WO1993001144A1 - Composition de ciment - Google Patents

Composition de ciment Download PDF

Info

Publication number
WO1993001144A1
WO1993001144A1 PCT/JP1992/000826 JP9200826W WO9301144A1 WO 1993001144 A1 WO1993001144 A1 WO 1993001144A1 JP 9200826 W JP9200826 W JP 9200826W WO 9301144 A1 WO9301144 A1 WO 9301144A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
weight
parts
borohydride
cement composition
Prior art date
Application number
PCT/JP1992/000826
Other languages
English (en)
French (fr)
Inventor
Masashi Sugiyama
Kyoichi Tanaka
Kazuo Komatsu
Original Assignee
Fujisawayakuhinkogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujisawayakuhinkogyo Kabushiki Kaisha filed Critical Fujisawayakuhinkogyo Kabushiki Kaisha
Priority to US08/170,253 priority Critical patent/US5443635A/en
Priority to EP92913543A priority patent/EP0613868B1/en
Priority to DE69214295T priority patent/DE69214295T2/de
Publication of WO1993001144A1 publication Critical patent/WO1993001144A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0013Boron compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/601Agents for increasing frost resistance

Definitions

  • the present invention relates to a novel admixture for a cement composition, which has an expansion action with low temperature dependence and can also improve freeze-thaw durability, and a cement composition using the same.
  • expanders are also used in concrete, such as the reverse-casting concrete method, for casting in confined spaces where the joints cannot be integrated with the old concrete, in order to compensate for volume reduction. .
  • aluminum powder is generally used in terms of concrete properties, effects on the environment, economy, and the like.
  • the expanding agent composed of the aluminum powder chemically reacts with the aluminum component in the cement mixture to generate hydrogen gas, and the hydrogen gas acts to expand the surrounding cement mixture.
  • an object of the present invention is to provide a cement composition having a temperature-dependent swelling action with a small temperature dependency, improving the resistance of the cured product to repeated freezing and thawing, and being stable even in air.
  • An object of the present invention is to provide an agent and a cement composition using the same. Disclosure of the invention
  • the present invention relates to an admixture for a cement composition characterized by containing a borohydride salt, and a cement composition containing such a borohydride salt, a cement, an aggregate and water. Things.
  • Examples of the borohydride used in the present invention include sodium borohydride (NaBH 4 ), lithium borohydride (Li BH 4 ), calcium borohydride (Ca (BH 4 ) 2 And ammonium borohydride (NH 4 BH 4 ) etc.
  • sodium borohydride is suitably used from the viewpoint of handleability.
  • Sodium borohydride is a complex metal hydride in the form of a white powder with a molecular weight of 37.86. Its thermal stability is stable in dry air up to 300 ° C and decomposes (under vacuum) at 400 ° C. Above 550 ° C it generates hydrogen and trace amounts of diborane and decomposes rapidly. It is flammable and hygroscopic, but can be handled in air. When humid, it gradually hydrates and hydrolyzes.
  • the borohydride salt also has an effect of improving the resistance of the cured product to freezing and thawing. This is presumably because bubbles generated by the foaming action are fine.
  • the cement composition of the present invention basically comprises a chemical reaction between cement and water. It becomes a hardened hardened material by the reaction, and is mainly composed of cement, water and aggregate, and the above borohydride salt is added thereto, and if necessary, other various admixtures are added.
  • the amount of the borohydride to be added is appropriately determined depending on the required amount of expansion and application, but is usually used in the range of 0.001 to 10% by weight based on the cement. In particular, if only the purpose of improving the resistance to freezing and thawing is 0.001 to 0.05% by weight with respect to the cement, it is appropriate to add more than 0.05% by weight.
  • the compound may be added at the time of kneading the composition, or may be previously mixed with the cement. Further, the composition may be mixed after being driven into a mold or the like.
  • the other components used in combination with the borohydride salt may be appropriately selected from commonly used ones according to the application and purpose, and may be appropriately blended within the usual usage range.
  • FIG. 1 shows an expansion measurement test device used to examine the expansion effect of the cement composition admixture of the present invention.
  • FIG. 2 shows the expansion effect of the cement composition admixture of the present invention.
  • FIG. 2 is a graph showing the best mode for carrying out the invention.
  • Ordinary Portland cement (specific gravity 3.16) 320 parts by weight, water 181 parts by weight, Kisarazu sand as aggregate (specific gravity 2.61) 831 parts by weight and Kasama crushed stone (specific gravity 2.65) 852 parts by weight, ordinary Portland cement 100 parts by weight AE ⁇ ⁇ ⁇
  • PARIC SA trade name of Fujisawa Pharmaceutical Co., Ltd.
  • a predetermined amount is put into a cylindrical mold (inner diameter 10 and depth 20) 1 of the expansion amount measuring test device, and a plastic plate 2 is brought into contact with the surface and cured together with the plastic before and after curing.
  • the displacement of the plate 2 was measured by a displacement gauge 3 attached to the plastic plate 2.
  • the measurement results were recorded by the recorder 4 connected to the displacement meter 3, and the expansion rate was calculated from the measurement results.
  • Hardening was carried out under two conditions: concrete temperature and air temperature of 20 ° C and 5 ° C. Table 1 shows the results.
  • Table 1 shows, for comparison, the expansion coefficient when only the above ready-mixed concrete was hardened without adding sodium porrohydride and the conventional aluminum powder instead of the sodium-boride hydride.
  • the expansion coefficient when cured in the same manner as in the above example except for the combined point is also shown.
  • FIG. 2 shows the above results as changes in the expansion coefficient with respect to the amount of the expanding agent added.
  • Blending amount per 100 parts by weight of cement (parts by weight)
  • the cured body was broken in the 200-cycle freeze-thaw durability test.
  • those of the examples had a relative kinematic elasticity coefficient of 80% or more and excellent freeze-thaw durability.
  • the relative dynamic elastic modulus is judged to be sound if it is 60% or more.
  • Ordinary Portland cement (specific gravity 3.16) 550 parts by weight, water 165 parts by weight, 703 parts by weight Kisarazu sand (specific gravity 2.60) and 978 parts by weight of Ome crushed stone (specific gravity 2.63) as an aggregate, 30% water-cement ratio , Slump 20.5-22.0 cni, air content 1.0-1.4%, add 0.005, 0.01, 0.03.0.05 parts by weight of sodium boride hydride per 100 parts by weight of ordinary portland cement. After kneading, the kneaded product was put into a mold and cured. The resulting cured product was subjected to a 300-cycle freeze-thaw durability test.
  • the admixture for a cement composition according to the present invention can be used as a swelling agent to be mixed with various cement compositions from general structural concrete to secondary products in civil engineering and construction work, as well as freeze-thaw durability. It can be used as a performance improver.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

明 細 書
セメ ン卜組成物
技術分野
この発明は、 温度依存性の小さい膨張作用を有し、 かつ凍結融解 耐久性も改善しうる新規なセメ ント組成物用混和剤、 およびこれを 用いたセメント組成物に関する。
背景技術
従来より、 セメ ン ト ミルク、 モルタル、 コンクリートなどのセメ ント組成物に軽量性、 断熱性、 低収縮性などの性質を付与するため に膨張剤を添加することが行われている。
また、 逆打ちコンクリート工法のように、 打継目が旧コンクリー トと一体化し得ない拘束空間に打設するためのコンクリ一トなどに も、 体積減少を補償するために膨張剤が使用されている。
この種の膨張剤としては、 従来、 アルミニウム粉末が、 コンクリ 一ト特性や環境に与える影響、 経済性などの点から一般に使用され ている。 このアルミニウム粉末からなる膨張剤は、 セメ ント混和物 中のアル力リ成分と化学反応して水素ガスを発生し、 この水素ガス が周囲のセメント混和物を膨張させるように作用する。
しかしながら、 アルミニウム粉末は、 膨張量の温度による影響が 大きく、 同じ添加量でも温度が高くなると膨張量が増大し、 逆に温 度が低くなると膨張量が減少するため、 膨張量の管理が難しいとい う問題があった。 また、 アルミニウム粉末を膨張剤として用いたコ ンクリートは、 凍結融解に対する抵抗性に乏しいという問題もあつ た。 さらに、 空気中で酸化し易いため、 取扱いや保管に注意を要す るという問題もあった。
したがって、 この発明の目的は、 温度依存性の小さい膨張作用を 有し、 また、 硬化体の凍結融解の繰り返しに対する抵抗性を改善す ることができるうえ、 空気中でも安定なセメ ント組成物用混和剤お よびこれを用いたセメント組成物を提供することにある。 発明の開示
本発明は、 水素化ホウ素塩を含有することを特徵とするセメ ント 組成物用混和剤であり、 また、 このような水素化ホウ素塩とセメ ン 卜と骨材と水とを含有するセメント組成物である。
本発明に使用される水素化ホウ素塩としては、 たとえばナトリゥ ムボロハイ ドライ ド (N a B H4 ) 、 リチウムポロハイ ドライ ド ( L i B H 4 ) 、 カルシウムボロハイ ドライ ド (C a ( B H 4 ) 2、 アンモニゥムボロハイ ドライ ド (N H 4 B H 4 ) などが例示される。 なかでもナトリウムボロハイ ドライ ドが取扱い性などの点から好適 に使用される。
ナトリウムボロハイ ドライ ドは、 分子量 37. 86 、 白色粉末状の錯 金属水素化物である。 その熱安定性は 300°Cまでは乾燥空気中で安 定であり、 400°Cで分解 (真空下) する。 550°C以上では水素およ び微量のジボランを発生して急激に分解する。 また、 可燃性、 吸湿 性であるが、 空気中での取扱いが可能である。 湿気があると徐々に 水和して、 加水分解する性質を有する。
このよう'な水素化ホウ素塩による膨張作用は、 水素化ホウ素塩が セメ ン卜混和物中で水素ガスを発生し、 この水素ガスが発泡して内 部に気泡を生じる結果、 発現すると考えられる。
この発泡作用は温度による影響が非常に小さく、 水素化ホウ素塩 による膨張量は、 その添加量にのみほぼ相関する。 すなわち、 たと えば温度が 20°Cのときと 5°Cのときでは、 添加量が同じ場合にほぼ 同じ膨張量が得られる。 したがって、 添加量を調整することにより 所望の膨張量を得ることができるため、 膨張量の管理は極めて容易 である。
また、 水素化ホウ素塩は、 硬化体の凍結融解に対する抵抗性を向 上させる効果も有する。 これは、 上記発泡作用により生ずる気泡が 微細であるためと考えられる。
本発明のセメ ント組成物は、 基本的には、 セメ ン トと水の化学反 応により堅固な硬化体となるもので、 セメント、 水、 および骨材を 主とし、 これに上記水素化ホウ素塩を配合し、 さらに必要に応じて 他の各種混和材を配合したものである。
水素化ホウ素塩の配合量は、 要求される膨張量や用途などによつ て適宜決められるが、 通常、 セメン卜に対し通常 0.001〜10wt% の 範囲で使用される。 特に、 凍結融解に対する抵抗性の改善のみを目 的とする場合には、 セメントに対し 0.001〜0.05wt% が適当で、 0.05wt¾ を越えて配合しても効果はさほど変わらない。
また、 その配合方法としては、 組成物の練り混ぜ時に添加しても よく、 あるいは、 予めセメン卜に配合しておいてもよい。 さらに、 組成物を型枠などに打ち込んだ後混入するようにしてもよい。
なお、 水素化ホウ素塩と併用される他の成分は、 一般に使用され ているもののなかから、 用途、 目的に応じて適宜選択されて使用さ れてよく、 通常の使用範囲で適宜配合される。
図面の簡単な説明
第 1図は、 この発明のセメント組成物用混和剤による膨張効果を 調べるために用いた膨張量測定試験装置であり、 第 2図は、 この発 明のセメン卜組成物用混和剤による膨張効果を示したグラフである 発明を実施するための最良の形態
次に、 この発明を実施例によりさらに詳述する。
実施例 1〜4
普通ポルトラン ドセメ ン ト (比重 3.16) 320重量部、 水 181重量 部、 骨材として木更津砂 (比重 2.61) 831 重量部および笠間碎石 (比重 2. 65) 852 重量部、 普通ポルトランドセメント 100 重量部あ たり、 A E '减水剤としてパリック S A (藤沢薬品工業 (株) 製 商 品名) 0.2 重量部を混合した、 水セメ ン ト比 57%、 スランプ 18〜20 cm、 空気量 4.3 - 5. 1 %の生コンク リー トに、 普通ポルトラン ドセ メント 100 重量部あたりナ卜リゥムボ口ハイ ドライ ドを、 0. 05、 0. 1 、 0. 15. 0. 2 重量部添加し十分に混練した後、 この混練物を、 図 1に示すような膨張量測定試験装置の円筒状型枠 (内径 10關、 深 さ 20 ) 1に所定量入れ、 表面にプラスチック板 2を当接させると ともに硬化させて、 硬化前後のプラスチック板 2の変位を、 このプ ラスチック板 2に取り付けた変位計 3により測定した。 測定結果を 変位計 3に接続した記録計 4で記録するとともに、 測定結果より膨 張率を算出した。 なお、 硬化は、 コンクリート温度、 気中温度がと もに 20°Cの場合と、 5 °Cの場合の 2通りの温度条件で行った。 結果 を表 1に示す。
なお、 表 1には、 比較のために、 ナトリウムポロハイ ドライ ドを 配合せず、 上記生コンクリートのみを硬化させたときの膨張率と、 ナトリゥムボ口ハイ ドラィ ドに代えて従来のアルミニゥム粉末を配 合した点を除いて上記実施例の場合と同様にして硬化させたときの 膨張率を併せ示す。
第 2図に、 以上の結果を、 膨張剤の添加量に対する膨張率の変化 として示す。
Figure imgf000006_0001
*セメント 100重量部あたりの配合量 (重量部) 表 1や第 2図からもわかるように、 ナトリウムポロハイ ドライ ド による膨張効果は、 他の条件が同じ場合、 硬化温度条件が変わって もほとんど影響がなく、 添加量によってのみ変化している。 これに 対し、 アルミニウム粉末では、 温度条件で膨張率が大きく変化して おり、 所望の膨張率を得ようとした場合に、 温度条件を考慮しなけ ればならず、 添加量の調整が非常に困難である。
実施例 5〜8
普通ポルトラン ドセメ ント (比重 3.16) 347 重量部、 水 208重量 部、 骨材として木更津砂 (比重 2.60) 856 重量部および笠間碎石 (比重 2. 65) 908重量部を混合した、 水セメ ン ト比 60%、 スランプ 17〜20cm、 空気量 0.6〜1.3 %の生コンクリートに、 普通ポルトラ ン ドセメ ン ト 100 重量部あたりナ ト リ ウムボロハイ ドライ ドを、 0.05、 0. 1 、 0.2 、 0. 5 重量部添加し十分に混練した後、 この混鍊 物を、 型枠に入れ硬化させた。 得られた硬化体について、 200サイ クルの凍結融解耐久性試験を実施した。
また、 比較のために、 ナトリウムポロハイ ドライ ドを配合せず、 上記生コンクリ一トのみを同様にして硬化させて得られた硬化体と、 ナトリゥムボ口ハイ ドライ ドに代えて従来のアルミニウム粉末を配 合した点を除いて上記実施例の場合と同様にして硬化させて得られ た硬化体についても、 同様の 200サイクルの凍結融解耐久性試験を 行った。 結果を表 2に示す。
(以下余白)
表 2
Figure imgf000008_0001
セメ ント 100重量部あたりの配合量 (重量部) 表 2からもわかるように、 比較例のものではいずれも 200サイク ルの凍結融解耐久性試験によつて硬化体が破壌されたのに対し、 実 施例のものでは、 相対動弾性係数 80%以上と、 優れた凍結融解耐久 性を有していた。 なお、 相対動弾性係数は 60%以上で健全と判断さ れる。
実施例 9〜 1 2
普通ポルトランドセメ ント (比重 3. 16) 550 重量部、 水 165重量 部、 骨材として木更津砂 (比重 2.60) 703 重量部および青梅碎石 (比重 2.63) 978重量部を混合した、 水セメント比 30%、 スランプ 20.5〜22.0cni、 空気量 1. 0〜1.4 %の生コンクリートに、 普通ポル トランドセメント 100 重量部あたりナトリゥムボ口ハイ ドライ ドを、 0.005 、 0.01、 0.03. 0. 05重量部添加し十分に混練した後、 この混 練物を、 型枠に入れ硬化させた。 得られた硬化体について、 300サ ィクルの凍結融解耐久性試験を実施した。
また、 比較のために、 ナトリウムポロハイ ドライ ドを配合せず、 上記生コンクリ一トのみを同様にして硬化させて得られた硬化体と、 ナトリゥムボ口ハイ ドラィ ドに代えて従来のアルミニゥム粉末を配 合した点を除いて上記実施例の場合と同様にして硬化させて得られ た硬化体についても、 同様の 300サイクルの凍結融解耐久性試験を 行った。 結果を表 3に示す。 表 3
Figure imgf000009_0001
本 セメント 100重量部あたりの配合量 (重量部) 表 3からもわかるように、 比較例のものではいずれも 300サイク ルの凍結融解耐久性試験によつて硬化体が破壌されたのに対し、 実 施例のものでは、 相対動弾性係数がほぼ 100 %と、 優れた凍結融解 耐久性を有していた。
産業上の利用可能性
以上のように、 本発明にかかるセメント組成物用混和剤は、 土木 建築工事の一般構造用コンクリ一卜から二次製品に至る各種セメ ン ト組成物に混和する膨張剤として、 また凍結融解耐久性改善剤とし て ¾用でめる。

Claims

請求の範囲
1 . 水素化ホウ素塩を含有することを特徵とするからなるセメ ン ト組成物用混和剤。
2. 前記水素化ホウ素塩がナトリウムボロハイ ドライ ドである、 請求項 1記載のセメ ン卜組成物用混和剤。
3 . 水素化ホウ素塩と、 セメ ン トと、 骨材と、 水、 とを含有する セメ ン卜組成物。
4 . 前記水素化ホウ素塩の含有量は、 セメ ン ト 100重量部あたり、 0. 001〜10重量部である請求項 3記載のセメント組成物。
5 . 前記水素化ホウ素塩が、 水素化ホウ素ナトリゥムである請求 項 3または請求項 4記載のセメ ン卜組成物。
PCT/JP1992/000826 1991-07-01 1992-06-30 Composition de ciment WO1993001144A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/170,253 US5443635A (en) 1991-07-01 1992-06-30 Cement compositions
EP92913543A EP0613868B1 (en) 1991-07-01 1992-06-30 Use of tetraborohydrate additives improving cement properties in relation to freeze thaw cycles
DE69214295T DE69214295T2 (de) 1991-07-01 1992-06-30 Verwendung eines tetraborohydratzusatzes zur Verbesserung der Zementbeständigkeit gegenüber des Gefrier-Tauwechsels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16042891 1991-07-01
JP3/160428 1991-07-01

Publications (1)

Publication Number Publication Date
WO1993001144A1 true WO1993001144A1 (fr) 1993-01-21

Family

ID=15714721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000826 WO1993001144A1 (fr) 1991-07-01 1992-06-30 Composition de ciment

Country Status (5)

Country Link
US (1) US5443635A (ja)
EP (1) EP0613868B1 (ja)
AT (1) ATE143656T1 (ja)
DE (1) DE69214295T2 (ja)
WO (1) WO1993001144A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506665A (ja) * 1973-05-21 1975-01-23

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142909A (en) * 1975-09-11 1979-03-06 Construction Products Research, Inc. Method and composition for controlling contraction in setting cementitious systems through the addition of gas generating agents
SU1654542A1 (ru) * 1989-02-07 1991-06-07 Научно-производственное объединение "Тюменгазтехнология" Тампонажный материал

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506665A (ja) * 1973-05-21 1975-01-23

Also Published As

Publication number Publication date
EP0613868A4 (en) 1994-02-22
ATE143656T1 (de) 1996-10-15
US5443635A (en) 1995-08-22
DE69214295D1 (de) 1996-11-07
DE69214295T2 (de) 1997-03-06
EP0613868B1 (en) 1996-10-02
EP0613868A1 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US7922808B2 (en) Freeze-thaw durability of dry cast cementitious mixtures
EP1138696A1 (en) Polymers for cement dispersing admixtures
JP5100983B2 (ja) セメント組成物用発泡剤、それを含有するセメント組成物、セメント組成物の収縮防止法、および発泡剤のセメント組成物への使用
JP2007137745A (ja) 急硬化材および高浸透性注入材
JP2003286064A (ja) セメント組成物
JP6985177B2 (ja) 水硬性組成物及びコンクリート
Tekle et al. Freeze–thaw resistance and sorptivity of fine‐grained alkali‐activated cement concrete
JP4125009B2 (ja) セメント系pcグラウト組成物
WO1993001144A1 (fr) Composition de ciment
JPH0579621B2 (ja)
JP4538199B2 (ja) Pcグラウト用混和剤及びセメント系pcグラウト組成物
JP7202915B2 (ja) Pcグラウト組成物及びpcグラウト材
JP2022134233A (ja) セメント組成物及びその製造方法、アルカリシリカ反応抑制剤、アルカリシリカ反応抑制方法
JP5308279B2 (ja) 吹付け材料およびそれを用いた吹付け工法
JP3496195B2 (ja) マイクロカプセル型セメント水和発熱抑制材及び同発熱抑制材を用いるセメント硬化物の製造方法
JPS62223048A (ja) コンクリ−トの水和熱低減方法
JPS6221742A (ja) セメント組成物
JP2001226164A (ja) Pcグラウト材料及びこれを用いたpcグラウトの製造方法
JP4124996B2 (ja) セメント系pcグラウト組成物
JP6753632B2 (ja) 高炉セメントコンクリート用のフレッシュコンクリート
JP2001214604A (ja) フロアブルグラウトパッド工法用グラウト材
JP2004284909A (ja) グラウト
WO2023120131A1 (ja) 水硬性組成物、セメント系硬化体の製造方法及びセメント系硬化体膨張抑制剤
JP2024129179A (ja) ジオポリマー組成物及びジオポリマー硬化体
JPS5951507B2 (ja) セメント添加剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992913543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08170253

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1992913543

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992913543

Country of ref document: EP