WO1992019368A1 - Procede de concentration de solutions aqueuses d'acides contenant des ions metalliques par electrodialyse - Google Patents

Procede de concentration de solutions aqueuses d'acides contenant des ions metalliques par electrodialyse Download PDF

Info

Publication number
WO1992019368A1
WO1992019368A1 PCT/FR1992/000359 FR9200359W WO9219368A1 WO 1992019368 A1 WO1992019368 A1 WO 1992019368A1 FR 9200359 W FR9200359 W FR 9200359W WO 9219368 A1 WO9219368 A1 WO 9219368A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartments
electrodialysis
metal ions
concentration
solution
Prior art date
Application number
PCT/FR1992/000359
Other languages
English (en)
Inventor
Patrick Moatti
Original Assignee
Societe Languedocienne De Micron-Couleurs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9107783A external-priority patent/FR2676006B1/fr
Application filed by Societe Languedocienne De Micron-Couleurs filed Critical Societe Languedocienne De Micron-Couleurs
Publication of WO1992019368A1 publication Critical patent/WO1992019368A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/90Separation; Purification
    • C01B17/901Recovery from spent acids containing metallic ions, e.g. hydrolysis acids, pickling acids
    • C01B17/902Recovery from spent acids containing metallic ions, e.g. hydrolysis acids, pickling acids by dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/52Accessories; Auxiliary operation

Definitions

  • the present invention relates to a method for concentrating aqueous solutions of acids containing metal ions by electrodialysis.
  • the acids concerned are both strong and weak acids, as well as mineral acids, such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. as aliphatic organic acids, such as acetic acid, or aromatic acids such as paratoluenesulfonic acid, etc.
  • electrodialysis designates the transfer of ions through a membrane, which is permeable to them, under the effect of an applied electric field.
  • An electrodialysis stack consists of a series of membranes, where the anion exchange membranes and the cation exchange membranes are alternated. These membranes thus define narrow compartments in which the fluids circulate. Electrodes are placed in terminal compartments, which alone will be contaminated by products of the electrolysis reactions resulting from the passage of current.
  • the principle of electrodialysis is illustrated by the diagram in Figure 1 of the accompanying drawing, concerning the concentration of a solution of H 2 SO 4 . In this diagram, circuits 1, 2 and 3 are the circuits for concentrating, diluting and rinsing the electrodes respectively.
  • the circulation of fluids is generally ensured by pumps. All of the compartments are subjected to an electric field perpendicular to the plane of the membranes and to the direction of circulation of the fluids.
  • the membranes and the solutions constituting electrical conductors an electric current will circulate between the electrodes, this current being provided by the movement of the ionic species which circulate in the solutions and in the membranes.
  • the cations present in the dilution circuit are transferred through the cation exchange membrane to the concentration compartment inside which they will remain, being unable to cross the exchange membrane. anions which constitutes the second semi-permeable wall of this compartment.
  • the anions of the dilution compartment migrating in the opposite direction will be transferred to the second adjacent compartment from where they cannot exit, the second membrane only allowing the cations to transfer. It is thus seen that the fluid contained in the dilution circuit will be progressively devoid of ions, while the solution circulating in the concentration compartments will be enriched in electrolyte.
  • the electrodialysis therefore makes it possible to demineralize a solution and, simultaneously, to concentrate the electrolytes in a concentration circuit, often called brine.
  • the possibilities of concentration in electrodialysis are limited mainly by two phenomena, namely, the transfer of water of solvation of ions, called electroosmosis, and the diffusion constituting, in the case of acids, what is called proton leakage. .
  • the water transfer is explained by the fact that, when an ion crosses a membrane, it carries with it a certain quantity of solvent molecules if the latter is polar, by the effect of electrostatic attraction of a load on a bipole. This theoretically indicates that it is impossible to concentrate, by electrodialysis, ionic solutions having a concentration higher than that of the ionic species, in their procession of solvation, which are transferred.
  • the second phenomenon comes from the fact that each side of a membrane is in contact with a solution of different concentration and that, as a result, there will be passage of the electrolyte from the most concentrated solution to the least concentrated solution. This is all the more true since, when acid solutions are treated by electrodialysis, the proton having a mobility much higher than the other ions, it diffuses very easily. Unlike the other cations, it is little retained by the anion exchange membranes and, in particular, those whose three-dimensional network is weakly crosslinked.
  • the reconcentration of an acid on an industrial scale simultaneously causes the concentration of the impurities which it contains and, in particular, those of metal ions.
  • the present invention proposes to eliminate metal ions by combining electrodialysis with electrolysis.
  • a conventional electrodialyzer is used according to the invention, in which the solution to be purified crosses the cathode compartment.
  • the metal ions react on the cathode on which they are deposited.
  • This deposit can be recovered at the end of the electrodialysis by dismantling the cathode or by reversing the polarity.
  • the process of the invention can therefore be used to treat acid effluents containing traces, for example from 10 to 1000 ppm approximately, of electro-reactive metal ions, such as Cu ++ , Ag + , Au + , Zn + .
  • electrodialysis a process aimed at depleting iron in a spent pickling solution based on hydrochloric acid, by electrolytic deposition of iron on a cathode, in a cell called electrodialysis, which consists in fact of a unit cell of electrolysis, and not of electrodialysis, a fortiori of a stack of electrodialysis.
  • the present invention therefore relates to a process for the concentration of aqueous solutions of acids by electrodialysis, according to which an electrodialysis stack is used consisting of a series of anion and cation exchange membranes, the anion exchange membranes alternating with the cation exchange membranes and delimiting compartments in which the fluid to be treated circulates, current supply electrodes being placed in the terminal compartments, all of the compartments being subjected to an electric field perpendicular to the plane of the membrane and to the direction of circulation of the fluid, so that there is an alternation of dilution compartments and concentration compartments, process in which the aqueous solution of acid to be treated contains metal ions, characterized in that one makes further circulate the solution to be treated on the cathode, and that recover a cleared acid solution of its metal ions, and that, if necessary, the metal deposited at the end of the electrodialysis is recovered.
  • the products of the hydrolysis reactions in the compartment located near the anode are eliminated in a conventional
  • a current intensity of at least about 30 mA / cm 2 of useful membrane surface is applied, preferably at least 180 mA / cm 2 and, preferably, at most about 1000 mA / cm 2 of useful membrane surface .
  • a current intensity of between 200 and 400 mA / cm 2 approximately of useful membrane surface is preferably applied.
  • useful membrane surface is meant the membrane surface in contact with the treated solutions.
  • the ion exchange membranes used according to the invention are, conventionally, homopolar membranes comprising ionized groups all having the same sign; there are, on the one hand, heterogeneous membranes, prepared from ion exchange resins of very fine particle size, mixed with a binder (PVC, polyethylene, etc.), all of which can coat a weft (polyester fabric , polyacrylonitrile, etc.), the functional groups being mainly sulfonic groups for the cation exchange membranes, and quaternary ammonium groups for the anion exchange membranes, and, on the other hand, the homogeneous membranes, obtained by introduction of a non-functional group, of the same type as those mentioned above, on an inert support, this introduction taking place by a chemical, photochemical, radiochemical method as is well known in the art. It is moreover preferred that the three-dimensional structure of the membranes be compact, that is to say that the macromolecules which constitute the network are linked together by chemical bridging, thus we prefer highly cross-
  • the cation exchange membranes must preferentially allow protons and limit the transfer of metal ions as much as possible. Therefore, cation exchange membranes which are not very permeable to metal ions are preferred.
  • the electrodes used according to the invention are also conventional electrodes for electrodialysis; mention may thus be made of graphite, platinum titanium, etc., and graphite, stainless steel, etc. cathodes.
  • sulfuric acid In the case of sulfuric acid, one generally starts from aqueous solutions having an average concentration of the order of 1-20% by weight, to reach average concentrations of the order of 25-40% by weight. We can work in a conventional way, continuously, semi-continuously or in batches.
  • FIG. 2 shows, schematically, the electro-electrodialyzer used in this example
  • Figures 3 and 4 illustrate, during an electrodialysis coupled with an electrolysis, the evolution of the concentrations respectively of cupric ions in the residual solution of sulfuric acid, and of sulfuric acid in brine.
  • a P1 type electrodialyzer sold by the company CORNING France is used, as shown diagrammatically in FIG. 1 with compartments for concentrating, diluting and rinsing the electrodes, and this basic structure is modified in order to be able to perform electrodialysis coupled to electrolysis, with copper deposit on the cathode.
  • the two compartments used initially for rinsing the electrodes are used to constitute the cathode and anode compartments.
  • the installation comprises, as shown in FIG. 2, a concentration circuit 1, a dilution circuit 2 which passes through the cathode compartment, and a circuit for rinsing the anode compartment, noted 3.
  • the electrodialysis stack of the basic structure consists of 16 concentration compartments,
  • the original 12 mm thick graphite electrodes were changed to 2 mm thick electrodes, platinum titanium for the anode and stainless steel for the cathode. These new, thinner electrodes make it possible to free up a space of 10 mm to recover the copper deposit.
  • the electrodialyzer comprises 4 PVC flanges, the 2 aforementioned graphite electrodes, 2 electrode holders, 1 anode rinsing compartment, 1 cathode compartment, 32 polyethylene separator frames with a thickness of 0.4 mm, 17 CMS type cation exchange membranes (sold under the name Neosepta by the Tokuyama Soda Company; thickness: 140-170 ⁇ m; electrical resistance: 2 ohms ⁇ cm -2 number of counter-ion transport *: 0.98; capacity d '' exchange: 2-2.5 mEq / g), 16 anion exchange membranes (MEA) of AAV type (marketed by ASAHI GLASS under the name Selenion; thickness: 110-140 ⁇ m; electrical resistance: 3.5 ohms ⁇ cm -2 ; number of counterions transport *: 0.99-0.98; exchange capacity: 0.8 mEq / g), 2 O-rings in fluorinated elastomer for the electrodes, the useful surface of the
  • the transport number of a membrane ion measures the fraction of electric current transported by ions of this type.
  • the number of transport of counterions, in the case of a membrane which would be perfectly permselective, would be equal to one, and of zero for the co-ions.
  • a solution of sulfuric acid initially 3.15 M and containing 335 ppm of Cu 2+ is treated. This solution is simultaneously purified into Cu 2+ , as shown in Figure 3, and sulfuric acid is extracted through the membranes to enrich the brine, which is illustrated in Figure 4. In the brine, the concentration of Cu 2+ remains almost zero.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Procédé de concentration de solutions aqueuses d'acides par électrodialyse, suivant lequel on utilise un empilement d'électrodialyse constitué d'une série de membranes échangeuses d'anions et de cations, les membranes échangeuses d'anions alternant avec les membranes échangeuses de cations et délimitant des compartiments dans lesquels circule le fluide à traiter, des électrodes d'apport de courant étant placées dans les compartiments terminaux, l'ensemble des compartiments étant soumis à un champ électrique perpendiculaire au plan des membranes et à la direction de circulation du fluide, de sorte qu'il est constitué une alternance de compartiments de dilution et de compartiments de concentration, procédé dans lequel la solution aqueuse d'acide à traiter contient des ions métalliques, caractérisé en ce qu'on fait en outre circuler la solution à traiter sur la cathode, et qu'on récupère une solution acide débarrassée de ses ions métaliques, et que, le cas échéant, on récupère le métal déposé à la fin de l'électrodialyse.

Description

PROCEDE DE CONCENTRATION DE SOLUTIONS AQUEUSES D'ACIDES CONTENANT DES IONS METALLIQUES PAR ELECTRODIALYSE.
La présente invention se rapporte à un procédé de concentration de solutions aqueuses d'acides contenant des ions métalliques par électrodialyse. Les acides concernés sont aussi bien des acides forts que des acides faibles, et aussi bien des acides minéraux, tels que l'acide sulfurique, l'acide chlorhydrique, l'acide nitrique, l'acide phosphorique, etc. que des acides organiques aliphatiques, tels que l'acide acétique, ou bien aromatiques tels que l'acide paratoluènesulfonique, etc.
Parmi les procédés connus à l'heure actuelle pour concentrer des solutions aqueuses d'acides, on peut citer les procédés faisant appel à des membranes (électrodialyse, osmose inverse, etc.), permettant de passer d'une concentration en acide de l'ordre de 1 à 5% à une concentration de l'ordre de 5 à 15%, variable selon la nature de l'acide. Ces procédés ne permettent pas d'atteindre de fortes concentrations pour différentes raisons, celles en liaison avec le procédé d'électrodialyse étant décrites ciaprès.
Le terme d'électrodialyse désigne le transfert d'ions à travers une membrane, qui leur est perméable, sous l'effet d'un champ électrique appliqué. Un empilement d'électrodialyse est constitué par une série de membranes, où sont alternées les membranes échangeuses d'anions et les membranes échangeuses de cations. Ces membranes délimitent ainsi des compartiments étroits dans lesquels circulent les fluides. Des électrodes sont placées dans des compartiments terminaux, qui, seuls, seront contaminés par des produits des réactions d'électrolyse résultant du passage du courant. Le principe de l'électrodialyse est illustré par le schéma de la Figure 1 du dessin annexé, concernant la concentration d'une solution d'H2SO4. Sur ce schéma, les circuits 1, 2 et 3 sont les circuits respectivement de concentration, de dilution et de rinçage des électrodes. La circulation des fluides est généralement assurée par des pompes. L'ensemble des compartiments est soumis à un champ électrique perpendiculaire au plan des membranes et à la direction de circulation des fluides. Les membranes et les solutions constituant des conducteurs électriques, un courant électrique va circuler entre les électrodes, ce courant étant assuré par le mouvement des espèces ioniques qui circulent dans les solutions et dans les membranes.
Ainsi, sous l'effet du champ électrique, les cations présents dans le circuit de dilution sont transférés au travers de la membrane échangeuse de cations vers le compartiment de concentration à l'intérieur duquel ils vont demeurer, ne pouvant traverser la membrane échangeuse d'anions qui constitue la seconde paroi semi perméable de ce compartiment. De même, toujours sous l'effet du champ électrique, les anions du compartiment de dilution migrant dans la direction opposée seront transférés vers le second compartiment adjacent d'où ils ne peuvent sortir, la seconde membrane ne laissant transférer que les cations. On voit ainsi que le fluide contenu dans le circuit de dilution va être progressivement dépourvu d'ions, alors que la solution circulant dans les compartiments de concentration va s'enrichir en électrolyte. L'électrodialyse permet donc de déminéraliser une solution et, simultanément, de concentrer les électrolytes dans un circuit de concentration, souvent appelé saumure.
Dans les compartiments situés à proximité des électrodes d'apport de courant, les produits des réactions d'électrolyse sont éliminés par le circuit de rinçage.
Les possibilités de concentration en électrodialyse sont limitées principalement par deux phénomènes, à savoir, le transfert d'eau de solvatation des ions, appelé électroosmose, et la diffusion constituant, dans le cas des acides, ce que l'on appelle la fuite en protons. Le transfert d'eau s'explique par le fait que, lorsqu'un ion traverse une membrane, il entraîne avec lui une certaine quantité de molécules de solvant si celui-ci est polaire, par l'effet d'attraction électrostatique d'une charge sur un bipôle. Cela sianifie théoriquement qu'il est impossible de concentrer, par électrodialyse, des solutions ioniques ayant une concentration supérieure à celle des espèces ioniques, dans leur cortège de solvatation, qui sont transférées. Le second phénomène vient du fait que chaque face d'une membrane est en contact avec une solution de concentration différente et que, de ce fait, il y aura passage de l'électrolyte de la solution la plus concentrée vers la solution la moins concentrée. Ceci est d'autant plus vrai que, lorsque l'on traite par électrodialyse des solutions d'acide, le proton ayant une mobilité très supérieure aux autres ions, il diffuse très facilement. A l'inverse des autres cations, il est peu retenu par les membranes échangeuses d'anions et, en particulier, celles dont le réseau tridimensionnel est faiblement réticulé.
Par ailleurs, habituellement, la reconcentration d'un acide à échelle industrielle entraîne simultanément la concentration des impuretés qu'il contient et, en particulier, celles des ions métalliques.
Pour remédier à cela, la présente invention propose d'éliminer les ions métalliques en combinant une électrodialyse avec une électrolyse.
Pour obtenir un tel résultat, on utilise selon l'invention un électrodialyseur classique, dans lequel la solution à épurer traverse le compartiment cathodique. Ainsi, sous l'effet du champ électrique appliqué, les ions métalliques réagissent sur la cathode sur laquelle ils se déposent. Il se produit donc une électrodéposition du métal. Ce dépôt peut être récupéré à la fin de l'électrodialyse par démontage de la cathode ou par inversion de la polarité. On peut donc utiliser le procédé de l'invention pour traiter des effluents acides contenant des traces, par exemple de 10 à 1000 ppm environ, d'ions métalliques électro-réactifs, tels que Cu++, Ag+, Au+, Zn+.
On connaît, certes, par la demande de brevet français FR-A-2273 082, un procédé visant à appauvrir en fer une solution usée de décapage à base d'acide chlorhydrique, par dépôt électrolytique du fer sur une cathode, dans une cellule dite à électrodialyse, laquelle consiste en fait en une cellule unitaire d'électrolyse, et non d'électrodialyse, a fortiori d'un empilement d'électrodialyse.
On connaît également, par ailleurs, le brevet américain US-A-4389 293, un procédé pour la récupération du fluorure d'hydrogène anhydre à partir d'une solution aqueuse d'acide fluosilicique et de fluorure d'hydrogène, ce procédé comprenant une électrodialyse, pour augmenter la concentration en acides totaux. Dans ce procédé d'électrodialyse, le compartiment cathodique est traversé par le courant de σatholyte, opération donc classique pour le rinçage de la cathode.
Il n'était pas évident d'utiliser la solution que l'on traite pour effectuer le balayage cathodique, offrant le double avantage qu'il n'y a pas de solution perdue et que cette solution est simultanément débarrassée de ses ions électroréactifs.
La présente invention a donc pour objet un procédé de concentration de solutions aqueuses d'acides par électrodialyse, suivant lequel on utilise un empilement d'électrodialyse constitué d'une série de membranes échangeuses d'anions et de cations, les membranes échangeuses d'anions alternant avec les membranes échangeuses de cations et délimitant des compartiments dans lesquels circule le fluide à traiter, des électrodes d'apport de courant étant placées dans les compartiments terminaux, l'ensemble des compartiments étant soumis à un champ électrique perpendiculaire au plan de membrane et à la direction de circulation du fluide, de sorte qu'il est constitué une alternance de compartiments de dilution et de compartiments de concentration, procédé dans lequel la solution aqueuse d'acide à traiter contient des ions métalliques, caractérisé en ce qu'on fait en outre circuler la solution à traiter sur la cathode, et qu'on récupère une solution acide débarrassée de ses ions métalliques, et que, le cas échéant, on récupère le métal déposé à la fin de l'électrodialyse. Les produits des réactions d'hydrolyse dans le compartiment situé à proximité de l'anode sont éliminés de façon classique par un circuit de rinçage.
On applique avantageusement une intensité de courant d'au moins 30 mA/cm2 environ de surface membranaire utile, de préférence au moins 180 mA/cm2 et, de préférence, d'au plus 1000 mA/cm2 environ de surface membranaire utile.
Dans le cas de l'acide sulfurique ayant une concentration de 5 à 20% en poids environ, on applique, de préférence, une intensité de courant comprise entre 200 et 400 mA/cm2 environ de surface membranaire utile. Par surface membranaire utile, on entend la surface de membrane en contact avec les solutions traitées.
Les membranes échangeuses d'ions utilisées selon l'invention sont, de façon classique, les membranes homopolaires comportant des groupes ionisés ayant tous le même signe ; on distingue, d'une part, les membranes hétérogènes, préparées à partir de résines échangeuses d'ions de granulométrie très fine, mélangées à un liant (PVC, polyéthylène, etc.), l'ensemble pouvant enduire une trame (tissu de polyester, de polyacrylonitrile, etc), les groupes fonctionnels étant principalement des groupes sulfoniques pour les membranes échangeuses de cations, et des groupes ammonium quaternaire pour les membranes échangeuses d'anions, et, d'autre part, les membranes homogènes, obtenues par introduction d'un groupe non-fonctionnel, du même type que ceux cités précédemment, sur un support inerte, cette introduction ayant lieu par une méthode chimique, photochimique, radiochimique comme cela est bien connu dans la technique. On préfère par ailleurs que la structure tridimensionnelle des membranes soit compacte, c'est-à-dire que les macromolécules qui constituent le réseau soient reliées entre elles par un pontage chimique, on préfère ainsi les membranes échangeuses d'anions fortement réticulées, à trame serrée.
Par ailleurs, les membranes échangeuses de cations doivent laisser passer préférentiellement les protons et limiter autant que possible le transfert des ions métalliques. On préfère donc les membranes échangeuses de cations peu perméables aux ions métalliques.
Les électrodes utilisées selon l'invention sont également des électrodes classiques pour l'électrodialyse ; on peut citer ainsi des anodes en graphite, titane platiné, etc, et des cathodes en graphite, acier inoxydable, etc.
Dans le cas de l'acide sulfurique, on part généralement de solutions aqueuses ayant une concentration moyenne de l'ordre de 1-20% en poids, pour atteindre des concentrations moyennes de l'ordre de 25-40% en poids. On peut travailler de façon classique, en continu, en semicontinu ou par lots.
L'exemple ci-après illustre l'objet de la présente invention, à titre purement indicatif et non limitatif.
Sur le dessin annexé :
La Figure 2 représente, de façon schématique, l'électro- électrodialyseur utilisé dans cet exemple ;
les Figures 3 et 4 illustrent, lors d'une électrodialyse couplée avec une électrolyse, l'évolution des concentrations respectivement en ions cuivriques dans la solution résiduelle d'acide sulfurique, et en acide sulfurique dans la saumure.
On utilise un électrodialyseur de type P1 commercialisé par la Société CORNING France, tel que représenté de façon schématique sur la Figure 1 avec des compartiments de concentration, de dilution et de rinçage des électrodes, et l'on modifie cette structure de base afin de pouvoir effectuer une électrodialyse couplée à une électrolyse, avec dépôt de cuivre sur la cathode. A cet effet, les deux compartiments servant initialement pour le rinçage des électrodes sont utilisés pour constituer les compartiments cathodique et anodique. L'installation comprend, ainsi que le montre la Figure 2, un circuit de concentration 1, un circuit de dilution 2 qui traverse le compartiment cathodique, et un circuit de rinçage du compartiment anodique, noté 3. L'empilement d'électrodialyse de la structure de base est constitué de 16 compartiments de concentration, de
16 compartiments de dilution, d'un compartiment de rinçage de l'anode et d'un compartiment cathodique balayé par le circuit de dilution 2.
Les électrodes d'origine en graphite de 12 mm d'épaisseur ont été changées en électrodes d'une épaisseur de 2 mm, en titane platiné pour l'anode et en acier inoxydable pour la cathode. Ces nouvelles électrodes, de moindre épaisseur, permettent de dégager un espace de 10 mm pour récupérer le dépôt de cuivre.
L'électrodialyseur comprend 4 flasques en PVC, les 2 électrodes précitées de graphite, 2 porte-électrodes, 1 compartiment de rinçage de l'anode, 1 compartiment cathodique, 32 cadres séparateurs en polyéthylène d'une épaisseur de 0,4 mm, 17 membranes échangeuses de cations de type CMS (commercialisées sous la dénomination Néosepta par la Société Tokuyama Soda ; épaisseur : 140-170 μm ; résistance électrique : 2 ohms × cm-2 nombre de transport de contre-ions* : 0,98 ; capacité d'échange : 2-2,5 mEq/g), 16 membranes échangeuses d'anions (MEA) de type AAV (commercialisées par la Société ASAHI GLASS sous la dénomination Sélénion ; épaisseur : 110-140 μm ; résistance électrique : 3,5 ohms × cm-2 ; nombre de transport de contreions* : 0,99-0,98 ; capacité d'échange : 0,8 mEq/g), 2 joints toriques en élastomère fluoré pour les électrodes, la surface utile des membranes est de 67 cm2 par cellule, soit de 1072 cm2 au total.
* Le nombre de transport d'un ion de la membrane mesure la fraction de courant électrique transporté par les ions de ce type. Le nombre de transport de contre-ions, dans le cas d'une membrane qui serait parfaitement permsélective, serait égal à un, et de zéro pour les co-ions.
L'étanchéité et le serrage sont assurés par 2 plaques en acier inoxydable et 2 goujons. Le courant électrique est fourni par un générateur de courant stabilisé débitant au maximum 20 ampères et 60 volts. La circulation des fluides est assurée par 3 pompes de marque Fontaine type M7 qui alimentent les circuits de l'électrodialyseur par des tubes en PVC cristal, armés de polyamide. Les débits des fluides, toutes pertes de charge comprises, sont de 60 litres/h, 100 litres/h et 180 litres/h pour les compartiments respectivement de concentration, de dilution et de rinçage.
On traite une solution d'acide sulfurique initialement 3,15 M et contenant 335 ppm de Cu2+. Cette solution est simultanément épurée en Cu2+, ce que montre la Figure 3, et de l'acide sulfurique est extrait à travers les membranes pour enrichir la saumure, ce qui est illustré sur la Figure 4. Dans la saumure, la concentration en Cu2+ reste quasi nulle.

Claims

REVENDICATIONS
1 - Procédé de concentration de solutions aqueuses d'acides par électrodialyse, suivant lequel on utilise un empilement d'électrodialyse constitué d'une série de membranes échangeuses d'anions et de cations, les membranes échangeuses d'anions alternant avec les membranes échangeuses de cations et délimitant des compartiments dans lesquels circule le fluide à traiter, des électrodes d'apport de courant étant placées dans les compartiments terminaux, l'ensemble des compartiments étant soumis à un champ, électrique perpendiculaire au plan des membranes et à la direction de circulation du fluide, de sorte qu'il est constitué une alternance de compartiments de dilution et de compartiments de concentration, procédé dans lequel la solution aqueuse d'acide à traiter contient des ions métalliques, caractérisé en ce qu'on fait en outre circuler la solution à traiter sur la cathode, et qu'on récupère une solution acide débarrassée de ses ions métalliques, et que, le cas échéant, on récupère le métal déposé à la fin de l'électrodialyse.
2 - Procédé selon la revendication 1, caractérisé par le fait que la solution à traiter contient entre 10 et 1000 ppm d'ions métalliques électroréactifs.
3 - Procédé selon l'une des revendications 1 et 2, caractérisé par le fait qu'on applique une intensité de courant d'au moins 180 mA/cm2 de surface membranaire utile.
4 - Procédé selon l'une des revendications 1 à 3, caractérisé par le fait qu'on applique une intensité de courant ne dépassant pas 1000 mA/cm2 de surface membranaire utile.
5 - Procédé selon l'une des revendications 1 à 4, caractérisé par le fait qu'on concentre des solutions aqueuses d'acides minéraux.
6 - Procédé selon la revendication 5, caractérisé par le fait qu'on concentre une solution aqueuse d'H2SO4 ayant une concentration de 5 à 20% en poids, auquel cas on applique une intensité de courant comprise entre 250 et 300 mA/cm2 de surface membranaire utile.
7 - Procédé selon l'une des revendications 1 à 6, caractérisé par le fait qu'on concentre des solutions aqueuses d'acides organiques.
PCT/FR1992/000359 1991-04-25 1992-04-22 Procede de concentration de solutions aqueuses d'acides contenant des ions metalliques par electrodialyse WO1992019368A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR91/07783 1991-04-25
FR9107783A FR2676006B1 (fr) 1991-04-25 1991-06-25 Procede de concentration de solutions aqueuses d'acides par electrodialyse.

Publications (1)

Publication Number Publication Date
WO1992019368A1 true WO1992019368A1 (fr) 1992-11-12

Family

ID=9414232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000359 WO1992019368A1 (fr) 1991-04-25 1992-04-22 Procede de concentration de solutions aqueuses d'acides contenant des ions metalliques par electrodialyse

Country Status (1)

Country Link
WO (1) WO1992019368A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2435363A1 (fr) * 2009-05-25 2012-04-04 Outotec OYJ Procédé de concentration d'acide sulfurique dilué et appareil pour la concentration d'acide sulfurique dilué

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2273082A1 (fr) * 1974-05-28 1975-12-26 Seprac
JPS52125477A (en) * 1976-04-15 1977-10-21 Mitsuya Denki Metsuki Kougiyou Method and apparatus for separating and refining hydrochloric acid* nitric acid and recovering metals from acidic waste liquids containing metals
US4389293A (en) * 1982-01-04 1983-06-21 Allied Corporation Process for the recovery of anhydrous hydrogen fluoride from aqueous solutions of fluosilicic acid and hydrogen fluoride
DE3529649A1 (de) * 1985-08-19 1987-02-19 Hoechst Ag Verfahren zur anreicherung von schwefelsaeure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2273082A1 (fr) * 1974-05-28 1975-12-26 Seprac
JPS52125477A (en) * 1976-04-15 1977-10-21 Mitsuya Denki Metsuki Kougiyou Method and apparatus for separating and refining hydrochloric acid* nitric acid and recovering metals from acidic waste liquids containing metals
US4389293A (en) * 1982-01-04 1983-06-21 Allied Corporation Process for the recovery of anhydrous hydrogen fluoride from aqueous solutions of fluosilicic acid and hydrogen fluoride
DE3529649A1 (de) * 1985-08-19 1987-02-19 Hoechst Ag Verfahren zur anreicherung von schwefelsaeure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WORLD PATENTS INDEX Week 7748, Derwent Publications Ltd., London, GB; AN 77-85614Y & JP,A,52 125 477 (MITSUYA DENKI TOKIN) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2435363A1 (fr) * 2009-05-25 2012-04-04 Outotec OYJ Procédé de concentration d'acide sulfurique dilué et appareil pour la concentration d'acide sulfurique dilué
EP2435363A4 (fr) * 2009-05-25 2013-05-22 Outotec Oyj Procédé de concentration d'acide sulfurique dilué et appareil pour la concentration d'acide sulfurique dilué

Similar Documents

Publication Publication Date Title
US20030150736A1 (en) Apparatus and method for removing contaminants from semiconductor copper electroplating baths
US3686089A (en) Method of separation of ions from a solution
US4707240A (en) Method and apparatus for improving the life of an electrode
JP4230223B2 (ja) イオン種を液体から単離するための方法及び装置
KR101154154B1 (ko) 전기 멤브레인 방법 및 장치
JP2011525420A5 (fr)
KR20110034006A (ko) 농도차 에너지를 이용하여 염수를 탈염하는 방법, 장치 및 플랜트
JP3956836B2 (ja) 電気脱イオン装置
US20080160357A1 (en) Increased Conductivity and Enhanced Electrolytic and Electrochemical Processes
JP4403621B2 (ja) 電気脱イオン装置
KR20130129976A (ko) 전기적 재생과 함께 이온 교환 탈이온화를 수행하는 장치
JP3611602B2 (ja) 拡散透析および電気透析による有機スルホン酸および/又は有機スルホン酸塩含有液からの有機スルホン酸の回収方法およびそれに使用する回収装置
WO1992019368A1 (fr) Procede de concentration de solutions aqueuses d'acides contenant des ions metalliques par electrodialyse
JP3788318B2 (ja) 電気脱イオン装置及び電気脱イオン方法
JP2003001259A (ja) 超純水製造装置
FR2675709A1 (fr) Procede de concentration de solutions aqueuses d'acides par electrodialyse.
JP2001259646A (ja) 電気式脱イオン水製造装置
DE102006016688B3 (de) Elektroentionisierungsverfahren zur Aufbereitung von bei der chemischen und/oder elektrochemischen Oberflächenbehandlung von Metallen entstehenden Spülwässern
FR2676006A1 (fr) Procede de concentration de solutions aqueuses d'acides par electrodialyse.
JP2003001258A (ja) 電気脱イオン装置
JP6676266B2 (ja) 電気再生式脱イオン装置
JP3700244B2 (ja) 純水製造装置
KR20050029151A (ko) 전기투석장치를 이용하여 산폐수에서 산을 회수하는 방법
JP2003326269A (ja) 電気再生式脱塩装置
JPH05285347A (ja) 酸及びアルカリの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA