WO1992017589A1 - Procedimiento para la produccion de una vacuna subunidad contra el parvovirus porcino - Google Patents

Procedimiento para la produccion de una vacuna subunidad contra el parvovirus porcino Download PDF

Info

Publication number
WO1992017589A1
WO1992017589A1 PCT/ES1992/000032 ES9200032W WO9217589A1 WO 1992017589 A1 WO1992017589 A1 WO 1992017589A1 ES 9200032 W ES9200032 W ES 9200032W WO 9217589 A1 WO9217589 A1 WO 9217589A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppv
recombinant
protein
proteins
recombinant baculovirus
Prior art date
Application number
PCT/ES1992/000032
Other languages
English (en)
French (fr)
Inventor
José Ignacio CASAL ALVAREZ
Elena Cortes Valdes
Ana Isabel Ranz Casares
Carmen Vela Olmo
Kristian Dalsgaard
Original Assignee
Ercros S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ercros S.A. filed Critical Ercros S.A.
Priority to DE69222840T priority Critical patent/DE69222840T2/de
Priority to US07/969,213 priority patent/US5498413A/en
Priority to EP92907669A priority patent/EP0551449B1/en
Priority to DK92907669T priority patent/DK0551449T3/da
Publication of WO1992017589A1 publication Critical patent/WO1992017589A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14311Parvovirus, e.g. minute virus of mice
    • C12N2750/14322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/818Viral vaccine for canidae or mustelidae, e.g. dogs, foxes, minks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/82Proteins from microorganisms
    • Y10S530/826Viruses

Definitions

  • the present invention relates in general to viral proteins and to assays and vaccines that use them, and in particular to a protein related to the major antigen (VP2) of the porcine Parvovirus capsid (PPV).
  • Said protein has been produced in a multiplied baculovirus expression system in a cell culture of a permissive host.
  • the protein obtained has the peculiar characteristic of forming empty chimeric capsids, which can be used in vaccine formulation.
  • Porcine parvovirus is one of the leading causes of reproductive failure in pigs, resulting in fetal death and mummification, abortions and other reproductive disorders of pregnant sows (Joo & Johnson. 1976. Veterinary
  • PPV is an autonomous parvovirus that contains a single-stranded DNA molecule of approximately 5000 nucleotides (Mollitor et al. 1984. Vvrology 137, 241-254). The complete genome sequence has recently been described by our group, (Ranz et al. 1989.
  • virus-specific proteins 3 proteins that form the capsid (VP1, VP2 and VP3 of molecular weights 83000, 64000 and 60000 dalton, respectively) and a nonstructural protein NS1.
  • the PPV belongs to the Kilham rat virus parvovirus group (KRV), which is also formed by KRV, the minimum mouse virus (MVM), LuIII, H-1, the virus of feline panleukopenia (FPLV), canine parvovirosis virus (CPV) and mink enteritis virus (MEV). All these viruses share several common traits with other autonomous parvoviruses:
  • the mRNA of both reading phases is polyadenylated and 3'-coterminal.
  • the left reading phase codes for the non-structural proteins necessary for viral DNA replication and the right reading phase codes for capsidic proteins.
  • Measles virus using a novel baculovirus vector containing the ⁇ -galactosidase gene J. Virol. 64. 37-50.
  • the synthesis of the VP2 protein in the baculovirus system has notable and substantial advantages over the production of the virus in tissue culture and subsequent purification thereof, both in terms of economic cost of the process, and in performance in immunizing antigen. On the other hand it avoids the need to sacrifice animals for the establishment in culture of cells capable of replicating the virus, avoids the maintenance of viral reservoirs and the usual risks in handling viruses, etc.
  • the present invention provides a new method for the production of a subunit vaccine of recombinant origin for the protection of pigs against PPV.
  • the new vaccine thus produced may contain: i) PPV VP2 protein produced in a multiplexed baculovirus expression system in a permissive host cell culture (hereinafter, to refer to this protein optionally, we will use the expression "VP2 of the invention); or ii) empty chimeric capsids formed by the assembly of the VP2 of the invention.
  • the VP2 protein of the invention has the peculiar characteristic of forming empty chimeric capsids, which could optionally incorporate epitopes corresponding to other viral proteins by genetic manipulation of the recombinant baculoviruses, or chemical manipulation of the capsids themselves.
  • the present invention aims at a new process for obtaining new, improved subunit vaccines, capable of protecting pigs against infections caused by PPV.
  • said vaccines may contain either the VP2 protein of the invention or empty chimeric capsules formed by said VP2 protein since said empty capsids have a high hemagglutinating activity and a high immunogenic power, superior to those of other recombinant proteins of PPVs previously produced in any other system.
  • the new vaccines provided by this invention and which constitute an object thereof can containing said empty capsules together with an immunologically acceptable diluent without the need for adjuvant, or the VP2 protein of the invention together with a diluent and an adjuvant.
  • a polyvalent vaccine also constitutes additional objects of this invention.
  • the VP2 protein obtained according to the invention and the chimeric capsids that they can form can be useful in diagnosis to detect the presence of specific antibodies of the PPV or to induce polyclonal or monoclonal antibodies capable of detecting the PPV.
  • the use of the VP2 protein of the invention and the chimeric capsids that can be formed for the purposes indicated above also constitute another object of the present invention.
  • Another additional object of this invention is a recombinant baculovirus, and its method of obtaining, capable of producing a PPV recombinant PPV protein identical to that of viral origin as demonstrated by antigenic reactivity tests and other biological functionality tests.
  • the recombinant baculovirus has been called AcMNPV.pPPVEx8 and has been deposited on 2.3.91 in the European Collection of Animal Cell Cultures, (ECACC) in Portón Down, Salisbury, Whiltshire SP4 OJG (Great Britain) with accession n-5 V91030213 .
  • a further object of the invention is the new baculovirus transfer vector (pPPVEx8) that contains the nucleic acid sequence encoding the VP2 of the invention. This new vector by a procedure known as homologous recombination with the wild strain of AcMNPV gives rise to the aforementioned recombinant baculovirus AcMNPV.pPPVEx8.
  • This invention also provides the nucleic acid sequence encoding the VP2 protein obtained according to the invention ( Figure 1).
  • PPV empty chimeric capsids formed by self-assembly of recombinant PPV VP2 proteins are also an additional object of this invention.
  • Figure 1 shows the nucleotide sequence encoding the VP2 of the invention as well as its amino acid sequence.
  • the nucleotide sequence is indicated in the 5 ' ⁇ 3' direction from left to right.
  • Amino acids have been designated according to the generally accepted three letter code.
  • Figure 2 shows the construction of the expression vector pPPVEx8 indicating the appropriate manipulations for the insertion of the VP2 gene of PPV into the plasmid pJVP10Z.
  • Figure 3 shows the presence of empty chimeric capsids formed by aggregation of the VP2 protein of the invention, as observed in the electron microscope.
  • Figure 4 shows the value of the mean antibody titers of sera from 2 pigs immunized 2 times with 3 ⁇ g of empty chimeric PPV capsules adjuvated with Alhydrogel + QuilA. The antibody response was measured by:
  • Figure 5 shows the values of the antibody titers against PPV determined by ELISA in pregnant sows vaccinated with chimeric PPV capsids ( ⁇ , ⁇ ) and unvaccinated ( ⁇ ) subjected to viral inoculation (challenge) with a virulent PPV line.
  • the invention provides a new method for obtaining a subunit vaccine of recombinant origin suitable for protection against infections caused by PPV.
  • the new vaccine may contain the VP2 protein of the PPV produced in a multiplexed baculovirus expression system in a culture of lepidopteran cells or other permissive host, or chimeric capsids formed by assembling said VP2.
  • the invention also provides a recombinant baculovirus capable of expressing PPV VP2 when inoculated into a permissive host, as well as the method of obtaining said recombinant baculovirus.
  • Obtaining the recombinant baculovirus basically comprises the steps of: a) Preparation of the gene coding for PPV VP2 protein;
  • the gene encoding PPV VP2 protein is obtained from plasmid pPPV15, previously constructed in our laboratory, which contains all the coding sequences for VP2 and inserted into the Nhel site of plasmid pJVP10Z derived from AcMNPV , whereby a baculovirus transfer vector is obtained.
  • the vector called pPPVEx8 was shown to have the DNA corresponding to the PPV VP2 gene in the correct orientation for its expression by the AcMNPV virus polyhedrin promoter.
  • the pPPVEx8 vector was used to co-transfect, together with DNA from the wild strain of AcMNPV, permissive host cells. Among these cells, mention may be made of lepidopteran cells or their larvae. In a preferred embodiment of this invention Spodoptera frugiperda (S. frugiperda) cells, generally of strain Sf9, were transfected with pPPVEx8, although it is obvious to assume that similar results could be obtained by transfecting other cells permissive for recombinant baculovirus replication.
  • S. frugiperda Spodoptera frugiperda
  • the recombinant baculoviruses were selected after removal and titration of supernatants produced in confluent monolayers of S. frugiperda cells. Blue plaques that contained no evidence of viral polyhedrin by optical microscopy were collected and renamed on S. frugiperda cells to obtain the recombinant baculovirus.
  • the recombinant baculovirus called AcMNPV.pPPVEx8 is capable of expressing PPV VP2 protein and has been deposited in the ECACC with accession number V91030213. A "Dot Blot" test found that the VP2 gene had been correctly integrated into the genome of the aforementioned recombinant baculovirus.
  • Proteins expressed by S. frugiperda cells infected with the recombinant baculovirus were analyzed by electrophoresis in gradient gels from 8% to 15% of
  • VP2 expressed by recombinant baculovirus Based on these results, it can be affirmed that the recombinant VP2 expressed by the recombinant baculovirus in S. frugiperda cells is antigenically indistinguishable from the VP2 of viral origin.
  • the VP2 protein obtained according to the procedure described above can be used for diagnostic purposes to detect the presence of specific antibodies to PPV or to induce polyclonal or monoclonal antibodies capable of detecting PPV. Additionally, they can also be used to immunize animals against PPV.
  • ELISA assays demonstrated that sera from animals immunized with the VP2 of the purified invention recognized viral antigens while hemagglutination inhibition (IHA) tests demonstrated that sera from animals immunized with the purified VP2 protein of the invention had IHA titers of the order of 1/320 when 4 units of purified PPV HA were used as an antigen, which makes it possible to affirm that animals immunized with the VP2 of the invention have a high degree of protection.
  • IHA hemagglutination inhibition
  • the VP2 protein expressed by the recombinant baculovirus system of the invention can be used for vaccine formulation in order to protect pigs against infection caused by PPV.
  • These vaccines can be both passive and active.
  • a passive vaccine could be obtained by immunizing animals with the recombinant and purified VP2 of the invention and subsequently isolating polyclonal antibodies against said VP2 that once purified can be used in therapeutic or prophylactic applications.
  • An active vaccine can be prepared by suspending the recombinant VP2 of the invention in an immunologically acceptable diluent plus an adjuvant.
  • the VP2 protein obtained according to the process of this invention has the peculiarity that it can be added by operating according to our conditions and forming empty pseudo-viral chimeric capsids of regular and uniform structure and with a size of approximately 22 nm as it has been demonstrated by electron microscopy
  • no one has described the formation of pseudo-viral capsids, in porcine Parvovirus, "in vitro", using exclusively its VP2 protein. This fact allows to easily purify the recombinant VP2 proteins obtained.
  • the empty capsids formed by the assembly of the VP2 of the invention have a high hemagglutinating activity and a high immunogenic power, superior to that of other recombinant PPV proteins produced previously in other systems. Therefore, said capsids can be formulated for use in vaccines capable of protecting pigs against infection caused by PPV.
  • an active vaccine can be prepared by resuspending said empty capsids in an immunologically acceptable diluent without using an adjuvant.
  • saline solutions with phosphate buffer (PBS) or other similar saline solutions can be used.
  • adjuvant suspensions of alumina gels and other customary adjuvants used in vaccine formulation can be used.
  • the genomic clone pPPV10 was used as a starting material to, after various genetic manipulations, obtain another plasmid called pPPV15 ( Figure 2), which contains all the sequences encoding PPV VP2 in a DNA fragment of approximately 1.9
  • the DNA insert was arranged so that it could be extracted in one step with the restriction endonuclease BamHI.
  • the 1.9 Kpb insert was isolated by electrophoresis in low molecular weight agarose gels and inserted into the pMTL-25 vector previously digested with BamHI and treated with phosphatase.
  • the plasmid thus constructed was named pPPV17 and contained the sequences encoding the VP2 of PPV flanked by two Xbal restriction sites. 1.2. Insertion of the VP2 gene into a baculovirus transfer vector
  • pPPVEx8 was shown to have the DNA corresponding to the PPV VP2 gene in the correct orientation for expression by the AcMNPV polyhedrin promoter. 1.3. Transfection and selection of recombinant viruses
  • S.fiugiperáa cells were transfected with mixtures of the infectious DNA purified from AcMNPV and plasmid DNA from pPPVEx8 according to the procedure described by Buranáet al. Virology 101.286-290. 1980.
  • AcMNPV DNA (1 ⁇ g) purified by the method of Smith and Summers Virology 123. 393-406. 1983, mixed with two different amounts of plasmid DNA (1 and 5 ⁇ g) and brought to 750 JU. 1 with Hepes buffered saline (25 mM Hepes, pH 7.1, 140 mM NaCl and 125 mM CaCl 2 ).
  • the DNA solution was inoculated on monolayers of 2 ⁇ 10 8 S.frugiperda cells and incubated for 4 h at room temperature. The supernatant was then removed and 5 ml of medium was added, containing 10% fetal calf serum. After 4 days of incubation, the supernatants were collected and titrated in confluent monolayers of S.frugiperda cells. To improve the detection of the recombinant plates, the blue X-gal indicator was added to the agarose. The blue plates that did not contain evidence of Occlusion bodies (viral polyhedrin) by optical microscopy were collected and renamed on S.frugiperda cells to obtain the recombinant viruses. Following a third plaque, stocks of the high titre recombinant viruses (10 7-8 pfu / ml) were obtained.
  • the recombinant baculovirus was called AcMNPV.pPPVEx8 and is deposited in the European Collection of Animal Cell Cultures, (ECACC) with accession number V91030213.
  • S.ftugiperáa cells were infected with virus at a multiplicity of infection of 5 PFU / cell and incubated at 27 ° C for 48 h. Infected cells were collected, sonicated and centrifuged at 1000 rpm for 10 min to remove cell debris. The supernatant was used as the starting material for the tests.
  • a volume of 100 ⁇ l was denatured with 10 ⁇ l of 1M NaOH, boiled for 5 min and immediately placed on ice. The mixture was neutralized with 10 ⁇ l of PO 4 H 2 Na 1M. A 20 ⁇ SSC solution was immediately added until a final 6 ⁇ SSC concentration (SSC, citrate saline) was obtained.
  • the solution was transferred to a nitrocellulose filter previously moistened with 6 ⁇ SSC. It was washed with more 6 ⁇ SSC and dried at 37 ° C for 30 min. DNA it was fixed to the nitrocellulose filter with UV light for 2-3 min. The membranes then hybridized with a specific DNA probe corresponding to VP2, labeled with Phosphorus-32, at 37 ° C overnight. It was subsequently washed with solutions containing decreasing concentrations of SSC and autoradiographed.
  • S.frugiperáa cells were infected with the recombinant baculovirus at a multiplicity of 5 PFU / cell and incubated at 27 ° C for 48 h.
  • the cells were collected by centrifugation at 1000 rpm for 10 min, washed twice with phosphate buffered saline pH 7.4 and resuspended at 1.10 6 cells / ml with lysis buffer (5% sodium dodecyl sulfate (SDS), 1% ⁇ -mercaptoethanol and 17.4% glycerol).
  • Samples were loaded on 8-15% SDS-polyacrylamide gradient gels for electrophoresis and stained with Coomasie blue or transferred to nitrocellulose membranes for immunodetection. By staining with Coomasie blue, the majority presence of a protein with an apparent molecular weight of 64 KDa, equivalent to that of the viral VP2 protein, was observed in the lane corresponding to the recombinant bacul
  • the proteins were transferred to nitrocellulose membranes according to prior techniques. described (BurnettAnal. Biochem. 112. 195-203, 1981. Towbin etal, Proc. NatlAcad. Sci. USA 76. 4350-4354. 1979). The protein transfer was done in a PhastSystem apparatus (Pharmacia). In general, 25 mA / gel was used for 10-15 minutes. Nitrocellulose filters were blocked with 3% skim milk powder in 20 mM Tris HCl pH 7.5, 500 mM NaCl (TBS) for 30 min at room temperature.
  • the strips were then incubated for one hour at room temperature with the first anti-PPV rabbit antiserum, washed with TBS-0.05% Tween-20 for 30 min at room temperature and incubated with goat anti-rabbit goat serum labeled with biotin at a 1: 500 dilution for one hour at room temperature.
  • the strips were washed again and allowed to react with peroxidase-labeled streptavidin, at a dilution of 1: 2000 for 30 min at room temperature.
  • the filters were developed with a TBS solution containing 0.5 mg / ml of 4-chloro-1-naphthol (Sigma), 17% (v / v) methanol and 0.015% hydrogen peroxide in TBS until visible bands appeared.
  • the reaction was stopped by treating the strips with distilled water.
  • S.frugiperáa cells were infected with recombinant AcMNPV.pPPVEx8 virus with a multiplicity of infection of 5-10 PFU / cell and incubated at 27 ° C for 48-72 h.
  • the cells were collected by centrifugation at 1000 rpm for 10 min, they were washed twice with phosphate buffered saline pH 7.4 and resuspended at 2 ⁇ 10 7 cells / ml in 25 mM bicarbonate buffer, pH 9.5. Resuspended cells are broken by sonication and centrifuged at 10,000 rpm for 10 min to remove cell debris.
  • the supernatant containing the recombinant VP2 protein can be easily purified using its self-aggregating ability to form empty capsids. To do this, they are purified by precipitation with 20% ammonium sulfate or the empty capsids are centrifuged on CsCl gradients at 45,000 rpm for 14 hours. The capsids have a flotation density ( ⁇ ) of 1.30 g / cm 3 when they are banded in CsCl gradients. The purity of the preparation was determined by electrophoresis in polyacrylamide gels as described above and was found to have a purity in VP2 protein greater than 99%. 4.
  • Hemagglutinating activity was performed according to the procedure already known (Joo. H.S. etal.Aust. Vet. J. 52: 422-424. 1976). This functional activity is exclusively associated with the particulate nature of the product that clearly differentiates it from previous ones.
  • the hemagglutination titer of the capsids formed by assembly of the VP2 was 5 ⁇ 10 5 units / ml.
  • a purified VP2 preparation was stained by Negative contrast with uranyl acetate and observed under the electron microscope at a magnification of 40,000 ⁇ 2.5 magnifications, observing the presence of a large number of pseudo-viral chimeric particles (capsids), of regular and uniform structure and with an approximate size of 22 nm (Figure 3).
  • the presence of antibodies specific for PPV in the serum of immunized animals was determined by an indirect ELISA assay.
  • As an antigen both purified PPV virus and purified VP2 protein were used. Briefly, polystyrene plates were coated with 0.5 ⁇ g / well of virus or 0.25 ⁇ g / well of VP2 in 100 ⁇ l of carbonate buffer (0.05 M, pH 9.6) at 4 ° C overnight.
  • the plates were washed with PBS (0.15 M NaCl in 0.1 M sodium phosphate pH 7.4) containing 0.05% Tween-20 and incubated with the anti-PPV rabbit antiserum for 2h at 37 ° C, washed again and incubated with Biotin-labeled goat anti-rabbit IgG. The antibody labeled with Biotin was subsequently incubated with peroxidase-labeled streptavidin for 30 min at room temperature. The plates were washed again and the colored reaction was developed with o-phenylenediamine as a substrate for peroxidase, for 10 min in the dark and read at 450 nm in a multichannel spectrophotometer.
  • the IHA test was performed according to "standard” techniques previously described (Joo, H.S. et al. Aust. Vet. J. 52: 422-424. 1976).
  • the IHA titer was 1/320 using 4 units of purified PPV HA as an antigen. Given the good correlation observed experimentally between the IHA titles and the protection titles of the animals against infection by the virus, it is assumed that animals capable of developing that title have a high degree of protection.
  • the vaccine was formulated by mixing the capsids ( ⁇ 3 ⁇ g) with a standard adjuvant system: 50% Alhydrogel (Superfos. Denmark) + 500 ug QuilA (Superfos). Everybody the constituents were kept at concentrations
  • PPV PPV. Pigs were vaccinated with 2 ml subcutaneously in a 1 to 1 ml dose and the dose after 2 to 3 weeks. Serum samples were taken weekly, before and 10 days after the second vaccination. The presence of antibodies against PPV in the serum of immunized animals was tested by three different methods: 1. Virion anti PPV ELISA. 2. Inhibition of Hemagglutination (Joo et al. 1976. Aust. Vet. J. 52, 422-424) and 3.
  • a discharge experiment was carried out to investigate the efficacy of recombinant VP2 capsids in inducing protective immunity against PPV in pregnant sows.
  • 2 seronegative sows were vaccinated with the same vaccine preparation as described in the previous example.
  • the antigen content, adjuvants and formulation of the vaccine was the same and the 2 sows were vaccinated twice with an interval of 3 weeks.
  • LPG pathological lesions
  • Anti-PPV antibodies were also checked by a countercurrent immunoelectrophoresis test. In addition to the above, these samples were also checked for their IgM or IgG content by "rocket" electrophoresis
  • Fetal kidney, liver and lung tissues were collected and examined for the presence of PPV antigen by the ELISA test, usually used in the State Veterinary Institute for Virus Research, Lindholm (SVIV) for diagnosis of PPV. Serum samples were also collected from sows before vaccination, at revaccination, 10 days later, at the time of viral inoculation and at sacrifice, which were checked. for the presence of anti-PPV antibodies by the ELISA test already mentioned above.
  • sow 1451 At autopsy, the fetuses of sow 1451 (unvaccinated control) showed typical lesions of intrauterine PPV infection (Bachmann et al. 1975, Infec ⁇ . Immunity, 12, 455-460; Joo et al. 1976. Arch. Virol. 51, 123-129; Joo et al. 1977, J. Compar. Path. 87, 383-391; Nielsen et al. 1991, Vet. Microbiol. 28 1-11). Four fetuses were alive.
  • LPG LPG of varying severity: typical discoloration, morbidity, with large volumes of ascites fluids, edema, pulmonary stasis and erythema, thymic atrophy and hepatomegaly.
  • Another 5 fetuses were dead and had severe LPG including growth retardation, extreme universal edema, hyperemia and pronounced tissue destruction.
  • Three fetuses had lengths (CR) of 11.5 to 12.5 cm indicating growth arrest at 57 days gestation.
  • PPV antigen was detected in all fetuses of the unvaccinated sow using the ELISA technique already described.
  • the PPV recombinant VP2 capsids expressed in the baculovirus / insect cell system are capable of inducing complete protective immunity against intravenous inoculation with virulent PPV virus in pregnant sows.
  • recombinant VP2 capsids can form the basis for new commercial vaccines useful in the control of PPV infection in pigs.
  • said Capsids may be useful as a reagent in the diagnosis of PPV infection in pigs, for example, in kits for the diagnosis of antibodies.
  • a passive vaccine can be obtained by immunizing animals with the capsids formed by purified recombinant VP2 protein as described in the present invention.
  • Polyclonal antibodies directed against this VP2 can be isolated from serum, milk or other body fluids of the animal. These antibodies can be subsequently purified and used for therapeutic or prophylactic applications.
  • An active vaccine can be prepared by suspending the recombinant VP2 capsids described in the present invention in an immunologically acceptable diluent such as PBS, plus an adjuvant such as Alhydrogel or QuilA. Initial injections and recall or oral administration of the vaccine solution can be used to confer immunity.
  • An active vaccine can also be prepared by suspending the empty capsids formed by assembling the recombinant VP2 protein in an immunologically acceptable diluent without the need for adjuvants. It is also evident to anyone skilled in the art that these chimeric capsids formed by VP2 can be genetically engineered to introduce epitopes corresponding to other viral proteins and thus act as a polyvalent vaccine. 10 CONCLUSIONS
  • the AcMNPV baculovirus. pPPVEx8 is capable of producing a recombinant PPV VP2 completely identical to PPV VP2 protein as demonstrated by DNA sequence, molecular weight estimation and antigenic characterization.
  • the recombinant VP2 obtained according to our procedure has the extraordinary ability to form empty capsids, which gives it a hemagglutinating and immunogenic activity clearly superior to that of other recombinant proteins previously described, as demonstrated in the animal immunization experiments described herein.
  • This high immunogenic capacity can be exploited by persons skilled in the art to introduce epitopes corresponding to other viral proteins that can be introduced into them by genetic manipulation of the recombinant baculoviruses, or by chemical manipulation of the capsids formed.

Abstract

Procedimiento para la producción de una vacuna subunidad contra Parvovirus porcino (PPV). El procedimiento comprende en una primera etapa obtener una proteína recombinante VP2 de PPV utilizando la replicación de un baculovirus recombinante, donde ha sido previamente insertado el gen correspondiente a la VP2, en células de un huésped permisivo. La proteína VP2 obtenida en esta invención tiene la capacidad de formar cápsidas quiméricas vacías con alto poder inmunogénico por lo que pueden ser formuladas en vacunas para proteger cerdos de la infección causada por PPV. Adicionalmente pueden manipularse química o genéticamente para incorporar epítopos correspondientes a otras proteínas virales y utilizarse en la formulación de vacunas polivalentes. El baculovirus recombinante AcMNPV.pPPVEx8 expresa la VP2 de PPV en condiciones que la posibilitan para formar cápsidas pseudo-virales y ha sido depositado en la ECACC. Estas vacunas tienen aplicación en Veterinaria.

Description

PROCEDIMIENTO PARA LA PRODUCCIÓN DE UNA VACUNA SUBUNIDAD CONTRA EL PARVOVIRUS PORCINO
CAMPO DE LA INVENCION
La presente invención se refiere en general a proteínas virales y a ensayos y vacunas que las utilizan, y en particular a una proteína relacionada con el antígeno mayoritario (VP2) de la cápsida del Parvovirus porcino (PPV). Dicha proteína se ha producido en un sistema de expresión de baculovirus multiplicados en un cultivo de células de un huésped permisivo. La proteína obtenida tiene la peculiar característica de formar cápsidas quiméricas vacías, que pueden ser utilizadas en la formulación de vacunas.
ANTECEDENTES DE LA INVENCION
El parvovirus porcino (PPV) es una de las causas principales de fallo reproductivo en cerdos, resultando en muerte y momificación fetal, abortos y otros transtornos reproductivos de las cerdas preñadas (Joo & Johnson. 1976. Veterinary
Bulletin 46, 653-660; Mengeling. 1978. J. Am. Vet. Med. Assoc. 172, 1291-1294) . PPV es un parvovirus autónomo que contiene una molécula de DNA de cadena sencilla de aproximadamente 5000 nucleótidos (Mollitor et al. 1984. Vvrology 137, 241-254) . La secuencia completa del genoma ha sido descrita recientemente por nuestro grupo, (Ranz et al. 1989.
J. Gen. Virol. 70, 2541-2553) . Se han descrito 4 proteínas específicas de virus: 3 proteínas que forman la cápsida (VP1, VP2 y VP3 de pesos moleculares 83000, 64000 y 60000 dalton, respectivamente) y una proteína no estructural NS1.
El PPV pertenece al grupo de parvovirus del virus de la rata de Kilham (KRV), que está formado además de por KRV, por el virus mínimo de ratón (MVM), el LuIII , H-1, el virus de la panleukopenia felina (FPLV), el virus de la parvovirosis canina (CPV) y el virus de la enteritis de los visones (MEV) . Todos estos virus comparten varios rasgos comunes con otros parvovirus autónomos:
1. Existen dos grandes fases abiertas de lectura.
2. El mRNA de ambas fases de lectura es poliadenilado y 3'-coterminal.
3. La fase de lectura izquierda codifica para las proteínas no-estructurales necesarias para la replicación del DNA viral y la fase de lectura derecha codifica para las proteínas capsídicas.
Existen en la actualidad vacunas que protegen contra la parvovirosis porcina basadas en los métodos tradicionales de inactivación con agentes químicos y/o búsqueda de mutantes atenuados para el virus. Sin embargo todos los intentos previos de producción de nuevas vacunas utilizando proteínas recombinantes producidas en microorganismos procarióticos (v.g. E.coli) han resultado fallidos. En esta invención se describe un método para la producción de un nuevo tipo de vacunas basadas en las propiedades inmunogénicas de la proteína mayoritaria VP2 expresadas en un sistema de baculovirus crecidos en células susceptibles.
Durante los últimos años, nuestro laboratorio ha venido trabajando en el conocimiento de la biología molecular del PPV. Los hallazgos obtenidos se resumen en dos publicaciones pioneras: - A. Ranz, JJ. Manclus, E. Díaz, J.I. Casal (1989). Porcine Parvovirus: DNA secjuence and genome organization. J. Gen. Virol. 70, 2541-2553. - J./. Casal, E. Díaz, A. Ranz & JJ. Manclus (1990). Construction of an infectious genomic clone of PPV: Effect ofthe 5' end on DNA replication. Virology. 177, 764-767.
Estas publicaciones se relacionan con el conocimiento de las secuencias del DNA viral que codifican para la proteínas que forman la cápsida del virus. Estas secuencias nos han permitido identificar el gen que codifica para la VP2 del PPV y su manipulación e inserción en los vectores adecuados para la expresión en el sistema de baculovirus. Este sistema permite la producción a gran escala basándose en la replicación de baculovirus recombinantes derivados del virus de la polihedrosis nuclear de Autographa californica (AcMNPV) en células de insecto en cultivo. El estado de la técnica con respecto a estos sistemas se reúne en dos artículos científicos que son los siguientes:
1 . Luckow, VA. & Summers, MD. (1988). Trenas in the development of baculovirus expression vectors. Bio/Technology 6, 47-55. 2 . J. Violará et al (1990). Synthesis of the membrane fusión and hemagglutinin proteins of
Measles virus using a novel baculovirus vector containing the β-galactosidase gene. J. Virol. 64. 37-50.
La síntesis de la proteína VP2 en el sistema de baculovirus posee ventajas notables y sustanciales sobre la producción del virus en cultivo de tejidos y posterior purificación del mismo, tanto en cuanto a coste económico del proceso, como en rendimiento en antígeno inmunizante. Por otro lado evita la necesidad de sacrificar animales para el establecimiento en cultivo de células capaces de replicar el virus, evita el mantenimiento de reservorios virales y los riesgos habituales en el manejo de virus, etc. COMPENDIO DE LA INVENCION
La presente invención proporciona un procedimiento nuevo para la producción de una vacuna subunidad de origen recombinante para la protección de cerdos contra PPV. La nueva vacuna así producida puede contener: i) la proteína VP2 del PPV producida en un sistema de expresión de baculovirus multiplicados en un cultivo de células de un huésped permisivo (en adelante, para referirnos a esta proteína opcionalmente, utilizaremos la expresión "VP2 de la invención); o ii) cápsidas quiméricas vacías formadas por el ensamblaje de la VP2 de la invención.
La proteína VP2 de la invención tiene la característica peculiar de formar cápsidas quiméricas vacías, que opcionalmente podrían incorporar epítopos correspondientes a otras proteínas virales mediante manipulación genética de los baculovirus recombinantes, o manipulación química de las propias cápsidas.
Por consiguiente, la presente invención tiene por objeto un nuevo procedimiento para la obtención de nuevas vacunas subunidad, mejoradas, capaces de proteger cerdos contra las infecciones causadas por PPV. Como se ha mencionado antes dichas vacunas pueden contener bien la proteína VP2 de la invención o bien cápsidas quiméricas vacías formadas por dicha proteína VP2 ya que dichas cápsidas vacías tienen una alta actividad hemaglutinante y un alto poder inmunogénico, superiores a las de otras proteínas recombinantes de PPV producidas anteriormente en cualquier otro sistema. Las nuevas vacunas proporcionadas por esta invención y que constituyen un objeto de la misma pueden contener bien dichas cápsidas vacías junto con un diluyente inmunológicamente aceptable sin necesidad de emplear adyuvante, bien la proteína VP2 de la invención junto con un diluyente y un adyuvante.
Dado que dichas cápsidas quiméricas pueden ser manipuladas química o genéticamente para introducir en ellas epítopos correspondientes a otros péptidos o proteínas virales no relacionadas, el empleo de dichas cápsidas tanto para fines vacunales contra PPV, como el empleo de dichas cápsidas modificadas para incorporar otros epítopos y constituir de este modo una vacuna polivalente también constituyen objetos adicionales de esta invención. La proteína VP2 obtenida según la invención y las cápsidas quiméricas que pueden formar pueden ser útiles en diagnóstico para detectar la presencia de anticuerpos específicos del PPV o para inducir anticuerpos policlonales o monoclonales capaces de detectar el PPV. El empleo de la proteína VP2 de la invención y de las cápsidas quiméricas que pueden formar para los fines arriba indicados también constituyen otro objeto de la presente invención. Otro objeto adicional de esta invención lo constituye un baculovirus recombinante, y su procedimiento de obtención, capaz de producir una proteína recombinante VP2 de PPV idéntica a la de origen viral como se ha demostrado mediante ensayos de reactividad antigénica y otros ensayos de funcionalidad biológica. El baculovirus recombinante se ha denominado AcMNPV.pPPVEx8 y ha sido depositado el 2.3.91 en la European Collection of Animal Cell Cultures, (ECACC) en Portón Down, Salisbury, Whiltshire SP4 OJG (Gran Bretaña) con el n-5 de accesión V91030213. Un objeto adicional de la invención lo constituye el nuevo vector de transferencia en baculovirus (pPPVEx8) que contiene la secuencia de ácidos nucleicos que codifican para la VP2 de la invención. Este nuevo vector mediante un procedimiento conocido como recombinación homologa con la cepa salvaje del AcMNPV da lugar al citado baculovirus recombinante AcMNPV.pPPVEx8.
Esta invención también proporciona la secuencia de ácidos nucleicos que codifica para la proteína VP2 obtenida según la invención (figura 1).
Las cápsidas quiméricas vacías de PPV formadas por autoensamblaje de las proteínas VP2 recombinantes de PPV también constituyen un objeto adicional de esta invención.
BREVE DESCRIPCION DE LAS FIGURAS
La figura 1 muestra la secuencia de nucleótidos que codifica para la VP2 de la invención así como su secuencia de aminoácidos. La secuencia de nucleótidos está indicada en la dirección 5'→ 3' de izquierda a derecha. Los aminoácidos se han designado según el código de tres letras generalmente aceptado.
La figura 2 muestra la construcción del vector de expresión pPPVEx8 indicando las manipulaciones adecuadas para la inserción del gen de VP2 de PPV en el plásmido pJVP10Z.
La figura 3 muestra la presencia de cápsidas quiméricas vacías formadas por agregación de la proteína VP2 de la invención, tal y como se observa al microscopio electrónico. La figura 4 muestra el valor de los títulos medios de anticuerpos de sueros procedentes de 2 cerdos inmunizados 2 veces con⋍ 3μg de cápsidas quiméricas vacías de PPV adyuvantadas con Alhydrogel + QuilA. La respuesta de anticuerpos se midió por:
A. ELISA anti PPV virion (●—●)
B. Inhibición de la hemaglutinación de PPV (■—■)
C. Neutralización de PPV (▲—▲)
La figura 5 muestra los valores de los títulos de anticuerpos contra PPV determinados por ELISA en cerdas preñadas vacunadas con cápsidas quiméricas de PPV (▲,▼ ) y no vacunadas (■) sometidas a inoculación viral (challenge) con una estirpe virulenta de PPV.
DESCRIPCION DETALLADA DE LA INVENCION
La invención proporciona un procedimiento nuevo para la obtención de una vacuna subunidad de origen recombinante adecuada para la protección contra infecciones causadas por PPV. La nueva vacuna puede contener la proteína VP2 del PPV producida en un sistema de expresión de baculovirus multiplicados en un cultivo de células de lepidóptero u otro huésped permisivo, o cápsidas quiméricas formadas por ensamblaje de dicha VP2.
La invención también proporciona un baculovirus recombinante capaz de expresar la VP2 de PPV cuando se inocula en un huésped permisivo, así como el procedimiento de obtención de dicho baculovirus recombinante.
La obtención del baculovirus recombinante comprende básicamente las etapas de: a) Preparación del gen que codifica para la proteína VP2 del PPV;
b) inserción del gen de VP2 en un vector de transferencia de baculovirus;
c) transfección de células huésped permisivas con el citado vector de transferencia de baculovirus que lleva inserto el gen de la VP2; y
d) selección del baculovirus recombinante que expresa la proteína VP2 del PPV.
Adicionalmente se efectúa la caracterización del baculovirus recombinante obtenido así como la caracterización de las proteínas y cápsidas producidas. Estas etapas se describirán con detalle posteriormente.
En una realización preferida, el gen que codifica para la proteína VP2 de PPV se obtiene a partir del plásmido pPPV15, previamente construido en nuestro laboratorio, que contiene todas las secuencias codificantes para VP2 y se inserta en el sitio Nhel del plásmido pJVP10Z derivado del AcMNPV, con lo que se obtiene un vector de transferencia de baculovirus. En nuestra invención el vector denominado pPPVEx8 demostró tener el DNA correspondiente al gen de la VP2 de PPV en la orientación correcta para su expresión por el promotor de la polihedrina del virus AcMNPV.
El vector pPPVEx8 se utilizó para cotransfectar, junto con DNA de la cepa silvestre de AcMNPV, células huésped permisivas. Entre estas células se pueden citar células de lepidópteros o sus larvas. En una realización preferida de esta invención se transfectaron células de Spodoptera frugiperda (S. frugiperda) , generalmente de la cepa Sf9, con pPPVEx8, aunque resulta obvio suponer que se podrían obtener resultados semejantes transfectando otras células permisivas para la replicación del baculovirus recombinante.
Efectuada la transfección se seleccionaron los baculovirus recombinantes tras retirada y titulación de los sobrenadantes producidos en monocapas confluentes de células S. frugiperda . Las placas azules que no contenían evidencia de la polihedrina viral por microscopía óptica se recogieron y retitularon sobre células S. frugiperda para obtener los baculovirus recombinantes. El baculovirus recombinante denominado AcMNPV.pPPVEx8 es capaz de expresar la proteína VP2 de PPV y se ha depositado en la ECACC con el ns de accesión V91030213. Mediante un ensayo de "Dot Blot" se comprobó que el gen de la VP2 se había integrado correctamente en el genoma del baculovirus recombinante citado.
Las proteínas expresadas por las células S. frugiperda infectadas con el baculovirus recombinante se analizaron por electroforesis en geles de gradiente del 8% al 15% de
SDS-poliacrilamida y se tiñeron con azul de Coomasie observándose la presencia mayoritaria de una proteína con un peso molecular aparente de 64 KDa, equivalente al de la VP2 viral en el carril correspondiente al virus recombinante. Pruebas de inmunodetección demostraron que los antisueros policlonales anti-PPV reaccionaban con la
VP2 expresada por el baculovirus recombinante. En base a estos resultados se puede afirmar que la VP2 recombinante expresada por el baculovirus recombinante en células S. frugiperda es antigénicamente indistinguible de la VP2 de origen viral.
La proteína VP2 obtenida según el procedimiento antes descrito puede utilizarse con fines diagnósticos para detectar la presencia de anticuerpos específicos de PPV o para inducir anticuerpos policlonales o monoclonales capaces de detectar el PPV. Adicionalmente, pueden también utilizarse para inmunizar animales contra PPV. Ensayos ELISA demostraron que sueros procedentes de animales inmunizados con la VP2 de la invención purificada reconocían los antígenos virales mientras que ensayos de inhibición de hemaglutinación (IHA) demostraron que sueros de animales inmunizados con la proteína VP2 de la invención purificada presentaban títulos de IHA del orden de 1/320 cuando se utilizaba como antígeno 4 unidades de HA de PPV purificado, lo que permite afirmar que los animales inmunizados con la VP2 de la invención tienen un alto grado de protección.
En base a los resultados obtenidos, la proteína VP2 expresada por el sistema de baculovirus recombinante de la invención puede ser utilizada para su formulación en vacunas al objeto de proteger cerdos contra la infección causada por PPV. Estas vacunas pueden ser tanto pasivas como activas. Una vacuna pasiva se podría obtener inmunizando animales con la VP2 recombinante y purificada de la invención y posteriormente aislando anticuerpos policlonales contra dicha VP2 que una vez purificados pueden usarse en aplicaciones terapéuticas o profilácticas. Una vacuna activa puede prepararse resuspendiendo la VP2 recombinante de la invención en un diluyente inmunológicamente aceptable más un adyuvante. Anteriormente se ha mencionado que la proteína VP2 obtenida según el procedimiento de esta invención tiene la peculiaridad de que puede agregarse operando según nuestras condiciones y formar cápsidas quiméricas vacías pseudo-virales de estructura regular y uniforme y con un tamaño de 22 nm aproximadamente como se ha demostrado por microscopía electrónica. Hasta la fecha nadie ha descrito la formación de cápsidas pseudo-virales, en Parvovirus porcino, "in vitro", usando exclusivamente su proteína VP2. Este hecho permite purificar fácilmente las proteínas VP2 recombinantes obtenidas. Adicionalmente, las cápsidas vacías formadas por el ensamblaje de la VP2 de la invención tienen una alta actividad hemaglutinante y un alto poder inmunogénico, superior al de otras proteínas recombinantes de PPV producidas anteriormente en otros sistemas. Por tanto, dichas cápsidas pueden ser formuladas para su empleo en vacunas capaces de proteger cerdos contra la infección causada por PPV. En general, puede prepararse una vacuna activa resuspendiendo dichas cápsidas vacías, en un diluyente inmunológicamente aceptable sin necesidad de utilizar un adyuvante. Un aspecto importante de estas cápsidas quiméricas vacías, que puede resultar obvio para una persona experta en esta tecnología, es que pueden ser manipuladas química o genéticamente para introducir epítopos correspondientes a péptidos o proteínas de otros virus, de cuya infección se desea proteger, y actuar por tanto como una vacuna polivalente.
Como diluyente inmunológicamente aceptable pueden utilizarse soluciones salinas con tampón de fosfato (PBS) u otras soluciones salinas similares. Como adyuvante pueden utilizarse suspensiones de geles de alúmina y otros adyuvantes habitúaIntente utilizados en la formulación de vacunas.
DESCRIPCION DETALLADA DE UN MODO PREFERIDO DE REALIZACION
DE LA INVENCION. (EJEMPLO)
1. OBTENCION DE BACULOVIRUS RECOMBINANTES QUE EXPRESAN EL GEN DE LA VP2 DE PPV. 1.1. Preparación del gen de la VP2 del PPV
El genoma entero del PPV fue clonado por primera vez en nuestros laboratorios, en el plásmido bacteriano pUC18, dando lugar a un clon genómico llamado pPPV10, tal como se describe en la publicación "Construction of an infectious genomic clone of Porcine Parvovirus: Effect of the 5'-end on DNA replication", Casal et al (1990), Viroloev 177, 764-767. En nuestros experimentos se utilizó como virus de partida la estirpe viral NADL-2 que se puede obtener de la American Type Culture Collection, Rockville, Maryland (USA) con el ns de accesión ATCC-VR742.
El clon genómico pPPV10 se utilizó como material de partida para, tras diversas manipulaciones genéticas, obtener otro plásmido denominado pPPV15 (figura 2 ) , que contiene todas las secuencias que codifican para la VP2 de PPV en un fragmento de DNA de aproximadamente 1.9
Kpb. El inserto de DNA se dispuso de tal forma que podía ser extraído en un solo paso con la endonucleasa de restricción BamHI. El inserto de 1.9 Kpb se aisló por electroforesis en geles de agarosa de bajo peso molecular y se insertó en el vector pMTL-25 previamente digerido con BamHI y tratado con fosfatasa.
El plásmido así construido se denominó pPPV17 y contenía las secuencias que codifican para la VP2 del PPV flanqueadas por dos sitios de restricción Xbal . 1.2. Inserción del gen de la VP2 en un vector de transferencia de baculovirus
El vector plasmídico con sitio único Nhel derivado de
AcMNPV ( plásmido p JVP 10 Z ) , ( Violará, J. et al. J. Virol 64, 37-50, 1990) , fue una donación del Dr. Cris Richardson (NRC. Quebec. Canadá) y fue usado para clonar el fragmento Xbal obtenido a partir del plásmido pPPV17 tal como se muestra en la figura 2. Como puede verse en dicha figura, el fragmento Xbal del pPPV17 (que contiene el gen que codifica para la VP2 del PPV) se insertó en el sitio Nhel de PJVP10Z. Los plásmidos obtenidos que contenían el gen de la VP2 insertado fueron purificados de acuerdo al método de la lisis alcalina (Bimboim & Doly. NucleicAcidsRres.7, 1513-1523. 1979) y caracterizados por mapeo con endonucleasas de restricción. El recombinante llamado pPPVEx8 demostró tener el DNA correspondiente al gen de la VP2 de PPV en la orientación correcta para su expresión por el promotor de la polihedrina del AcMNPV. 1.3. Transfección y selección de virus recombinantes
Células de S.fiugiperáa fueron transfectadas con mezclas del DNA infeccioso purificado a partir de AcMNPV y DNA plasmídico procedente de pPPVEx8 de acuerdo con el procedimiento descrito por Buranáet al. Virology 101.286-290. 1980. DNA de AcMNPV (1μg) purificado por el método de Smith y Summers Virology 123. 393-406. 1983 , se mezcló con dos cantidades diferentes del DNA plasmídico (1 y 5μg) y se llevó a 750 JU.1 con solución salina tamponada con Hepes (25 mM Hepes, pH 7.1, 140 mM NaCl y 125 mM CaCl2). La solución de DNA se inoculó sobre monocapas de 2 × 108 células de S.frugiperda y se incubó durante 4 h a temperatura ambiente. Después se retiró el sobrenadante y se añadieron 5 mi de medio, conteniendo 10% suero fetal de ternera. Tras 4 días de incubación, los sobrenadantes fueron recogidos y titulados en monocapas confluentes de células S.frugiperda . Para mejorar la detección de las placas recombinantes, se añadió a la agarosa el indicador azul X-gal. Las placas azules que no contenían evidencia de cuerpos de oclusión (polihedrina viral) por microscopía óptica fueron recogidas y retituladas sobre células de S.frugiperda para obtener los virus recombinantes. Siguiendo un tercer plaqueo se obtuvieron stocks de los virus recombinantes con alto título (107-8 pfu/ml).
El baculovirus recombinante fue llamado AcMNPV.pPPVEx8 y está depositado en la European Collection of Animal Cell Cultures, (ECACC) con el ns de accesión V91030213.
2. ENSAYO DE DOT BLOT
Para determinar si se había integrado el gen de VP2 en el genoma del baculovirus recombinante se realizó un ensayo "Dot Blot" según el procedimiento siguiente.
Para obtener DNA a partir del virus recombinante, las células S.ftugiperáa fueron infectadas con virus a una multiplicidad de infección de 5 PFU/célula y se incubaron a 27°C durante 48 h. Las células infectadas fueron recogidas, sonicadas y centrifugadas a 1000 rpm durante 10 min para eliminar restos celulares. El sobrenadante fue utilizado como material de partida para los ensayos.
Un volumen de 100μl se desnaturalizó con 10μl de NaOH 1M, se hirvió durante 5 min y se colocó inmediatamente sobre hielo. La mezcla se neutralizó con 10 μl de PO4H2Na 1M. Inmediatamente se añadió una solución 20×SSC hasta obtener una concentración final 6×SSC (SSC, solución salina citrato).
La solución fue transferida a un filtro de nitrocelulosa previamente humedecido con 6×SSC. Se lavó con más 6×SSC y se secó a 37°C durante 30 min. El DNA se fijó al filtro de nitrocelulosa con luz U.V. durante 2-3 min. Las membranas de hibridaron entonces con una sonda específica del DNA correspondiente a la VP2, marcada con Fósforo-32, a 37°C durante la noche. Posteriormente se lavó con soluciones conteniendo concentraciones decrecientes de SSC y se autorradiografió.
Se observó una fuerte señal de hibridación sólo en el caso de los pocilios que contenían sobrenadantes procedentes de los cultivos infectados con baculovirus recombinantes, indicando que el gen de la VP2 se había integrado dentro de genoma viral.
3. ANALISIS DE PROTEINA E INMUNODETECCION
Células S.frugiperáa fueron infectadas con el baculovirus recombinante a una multiplicidad de 5 PFU/célula e incubadas a 27°C durante 48 h. Las células se recogieron por centrifugación a 1000 rpm durante 10 min, se lavaron dos veces con solución salina tamponada con fosfato pH 7.4 y se resuspendieron a 1.106 células/ml con buffer de lisis (5% dodecil sulfato sódico (SDS), 1% ß-mercaptoetanol y 17,4% glicerol). Las muestras se cargaron en geles de gradiente del 8 al 15% de SDS-poliacrilamida para electroforesis y se tiñeron con azul de Coomasie o se transfirieron a membranas de nitrocelulosa para la inmunodetección. Por tinción con azul de Coomasie se observó la presencia mayoritaria de una proteína con un peso molecular aparente de 64 KDa, equivalente al de la proteína VP2 viral, en el carril correspondiente al baculovirus recombinante.
Para la inmunodetección, las proteínas se transfirieron a membranas de nitrocelulosa según técnicas previamente descritas (BurnettAnal. Biochem. 112. 195-203, 1981. Towbin etal, Proc. NatlAcad. Sci. USA 76. 4350-4354. 1979) . La transferencia de proteínas se hizo en un aparato PhastSystem (Pharmacia). En general se utilizaron 25 mA/gel durante 10-15 minutos. Los filtros de nitrocelulosa se bloquearon con 3% de leche en polvo desnatada en Tris HCl 20 mM pH 7.5, NaCl 500 mM (TBS) durante 30 min a temperatura ambiente. A continuación las tiras se incubaron durante una hora a temperatura ambiente con el primer antisuero de conejo anti-PPV, se lavaron con TBS-0.05% Tween-20 durante 30 min a temperatura ambiente y se incubaron con suero de cabra anti-conejo marcado con biotina a una dilución 1:500 durante una hora a temperatura ambiente. Las tiras se lavaron de nuevo y se dejaron reaccionar con estreptavidina marcada con peroxidasa, a una dilución de 1:2000 durante 30 min a temperatura ambiente. Después de un lavado extenso, los filtros se revelaron con una solución de TBS conteniendo 0.5 mg/ml de 4-cloro-1-naftol (Sigma), 17% (v/v) de metanol y 0.015% de peróxido de hidrógeno en TBS hasta que aparecieron bandas visibles. La reacción se paró tratando las tiras con agua destilada.
Todos los antisueros policlonales de conejo, preparados contra partículas virales completas de PPV reaccionaron con la proteína VP2 expresada por el baculovirus recombinante.
3.1 Purificación de la proteina recombinante y de las cápsidas
Células de S.frugiperáa fueron infectadas con virus recombinante AcMNPV.pPPVEx8 con una multiplicidad de infección de 5-10 PFU/célula e incubadas a 27°C durante 48-72 h. Las células se recogieron por centrifugación a 1000 rpm durante 10 min, se lavaron dos veces con solución salina tamponada con fosfato pH 7.4 y se resuspendieron a 2 × 107 células/ml en buffer bicarbonato 25 mM, pH 9.5. Las células resuspendidas se rompen por sonicación y se centrifugan a 10.000 rpm durante 10 min para eliminar restos celulares. El sobrenadante conteniendo la proteína VP2 recombinante se puede purificar fácilmente aprovechando su capacidad autoagregante para formar cápsidas vacías. Para ello bien se purifican por precipitación con sulfato amónico al 20% o bien se centrifugan las cápsidas vacías sobre gradientes de CsCl a 45.000 rpm durante 14 horas. Las cápsidas presentan una densidad de flotación (ρ ) de 1.30 g/cm3 cuando se bandean en gradientes de CsCl. La pureza de la preparación se determinó por electroforesis en geles de poliacrilamida como se describió anteriormente y resultó tener una pureza en proteína VP2 superior al 99%. 4. ACTIVIDAD HEMAGLUTINANTE DE LA PROTEINA VP2
La actividad hemaglutinante se realizó de acuerdo al procedimiento ya conocido (Joo. H.S. etal.Aust. Vet. J. 52:422-424. 1976) . Esta actividad funcional viene asociada exclusivamente al carácter particulado del producto que lo diferencia claramente de otros anteriores.
El título de hemaglutinación de las cápsidas formadas por ensamblaje de la VP2 resultó ser de 5 × 105 unidades/ml.
5. CONFIRMACION DE LA PRESENCIA DE CAPSIDAS VACIAS POR MICROSCOPIA ELECTRÓNICA
Una preparación de VP2 purificada fue teñida por contraste negativo con acetato de uranilo y observada al microscopio electrónico a una magnificación de 40000 × 2.5 aumentos, observándose la presencia de un gran número de partículas quiméricas pseudo-virales (cápsidas), de estructura regular y uniforme y con un tamaño aproximado de 22 nm (Figura 3).
6. INMUNIZACION DE CONEJOS Dos conejos, raza neozelandesa de 2 Kg de peso, fueron inmunizados intramuscularmente por tres veces con 100 μg de una preparación de VP2 de la invención purificada. La is vez en adyuvante completo de Freund, la 2a y 3a con adyuvante incompleto. Una semana después de la inmunización se sangró el conejo y se valoraron los sueros obtenidos por un ensayo de ELISA y por otro de inhibición de la hemaglutinación (IHA), según los protocolos que se describen a continuación. 6.1. Cuantificación de anticuerpos anti-PPV por ELISA e IHA
La presencia de anticuerpos específicos para PPV en el suero de los animales inmunizados fue determinada mediante un ensayo de ELISA indirecto. Como antígeno se utilizó tanto virus PPV purificado, como proteína VP2 purificada. Brevemente, placas de poliestireno se recubrieron con 0.5 μg/pocillo de virus ó 0.25 μg/pocillo de VP2 en 100 μl de buffer carbonato (0.05 M, pH 9.6) a 4°C durante la noche. Las placas se lavaron con PBS (NaCl 0.15 M en fosfato sódico 0.1 M pH 7.4) conteniendo 0.05% Tween-20 y se incubaron con el antisuero de conejo anti-PPV durante 2h a 37°C, se lavaron de nuevo y se incubaron con IgG de cabra anticonejo marcado con biotina. El anticuerpo marcado con biotina se incubó posteriormente con estreptavidina marcada con peroxidasa durante 30 min a temperatura ambiente. Las placas se lavaron de nuevo y la reacción coloreada se reveló con o-fenilendiamina como sustrato para la peroxidasa, durante 10 min en la oscuridad y se leyó a 450 nm en un espectrofotómetro multicanal.
Los sueros presentaban un título por ELISA de V1600 frente a la proteína VP2 y V3200 frente al virus original PPV.
El ensayo de IHA se realizó de acuerdo a técnicas "standard" ya previamente descritas (Joo, H.S. et al Aust. Vet. J. 52:422-424. 1976) . El título de IHA fue de 1/320 utilizando como antígeno 4 unidades de HA de PPV purificado. Dada la buena correlación observada experimentalmente entre los títulos de IHA y los títulos de protección de los animales frente a la infección por el virus, se asume que animales capaces de desarrollar ese título presentan un alto grado de protección.
7. INMUNIZACION DE CERDOS Dos cerdos fueron inmunizados con preparaciones de cápsidas quiméricas de PPV formadas por autoensamblaje de proteínas VP2 recombinantes. Uno de los cerdos era seronegativo para PPV, pero el otro tenía un nivel bajo de anticuerpos debido a que la madre estaba vacunada. Los dos cerdos se mantuvieron en una unidad de aislamiento durante el experimento.
La vacuna se formuló mezclando las cápsidas (⋍3μg) con un sistema adyuvante standard: 50% Alhydrogel (Superfos. Denmark) + 500 u.g QuilA (Superfos). Todos los constituyentes se mantuvieron a concentraciones
"standard", siendo la única diferencia el reemplazamiento del virus inactivado por cápsidas de
PPV. Los cerdos se vacunaron subcutáneamente con 2 ml en una 1a dosis y con 1 mi en la 2a dosis tras 3 semanas. Se tomaron muestras de suero semanalmente, antes y 10 días después de la segunda vacunación. La presencia de anticuerpos contra PPV en el suero de los animales inmunizados se ensayó por tres diferentes métodos: 1. ELISA anti PPV virion. 2. Inhibición de la Hemaglutinación (Joo et al. 1976. Aust. Vet. J. 52, 422-424) y 3.
Neutralización de PPV (Holm Jensem, M. (1981). Acta Vet. Scaná.22, 85-98) .
Todos los títulos obtenidos por la vacuna recombinante a base de cápsidas (Fig. 4) fueron de la misma magnitud que los obtenidos habitualmente por la vacuna comercial inactivada, indicando que las cápsidas quiméricas de PPV son altamente inmunogénicas y pueden reemplazar a los viriones inactivados. A pesar de que uno de los cerdos tenía anticuerpos maternales residuales, la respuesta a la vacuna no fue inhibida y alcanzó niveles similares a los obtenidos con el cerdo seronegativo.
La respuesta se obtuvo con una dosis baja de producto (cápsidas) recombinante (⋍ 3 μg) lo que demuestra un alto potencial para la aplicación comercial como vacuna.
8. PROTECCION "in vivo" FRENTE A VIRUS VIRULENTO
Se llevó a cabo un experimento de descarga para investigar la eficacia de las cápsidas recombinantes de VP2 en la inducción de inmunidad protectiva contra PPV en cerdas preñadas. Antes de ser inseminadas artificialmente, 2 cerdas seronegativas fueron vacunadas con la misma preparación vacunal que se describió en el ejemplo anterior. El contenido en antígeno, adyuvantes y formulación de la vacuna fue el mismo y las 2 cerdas se vacunaron dos veces con un intervalo de 3 semanas. Una cerda preñada
(seronegativa) se utilizó como control no vacunado. A los 40 días de gestación las 3 cerdas preñadas fueron inoculadas por vía intravenosa con 107 TCDI50 de una estirpe virulenta de PPV, estirpe "839" (Sφrenseny Askaa. 1981.
Acta vet. Scand. 22, 171-179) . Las 3 cerdas fueron sacrificadas a los 66 días de gestación.
Se registraron la longitud total y las grandes lesiones patológicas (GPL) de cada feto. Se recogieron también muestras de sangre de cordón umbilical de los fetos y los sueros se chequearon para anticuerpos anti-PPV por un test indirecto de inmunofluorescencia (IFAT)
(S≠rensen et al. 1980, Acta Vet. Scand. 21, 312-317) . Anticuerpos anti-PPV se chequearon también por un test de inmunoelectroforesis contracorriente. Además de lo anterior, estas muestras se chequearon también para su contenido en IgM o IgG por "rocket" electroforesis
(Dalsgaará et al. 1979, Acta Vet. Scanά.20,312-320). Cuando no se pudo obtener sangre de cordón umbilical se utilizaron fluidos abdominales o extractos de tejido cerebral.
Se recogieron tejidos fetales de riñon, hígado y pulmón y se examinaron para la presencia de antígeno de PPV por el test ELISA, habitualmente utilizado en el State Veterinary Institute for Virus Research, Lindholm (SVIV) para diagnóstico de PPV. También se recogieron muestras de suero de las cerdas antes de la vacunación, en la revacunación, 10 días después, en el tiempo de la inoculación viral y en el sacrificio, que se chequearon para la presencia de anticuerpos anti-PPV por el test ELISA ya citado anteriormente.
Las tres cerdas permanecieron sanas durante todo el experimento. El desarrollo de títulos de anticuerpos anti-PPV se muestra en la figura 5. Como puede verse en dicha figura, la cerda no vacunada permaneció seronegativa hasta la inoculación viral. Tras la infección se produjo un dramático incremento en el título de anticuerpos contra-PPV registrado en la autopsia, indicando la existencia de una infección por PPV. Las 2 cerdas vacunadas muestran títulos que se incrementan tras la vacunación y revacunación. Estos títulos sufren un incremento posterior debido a la administración de virus virulento. a) Fetos del control no vacunado
En la autopsia, los fetos de la cerda 1451 (control no vacunado) mostraban lesiones típicas de infección intrauterina de PPV (Bachmann et al. 1975, Infecí. Immunity, 12, 455-460; Joo et al. 1976. Arch. Virol. 51, 123-129; Joo et al. 1977, J. Compar. Path. 87, 383-391; Nielsen et al. 1991, Vet. Micróbiol. 28 1-11). Cuatro fetos estaban vivos. Uno de ellos no mostraba signos de GPL, ahora bien los otros 3 mostraron GPL de severidad variable: decoloración típica, morbidez, con grandes volúmenes de fluidos ascíticos, edema, estasis pulmonar y eritema, atrofia tímica y hepatomegalia. Otros 5 fetos estaban muertos y tenían severas GPL incluyendo retardo en el crecimiento, edema universal extremo, hiperemia y pronunciada destrucción de tejidos. Tres fetos tenían longitudes (CR) de 11.5 a 12.5 cm indicando detención del crecimiento a los 57 días de gestación. Se detectó antígeno de PPV en todos los fetos de la cerda no vacunada utilizando la técnica ELISA ya descrita. En fluidos pleurales de tres fetos se detectó respuesta de anticuerpos ( fetal ) anti-PPV al virus del "challenge", medida por IFAT y e inmunoelectroforesis contracorriente. La presencia de estas muestras de anticuerpos de las clases IgG e IgM se confirmó por "rocket" inmunoelectroforesis. Los fetos porcinos son capaces de inducir una respuesta de anticuerpos anti PPV a los 60 días de gestación (J. Nielsen et al. 1991, Veterinary Microbiólogo 28, 1-11). b) Fetos de las cerdas vacunadas
En las cerdas vacunadas, una de ellas tenía 10 fetos y la otra 8 fetos. Todos ellos estaban vivos y normales en la autopsia. Todos los fetos aparecían sanos. No se detectó antígeno de PPV en ninguno de los fetos. Tampoco se detectó presencia de anticuerpos anti PPV en sangre o fluido pleural por ninguna de las técnicas empleadas. La ausencia de inmunoglobulinas de tipo IgG o IgM se confirmó por "rocket" inmunoelectroforesis.
Sobre la base de los resultados arriba descritos se puede afirmar que las cápsidas de VP2 recombinante de PPV expresadas en el sistema de baculovirus/células de insecto son capaces de inducir una inmunidad protectiva completa contra una inoculación intravenosa con virus PPV virulento en cerdas preñadas. A la vista de los resultados obtenidos, se demuestra que las cápsidas de VP2 recombinante pueden constituir la base para nuevas vacunas comerciales útiles en el control de la infección por PPV en cerdos. Asimismo, dado que los epítopos inmunodominantes esenciales de PPV se expresan sobre las cápsidas de VP2, dichas cápsidas pueden ser útiles como reactivo en el diagnóstico de la infección por PPV en cerdos, por ejemplo, en kits para el diagnóstico de anticuerpos. FORMULACION DE UNA VACUNA CONTRA LA INFECCION CAUSADA POR PPV
Se puede obtener una vacuna pasiva inmunizando animales con las cápsidas formadas por la proteína VP2 recombinante purificada como se describe en la presente invención. Anticuerpos policlonales dirigidos contra esta VP2, pueden aislarse de suero, leche u otros fluidos corporales del animal. Estos anticuerpos pueden ser posteriormente purificados y usados para aplicaciones terapéuticas o profilácticas.
Una vacuna activa puede ser preparada resuspendiendo las cápsidas de VP2 recombinante descrita en la presente invención en un diluyente inmunológicamente aceptable tal como PBS, más un adyuvante tal como Alhydrogel o QuilA. Inyecciones iniciales y de recuerdo o administración oral de la solución vacunal pueden ser utilizadas para conferir inmunidad. Una vacuna activa puede ser también preparada suspendiendo las cápsidas vacías formadas por ensamblaje de la proteína recombinante VP2, en un diluyente inmunológicamente aceptable sin necesidad del uso de adyuvantes. Resulta también evidente para cualquier persona experta en el arte que estas cápsidas quiméricas formadas por VP2 pueden ser manipuladas genéticamente para introducir epítopos correspondientes a otras proteínas virales y actuar por tanto como vacuna polivalente. 10.CONCLUSIONES
El baculovirus AcMNPV. pPPVEx8 es capaz de producir una VP2 recombinante de PPV completamente idéntica a la proteína VP2 de PPV como se ha demostrado por secuencia de DNA, estimación de su peso molecular y caracterización antigénica. La VP2 recombinante obtenida según nuestro procedimiento posee la extraordinaria capacidad de formar cápsidas vacías, lo que le confiere una actividad hemaglutinante e inmunogénica claramente superior a la de otras proteínas recombinantes previamente descritas, como se ha demostrado en los experimentos de inmunización de animales aquí descritos.
Esta alta capacidad inmunogénica puede ser aprovechada por personas expertas en el arte para introducir epítopos correspondientes a otras proteínas virales que se pueden introducir en ellas por manipulación genética de los baculovirus recombinantes, o por manipulación química de las cápsidas formadas.
Traducción de las leyendas de las figuras Figura 2
(a) Aislar fragmentos en gel de agarosa.
(b) Ligar.
(c) Fosfatasa.
Figura 4
(a) Logaritmo del título
(b) Días post inmunización
(c) Segunda inmunización Figura 5
(a) Vacunación de hembras preñadas con cápsidas quiméricas de PPV formadas por auto ensamblaje de
VP2 recombinante
(b) ELISA, títulos de anticuerpos contra PPV
(c) Días post vacunación
(d) Primera vacuna
(e) Segunda vacuna
(f) Challenge
(g) Inseminación artificial
(h) Autopsia La muestra del Baculovirus recombinante ha sido depositada en la EUROPEAN COLLECTION OF ANIMAL CELL CULTURES (ECACC) en fecha cuatro de Marzo de 1991.
Descrito el objeto de la presente invención se declara que lo que constituye la esencialidad de la misma es lo que se menciona en las siguientes.

Claims

REIVINDICACIONES
1. Vacuna sub-unidad recombinante para proteger cerdos contra la infección causada por PPV que comprende: a) una cantidad inmunizante de: i) proteína VP2 recombinante de PPV, o alternativamente de
ii) cápsidas quiméricas vacías formadas por autoensamblaje de proteínas VP2 recombinantes de PPV; y b) un diluyente, y, opcionalmente, un adyuvante, inmunológicamente aceptables.
2. Vacuna según la reivindicación 1, caracterizada porque dicha proteína VP2 recombinante ha sido obtenida por cultivo de células permisivas de insecto infectadas con un baculovirus recombinante que tiene integrado en su genoma el gen que codifica para la proteína VP2 de PPV.
3. Vacuna según la reivindicación 1, caracterizada porque dichas cápsidas quiméricas vacías han sido obtenidas por autoensamblaje de las proteínas VP2 recombinantes de PPV producidas durante la replicación, en células de insecto permisivas, de un baculovirus recombinante que tiene integrado en su genoma el gen que codifica para la proteína VP2 recombinante de PPV.
4. Vacuna según las reivindicaciones 2 y 3, caracterizada porque dicho baculovirus recombinante ha sido denominado AcMNPV.pPPVEx8 y ha sido depositado en la ECACC con el ns de accesión V91030213.
5. Vacuna polivalente para proteger animales de la infección causada por PPV y otros virus que comprende: a) una cantidad inmunizante de cápsidas quiméricas vacías formadas por autoensamblaje de proteínas
VP2 recombinantes de PPV manipuladas químicamente para introducir en ellas epítopos correspondientes a péptidos o proteínas de virus de cuya infección se desea proteger; y b) un diluyente, y, opcionalmente, un adyuvante, inmunológicamente aceptables.
6. Vacuna según la reivindicación 5, caracterizada porque dichas cápsidas quiméricas vacías han sido obtenidas por autoensamblaje de las proteínas VP2 recombinantes de PPV producidas durante la replicación, en células de insecto permisivas, de un baculovirus recombinante que tiene integrado en su genoma el gen que codifica para la proteína VP2 recombinante de PPV.
7. Vacuna según la reivindicación 6, caracterizada porque dicho baculovirus recombinante ha sido denominado AcMNPV.pPPVEx8 y ha sido depositado en la ECACC con el ns de accesión V91030213.
8. Vacuna polivalente para proteger animales de la infección causada por PPV y otros virus que comprende: a) una cantidad inmunizante de cápsidas quiméricas vacías formadas por autoensamblaje de proteínas VP2 recombinantes de PPV que contienen además los epítopos correspondientes a péptidos o proteínas de virus de cuya infección se desea proteger; y b) un diluyente , y, opcionalmente, un adyuvante, inmunológicamente aceptables.
9. Vacuna según la reivindicación 8, caracterizada porque dichas cápsidas quiméricas vacías conteniendo epítopos de proteínas o péptidos virales han sido obtenidas por: a) manipulación genética de un baculovirus recombinante que tiene integrado en su genoma el gen que codifica para la VP2 de PPV al que se le han introducido dichos epítopos; b) infección de células de insecto permisivas con dicho baculovirus recombinante genéticamente manipulado; y c) cultivo de las células infectadas bajo condiciones que permiten la producción de las cápsidas quiméricas de VP2 genéticamente manipuladas que incorporan los epítopos virales correspondientes.
10. Vacuna según la reivindicación 9, caracterizada porque dicho baculovirus recombinante susceptible de ser manipulado genéticamente para introducir epítopos virales ha sido denominado AcMNPV.pPPVEx8 y ha sido depositado en la ECACC con el ns de accesión V91030231.
11. Proteína VP2 recombinante de PPV que comprende una secuencia de aminoácidos sustancialmente idéntica a la mostrada en la figura 1 y es antigénicamente idéntica a la proteína natural VP2 de PPV.
12. Proteína según la reivindicación 11 caracterizada porque ha sido obtenida por cultivo de células de insecto permisivas infectadas con un baculovirus recombinante que tiene insertado el gen que codifica para la VP2 de PPV.
13. Proteína según la reivindicación 11 caracterizada porque tiene además la capacidad de formar cápsidas quiméricas vacías por autoensamblaje.
14. Proteína según la reivindicación 12 caracterizada porque dicho baculovirus recombinante ha sido denominado AcMNPV.pPPVEx8 y ha sido depositado en la ECACC con el ns de accesión V91030213.
15. Cápsidas quiméricas vacías de PPV caracterizadas porque han sido obtenidas por autoensamblaje de proteínas VP2 recombinantes de PPV expresadas en células permisivas de insecto infectadas con un baculovirus recombinante que tiene el gen que codifica para la proteína VP2 de PPV.
16. Cápsidas según la reivindicación 15 caracterizadas porque tienen alta capacidad hemaglutinante y un alto poder inmunogénico por lo que son adecuadas para su empleo en la formulación de vacunas sub-unidad y polivalentes.
17. Cápsidas según la reivindicación 15 caracterizadas porque dicho baculovirus recombinante capaz de expresar las proteínas VP2 recombinantes de PPV ha sido denominado AcMNPV.pPPVEx8 y ha sido depositado en la ECACC con el ns de accesión V91030213.
18. Cápsidas según la reivindicación 15, caracterizadas porgue contienen todos los epítopos inmunodominantes esenciales de PPV por lo que son adecuadas para su empleo en la preparación de kits para el diagnóstico de anticuerpos anti PPV.
19. Baculovirus recombinante capaz de expresar proteínas VP2 recombinantes de PPV en células permisivas, que son capaces de autoensamblarse para formar cápsidas quiméricas vacías.
20. Secuencia de ADN recombinante que codifica para la proteína VP2 recombinante de PPV que tiene una secuencia de nucleótidos sustancialmente idéntica a la mostrada en la figura 1.
MICROORGANISMOS
Referencias a microorganismos depositados en virtud de la Regla 13 bis del PCT recibidas por la Oficina Internacional el 3 de Junio de 1992.
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
PCT/ES1992/000032 1991-03-26 1992-03-26 Procedimiento para la produccion de una vacuna subunidad contra el parvovirus porcino WO1992017589A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69222840T DE69222840T2 (de) 1991-03-26 1992-03-26 Verfahren zur herstellung von untereinheisimpfstoff gegen schweinparvovirus
US07/969,213 US5498413A (en) 1991-03-26 1992-03-26 Recombinant subunit vaccine against porcine parvovirus
EP92907669A EP0551449B1 (en) 1991-03-26 1992-03-26 Method for producing a subunit vaccine against porcine parvovirus
DK92907669T DK0551449T3 (da) 1991-03-26 1992-03-26 Fremgangsmåde til fremstilling af en underenhedsvaccine mod porcin parvovirus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9100845 1991-03-26
ES9100845A ES2026827A6 (es) 1991-03-26 1991-03-26 Procedimiento para la produccion de una vacuna subunidad contra el parvovirus porcino.

Publications (1)

Publication Number Publication Date
WO1992017589A1 true WO1992017589A1 (es) 1992-10-15

Family

ID=8271931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1992/000032 WO1992017589A1 (es) 1991-03-26 1992-03-26 Procedimiento para la produccion de una vacuna subunidad contra el parvovirus porcino

Country Status (8)

Country Link
US (1) US5498413A (es)
EP (1) EP0551449B1 (es)
AT (1) ATE159547T1 (es)
AU (1) AU1537792A (es)
DE (1) DE69222840T2 (es)
DK (1) DK0551449T3 (es)
ES (1) ES2026827A6 (es)
WO (1) WO1992017589A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595970A1 (en) * 1991-07-17 1994-05-11 Commonwealth Scientific And Industrial Research Organisation Improved vaccine
ES2139537A1 (es) * 1998-03-24 2000-02-01 Inmunologia & Genetica Aplic Sistema de presentacion de antigenos basado en el virus de la sharka.
US6570104B1 (en) 1999-05-28 2003-05-27 Anoto Ab Position determination
CN103936839A (zh) * 2014-04-09 2014-07-23 中国农业科学院哈尔滨兽医研究所 重组猪细小病毒vp2蛋白、表达该蛋白的重组多角体病毒及其在疫苗制备和病毒诊断中的应用
CN110845580A (zh) * 2019-11-05 2020-02-28 中国农业科学院兰州兽医研究所 一种猪细小病毒样颗粒的组装及其免疫原性鉴定方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE174929T1 (de) * 1993-01-23 1999-01-15 Inmunologia & Genetica Aplic Synthetischen peptiden und impfstoffe gegen parvovirus
ES2080023B1 (es) * 1994-07-08 1996-08-16 Iberica Cyanamid Capsidas y proteinas recombinantes del virus de la enfermedad hemorragica del conejo (rhdv), kits de diagnostico y vacunas que contienen dichos productos recombinantes.
PT914440E (pt) * 1996-04-19 2007-02-28 Univ Auburn Vacinação com áçido nucleico contra infecções parvovirais
CA2223029A1 (en) * 1997-02-12 1998-08-12 Akzo Nobel Nv Canine parvovirus dna vaccines
FR2781159B1 (fr) 1998-07-06 2000-10-06 Merial Sas Vaccin circovirus et parvovirus porcin
US7192594B2 (en) * 1997-10-03 2007-03-20 Merial Limited Postweaning multisystemic wasting syndrome and porcine circovirus from pigs
FR2772047B1 (fr) * 1997-12-05 2004-04-09 Ct Nat D Etudes Veterinaires E Sequence genomique et polypeptides de circovirus associe a la maladie de l'amaigrissement du porcelet (map), applications au diagnostic et a la prevention et/ou au traitement de l'infection
DK2363488T3 (en) * 1997-12-11 2014-11-24 Merial Sas Postweaning multisystemic wasting syndrome virus from pigs
BR9804283B1 (pt) * 1998-03-18 2010-11-30 processo para a produção de flavivìrus em baixa densidade de células em cultura e processo para a produção de flavivìrus recombinante em baixa densidade de células em cultura.
US6238860B1 (en) 1998-11-05 2001-05-29 Dyax Corp. Binding moieties for human parvovirus B19
ES2170622B1 (es) * 1999-12-03 2004-05-16 Consejo Superior De Investigaciones Cientificas Clones y vectores infectivos derivados de coronavirus y sus aplicaciones.
AU4565401A (en) * 2000-03-14 2001-09-24 Thomas Jefferson University Production of chimeric capsid vectors
EP1290201B1 (en) * 2000-06-05 2006-12-13 Her Majesty The Queen in Right of Canada as represented by The Minister of Agriculture and Agri-Food Recombinant subunit proteins from porcine parvovirus produced in plants
HUE054868T2 (hu) * 2005-12-29 2021-10-28 Boehringer Ingelheim Animal Health Usa Inc Multivalens PVC2 immunogén készítmények és eljárások ezek elõállítására
CN101851609B (zh) * 2010-02-02 2012-10-03 哈药集团生物疫苗有限公司 猪细小病毒l株及在制备猪细小病毒病灭活疫苗中的用途
WO2015048115A1 (en) 2013-09-25 2015-04-02 Zoetis Llc Pcv2b divergent vaccine composition and methods of use
MY191895A (en) 2016-11-03 2022-07-18 Boehringer Ingelheim Vetmedica Gmbh Vaccine against porcine parvovirus and porcine reproductive and respiratory syndrome virus and methods of production thereof
WO2018083154A1 (en) 2016-11-03 2018-05-11 Boehringer Ingelheim Vetmedica Gmbh Vaccine against porcine parvovirus
KR102117811B1 (ko) * 2018-12-05 2020-06-02 대한민국(농림축산식품부 농림축산검역본부장) 재조합 돼지파보바이러스 항원 단백질 및 이의 용도
CN114222579A (zh) 2019-04-04 2022-03-22 勃林格殷格翰动物保健美国有限公司 猪圆环病毒3型(pcv3)疫苗及其生产和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117767A1 (en) * 1983-01-07 1984-09-05 Mgi Pharma, Inc. Production of parvovirus subunit vaccines
WO1988002026A1 (en) * 1986-09-08 1988-03-24 Applied Biotechnology, Inc. Empty viral capsid vaccines
EP0341611A2 (en) * 1988-05-09 1989-11-15 Boyce Thompson Institute For Plant Research, Inc. Subunit canine parvovirus vaccine and method of making the same
DD286820A5 (de) * 1989-08-10 1991-02-07 Univ Berlin Humboldt Verfahren zur herstellung des rekombinanten proteins hbcag delta-hivp24, das eine fusion aus den coreproteinen von hepatitis b-virus und humahem immundefizienzvirus 1 darstellt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0117767A1 (en) * 1983-01-07 1984-09-05 Mgi Pharma, Inc. Production of parvovirus subunit vaccines
WO1988002026A1 (en) * 1986-09-08 1988-03-24 Applied Biotechnology, Inc. Empty viral capsid vaccines
EP0341611A2 (en) * 1988-05-09 1989-11-15 Boyce Thompson Institute For Plant Research, Inc. Subunit canine parvovirus vaccine and method of making the same
DD286820A5 (de) * 1989-08-10 1991-02-07 Univ Berlin Humboldt Verfahren zur herstellung des rekombinanten proteins hbcag delta-hivp24, das eine fusion aus den coreproteinen von hepatitis b-virus und humahem immundefizienzvirus 1 darstellt

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of General Virology, volumen 70, 1989, SGM (GB) A.I. Ranz et al.: "Porcine parvovirus: DNA sequence and genome organization", páginas 2541-2553, ver páginas 2546-2547, (citado en la solicitud) *
Journal of Virology, volumen 64, num. 1, Enero 1990, American Soc. for Microbiology (US), J. Vialard et al.: "Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene", páginas 37-50, ver todo el articulo *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595970A1 (en) * 1991-07-17 1994-05-11 Commonwealth Scientific And Industrial Research Organisation Improved vaccine
EP0595970A4 (en) * 1991-07-17 1995-05-31 Commw Scient Ind Res Org IMPROVED VACCINE.
ES2139537A1 (es) * 1998-03-24 2000-02-01 Inmunologia & Genetica Aplic Sistema de presentacion de antigenos basado en el virus de la sharka.
US6570104B1 (en) 1999-05-28 2003-05-27 Anoto Ab Position determination
CN103936839A (zh) * 2014-04-09 2014-07-23 中国农业科学院哈尔滨兽医研究所 重组猪细小病毒vp2蛋白、表达该蛋白的重组多角体病毒及其在疫苗制备和病毒诊断中的应用
CN110845580A (zh) * 2019-11-05 2020-02-28 中国农业科学院兰州兽医研究所 一种猪细小病毒样颗粒的组装及其免疫原性鉴定方法

Also Published As

Publication number Publication date
EP0551449B1 (en) 1997-10-22
ATE159547T1 (de) 1997-11-15
ES2026827A6 (es) 1992-05-01
US5498413A (en) 1996-03-12
AU1537792A (en) 1992-11-02
EP0551449A1 (en) 1993-07-21
DE69222840D1 (de) 1997-11-27
DE69222840T2 (de) 1998-05-14
DK0551449T3 (da) 1998-07-20

Similar Documents

Publication Publication Date Title
WO1992017589A1 (es) Procedimiento para la produccion de una vacuna subunidad contra el parvovirus porcino
EP0554414B1 (en) Method for producing a subunit vaccine against the canine parvovirus and other related viruses
Martínez et al. Production of porcine parvovirus empty capsids with high immunogenic activity
Herrmann et al. Protection against rotavirus infections by DNA vaccination
French et al. Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins
Lopez De Turiso et al. Recombinant vaccine for canine parvovirus in dogs
Laurent et al. Recombinant rabbit hemorrhagic disease virus capsid protein expressed in baculovirus self-assembles into viruslike particles and induces protection
US5916563A (en) Parvovirus protein presenting capsids
ES2348600T3 (es) Partículas similares a coronavirus que comprenden genomas funcionalmente suprimidos.
Nagesha et al. Self-assembly, antigenicity, and immunogenicity of the rabbit haemorrhagic disease virus (Czechoslovakian strain V-351) capsid protein expressed in baculovirus
WO1995031550A1 (es) Proteinas recombinantes de prrsv, kits de diagnostico y vacunas que contienen dichas proteinas recombinantes
WO1988002026A1 (en) Empty viral capsid vaccines
PT89579B (pt) Preparacao de uma vacina de subunidade recombinante contra infeccao provocada pelo virus da pseudo-raiva
Hurtado et al. Identification of domains in canine parvovirus VP2 essential for the assembly of virus-like particles
CA2054542A1 (en) Chicken anemia virus vaccine and diagnostic
Casal Use of parvovirus‐like particles for vaccination and induction of multiple immune responses
IE921686A1 (en) Recombinant avipox virus, the culture of cells infected with¹this virus and vaccines for poultry derived from this virus
James et al. Seroepidemiology of human group C rotavirus in the UK
ES2073036T5 (es) Proteinas b19 de parpovirus humano y particulas de tipo virus, su produccion y su utilizacion en pruebas de diagnostico y vacunas.
Shivappa et al. Using a baculovirus insect/larvae
Jiang et al. Nucleic acid immunization protects dogs against challenge with virulent canine parvovirus
Gromadzka et al. Recombinant VP60 in the form of virion-like particles as a potential vaccine against rabbit hemorrhagic disease virus.
Loudon et al. Expression of the outer capsid protein VP5 of two bluetongue viruses, and synthesis of chimeric double-shelled virus-like particles using combinations of recombinant baculoviruses
AU4142396A (en) Attenuated canine parvovirus vaccine
Agbandje et al. Preliminary X-ray crystallographic investigation of human parvovirus B19

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK FI GB HU JP KP KR LK LU MG MW NL NO PL RO RU SD SE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU MC ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1992907669

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992907669

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1992907669

Country of ref document: EP