1 (de) Verfahren zum Verbinden eines optoelektrischen Moduls mit einem Halbleitergehäuse
DE69217448T2 (de) Verfahren zum Verbinden eines Leiters mit einer Elektrode in einer elektronischen Anordnung
EP1174745A2 (de) Optoelektronisches oberflächenmontierbares Modul
DE112018002439B4 (de) Abdeckung für ein optoelektronisches Bauelement und optoelektronisches Bauteil
DE19641730A1 (de) Verfahren zum Herstellen von bondfähigen Halbleiterbausteinen
DE60303140T2 (de) Optische verbindungsanordnung
DE69805404T2 (de) Verfahren zum herstellen kontaktloser karten mit antennenverbindung durch gelötete drähte
EP3233345B1 (de) Verfahren zur voidreduktion in lötstellen
EP0961372A1 (de) Hochfrequenz-Lasermodul und Verfahren zur Herstellung desselben
EP3625599B1 (de) Photonisches bauelement und verfahren zu dessen herstellung
EP1168022A2 (de) Optomodul mit durchkontaktiertem Trägersubstrat
DE102019210750B4 (de) Verfahren zur herstellung einer anordnung mit einem substrat und zwei bauelementen mit lichtwellenleitern
EP0867932B1 (de) Verfahren zur Herstellung von Bonddrahtverbindungen
DE10040450B4 (de) Halbleiterlaserbauelement mit einem Kühlelement
DE3307669C2 (de)
EP0880421A1 (de) Verfahren zum bonden von isolierdraht und vorrichtung zur durchführung des verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08564352

Country of ref document: US

REF Corresponds to

Ref document number: 4494299

Country of ref document: DE

Date of ref document: 19960509

WWE Wipo information: entry into national phase

Ref document number: 4494299

Country of ref document: DE

122 Ep: pct application non-entry in european phase