WO1994025618A1 - Enzymatische verstärkungssysteme - Google Patents

Enzymatische verstärkungssysteme Download PDF

Info

Publication number
WO1994025618A1
WO1994025618A1 PCT/EP1994/001286 EP9401286W WO9425618A1 WO 1994025618 A1 WO1994025618 A1 WO 1994025618A1 EP 9401286 W EP9401286 W EP 9401286W WO 9425618 A1 WO9425618 A1 WO 9425618A1
Authority
WO
WIPO (PCT)
Prior art keywords
mediator
enzymatic amplification
enzyme
evs
alkaline phosphatase
Prior art date
Application number
PCT/EP1994/001286
Other languages
English (en)
French (fr)
Inventor
Frieder Scheller
Ulla Wollenberger
Alexander Makower
Original Assignee
Byk Gulden Italia S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19934314417 external-priority patent/DE4314417A1/de
Priority claimed from DE19934342351 external-priority patent/DE4342351A1/de
Application filed by Byk Gulden Italia S.P.A. filed Critical Byk Gulden Italia S.P.A.
Publication of WO1994025618A1 publication Critical patent/WO1994025618A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/581Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with enzyme label (including co-enzymes, co-factors, enzyme inhibitors or substrates)

Definitions

  • the invention relates to enzymatic amplification systems (EVS) for determining mediators, in which laccase, as the enzyme oxidizing the mediator, is placed in front of an oxygen electrode together with an enzyme reducing the mediator in dissolved or immobilized form.
  • EVS enzymatic amplification systems
  • DD-PS 280790 describes a biosensor for the determination of electrochemically active mediators such as e.g. Hydroquinone, ferrocyanide or ferrocene derivatives are proposed, in which an enzyme which oxidizes the reduced mediator while consuming oxygen is applied to the surface of an oxygen electrode together with an enzyme which reduces the oxidized mediator. Laccase or peroxidase are given as the enzyme oxidizing the mediator.
  • cytochrome b “, glucose oxidase, glutamate oxidase, diaphorase or lactate oxidase are disclosed as being suitable.
  • the enzymes are fixed on the oxygen electrode by methods known per se by immobilization in membranes.
  • the reduced mediator to be determined is oxidized by laccase while consuming oxygen.
  • the oxidized mediator is reduced again with substrate consumption and is then available for renewed oxidation.
  • This cycle runs as long as the substrate of the enzyme reducing the mediator is present in the measurement solution.
  • This continuous recycling of the mediator consumes a multiple of the amount of oxygen that would be necessary to oxidize the amount of mediator present in the measurement solution.
  • the display of oxygen consumption via an oxygen electrode at - 600 mV (vs Ag / AgCI) therefore leads to a higher sensitivity for the mediators than with the direct electrochemical display of the reduced or oxidized mediator.
  • DD-PS 280790 also states that the mediators can be formed by enzymatic reactions and that the enzyme activity can then be determined by determining the mediators formed.
  • the prior art biosensors have a number of disadvantages. It has been shown that cytochrome b_ in conjunction with laccase in practice has insufficient stability shows and because of the low specific activity a gain can only be achieved up to a factor of about 200. Diaphorase as an enzyme partner for laccase has the disadvantage that an excess of the very expensive NADH is required as a co-reactant. When using the enzyme pairs laccase with glucose oxidase, lactate oxidase and glutamate oxidase, biosensors are obtained which are not very effective since laccase requires oxygen, while with the oxidases competition between oxygen and mediator weakens the recycling.
  • the object of the present invention was to provide enzymatic amplification systems (EVS) for the determination of mediators, in which laccase, as the enzyme oxidizing the mediator, together with an enzyme reducing the mediator, are placed in front of an oxygen electrode in dissolved or immobilized form Do not have disadvantages.
  • EVS enzymatic amplification systems
  • the invention therefore relates to enzymatic amplification systems for determining mediators, in which laccase, as the enzyme oxidizing the mediator, together with an enzyme reducing the mediator, are brought before an oxygen electrode in dissolved or immobilized form, characterized in that p-aminophenol and as the mediator reducing enzyme oligosaccharide dehydrogenase or NADH-independent glucose dehydrogenase (EC 1 .1 .99.17).
  • Glucose is used as the substrate for the oligosaccharide dehydrogenase and the NADH-independent glucose dehydrogenase, the oxidized form of the mediator formed by laccase catalysis being reduced.
  • the mediator p-aminophenol is oxidized under oxygen consumption to quinonimine, which is reduced again to aminophenol.
  • An advantage of the enzymatic amplification systems according to the invention is that the A sufficient amount of cosubstrates glucose and oxygen of the two enzymes are present in the usual clinical test samples (eg blood or serum). The surprisingly high gain is therefore achieved without the need to add cosubstrates.
  • a layer of bienzyme is fixed on the polyethylene membrane of an oxygen electrode and covered with a cellulose dialysis membrane.
  • 300 to 400 preferably, are on a gelatin membrane
  • Laccase is available from Pyricuiaria oryzae with an activity of 144 U / mg solids from Sigma Chem. GmbH, Germany. Laccase from Polyporus versicolor with an activity of 350 U / mg lyophilized dry powder was obtained from the Armenian Institute of Biochemistry, Yerevan. ODH from Staphylococcus spec. with an activity of 170 U / mg can be obtained from Toyo Jozo, Japan. NADH-independent glucose dehydrogenase is described in P. Doktor, J. Frank and J.A. Duine, (1986), "Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41", Biochem. J. 239, 163-167.
  • the cheapest gain is achieved at pH 5.5 in phosphate buffered solution.
  • the recycling depends on the concentration of the substrate of ODH or GDH. In the case of glucose, no further amplification occurs above a concentration of 0.4 mmol / l.
  • a linearity between the signal and the amount of aminophenol is observed up to a concentration of 1.5 mmol / l p-aminophenol in the absence of glucose.
  • a linearity up to a concentration of 0.5 mmol / l is determined.
  • the estimated sensitivities in the linear concentration range are 33 nA l / mmol in the absence of glucose and 82500 nA l / mmol in the case of amplification by glucose.
  • An amplification factor of 2500 is thus obtained.
  • hydroquinone according to the prior art instead of p-aminophenol as mediator, an amplification factor of only 170 is observed.
  • p-aminophenol In the presence of glucose, p-aminophenol can be up to 0.05 nmol / l can be determined. Of particular importance is the fact that p-aminophenyl phosphate or aminophenyl galactoside, even in the presence of glucose, only after cleavage, for. B. with alkaline phosphatase or S-galactosidase leads to a very intense signal.
  • a preferred embodiment is a sandwich enzyme immunoassay, in which a first specific antibody for an analyte is immobilized on the bienzyme electrode.
  • a second antibody specific for the analyte is labeled with alkaline phosphatase or? -Galactosidase.
  • the amount of analyte can be deduced by determining the amount of p-aminophenol released from the added p-aminophenyl phosphate or aminophenylgalactoside by the alkaline phosphatase or / 3-galacotisase.
  • An extremely sensitive method for the determination of analytes is therefore available, which requires only a short incubation time and a small sample volume.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Es werden enzymatische Verstärkungssysteme (EVS) zur Bestimmung von Mediatoren angegeben, bei denen Laccase (EC 1.10.3.2) als den Mediator oxidierendes Enzym gemeinsam mit einem den Mediator reduzierenden Enzym in gelöster oder immobilisierter Form vor eine Sauerstoffelektrode gebracht sind, die dadurch gekennzeichnet sind, daß als Mediator p-Aminophenol und als den Mediator reduzierendes Enzym Oligosacchariddehydrogenase oder NADH-unabhängige Glucosedehydrogenase (EC 1.1.99.17) zugegen sind. Die neuen enzymatischen Verstärkungssysteme lassen sich zur sehr empfindlichen Bestimmung von p-Aminophenol oder für Enzymimmunoassays verwenden.

Description

Enzymatische Verstärkungssysteme
Technisches Gebiet
Die Erfindung betrifft enzymatische Verstärkungssysteme (EVS) zur Bestimmung von Mediatoren, bei denen Laccase als den Mediator oxidierendes Enzym gemeinsam mit einem den Mediator reduzierenden Enzym in gelöster oder immmobilisierter Form vor eine Sauerstoffelektro¬ de gebracht werden.
Stand der Technik
In der DD-PS 280790 wird ein Biosensor zur Bestimmung von elektrochemisch aktiven Mediatoren wie z.B. Hydrochinon, Ferrozyanid oder Ferrocenderivaten vorgeschlagen, bei dem auf der Oberfläche einer Sauerstoffelektrode ein den reduzierten Mediator unter Sauerstoffver¬ brauch oxidierendes Enzym gemeinsam mit einem den oxidierten Mediator reduzierenden Enzym aufgebracht sind. Als den Mediator oxidierendes Enzym werden Laccase oder Peroxidase angegeben. Für die Reduktion des oxidierten Mediators werden Cytochrom b„, Glucoseoxidase, Glutamatoxidase, Diaphorase oder Lactatoxidase als in Frage kommend offenbart. Die Fixierung der Enzyme auf der Sauerstoffelektrode erfolgt nach an sich bekannten Methoden durch Immobilisierung in Membranen. Der zu bestimmende reduzierte Mediator wird unter Sauerstoff¬ verbrauch durch Laccase oxidiert. Durch das zweite immobilisierte Enzym wird der oxidierte Me¬ diator unter Substratverbrauch wieder reduziert und steht dann für eine erneute Oxidation zur Verfügung. Dieser Zyklus läuft so lange wie Substrat des den Mediator reduzierenden Enzyms in der Meßlösung vorhanden ist. Durch diese kontinuierliche Rezyklisierung des Mediators wird ein Vielfaches der Sauerstoffmenge verbraucht die zur Oxidation der in der Meßlösung vorhandenen Menge an Mediator notwendig wäre. Die Anzeige des Sauerstoffverbrauches über eine Sauerstoffelektrode bei - 600 mV (vs Ag/AgCI) führt deshalb zu einer höheren Empfindlichkeit für die Mediatoren als bei der direkten elektrochemischen Anzeige des reduzierten bzw. oxidierten Mediators. In der DD-PS 280790 wird auch angegeben, daß die Mediatoren durch enzymatische Reaktionen gebildet werden können und über die Bestimmung der gebildeten Mediatoren dann die Enzymaktivität ermittelt werden kann.
Die Biosensoren nach dem Stand der Technik weisen eine Reihe von Nachteilen auf. So zeigte es sich, daß Cytochrom b_ in Verbindung mit Laccase in der Praxis eine zu geringe Arbeitsstabilität zeigt und wegen der niedrigen spezifischen Aktivität eine Verstärkung nur bis zu einem Faktor von etwa 200 erreichbar ist. Diaphorase als Enzympartner für Laccase hat den Nachteil, daß als Coreaktand ein Überschuß des sehr teuren NADH benötigt wird. Bei Verwendung der Enzympaare Laccase mit Glucoseoxidase, Lactatoxidase und Glutamatoxidase erhält man Biosensoren, die nur wenig effektiv sind, da Laccase Sauerstoff benötigt, während bei den Oxidasen eine Konkurrenz zwischen Sauerstoff und Mediator die Recyclisierung abschwächt.
Beschreibung der Erfindung
Aufgabe der vorliegenden Erfindung war es, enzymatische Verstärkungssysteme (EVS) zur Bestimmung von Mediatoren, bei denen Laccase als den Mediator oxidierendes Enzym gemeinsam mit einem den Mediator reduzierenden Enzym in gelöster oder immmobiiisierter Form vor eine Sauerstoffelektrode gebracht werden, zur Verfügung zu stellen, die diese Nachteile nicht aufweisen.
Es wurde nun überraschenderweise gefunden, daß enzymatische Verstärkungssysteme, bei denen die Enzympaare Laccase (EC 1 .10.3.2) und Oligosacchariddehydrogenase oder NADH-unabhängige Glucosedehydrogease (EC 1 .1 .99.17) und als Mediator p-Aminophenol verwendet werden, sich durch eine große Unempfindlichkeit gegenüber internen störenden Nebenwirkungen und einen hohen Verstärkungsfaktor auszeichnen.
Gegenstand der Erfindung sind daher enzymatische Verstärkungssysteme zur Bestimmung von Mediatoren, bei denen Laccase als den Mediator oxidierendes Enzym gemeinsam mit einem den Mediator reduzierenden Enzym in gelöster oder immmobiiisierter Form vor eine Sauerstoffelektro¬ de gebracht sind, dadurch gekennzeichnet, daß als Mediator p-Aminophenol und als den Mediator reduzierendes Enzym Oligosacchariddehydrogenase oder NADH-unabhängige Glucosedehydrogenase (EC 1 .1 .99.17) zugegen sind.
Weitere Gegenstände ergeben sich aus den Patentansprüchen.
Als Substrat für die Oligosacchariddehydrogenase und die NADH-unabhängige Glucosedehydro¬ genase wird Glucose eingesetzt, wobei die durch Laccase-Katalyse gebildete oxidierte Form des Mediators reduziert wird. Der Mediator p-Aminophenol wird unter Sauerstoff verbrauch zu Quinonimin oxidiert, das wieder zu Aminophenol reduziert wird.
Ein Vorteil der erfindungsgemäßen enzymatischen Verstärkungssysteme besteht darin, daß die Cosubstrate Glucose und Sauerstoff der beiden Enzyme in den üblichen klinischen Untersu¬ chungsproben (z.B. Blut oder Serum) in ausreichender Menge vorhanden sind. Die überraschend hohe Verstärkung wird daher erreicht, ohne daß ein Zusatz von Cosubstraten erforderlich ist.
Zur Herstellung von Enzymelektroden wird eine Bienzymschicht auf der Polyethylenmembran einer Sauerstoffelektrode fixiert und mit einer Cellulose-Dialysemembran abgedeckt. In einer bevorzugten Ausführungsform werden auf einer Gelatinemembran 300 bis 400, vorzugsweise
2 2
330 bis 370 Einheiten pro cm ODH bzw. 200 bis 300 Einheiten pro cm GDH und 600 bis
2 800, vorzugsweise 660 bis 740 Einheiten /cm Laccase fixiert. Bei einem Potential von - 600 mV wird der Sauerstoffverbrauch als stationäre oder differentielle Strom/Zeit-Kurve verfolgt.
Die Enzyme sind käuflich erhältlich. Beispielsweise ist Laccase von Pyricuiaria oryzae mit einer Aktivität von 144 U/mg Feststoff bei der Sigma Chem. GmbH, Deutschland zu beziehen. Laccase von Polyporus versicolor mit einer Aktivität von 350 U/mg lyophylisierten trockenen Pulvers wurde vom Armenischen Institut für Biochemie, Eriwan erhalten. ODH von Staphylococ- cus spec. mit einer Aktivität von 170 U/mg kann von Toyo Jozo, Japan, bezogen werden. NADH-unabhängige Glucosedehydrogenase ist beschrieben bei P. Doktor, J. Frank und J. A. Duine, (1986), "Purification and charcterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L.M.D. 79.41 ", Biochem. J. 239, 163 - 167.
Die günstigste Verstärkung erreicht man bei einem pH-Wert von 5,5 in phosphatgepufferter Lösung. Die Rezyklisierung ist abhängig von der Konzentration des Substrats von ODH bzw. von GDH. Im Falle von Glucose tritt oberhalb einer Konzentration von 0,4 mmol/l keine weitere Verstärkung mehr ein.
Eine Linearität zwischen Signal und Menge an Aminophenol wird bis zu einer Konzentration von 1 ,5 mmol/l p-Aminophenol in Abwesenheit von Glucose beobachtet. In Gegenwart von Glucose, d.h. wenn die Verstärkung durch Rezyklisierung möglich ist, wird eine Linearität bis zu einer Konzentration von 0,5 mmol/l festgestellt. Die geschätzten Empfindlichkeiten im linearen Kon¬ zentrationsbereich betragen 33 nA l/mmol bei Abwesenheit von Glucose und 82500 nA l/mmol im Falle der Verstärkung durch Glucose. Man erhält also einen Verstärkungsfaktor von 2500. Bei Verwendung von Hydrochinon gemäß dem Stand der Technik anstelle von p-Aminophenol als Mediator-, beobachtet man dagegen einen Verstärkungsfaktor von nur 170. In Gegenwart von Glucose kann p-Aminophenol bis zu 0,05 nmol/l bestimmt werden. Von besonderer Bedeutung ist die Tatsache, daß p-Aminophenylphosphat oder Aminophenylga- lactosid auch in Gegenwart von Glucose erst nach Spaltung z. B. mit alkalischer Phosphatase bzw. S-Galactosidase zu einem sehr intensiven Signal führt.
Dies erlaubt den Einsatz des enzymatischen Verstärkυngssystems bei allen Enzymimmunoas- says, bei denen ein Rekationspartner mit alkalischer Phosphatase markiert ist und im Detektions- schritt die Aktivität der alkalischen Phosphatase gemessen wird. Als Beispiele seien heterogene Immunoassays mit kompetitiver, immunometrischer oder Sandwich-Testführung genannt (Nonisotopic Immunoassay, Plenum Press, New York and London, 1988, Ed.: Ngo, T. T.).
Eine bevorzugte Ausführung ist ein Sandwich-Enzymimmunoassay, bei dem ein erster spezifischer Antikörper für einen Analyten auf der Bienzymelektrode immobilisiert wird. Ein zweiter für den Analyten spezifischer Antikörper wird mit alkalischer Phosphatase oder ?-Galactosidase markiert. Durch Bestimmung der durch die alkalische Phosphatase oder /3-Galacotisdase freigesetzten Menge an p-Aminophenol aus zugesetztem p-Aminophenylphosphat bzw. Aminophenylgalactosid kann auf die Menge des Analyten ge¬ schlossen werden. Es steht damit eine äußerst empfindliche Methode für die Bestimmung von Analyten zur Verfügung, die nur eine kurze Inkubationszeit und ein geringes Probenvolumen benötigt.

Claims

Patentansprüche
1. Enzymatische Verstärkungssysteme (EVS) zur Bestimmung von Mediatoren, bei denen Laccase (EC 1 .10.3.2) als den Mediator oxidierendes Enzym gemeinsam mit einem den Mediator reduzierenden Enzym in gelöster oder immmobiiisierter Form vor eine Sauerstoffelektrode gebracht sind, dadurch gekennzeichnet, daß als Mediator p-Aminophenol (AP) und als den Mediator reduzierendes Enzym Oligosacchariddehydrogenase (ODH) oder NADH-unabhängige Glucosedehydrogenase (EC 1 .1.99.17) zugegen sind.
2. Enzymatische Verstärkungssysteme (EVS) nach Anspruch 1 , dadurch gekennzeichnet, daß Glucose als Substrat des Enzyms Oligosacchariddehydrogenase (ODH) zugesetzt wird.
3. Verwendung der enzymatischen Verstärkungssysteme (EVS) nach Anspruch 1 für Immuno- assays, bei denen ein Reaktionspartner mit alkalischer Phosphatase oder .-Galactosidase markiert ist, dadurch gekennzeichnet, daß als Substrat für das Markerenzym p-Aminophenylphosphat bzw. Aminophenylgalactosid eingesetzt wird und die Konzentration des mit alkalischer Phosphatase oder .-Galactosidase markierten Reaktionspartners durch die Freisetzung von p-Aminophenol bestimmt wird.
4. Verwendung der enzymatischen Verstärkungssysteme (EVS) nach Anspruch 1 für Immunoassays, bei denen ein spezifischer Antikörper für den Analyten an einen Träger immobilisiert ist, und in der zu bestimmenden Probe bei hochmolekularen Antigenen ein zweiter für den Analyten spezifischer, mit alkalischer Phosphatase oder /^-Galactosidase markierter Antikörper, oder bei niedermolekularen Analyten das mit alkalischer Phosphatase oder /.-Galactosidase markierte Hapten sowie die Enzyme des enzymatischen Verstärkungssystems und p-Aminophenylphosphat bzw. Aminophenylgalactosid zugegen sind.
5. Verwendung der enzymatischen Verstärkungssysteme (EVS) nach Anspruch 1 für Immunoassays, bei denen ein spezifischer Antikörper für den Analyten direkt auf die das enzymatische Verstärkungssystem (EVS) enthaltende Bienzymelektrode immobilisiert ist, und in der zu bestimmenden Probe bei hochmolekularen Antigenen ein zweiter für den Analyten spezifischer, mit alkalischer Phosphatase oder /..-Galactosidase markierter Antikörper, oder bei niedermolekularen Anatlyten das mit alkalischer Phosphatase oder .-Galatosidase markierte Hapten und p-Aminophenylphosphat bzw. Aminophenylgalactosid zugegen sind.
PCT/EP1994/001286 1993-05-03 1994-04-26 Enzymatische verstärkungssysteme WO1994025618A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DEP4314417.9 1993-05-03
DE19934314417 DE4314417A1 (de) 1993-05-03 1993-05-03 Biosensor
DEP4342351.5 1993-12-11
DE19934342351 DE4342351A1 (de) 1993-12-11 1993-12-11 Enzymatische Verstärkungssysteme

Publications (1)

Publication Number Publication Date
WO1994025618A1 true WO1994025618A1 (de) 1994-11-10

Family

ID=25925471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/001286 WO1994025618A1 (de) 1993-05-03 1994-04-26 Enzymatische verstärkungssysteme

Country Status (1)

Country Link
WO (1) WO1994025618A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499625A (zh) * 2013-09-13 2014-01-08 同济大学 二维纳米稀土硼酸盐漆酶传感器的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232099A (ja) * 1984-05-01 1985-11-18 Nitsusui Seiyaku Kk アルカリ性ホスフアタ−ゼ活性の測定法
US4681841A (en) * 1982-10-01 1987-07-21 Toyo Jozo Kabushiki Kaisha Enzymatic assay method
DD280790A1 (de) * 1987-04-14 1990-07-18 Akad Wissenschaften Ddr Biosensor und verfahren zur bestimmung von mediatoren
EP0433855A2 (de) * 1989-12-21 1991-06-26 Roche Diagnostics GmbH N- und O-substituierte Aminophenolderivate, Zwischenprodukte zu deren Herstellung, deren Verwendung als Hydrolasesubstrate, ein entsprechendes Bestimmungsverfahren und hierfür geeignetes diagnostisches Mittel
JPH05196601A (ja) * 1991-11-19 1993-08-06 Wako Pure Chem Ind Ltd 新規な電気化学的測定法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681841A (en) * 1982-10-01 1987-07-21 Toyo Jozo Kabushiki Kaisha Enzymatic assay method
JPS60232099A (ja) * 1984-05-01 1985-11-18 Nitsusui Seiyaku Kk アルカリ性ホスフアタ−ゼ活性の測定法
DD280790A1 (de) * 1987-04-14 1990-07-18 Akad Wissenschaften Ddr Biosensor und verfahren zur bestimmung von mediatoren
EP0433855A2 (de) * 1989-12-21 1991-06-26 Roche Diagnostics GmbH N- und O-substituierte Aminophenolderivate, Zwischenprodukte zu deren Herstellung, deren Verwendung als Hydrolasesubstrate, ein entsprechendes Bestimmungsverfahren und hierfür geeignetes diagnostisches Mittel
JPH05196601A (ja) * 1991-11-19 1993-08-06 Wako Pure Chem Ind Ltd 新規な電気化学的測定法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9336, Derwent World Patents Index; Class B04, AN 93-282997 *
PATENT ABSTRACTS OF JAPAN vol. 10, no. 103 (C - 340) 18 April 1986 (1986-04-18) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499625A (zh) * 2013-09-13 2014-01-08 同济大学 二维纳米稀土硼酸盐漆酶传感器的制备方法及其应用
CN103499625B (zh) * 2013-09-13 2015-07-29 同济大学 二维纳米稀土硼酸盐漆酶传感器的制备方法及其应用

Similar Documents

Publication Publication Date Title
DE19622458C2 (de) Enzymatisch-elektrochemischer Einschritt-Affinitätssensor zur quantitativen Bestimmung von Analyten in wäßrigen Medien und Affinitätsassay
US6767441B1 (en) Biosensor with peroxidase enzyme
DE69822949T2 (de) Verfahren zur quantitativen Messung eines Substrats
US4963245A (en) Unitary multiple electrode sensor
DE69832572T2 (de) Biosensor und Verfahren zur quantitativen Messung eines Substrats
US5264103A (en) Biosensor and a method for measuring a concentration of a substrate in a sample
KR0171222B1 (ko) 산화 환원 조정시약 및 바이오센서
US6214612B1 (en) Cholesterol sensor containing electrodes, cholesterol dehydrogenase, nicotinamide adenine dinucleotide and oxidized electron mediator
EP1282417B1 (de) Creatinin-biosensor
EP0235153B1 (de) Verfahren für biochemische testverfahren
DD209478A5 (de) Testsystem und verfahren zur bestimmung von substanzen in fluessigkeiten
Marquette et al. Luminol electrochemiluminescence-based biosensor for total cholesterol determination in natural samples
WO1994025618A1 (de) Enzymatische verstärkungssysteme
DE4314417A1 (de) Biosensor
DE4342351A1 (de) Enzymatische Verstärkungssysteme
Másson et al. 4-Hydroxynaphthyl-1-phosphate as a substrate for alkaline phosphatase and its use in sandwich immunoassay
US6261780B1 (en) Quantitative analysis of biochemical compound utilizing electrochemical reaction
US4987075A (en) Method of making an enzyme membrane for enzyme electrodes
DD280790A1 (de) Biosensor und verfahren zur bestimmung von mediatoren
DE4216980C2 (de) Immunosensorisches Nachweisverfahren
DE4344646A1 (de) Vorrichtung für einen kompetitiven Immuno-Assay zur Bestimmung von Haptenen
Kuntawong et al. A Prussian Blue Modified Electrode Based Amperometric Sensor for Lactate Determination
DD291846A5 (de) Verfahren zur empfindlichen bestimmung von substanzen mit einem biosensor
DD236553A1 (de) Verfahren und bienzymelektrode zur bestimmung geloester stoffe in gemischen
Mizutani et al. Rapid measurement of cholinesterase activity using an amperometric enzyme electrode based on lipid-modified choline oxidase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase