WO1994023260A1 - Rauchgaskanäle und rekuperative wärmeaustauscher für rauchgase - Google Patents

Rauchgaskanäle und rekuperative wärmeaustauscher für rauchgase Download PDF

Info

Publication number
WO1994023260A1
WO1994023260A1 PCT/EP1994/000858 EP9400858W WO9423260A1 WO 1994023260 A1 WO1994023260 A1 WO 1994023260A1 EP 9400858 W EP9400858 W EP 9400858W WO 9423260 A1 WO9423260 A1 WO 9423260A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
flue
recuperative heat
heat exchanger
acid
Prior art date
Application number
PCT/EP1994/000858
Other languages
English (en)
French (fr)
Inventor
Helmut KNÜLLE
Original Assignee
Noell-Krc Umwelttechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noell-Krc Umwelttechnik Gmbh filed Critical Noell-Krc Umwelttechnik Gmbh
Priority to EP94911920A priority Critical patent/EP0689660A1/de
Priority to JP6521612A priority patent/JPH08511860A/ja
Publication of WO1994023260A1 publication Critical patent/WO1994023260A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Definitions

  • the present invention relates to flue gas ducts and recuperative heat exchangers for flue gases which operate in the area at risk of dew point.
  • these fluorinated hydrocarbon polymers have a relatively poor thermal conductivity and, due to their microporosity, still have a certain permeability for the small acid molecules. Too thin layers of these polymers are therefore not suitable for completely protecting the underlying metal layers from acid attack.
  • Regenerative heat exchangers in which the heat is absorbed, stored and released again by the mass used and around which the gases flow, work with certain leaks and thus always have a certain slip between the gases to be heated and cooled. In the case of regenerative heat exchangers in flue gas desulfurization systems, this means that a certain amount of unpurified flue gas is always added to the already cleaned clean gas. These regenerative heat exchangers can therefore only be used where the emission requirements are not too high and, on top of that, the acidity is relatively low. These regenerative heat exchangers consist of very large and very thin deformed and pressed sheets, which can be enamelled particularly acid-proof on the cold side. The sheet thickness is generally only 0.5 to 1.0 mm, since there are no strong mechanical stresses. The heat exchange is primarily a function of the mass on the one hand and the exchange surface on the other.
  • the wall thickness of flue gas ducts is therefore generally at least 5 mm and more.
  • Such strong metal sheets can no longer be enamelled in accordance with DIN 1623, since this DIN applies only up to and including 3 mm thick and only exceptional thicknesses up to 4 mm are permitted for enamelling after agreement with the manufacturer.
  • Pipes for tubular heat exchangers can be produced from such thin sheets, but the tubes are very bulky due to their length. The same applies to the dimensioning of sheets for flue gas ducts that has been used up to now.
  • the flue gas ducts according to the invention thus preferably consist of structural elements, such as smooth or curved, rectangular, trapezoidal or triangular sheets, which have stiffeners on the rear.
  • stiffened components are mechanically stable to absorb pressure fluctuations in the flue gas duct of more than -60 mbar without causing damage to the enamel layer.
  • These stiffened components are sealed to one another and to other components using fixed seals made of fluorocarbon polymers or else using commercially available acid-resistant sealing compounds.
  • the individual components are carried by an externally attached support frame, which is not only able to support the weight of these components, but also to absorb the mechanical stresses caused by pressure fluctuations.
  • the recuperative heat exchangers according to the invention preferably consist of seam-welded steel pipes according to DIN 1623, which are subsequently enamelled on the outside.
  • the enamel can be applied in the form of a slip or electrostatically and burned in with the help of an annular heating unit through which the pipes are pulled through or which migrates over the pipes.
  • This heating unit can in particular also be heated inductively, since such inductive heaters can be easily controlled.
  • other ring-shaped ovens can also be used to bake the enamel.
  • the enamelled tubes are then used as components of recuperative heat exchangers, for example by ending at both ends in boxes which are charged with the heating medium or coolant.
  • the bottom plate of such boxes facing the flue gas can optionally also be enamelled beforehand.
  • these base plates With boreholes through which the enamelled tubes can be inserted and then to coat the plate with a sufficiently thick film of fluorocarbon polymers. At the same time, these layers also act as a seal between the enameled tube and the borehole wall of the base plate.
  • recuperative tube heat exchangers are stable enough to be charged with water at a pressure of approximately 25 bar, so that they can also be charged with water as a cooling or heating medium in the temperature range above 100 ° C.
  • the advantage of such recuperative tube heat exchangers is that in the worst case, if the enamelled tube is damaged by corrosion, water can enter the flue gas from the tube, limiting the amount of leakage and causing no greater damage. Such a damaged pipe can also be shut down without having to repair the heat exchanger as a whole. Any corrosion damage due to damage to the enamel layer then becomes noticeable through loss of water and / or pressure in the cooling or heating water used. However, this does not yet result in a slippage between the unpurified flue gas and the clean gas as in the case of the regenerative heat exchangers.
  • the components used according to the invention are enamelled with the already known highly acid-resistant enamels, which have already proven themselves in regenerative heat exchangers. Due to the higher mechanical load due to pressure or pressure fluctuations, care must be taken to ensure that the enamel is applied and burned in without bubbles or pores. In the event of any damage to the enamel layer, the corrosion on the exposed steel then progresses very rapidly, so that such damage can soon be found. However, the repair is facilitated and simplified in that only relatively small components need to be replaced, which are relatively easy to handle in terms of size and weight.
  • heat pipes can also be used as recuperative heat exchangers, which, as is known, can only transport the heat in one direction, namely from the evaporable liquid collected to the point of recondensation of the vapors. As soon as the point of recondensation is warmer than the collection point for the liquid, the heat transport is interrupted.
  • These are practically maintenance-free closed systems which, according to the invention, consist of steel, at least externally enamelled, in accordance with DIN 1623.
  • the filling of the heat pipes should have a boiling point below 60 ° C, at least below 80 * C, so that they can be used for flue gases in the area where the dew point is at risk.
  • enamel is an optimally suitable corrosion protection in itself, since enamel both against sulfuric acid and against hydrochloric acid with increasing concentrations ⁇ tration of these acids becomes more constant, while the corrosion of materials such as tantalum, titanium, chromium-nickel steel and nickel-based alloys such as Hastelloy ⁇ 'increases with increasing acid concentrations additional mechanical stress is not possible to build flue gas ducts and recuperative heat exchangers for flue gases in the dew point-prone area from acid-resistant enamelled steel, but according to the invention it has now become possible and at the same time considerable costs compared to the only material that can be used hitherto, namely fluorinated hydrocarbon polymers n save and even achieve better heat transfer and thus higher efficiency.
  • Typical components for flue gas ducts have dimensions between 80 and 160 cm edge length.
  • Typical pipes for recuperative heat exchangers have a diameter of 2 to 8 cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)

Abstract

Rauchgaskanäle und rekuperative Wärmeaustauscher für Rauchgase, die im taupunktgefährdeten Bereich arbeiten, bestehen aus säurefest emailliertem Stahl und werden vorzugsweise aus vorgefertigten Bauelementen zusammengesetzt.

Description

Rauchgaskanäle und rekuperative Wärmeaustauscher für Rauchgase
Gegenstand der vorliegenden Erfindung sind Rauchgaskanäle und rekuperative Wärmeaustauscher für Rauchgase die im taupunktgefährdeten Bereich arbeiten.
Es liegt im Interesse der Wirtschaftlichkeit von Kessel¬ feuerungsanlagen, die Wärmeverluste möglichst niedrig zu halten. Der höchste Wärmeverlust ist dabei nach wie vor der Abgasverlust. Niedrige Abgasverluste führen nicht nur zu einer besseren Wärmenutzung, sondern auch zu niedrige¬ ren Schadstoffemissionen bis hin zum Ausstoß von Kohlen¬ dioxid, die zwangsweise bei der Verbrennung von fossilen Brennstoffen entstehen. Die Bemühungen, die Abgasverluste zu verringern, stoßen insofern auf Grenzen, als daß der Wasser- und Säuregehalt der Rauchgase den Taupunkt er¬ höhen. Unterschreiten die Wandtemperaturen den Taupunkt, bilden sich feuchte Niederschläge, die sehr stark korro¬ siv sind und obendrein erhebliche Verschmutzungen verur¬ sachen können. Der Taupunkt steigt vor allem mit zuneh¬ mendem Säuregehalt, so daß die Abgase aus höher schwefel¬ haltigen Brennstoffen bisher auch höhere Abgastemperatu¬ ren erforderlich machen.
Durch die inzwischen zum Einsatz kommenden Entschwefe¬ lungsanlagen werden die sauren Bestandteile des Rauch¬ gases weitgehend ausgewaschen. Die nassen Rauchgasent- schwefelungsanlagen machen es jedoch erforderlich, die Rauchgase stark abzukühlen und mit Wasserdampf zu sätti¬ gen. Um die Wirtschaftlichkeit der Kesselfeuerungsan- lagen zu verbessern, wird daher versucht, die dabei zur Verfügung stehende Wärme zu nutzen, beispielsweise zur Trocknung und Wiederaufheizung des tropfenbeladenen Reingases vor Eintritt in die Atmosphäre oder auch zur direkten Nutzung als Prozeßwärme durch eine Wärmeaus¬ kopplung.
Bei dieser Nutzung der Wärme ist es jedoch unvermeidlich, daß die Rauchgaskanäle, Wärmeaustauscher und sonstigen Bauelemente im taupunktgefährdeten Bereich arbeiten und mit sauren Kondensaten beaufschlagt werden. Auch die vom Reingas mitgerissenen Tropfen sind infolge ihres Salz¬ gehaltes und der im Gas verbliebenen Restsäure noch immer stark korrosiv, so daß auch diese Teile der Rauchgas¬ kanäle, Wärmeaustauscher und Bauelemente im taupunkt¬ gefährdeten Bereich arbeiten.
Während man im wäßrigsauren Bereich die Korrosion durch Edelstahle oder säurefeste Gummierungen vermeiden kann, konnte man bisher in taupunktgefährdeten Bereichen der Rauchgase, d.h. im Temperaturbereich zwischen 70 und 150"C nur mit fluorierten Kohlenwasserstoffpolymerisaten als Korrosionsschutz arbeiten. Die Auskleidung dieser Teile der Rauchgaskanäle sowie der rekuperativen Wärme¬ austauscher erfolgt daher bisher vor allem mit Hilfe von Tetrafluorpolyethylen (Teflon) , Perfluoralkoxypoly eri- saten (PFA und PVDF) . Rekuperative Wärmeaustauscher be¬ stehen daher vor allem aus derartigen Kunststoffschläu¬ chen oder aus Stahlrohren, die mit schlauchartigen Über¬ zügen dieser Kunststoffe überzogen sind. Selbst die an sich sehr säurefesten Nickel-Basis-Legierungen können bei höheren Temperaturen nicht eingesetzt werden, da die Standzeiten bei der dort herrschenden Korrosivität zu niedrig sind. Da obendrein diese Werkstoffe und ihre Verarbeitung sehr teuer sind und derartige Materialien obendrein extrem empfindlich sind gegen mechanische Ver¬ letzungen, besteht das Bedürfnis nach einer besseren und preiswerteren Lösung dieser Probleme. Dabei ist weiterhin zu beachten, daß diese fluorierten KohlenwasserstoffPoly¬ merisate eine relativ schlechte Wärmeleitfähigkeit auf¬ weisen und aufgrund ihrer Mikroporosität doch noch eine gewisse Permeabilität für die kleinen Säuremoleküle auf¬ weisen. Zu dünne Schichten dieser Polymerisate sind daher nicht geeignet, die darunter liegenden Metallschichten völlig vor dem Säureangriff zu schützen.
Regenerative Wärmeaustauscher, bei denen die Wärme durch die eingesetzte und mit den Gasen umströmte Masse aufge¬ nommen, gespeichert und wieder abgegeben wird, arbeiten mit gewissen Leckagen und weisen damit stets einen ge¬ wissen Schlupf zwischen den zu erwärmenden und abzuküh¬ lenden Gasen auf. Im Falle von regenerativen Wärmetau¬ schern in Rauchgasentschwefelungsanlagen führt dies dazu, daß stets eine gewisse Menge an ungereinigtem Rauchgas dem bereits gereinigten Reingas zugemischt wird. Diese regenerativen Wärmeaustauscher sind deshalb nur dort einsetzbar, wo keine zu hohen Emissionsanforderungen gestellt werden und obendrein der Säuregehalt relativ niedrig ist. Diese regenerativen Wärmeaustauscher be¬ stehen aus sehr großflächigen und sehr dünnen verformten und gegeneinander verpreßten Blechen, die insbesondere auf der Kaltseite säurefest emailliert sein können. Die Blechstärke beträgt hierbei im allgemeinen nur 0,5 bis 1,0 mm, da keine starken mechanischen Beanspruchungen erfolgen. Der Wärmeaustausch ist hierbei vor allem eine Funktion der Masse einerseits und der Austauscherfläche andererseits.
Rauchgaskanäle und rekuperative Wärmeaustauscher, insbe¬ sondere Röhrenwärmeaustauscher sind hingegen auch relativ starken mechanischen Beanspruchungen, insbesondere Druck¬ beanspruchungen ausgesetzt. Die Wandstärke von Rauchgas¬ kanälen liegt daher im allgemeinen bei mindestens 5 mm und mehr. Derartig starke Bleche können aber bereits nicht mehr gemäß DIN 1623 emailliert werden, da diese DIN nur bis einschließlich 3 mm Dicke gilt und nur ausnahms¬ weise Dicken bis 4 mm nach Vereinbarung mit dem Herstel¬ ler für die Emaillierung zugelassen sind. Rohre für Röhrenwärmeaustauscher können zwar aus derartigen dünnen Blechen hergestellt werden, jedoch sind die Rohre auf¬ grund ihrer Länge sehr sperrig. Das gleiche gilt für die bisher verwendete Dimensionierung von Blechen für Rauch¬ gaskanäle. Da die Emaille als Schlicker oder elektrosta¬ tisch auf das Blech aufgebracht und bei Temperaturen von 820 bis 860βC eingebrannt werden muß, sind entsprechend groß dimensionierte Brennöfen nötig. Hinzu kommt, daß die fertig emaillierten Bleche sehr vorsichtig behandelt werden müssen, da sie zumindest gegen Schlag und Stoß empfindlich sind, wenn auch nicht so empfindlich wie mit fluorierten Kohlenwasserstoffpolymerisaten beschichtete oder mit derartigen Auskleidungen versehene montierte Bleche. Aus diesem Grunde sind bisher Rauchgaskanäle und rekuperative Wärmeaustauscher, insbesondere rekuperative Röhrenwärmeaustauscher noch nicht für Rauchgase in emaillierter Form zum Einsatz gekommen.
Es wurde jetzt gefunden, daß es dennoch möglich ist, Rauchgaskanäle und rekuperative Wärmeaustauscher für Rauchgase, die im taupunktgefährdeten Bereich arbeiten, aus säurefest emailliertem Stahl herzustellen, insbeson¬ dere aus für die Emaillierung geeignetem Stahl gemäß DIN 1623 mit Wandstärken von nur 3 mm, wenn man die Rauchgas¬ kanäle und rekuperativen Wärmeaustauscher aus vorgefer¬ tigten Bauelementen zusammensetzt. Dabei ist es möglich. die Übergänge von Bauelementen miteinander und mit an¬ grenzenden sonstigen Teilen mit üblichen säurefesten Dichtungen oder Dichtungsmassen abzudichten. Besonders geeignet sind hierfür Dichtungen aus fluorierten Kohlen¬ wasserstoffpolymerisaten sowie säurefeste Dichtungs¬ massen, wie sie unter den Bezeichnungen Fiberfax Kleber 1000 und Rematex 2807/HS als Handelsprodukt angeboten werden. Diese Dichtungsmassen sind gegebenenfalls auch geeignet für die Ausbesserung emaillierter Flächen im Apparatebau.
Vorzugsweise bestehen somit die erfindungsgemäßen Rauch¬ gaskanäle aus Bauelementen, wie glatten oder gewölbten, rechteckigen, trapezförmigen oder dreieckigen Blechen, die auf der Rückseite Versteifungen aufweisen. Derartige Bauelemente sind trotz der geringen Wandstärke mechanisch stabil auch Druckschwankungen im Rauchgaskanal von mehr als - 60 mbar abzufangen, ohne daß es zu einer Beschädi¬ gung der Emailleschicht kommt. Diese versteiften Bau¬ elemente werden untereinander und gegenüber sonstigen Bauteilen abgedichtet mit festen Dichtungen aus Fluor¬ kohlenwasserstoffpolymerisaten oder auch mit handels¬ üblichen säurefesten Dichtmassen. Die einzelnen Bauele¬ mente werden getragen von einem außen angebrachten Trag¬ gerüst, welches nicht nur in der Lage ist das Gewicht dieser Bauelemente zu tragen, sondern auch die mecha¬ nischen Beanspruchungen durch Druckschwankungen abzu¬ fangen.
Die erfindungsgemäßen rekuperativen Wärmetauscher be¬ stehen vorzugsweise aus nahtgeschweißten Rohren aus Stahl gemäß DIN 1623, die nachträglich außen emailliert werden. Die Emaille kann dabei in Form von einem Schlicker oder elektrostatisch aufgetragen werden und eingebrannt werden mit Hilfe eines ringförmigen Heizaggregats, durch welches die Rohre hindurchgezogen werden oder welches über die Rohre hinwegwandert. Dieses Heizaggregat kann insbeson¬ dere auch induktiv beheizt werden, da derartige induktive Heizungen gut steuerbar sind. Es können aber auch andere ringförmige Öfen zum Einbrennen der Emaille verwendet werden. Die emaillierten Rohre werden dann als Bauele¬ mente von rekuperativen Wärmeaustauschern verwendet, bei¬ spielsweise indem sie an beiden Enden in Kästen enden, die mit dem Heizmittel oder Kühlmittel beschickt sind. Die dem Rauchgas zugewandte Bodenplatte derartiger Kästen kann gegebenenfalls ebenfalls zuvor emailliert sein. Ein¬ facher ist es hingegen, diese Bodenplatten zuvor mit Bohrlöchern zu versehen, durch die die emaillierten Rohre hindurchgesteckt werden können und dann die Platte mit einem ausreichend dicken Film von Fluorkohlenwasserstoff¬ polymerisaten zu beschichten. Dabei wirken diese Schich¬ ten gleichzeitig auch als Dichtung zwischen dem email¬ lierten Rohr und der Bohrlochwandung der Bodenplatte.
Derartige erfindungsgemäße rekuperative Röhrenwärme¬ austauscher sind stabil genug, mit Wasser unter einem Druck von ca. 25 bar beschickt zu werden, so daß sie auch im Temperaturbereich oberhalb 100*C mit Wasser als Kühl¬ oder Heizmittel beschickt werden können. Der Vorteil derartiger rekuperativer Röhrenwärmeaustauscher besteht darin, daß im Falle eines Korrosionsschadens am email¬ lierten Rohr schlimmstenfalls Wasser aus dem Rohr in das Rauchgas eintreten kann, wodurch die Leckagemenge be¬ grenzt wird und kein größerer Schaden entsteht. Auch kann ein solches beschädigtes Rohr stillgelegt werden, ohne den Wärmeaustauscher insgesamt reparieren zu müssen. Etwaige Korrosionsschäden durch Verletzung der Emaille¬ schicht machen sich dann durch Wasser- und/oder Druck¬ verlust des verwendeten Kühl- oder Heizwassers bemerkbar. Dies führt jedoch noch nicht zu einem Schlupf zwischen ungereinigtem Rauchgas und Reingas wie bei den regenera¬ tiven Wärmeaustauschern.
Die Emaillierung der erfindungsgemäß verwendeten Bauele¬ mente erfolgt mit den bereits bekannten hoch säurefesten Emaillien, die sich auch schon bei regenerativen Wärme¬ austauschern bewährt haben. Aufgrund der höheren mecha¬ nischen Belastung durch Druck bzw. Druckschwankungen ist allerdings darauf zu achten, daß die Emaille unbedingt blasen- und porenfrei aufgetragen und eingebrannt wird. Bei einer etwaigen Verletzung der Emailleschicht schrei¬ tet die Korrosion an dem dann freiliegenden Stahl sehr rasch voran, so daß derartige Schäden auch bald festzu¬ stellen sind. Die Reparatur ist jedoch dadurch erleich¬ tert und vereinfacht, daß nur relativ kleine Bauelemente auszustauschen sind, die von der Größe und vom Gewicht her relativ einfach handzuhaben sind.
Als rekuperative Wärmeaustauscher können erfindungsgemäß auch Wärmerohre (Heat-Pipes) zum Einsatz kommen, die be¬ kanntlich die Wärme nur in eine Richtung transportieren können, nämlich von der gesammelten verdampfbaren Flüs¬ sigkeit hin zur Stelle der Rekondensation der Dämpfe. Sobald die Stelle der Rekondensation wärmer ist als die Sammelstelle für die Flüssigkeit, wird der Wärmetransport unterbrochen. Es handelt sich um praktisch wartungsfreie geschlossene Systeme, die erfindungsgemäß aus zumindest außen emailliertem Stahl gemäß DIN 1623 bestehen. Die Füllung der Wärmerohre sollte einen Siedepunkt unterhalb von 60°C, mindestens unterhalb von 80*C aufweisen, um für Rauchgase im taupunktgefährderten Bereich einsetzbar zu sein. Da Rauchgase im taupunktgefährdeten Bereich vor allem zu Kondensaten führen mit hohen Schwefelsäurekonzentrationen (zwischen 80 und 120"C beträgt die Schwefelsäurekonzen¬ tration 58 bis 75 %) ist Emaille an sich ein optimal geeigneter Korrosionsschutz, da Emaille sowohl gegen Schwefelsäure wie gegen Salzsäure mit steigender Konzen¬ tration dieser Säuren beständiger wird, während die Korrosion bei Materialien wie Tantal, Titan, Chrom- Nickel-Stahl und Nickel-Basis-Legierungen, wie z.B. Hastelloy^ ' mit zunehmenden Säurekonzentrationen zu¬ nimmt. Dennoch war es bisher aufgrund der starken zu¬ sätzlichen mechanischen Belastung nicht möglich, Rauch¬ gaskanäle und rekuperative Wärmeaustauscher für Rauchgase im taupunktgefährdeten Bereich aus säurefest emaillierten Stahl zu bauen. Erfindungsgemäß ist es jetzt doch möglich geworden und dabei gegenüber dem einzigen bisher verwend¬ baren Material, nämlich fluorierten Kohlenwasserstoff¬ polymerisaten, erhebliche Kosten einzusparen und dabei sogar einen besseren Wärmeübergang und damit eine höhere Effizienz zu erzielen.
Typische Bauelemente für Rauchgaskanäle weisen Dimen¬ sionen zwischen 80 und 160 cm Kantenlänge auf. Typische Rohre für rekuperative Wärmetauscher weisen Durchmesser von 2 bis 8 cm auf.

Claims

PATENTANSPRÜCHE:
1. Rauchgaskanale und rekuperative Wärmeaustauscher für Rauchgase die im taupunktgefährdeten Bereich arbeiten, dadurch gekennzeichnet, daß die dem Rauchgas und den daraus entstehenden Kondensaten ausgesetzten Wandungen aus säurefest emaillierten Stahl bestehen.
2. Rauchgaskanale und rekuperative Wärmeaustauscher gemäß Anspruch 1, dadurch gekennzeichnet, daß sie aus vorge¬ fertigten Bauelementen zusammengesetzt sind.
3. Rauchgaskanale und rekuperative Wärmeaustauscher gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Übergänge von Bauelementen untereinander und mit an¬ grenzenden sonstigen Teilen aus üblichen säurefesten Dichtungen oder Dichtungsmassen bestehen.
. Rauchgaskanale und rekuperative Wärmeaustauscher gemäß Anspruch 3, dadurch gekennzeichnet, daß die Dichtungen aus fluorierten Kohlenwasserstoffpolymerisaten be¬ stehen.
5. Rauchgaskanale und rekuperative Wärmeaustauscher gemäß Anspruch 2, dadurch gekennzeichnet, daß die Bauele¬ mente aus glatten oder gewölbten, rechteckigen, trapezförmigen oder dreieckigen Blechen bestehen, die auf der Rückseite Versteifungen aufweisen.
6. Wärmeaustauscher gemäß Anspruch 2, dadurch gekenn¬ zeichnet, daß es Bauelemente für Röhrenwärmeaustau¬ scher sind aus nahtgeschweißten Rohren.
PCT/EP1994/000858 1993-03-26 1994-03-18 Rauchgaskanäle und rekuperative wärmeaustauscher für rauchgase WO1994023260A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94911920A EP0689660A1 (de) 1993-03-26 1994-03-18 Rauchgaskanäle und rekuperative wärmeaustauscher für rauchgase
JP6521612A JPH08511860A (ja) 1993-03-26 1994-03-18 煙道ガスダクトおよび煙道ガス用回収熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4309844.4 1993-03-26
DE4309844A DE4309844C2 (de) 1993-03-26 1993-03-26 Verfahren zur Herstellung eines Rohrbündel-Wärmetauschers für Rauchgase

Publications (1)

Publication Number Publication Date
WO1994023260A1 true WO1994023260A1 (de) 1994-10-13

Family

ID=6483919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/000858 WO1994023260A1 (de) 1993-03-26 1994-03-18 Rauchgaskanäle und rekuperative wärmeaustauscher für rauchgase

Country Status (5)

Country Link
EP (1) EP0689660A1 (de)
JP (1) JPH08511860A (de)
DE (1) DE4309844C2 (de)
TW (1) TW233335B (de)
WO (1) WO1994023260A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503999A1 (de) * 1995-02-08 1996-08-14 Thale Eisen Huettenwerk Verfahren zur Herstellung von emaillierten Eisenwerkstücken in Endloslängen bzw. Großflächen sowie Teilelement des Eisenwerkstückes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756155C5 (de) * 1997-12-17 2007-04-19 Babcock Borsig Service Gmbh Anordnung zum Wärmetausch
DE19940627A1 (de) * 1999-08-27 2001-03-01 Abb Patent Gmbh Heizelement für einen Regenerativ-Wärmetauscher und Verfahren zum Herstellen eines Heizelementes
DE10320462B3 (de) * 2003-05-08 2005-03-03 Alstom Power Energy Recovery Gmbh Heizelement für einen Regenerativ-Wärmetauscher und Verfahren zum Herstellen eines Heizelementes
DE102008053461A1 (de) * 2008-10-28 2010-05-27 Linde Ag Verfahren und Vorrichtung zur Begrenzung von Rußablagerungen in Abhitzekesseln
DE102016122016A1 (de) * 2016-11-16 2018-05-17 Wallstein Ingenieur Gmbh Wärmetauscher

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392349A1 (fr) * 1977-05-27 1978-12-22 Pfaudler Werke Ag Echangeur de chaleur emaille
EP0057095A2 (de) * 1981-01-22 1982-08-04 Archibald Watson Kidd Schutz für an Abgase ausgesetzte Teile
DE3405768A1 (de) * 1984-02-17 1985-08-22 Asta Ullrich GmbH Annweiler am Trifels, 6747 Annweiler Emailliertes blech
DE3445319A1 (de) * 1984-12-07 1986-06-12 Gerhard 1000 Berlin Kutter Gasabstroemungsvorrichtung
EP0192045A1 (de) * 1985-01-19 1986-08-27 Nikolaus Reininger Emailliertes Rohr für Hochdruckwärmetauscher
EP0290993A2 (de) * 1987-05-12 1988-11-17 Claus Münzner Rohrsystem zur Verwendung als Schornstein, Schornsteineinsatz oder dgl.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392349A1 (fr) * 1977-05-27 1978-12-22 Pfaudler Werke Ag Echangeur de chaleur emaille
EP0057095A2 (de) * 1981-01-22 1982-08-04 Archibald Watson Kidd Schutz für an Abgase ausgesetzte Teile
DE3405768A1 (de) * 1984-02-17 1985-08-22 Asta Ullrich GmbH Annweiler am Trifels, 6747 Annweiler Emailliertes blech
DE3445319A1 (de) * 1984-12-07 1986-06-12 Gerhard 1000 Berlin Kutter Gasabstroemungsvorrichtung
EP0192045A1 (de) * 1985-01-19 1986-08-27 Nikolaus Reininger Emailliertes Rohr für Hochdruckwärmetauscher
EP0290993A2 (de) * 1987-05-12 1988-11-17 Claus Münzner Rohrsystem zur Verwendung als Schornstein, Schornsteineinsatz oder dgl.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503999A1 (de) * 1995-02-08 1996-08-14 Thale Eisen Huettenwerk Verfahren zur Herstellung von emaillierten Eisenwerkstücken in Endloslängen bzw. Großflächen sowie Teilelement des Eisenwerkstückes
DE19503999C2 (de) * 1995-02-08 1998-08-20 Thale Eisen Huettenwerk Verfahren zur Herstellung von emaillierten Bauteilen in Endloslängen bzw. Großflächen sowie Teilelement und Verwendung eines Teilelements

Also Published As

Publication number Publication date
EP0689660A1 (de) 1996-01-03
JPH08511860A (ja) 1996-12-10
DE4309844A1 (de) 1994-09-29
TW233335B (de) 1994-11-01
DE4309844C2 (de) 1998-11-05

Similar Documents

Publication Publication Date Title
CA1168593A (en) Exhaust gas treatment method and apparatus
WO1994023260A1 (de) Rauchgaskanäle und rekuperative wärmeaustauscher für rauchgase
WO1994011677A1 (de) Feuerungslanlage
CH628134A5 (de) Rauchgasdurchstroemter waermetauscher.
EP0184612B2 (de) Wärmeübertrager, insbesonder für gas- oder ölbeheizte Wassererhitzer
DE3783891T2 (de) Feuerfeste abschirmung fuer gerade und krumme ueberhitzerrohre.
TW448287B (en) Heating element for a regenerative heat exchanger, and process for producing a heating element
DE1778832A1 (de) Warmwasserkessel,insbesondere Heizungskessel
DE3445319A1 (de) Gasabstroemungsvorrichtung
AT405321B (de) Korrosionsbeständiges verbundrohr, verfahren zu dessen herstellung und dessen verwendung
DE3043804A1 (de) Verfahren und vorrichtung zur waermerueckgewinnung aus heissen ofengasen, insbesondere glasofengasen
DE2206792C3 (de) Korrosionsbeständige Dichtung in der Rohrhalteplatte eines Wärmetauschers
DE8337506U1 (de) Wärmeaustauscher aus thermoplastischen fluoreszierten Werkstoffen
DE2924460A1 (de) Vorrichtung zum konzentrieren und/oder reinigen von mineralsaeuren
DE3720188A1 (de) Waermeuebertragungsblock fuer kreuzstrom-waermeaustauscher
DE3139794C2 (de) Glasrohrbündel-Wärmeaustauscher
DE2924505A1 (de) Vorrichtung zum konzentrieren und/oder reinigen von mineralsaeuren
DE2908414A1 (de) Apparate und rohrleitungen fuer korrosive und heisse gase
DE2905593A1 (de) Druckbehaelter fuer heisse medien
AT376790B (de) Heizungskessel fuer fluessige oder gasfoermige brennstoffe
DE1139601B (de) Keramischer Rekuperator
DE8600544U1 (de) Wärmetauscher für Feuerungen, insbesondere Ölfeuerungen
DE2536530A1 (de) Verfahren und einrichtung zur wiederaufwaermung von gewaschenen rauchgasen
DE1089908B (de) Auskleidung fuer die Umstellventile regenerativ gasbeheizter OEfen
DE19505807A1 (de) Abgasführung und zugehöriges Bauteil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994911920

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 525732

Date of ref document: 19950925

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994911920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1994911920

Country of ref document: EP