WO1992016827A1 - Method and device for analyzing area - Google Patents

Method and device for analyzing area Download PDF

Info

Publication number
WO1992016827A1
WO1992016827A1 PCT/JP1992/000335 JP9200335W WO9216827A1 WO 1992016827 A1 WO1992016827 A1 WO 1992016827A1 JP 9200335 W JP9200335 W JP 9200335W WO 9216827 A1 WO9216827 A1 WO 9216827A1
Authority
WO
WIPO (PCT)
Prior art keywords
principal component
small
small region
extracted
group
Prior art date
Application number
PCT/JP1992/000335
Other languages
English (en)
French (fr)
Inventor
Kiyohide Imaeda
Original Assignee
Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho filed Critical Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho
Priority to DE69228537T priority Critical patent/DE69228537T2/de
Priority to US08/108,744 priority patent/US5418367A/en
Priority to EP92907117A priority patent/EP0577835B1/en
Publication of WO1992016827A1 publication Critical patent/WO1992016827A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Definitions

  • the present invention relates to a surface analysis method and a surface analysis device to which the surface analysis method is applied.
  • the substance when analyzing what kind of functional group an organic substance is composed of, etc., the substance is irradiated with infrared rays, and the infrared rays transmitted through the substance or the infrared rays reflected from the substance are separated, and the infrared intensity at each predetermined wavelength is analyzed. Is measured to obtain a spectral spectrum. Infrared wavelengths at which the intensity of absorbing the irradiated infrared light is maximum are different for each functional group.
  • a peak (maximum value or minimum value) corresponding to the functional group constituting the organic substance appears on the waveform, and the infrared ray at which this peak occurs.
  • the functional group constituting the substance to be analyzed can be specified from the wavelength.
  • the site of the impurities and the constituent materials are also analyzed.
  • a so-called plane diffraction is performed in which a part is cut into a plane, the plane is divided into small areas, each small area is irradiated with infrared rays, and each small area is analyzed in the same manner as described above.
  • the constituent elements of a substance such as a synthetic resin are the same, the properties and the like differ greatly depending on the bonding state of the molecules. Therefore, when performing the above analysis, it is measured in advance by focusing on how the waveform representing the spectral spectrum changes, particularly focusing on the wavelength and infrared intensity of the infrared ray at the peak of the waveform representing the spectral spectrum.
  • the material was identified by performing pattern matching on how the waveform representing the spectral spectrum of the standard sample changed. For this reason, in order to obtain an accurate infrared intensity by minimizing errors, it is necessary to perform several measurements and use an average value or the like to improve the accuracy, and it takes time for measurement, analysis, etc. .
  • the present invention has been made in view of the above facts, and has as its first object to provide a surface analysis method that can perform measurement and analysis in a short time.
  • a first aspect of the present invention is to divide a surface to be analyzed into a number of small areas and measure the light to obtain a spectral spectrum of each small area.
  • a plurality of principal components are extracted from the vector, a principal component score for each of the extracted plurality of principal components is calculated for each small region, and a small region having a principal component score of a specific principal component equal to or more than a predetermined value is determined.
  • a plurality of small regions are classified into a plurality of groups so as to be included in the same group, and substances constituting each classified group are analyzed.
  • the analysis of the substances constituting each group is performed based on the spectral spectrum of the small area by extracting the optimal small area from the principal component score of the specific principal component from each group.
  • the second invention is a measuring means for dividing a surface to be analyzed into a number of small areas and performing photometry to determine a spectral spectrum of each small area, and a spectral spectrum of each of the determined small areas.
  • a computing means for extracting a plurality of principal components from each of the plurality of principal components and calculating a principal component score for each of the extracted plurality of principal components for each of the small regions; Classification means for classifying a plurality of small regions into a plurality of groups so that is included in the same group, and analysis means for analyzing substances constituting each of the classified groups.
  • the analysis means of the second invention extracts an optimal small area from the principal component score of the specific principal component from each group, and analyzes the substances constituting each group based on the spectrum of the small area.
  • a spectral spectrum is obtained by dividing a surface to be analyzed into a number of small areas and performing photometry, and a plurality of principal components are extracted from the obtained spectral spectrum of each of the small areas. Then, a principal component score for each of the plurality of extracted principal components is calculated for each small region.
  • the principal component expresses a portion where the variance (variation) of data values is large, that is, in the present invention, a powerful feature for specifying a substance constituting each small region.
  • the spectral spectrum is composed of data representing the light intensity and the like for each predetermined wavelength, but the main components are expressed using coefficients (eigenvectors) that assign weights to each data, and the variation in the values over time is large.
  • a large weight is given to the wavelength.
  • the surface to be measured consisting of a substance A having a large peak in the spectral spectrum at the wavelength spectrum and a substance B having no peak in the spectral spectrum at the wavelength spectrum is divided into small regions.
  • the spectral spectrum of the region is obtained, when the spectral spectra of the respective small regions are compared, the dispersion of the data value at the wavelength I, becomes large.
  • the value of the data at the wavelength ⁇ where the value variation is large, is an important feature for specifying the substance.
  • the principal components extracted in the above case are expressed using coefficients that increase the weight of the data at the wavelength ⁇ ,.
  • the principal component score for the principal component calculated based on this coefficient is significantly different between the small region composed of the substance ⁇ and the small region composed of the substance B. In this way, it is determined whether or not each principal component score of each small region is equal to or more than a predetermined value.
  • each principal component score of each small region is equal to or more than a predetermined value.
  • the variation of the plurality of places can be represented by one principal component. Therefore, the characteristics of the spectral spectrum of a synthetic resin product or the like composed of many peaks can be expressed by a small number of main components. In this way, the principal components are determined according to the degree of data variation, and high accuracy is not required for individual data values. For example, even if there is a slight variation in the measured light intensity due to errors, the value due to multiple peaks occurring at a specific wavelength The variability of, that is, the comparison of the principal components is sufficiently small, and the analysis results are not significantly affected. For this reason, it is not necessary to improve the measurement accuracy of the light intensity at the peak or the like by obtaining the spectrum multiple times, and it is possible to shorten the time for the measurement and the analysis.
  • the analysis of the substances constituting each group may be performed by extracting the optimal small area from the principal component score of the specific principal component from each group and based on the spectral spectrum of the small area.
  • the spectral spectrum of the central region having the highest principal component score or the central region with respect to the specific principal component has remarkable features represented by the specific principal component. Therefore, a substance can be easily specified from the spectral spectrum.
  • a spectral spectrum is obtained by dividing the surface to be analyzed into a number of small regions and performing photometry, and a plurality of principal components are extracted from the obtained spectral spectra of each of the small regions to obtain a plurality of main components. Is calculated for each of the small regions.
  • a plurality of principal components are extracted from the spectral spectrum of each sub-region, in which a large weight is assigned to a wavelength having a large data value variation, and the sub-regions composed of mutually different substances are extracted.
  • the principal component scores for the specific principal components differ greatly.
  • each principal component score of each small area is equal to or more than a predetermined value, and a plurality of small areas are divided so that small areas whose main component score of a specific principal component is equal to or more than a predetermined value are included in the same group.
  • the small regions constituting a particular group are composed of the same substance, and the substances constituting each small region are analyzed by analyzing the substances constituting each group.
  • Each can be specified.
  • the principal component is determined according to the degree of variation in data, and high accuracy is not required for individual data values, the spectral intensity is measured multiple times to determine the light intensity measurement accuracy at peaks and the like. There is no need to improve, and the time for measurement, analysis, etc. can be reduced.
  • the analyzing means extracts, from each group, a small area in which the principal component score of the specific principal component is the highest or the center, and forms each group based on the spectral spectrum of the small area.
  • the substance is analyzed.
  • Most principal component score for specific principal component It can be determined that the spectral spectrum of the high or central small region has the characteristic represented by the specific principal component remarkably. Therefore, a substance can be easily specified from the spectral spectrum.
  • a spectral spectrum can be obtained by irradiating the surface to be analyzed with infrared rays. Further, a spectral spectrum can be obtained by irradiating the surface to be analyzed with visible light and utilizing Raman scattering.
  • the surface to be analyzed is divided into a number of small regions, and photometry is performed to obtain a spectral spectrum, and a plurality of principal components are obtained from the spectral spectrum of each small region.
  • the extracted and calculated principal component scores for each of the plurality of principal components are calculated for each of the small regions, and the plurality of small regions are divided so that the small regions having the principal component score of the specific principal component equal to or greater than a predetermined value are included in the same group. Since the substance is classified into a plurality of groups and the substances constituting each group are analyzed, an excellent effect that measurement and analysis can be performed in a short time can be obtained.
  • FIG. 1 is a schematic configuration diagram of an infrared surface analyzer according to the present embodiment
  • FIG. 2 is a flowchart illustrating a measurement process for each small area according to the present embodiment.
  • FIG. 3 is a flowchart illustrating a surface analysis process according to the present embodiment.
  • Fig. 4 is an explanatory diagram explaining the concept of a small area
  • Fig. 5 (A) is a schematic diagram showing an image example of the surface to be analyzed
  • Fig. 5 (B) is a schematic diagram showing an example of the display of the classification results
  • FIG. 6 is a diagram for explaining the operation of the principal component analysis
  • FIG. 7 is a diagram showing a display example of the measurement results of the best points.
  • FIG. 1 shows an infrared surface analyzer 10 according to the present embodiment.
  • the infrared plane analyzer 10 uses a wave number (reciprocal of wavelength) as a basic unit instead of wavelength.
  • the infrared plane analyzer 10 includes an infrared generator 12 that emits infrared light having a predetermined wave number.
  • Infrared generator Reference numeral 12 is connected to the control device 16 via the control box 14, and emits infrared rays according to an instruction from the control device 16.
  • An XY table 18 on which the sample SA to be analyzed is placed is arranged above the infrared ray generator 12.
  • the XY table 18 has a light-transmitting property, and the sample SA placed on the XY table 18 is thinly embossed in order to easily transmit infrared rays. Thereby, the infrared rays emitted from the infrared ray generator 12 pass through the XY table 18 and the sample SA.
  • the XY table 18 is connected to the drive unit 20, and is moved by the drive unit 20 in the X and Y directions, that is, two-dimensionally.
  • the drive unit 20 is connected to the control device 16 and moves the XY table 18 according to an instruction from the control device 16.
  • a lens barrel 22 having a stop, a polarizer, and the like (not shown) is disposed above the XY table 18, a lens barrel 22 having a stop, a polarizer, and the like (not shown) is disposed.
  • the infrared light transmitted through the XY table 18 and the sample S A enters the lens barrel 22.
  • the lens barrel 22 is connected to a control device 16 via a control box 14, and the operation of the aperture and the like is controlled by the control device 16.
  • a video camera 24 equipped with an imaging device such as a CCD is mounted on the infrared emission side of the lens barrel 22.
  • the video force camera 24 is connected to the control device 16, receives infrared light that has passed through the sample SA and passed through the lens barrel 22, and outputs a video signal representing an image of the sample SA.
  • An infrared spectrophotometer 26 is attached to the lens barrel 22.
  • the lens barrel 22 emits a part of the incident infrared light to the infrared spectrophotometer 26.
  • the infrared spectrophotometer 26 is provided with a spectroscope (not shown) that disperses the infrared light incident from the lens barrel 22 and a photometer that measures the intensity of the dispersed infrared light.
  • the infrared spectrophotometer 26 is connected to the control device 16, and the control device 16 indicates the measurement wavenumber band and the measurement wavenumber step width of the spectral spectrum.
  • the measurement wavenumber band indicates the range of the infrared wavenumber to be measured
  • the wavenumber step width indicates how much the wavenumber width should be measured within the measurement wavenumber band
  • the infrared spectrophotometer 26 performs the specified measurement.
  • the infrared intensity is measured according to the wavenumber band and the measured wavenumber step width, and the measurement data representing the spectral spectrum is output to the controller 16.
  • the control device 16 has a magnetic disk 28 and stores the measurement results input from the infrared spectrophotometer 26 on the magnetic disk 28.
  • a display 32 is connected to the control device 16 via a video printer 30.
  • the controller 16 outputs the video signal and the like output from the video camera 24 to the display 32 via the video printer 30, whereby the image of the sample A to be analyzed is displayed on the display 32. Is done.
  • the video printer 30 prints an image of the sample A to be analyzed and the like as necessary based on the input video signal.
  • a display 34 is also connected to the controller 16.
  • the control device 16 displays information such as analysis results on the display 34.
  • a keyboard 36 for inputting data and the like is also connected to the control device 16.
  • step 100 information such as the measured wavenumber band and the wavenumber step width of the spectral spectrum stored in the magnetic disk 28 or the like is read in advance.
  • Measuring wave number band in this example water Ya small Nai 1000-2000 0 influence of carbon dioxide gas 111 - 1 is set to (5000 ⁇ 10000 nm in wavelength), the wavenumber step width for example. 4 to 1 6 c nT 1 Set to about.
  • the infrared surface analyzer 10 divides the analysis surface of the sample SA into, for example, a 10 ⁇ 10 small region 38 or a 30 ⁇ 30 small region as shown in FIG. The measurement is performed for each area. Therefore, information on the position (coordinates) of each small area is also read.
  • step 102 the XY table 18 is moved based on the information on the position of the small area so that the small area to be measured first is irradiated with infrared rays.
  • step 104 infrared rays are emitted from the infrared ray generator 12. The infrared rays emitted from the infrared ray generators 12 pass through the XY table 18 and the small area of the sample SA to be measured first, and a part of the infrared rays is incident on the infrared spectrophotometer 26 to be separated and the remaining Is incident on the video camera 24.
  • step 106 the infrared spectrophotometer 26 is instructed on the measurement wave number band and the wave number step width of the spectral spectrum, and the measurement is started.
  • the infrared spectrophotometer 26 starts measuring the intensity from infrared light having a wavenumber of, for example, 2000 cm- 1 at one end of the measurement wavenumber band, and measures the wavenumber of the infrared light to be measured at the other end of the measurement wavenumber band. For example, infrared intensity is measured in order of every wave number step width up to a wave number of 1000 cm-1.
  • the measurement data is output to the controller 16.
  • infrared spectrophotometer 2 6 measures the infrared intensity to 1000 cm one 1 wave number of the other end of the measurement frequency band, measurement of the spectral scan Bae spectrum for one small region is completed, the next step 1 0 8 Then, the input measurement data is recorded on the magnetic disk 28.
  • next step 110 it is determined whether or not the measurement processing for all the small areas has been completed. If the determination of step 110 is denied, the XY table 18 is driven in step 102 so that the small area to be measured next is irradiated with infrared rays, and steps 104 to 110 are performed. The measurement process is performed in the same manner as described above. In this manner, each small area is irradiated with infrared rays in order, and the measurement processing is performed on all the small areas. If the determination in step 110 is affirmative, the present measurement process ends.
  • the measurement data x, i, ..., ⁇ ⁇ ⁇ as shown in Table 1 were obtained. These measurement data are stored on the magnetic disk 28. Note that small regions are numbered 2, 3,... ⁇ for convenience in order to distinguish each small region.
  • the measurement data for example, the small region numbers 1 small region measured data for each small area ( ⁇ ", ⁇ 2], x 3 1, ⁇ , X pi) represents the spectrum of this small region 1 ing. table 1
  • step 200 measurement data as shown in Table 1 stored in the magnetic disk 28 is read.
  • Step 2 0 2 the number n of the small region, the routine proceeds to Step 2 0 4 in the case where the determination of the sampling number p or determining whether c Step 2 flight 2 is negative.
  • the principal components are extracted from the measurement data obtained by measuring the infrared intensities of p types of wave numbers for each of the n small regions from the first day by the principal component extraction processing described later, when the data is small That is, when n ⁇ p, the solution of the eigenvalue cannot be obtained, so in step 204, the number of data is reduced. For example, the peak of the value of the measurement data is obtained for each small area, and the measurement data of a predetermined wave number in which the values of the measurement data of all the small areas do not have peaks, that is, the photometry data whose value is less than the peak, is deleted. Principal components extracted from the measurement data are variables (wave numbers) with large variations in the measurement data.
  • the value of the measurement data has a peak in a certain small area, and the value of the measurement data in other small areas has a peak. Since a large weight is given to the wave number below the peak, even if the data of the predetermined wave number below the peak is deleted in all the small areas, there is no significant effect.
  • normalization is performed to change the value of each measurement data so that the average value of the measurement data is 0 and the variance is 1. This eliminates the influence of the state of the surface to be analyzed, for example, the variation in light transmittance.
  • the main components are extracted. This principal component is extracted, for example, by performing the following operation.
  • V (z) —— ⁇ ⁇ a, (x! I—) ten... + a P (Xpi- p) ⁇ 2- (2) n 1
  • the first principal component corresponding to the largest eigenvalue ⁇ is a composite variate whose coefficients are elements of the eigenvector ( ail , a PP )
  • the eigenvectors (an,..., A PP ) are used to weight each composite variable z,,. It is a coefficient.
  • the sample to be analyzed SA is composed of three types of spectroscopy spectrum material A, substance B, and substance C as shown in FIG. 6, and the variance of each variable, that is, the dispersion of the measurement data for each wave number is represented by the wave number ⁇ . maximum cases in 8, the value of the first principal component eigenvectors a 81 increases, greater weight is given to the measurement data at the time of irradiation with the infrared wave number x 8.
  • each principal component is determined according to the variance of the measurement data at each wave number, and does not require high precision in the value of the measurement data in each small area. For this reason, it is not necessary to measure multiple times and calculate the average value as in the past, and to improve the measurement accuracy of infrared intensity at peaks, etc., and it is possible to shorten the measurement time and reduce the amount of data, thus shortening the analysis time. Can be shortened.
  • step 210 the number of principal components D and the number of substances representing the number of substances constituting the surface to be analyzed Determine M.
  • the number of principal components D is the number of principal components to be used in the processing such as classification after the next step 2 1 2.
  • Eigenvalues; I satisfies the following equation (6).
  • Equation (6) above is an empirical equation obtained by experiments by the inventor of the present invention.
  • the principal components that do not satisfy Equation (6) have low eigenvalues ⁇ , and the principal component of the total variance of the original variate is The so-called contribution rate is low. For this reason, the influence on the processing such as classification after the next step 2 12 is small, and no problem occurs even if it is not adopted as the main component in the processing such as classification.
  • the same value as the number of principal components D is set as the number of substances ⁇ .
  • step 212 the principal component score for each principal component is calculated for each small region.
  • Variable X of the principal component scores of this is the equation (4) and (5),, ⁇ 2, ⁇ ⁇ , to ⁇ ⁇ , measurement de Isseki x] i, x 2], x 3 1, one, x P ] is the value of the principal components,..., ⁇ ⁇ calculated by substitution.
  • the principal component score represents the relationship between each data (measured data for each small area in this embodiment) and each principal component.
  • the principal component score of the first principal component is the highest or the central component score is the highest.
  • the small region has a remarkable feature represented by the first principal component, and it can be determined that a peak occurs at a wave number given a large weight by the first principal component. Therefore, if the classification is made based on the magnitude of the main component score, it can be determined that the small regions classified into the same small region group are composed of the same substance.
  • each small area is classified based on the principal component score.
  • a classification method for example, it is determined whether or not the principal component scores ZH,..., Z ln for the first principal component of each small region are equal to or more than a reference score (for example, 1), and the principal component score is equal to or more than the reference score. Is classified as a small region corresponding to the first principal component.
  • the principal component score 2 ⁇ ,..., Z 2 n corresponding to the second principal component is equal to or greater than the reference score, and the same as above. Classify into.
  • the classification result is displayed on the display 34 as shown in FIG. 5 ( ⁇ ). This classification result is displayed as an image of the actual analyzed surface and is colored in the same color for each classified small area group. Unclassified small areas (for example, area ⁇ in FIG. 5 ( ⁇ )) for which all principal component scores were lower than or equal to the reference score in the above classification processing are displayed without coloring.
  • step 211 it is determined whether or not the object is the same.
  • the operation of the infrared surface analyzer 10 is shown in Fig. 5 (B), with the image of the surface of the sample A to be analyzed displayed on the display 32 as shown in Fig. 5 ( ⁇ ). Is compared with the classification result displayed on the display 34, for example, to judge whether the classification result matches the actual color distribution of the surface to be analyzed, etc., and operate the keyboard 36 on the judgment result.
  • FIG. 5 (B) it is determined that the small area 40 and the small area 42 do not match the entity. In such a case, a determination result indicating that it is not the same as the entity is input.
  • step 2 18 If a judgment result is input that is not the same as the entity, go to step 2 18 Then, it is determined whether or not there is an unclassified small area displayed without coloring. If the determination in step 218 is affirmative, in step 220, 0.1 is subtracted from the reference score, and the process returns to step 214. As a result, the classification criteria are lowered and classification is performed again. If the judgment in step 218 is denied, the values of the number of principal components D and the number of substances M are corrected so as to match the substance, and the process returns to step 211, and the judgment of step 216 is affirmative. Steps 2 12 to 2 22 are repeated until the process is completed.
  • step 2 16 determines whether the determination in step 2 16 is affirmative. If the determination in step 2 16 is affirmative, the process proceeds to step 2 24, and for each small region group classified as being composed of the same substance, the highest principal component score in the small region group is obtained. Re extract the best point which is a small area. In step 226, each small region extracted as the best point of each small region group is irradiated with infrared rays and the wave number of infrared rays is changed in the same manner as in the measurement process of the flowchart in FIG. Measure the intensity of the infrared light. As a result, a spectrum is obtained for each best point as shown in FIG. 7, and this is displayed on the display 34.
  • the infrared plane analyzer 10 estimates (identifies) the substance constituting each best point. Estimating substances with reference to the displayed spectrum requires skill. If the operator operating the infrared plane analyzer 10 is a skilled person, the determination in this step 228 is affirmative, but if the operator is not skilled in estimating the substance, the step 22 is performed. The judgment of 8 is denied. If the determination in step 228 is affirmed, the process moves to step 230, and a similar spectrum is searched for in the spectrum stored in advance.
  • the best point is the small region having the highest principal component score in the small region group, and therefore the small region having the most remarkable feature represented by each principal component. Therefore, if each principal component accurately represents the characteristics of the substance, the substance at each best point can be easily estimated.
  • step 232 it is determined whether or not the spectrum of each best point measured in step 226 is a spectrum of an existing substance. For example, if there is no similar spectrum in the processing of step 230, or if the expert This determination is denied if it is not determined whether there is any. If the determination in step 2 32 is denied, the main component does not accurately represent the characteristics of the substance constituting each small area, for example, the small area at the best point is composed of multiple substances, etc. Conceivable. Therefore, the value of the number of substances M is corrected in step 2 3 4 and the process returns to step 2 12. If the determination in step 2 32 is affirmed, the process ends.
  • a plurality of principal components having each wavelength as a variable are extracted, a principal component score for the plurality of principal components is calculated for each small region, and each small region is calculated based on the principal component score. Since the classification is made, it is not necessary to improve the measurement accuracy of the infrared intensity at peaks etc. by performing multiple measurements, and the measurement time can be shortened and the analysis time can be reduced by reducing the amount of data. Can also be shortened.
  • the spectral spectrum was obtained by measuring the intensity of the infrared light transmitted through the sample SA, but the spectral spectrum was obtained by measuring the intensity of the infrared light reflected by the sample SA. Is also good. Further, the spectral spectrum may be obtained by irradiating the surface to be analyzed with visible light and using Raman scattering.
  • the surface to be measured is divided into a number of small areas by moving the sample to be analyzed, and photometry is performed.
  • the present invention is not limited to this, and a rotating polygon mirror or galvanometer
  • the surface to be measured may be divided into a number of small areas and the photometry may be performed without moving the sample to be analyzed by scanning the surface to be measured with infrared rays using a mirror or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

明細書
面分析方法及び面分析装置
技術分野
本発明は面分析方法及びこの面分析方法を適用した面分析装置に関する。
背景技術
一般に、 有機物がどのような官能基で構成されているか等を分析する場合、 こ の物質に赤外線を照射して物質を透過した赤外線または物質から反射した赤外線 を分光し、 所定波長毎の赤外線強度を測定して分光スぺクトルを求める。 照射さ れた赤外線を吸収する強度が最大となる赤外線波長は、 各官能基毎に各々異なつ ている。 従って、 物質を透過または反射した赤外線強度を測定して求めた分光ス ベクトルは、 その波形に有機物を構成する官能基に応じたピーク (極大値または 極小値) が生じ、 このピークが生じた赤外線の波長から分析対象物質を構成する 官能基を特定することができる。
プラスチック等の合成樹脂部品の検査において不純物等が混在しているか否か、 また不純物が混在している場合にはその不純物の部位及び構成物質は何か等を分 析する場合についても、 合成樹脂部品を平面にカットし、 この平面を小領域に分 割して各小領域に赤外線を照射し、 各小領域毎に上記と同様に分析する所謂面分 折が行われている。
しかしながら、 合成樹脂等の物質では物質を構成する元素が同じでも、 分子の 結合状態等によって性質等が大きく異なる。 従って、 上記分析を行う場合には、 分光スぺクトルを表す波形の変化のしかた、 特に分光スぺクトルを表す波形のピ ークにおける赤外線の波長及び赤外線強度に注目し、 予め測定されている標準試 料の分光スぺクトルを表す波形の変化のしかたとのパターンマツチングを行って 物質を特定していた。 このため、 誤差を最小限にして正確な赤外線強度を得るた めには数回の測定を行い平均値等を採用して精度を向上させる必要があり、 測定、 分析等に時間がかかつていた。 本発明は上記事実を考慮して成されたもので、 短時間で測定、 分析を行うこと ができる面分析方法を得ることが第 1の目的である。
また本発明は、 短時間で測定、 分析を行うことができる面分析装置を得ること が第 2の目的である。
発明の開示
上記目的を達成するために第 1の発明は、 被分析面を多数の小領域に分割して 測光することにより各小領域の分光スぺクトルを求め、 前記求められた各小領域 の分光スぺクトルから複数の主成分を抽出し、 前記抽出された複数の主成分の各 々に対する主成分得点を各小領域毎に演算し、 特定主成分の主成分得点が所定値 以上の小領域が同じ群に含まれるように複数の小領域を複数の群に分類し、 分類 された各群を構成する物質を分析する。
第 1の発明では、 各群を構成する物質の分析は、 各群から特定主成分の主成分 得点から最適小領域を抽出し、 該小領域の分光スぺクトルに基づいて行うことが 好ましい。
また、 第 2の発明は、 被分析面を多数の小領域に分割して測光することにより 各小領域の分光スぺクトルを求める測定手段と、 前記求められた各小領域の分光 スぺクトルから複数の主成分を抽出し前記抽出された複数の主成分の各々に対す る主成分得点を各小領域毎に演算する演算手段と、 特定主成分の主成分得点が所 定値以上の小領域が同じ群に含まれるように複数の小領域を複数の群に分類する 分類手段と、 分類された各群を構成する物質を分析する分析手段と、 を有してい 。
第 2の発明の分析手段は、 各群から特定主成分の主成分得点から最適小領域を 抽出し、 該小領域の分光スペクトルに基づいて各群を構成する物質を分析するこ とが好ましい。
第 1の発明では、 被分析面を多数の小領域に分割して測光することにより分光 スぺクトルを求め、 求められた各小領域の分光スぺクトルから複数の主成分を抽 出し、 前記抽出された複数の主成分の各々に対する主成分得点を各小領域毎に演 算する。 主成分はデータの値の分散 (ばらつき) の大きい部分、 すなわち本発明 においては各小領域を構成する物質を特定するための有力な特徴を表現するもの である。 分光スぺクトルは所定波長毎の光強度等を表すデータで構成されるが、 主成分は各データに重みを付与する係数 (固有ベクトル) を用いて表現され、 デ 一夕の値のばらつきの大きい波長に対して大きな重みを付与する。 例えば波 長ス, において分光スペクトルに大きなピークが生じる物質 Aと、 波長ス , にお いて分光スぺクトルにピークが生じない物質 Bと、 から成る被測定面を小領域に 分割し、 各小領域の分光スぺクトルを求めた場合、 各小領域の分光スぺクトルを 比較すると、 波長 I , においてデータの値のばらつきが大きくなる。 このように、 値のばらつきが大きレ、波長 λ , におけるデータの値は物質を特定するための有力 な特徵である。 上記場合に抽出された主成分は、 波長 λ , におけるデータの重み が大きくなるような係数を用いて表現される。 従って、 この係数に基づいて算出 される前記主成分に対する主成分得点は、 物質 Αで構成される小領域と、 物質 B で構成される小領域と、 で大きく異なることになる。 これにより、 各小領域の各 主成分得点が所定値以上か否かを判断し、 特定主成分の主成分得点が所定値以上 の小領域が同じ群に含まれるように複数の小領域を複数の群に分類したときに、 特定の群を構成する小領域は同一の物質で構成されていると判断することができ、 各群を構成する物質を分析することによつて各小領域を構成する物質を各々特定 することができる。
また、 主成分はデータの値のばらつきの大きな箇所が複数箇所ある場合にも 1 つの主成分で複数箇所のばらつきを表すことができる。 このため、 特に多数のピ ークから成る合成樹脂製品等の分光スぺクトルの特徵を少数の主成分で表現する ことができる。 このように、 主成分はデータのばらつき度合いに応じて決定され、 個々のデータの値に高い精度を必要としない。 例えば測定される光強度に誤差に よる多少の値のばらつきがあっても、 特定波長で発生する複数のピークによる値 のばらつき、 すなわち主成分で比較すれば充分に小さく、 分析結果が大きく影響 されることはない。 このため、 分光スペクトルを複数回求めてピーク等における 光強度の測定精度を向上させる必要はなく、 測定、 分析等の時間を短縮すること ができる。
なお第 1の発明において、 各群を構成する物質の分析は、 各群から特定主成分 の主成分得点から最適小領域を抽出し、 該小領域の分光スぺクトルに基づいて行 うことが好ましい。 特定主成分について最も主成分得点の高いまたは中央の小領 域の分光スぺクトルは、 特定主成分が表す特徴を顕著に有していると判断できる。 従って前記分光スぺクトルから容易に物質を特定することができる。
第 2の発明では、 被分析面を多数の小領域に分割して測光することにより分光 スぺクトルを求め、 求められた各小領域の分光スぺクトルから複数の主成分を抽 出して複数の主成分の各々に対する主成分得点を各小領域毎に演算する。 これに より、 各小領域の分光スぺクトルの中でデータの値のばらつきの大きい波長に対 して大きな重みを付与した複数の主成分が抽出され、 互いに異なる物質で構成さ れる小領域同士では特定主成分に対する主成分得点が大きく異なることになる。 従って、 各小領域の各主成分得点が所定値以上か否かを判断し、 特定主成分の主 成分得点が所定値以上の小領域が同じ群に含まれるように複数の小領域を複数の 群に分類したときに、 特定の群を構成する小領域は同一の物質で構成されている と判断することができ、 各群を構成する物質を分析することによって各小領域を 構成する物質を各々特定することができる。 また、 主成分はデータのばらつき度 合いに応じて決定され、 個々のデータの値に高い精度を必要としないので、 分光 スぺクトルを複数回 Si定してピーク等における光強度の測定精度を向上させる必 要はなく、 測定、 分析等の時間を短縮することができる。
また、 第 2の発明において分析手段は、 各群から特定主成分の主成分得点が最 も高いまたは中央の小領域を抽出し、 該小領域の分光スぺクトルに基づいて各群 を構成する物質を分析することが好ましい。 特定主成分について最も主成分得点 の高いまたは中央の小領域の分光スぺクトルは、 前記特定主成分が表す特徴を顕 著に有していると判断できる。 従って前記分光スぺクトルから容易に物質を特定 することができる。
なお上記発明では、 被分析面に赤外線を照射して分光スぺクトルを得ることが できる。 また、 被分析面に可視光を照射しラマン散乱を利用して分光スぺク トル を得ることもできる。
以上説明したように第 1、 第 2の発明では、 被分析面を多数の小領域に分割し て測光して分光スぺクトルを求め、 各小領域の分光スぺクトルから複数の主成分 を抽出して複数の主成分の各々に対する主成分得点を各小領域毎に演算し、 特定 主成分の主成分得点が所定値以上の小領域が同じ群に含まれるように複数の小領 域を複数の群に分類し、 各群を構成する物質を分析するようにしたので、 短時間 で測定、 分析を行うことができる、 という優れた効果が得られる。
図面の簡単な説明
第 1図は、 本実施例に係る赤外面分析装置の概略構成図、
第 2図は、 本実施例の各小領域毎の測定処理を説明するフローチャート、 第 3図は、 本実施例の面分析処理を説明するフローチャート、
第 4図は、 小領域の概念を説明する説明図、
第 5図 (A) は、 被分析面の映像例を示す概略図、
第 5図 (B ) は、 分類結果の表示例を示す概略図、
第 6図は、 主成分分析の作用を説明するための線図、
第 7図は、 最良点の測定結果の表示例を示す線図である。
発明を実施するための最良の形態
以下図面を参照して本発明の実施例を詳細に説明する。 第 1図には本実施例に 係る赤外面分析装置 1 0が示されている。 なお、 赤外面分析装置 1 0は波長に代 えて波数 (波長の逆数) を基本単位として採用している。 赤外面分析装置 1 0は 所定波数の赤外線を射出する赤外線発生装置 1 2を備えている。 赤外線発生装置 1 2はコントロールボックス 1 4を介して制御装置 1 6に接続されており、 制御 装置 1 6からの指示によって赤外線を射出する。
赤外線発生装置 1 2の上方には被分析試料 S Aが載置される X Yテーブル 1 8 が配置されている。 X Yテーブル 1 8は光透過性を有し、 また X Yテーブル 1 8 に載置された被分析試料 S Aは赤外線を透過し易くするため薄く力ットされてい る。 これにより、 赤外線発生装置 1 2から射出された赤外線は X Yテーブル 1 8 及び被分析試料 S Aを透過する。 XYテーブル 1 8は駆動部 2 0に連結されてお り、 駆動部 2 0によって X方向及び Y方向、 すなわち 2次元的に移動される。 駆 動部 2 0は制御装置 1 6に接続されており、 制御装置 1 6からの指示に応じて X Yテーブル 1 8を移動させる。 X Yテーブル 1 8の上方には、 内部に図示しない 絞り、 偏光子等を備えた鏡筒 2 2が配置されている。 X Yテーブル 1 8及び被分 析試料 S Aを透過した赤外線は鏡筒 2 2内部へ入射される。 鏡筒 2 2はコント口 ールボックス 1 4を介して制御装置 1 6に接続されており、 制御装置 1 6によつ て絞り等の作動が制御される。 鏡筒 2 2の赤外線射出側には C C D等の撮像素子 を備えたビデオ力メラ 2 4が取付けられている。 ビデオ力メラ 2 4は制御装置 1 6に接続されており、 被分析試料 S Aを透過し鏡筒 2 2を通過した赤外線を受光 し、 被分析試料 S Aの映像を表すビデオ信号を制御装置 1 6へ出力する。
また、 鏡筒 2 2には赤外分光光度計 2 6が取付けられている。 鏡筒 2 2は入射 された赤外線の一部を赤外分光光度計 2 6へ射出する。 赤外分光光度計 2 6は鏡 筒 2 2から入射された赤外線を分光する図示しない分光器及び分光された赤外線 の強度を測定する光度計を備えている。 赤外分光光度計 2 6は制御装置 1 6に接 続されており、 制御装置 1 6から分光スぺクトルの測定波数帯域及び測定波数ス テツプ幅が指示される。 測定波数帯域は測定する赤外線の波数の範囲を表し、 波 数ステップ幅は測定波数帯域内でどの程度の波数幅で測定するかを表しており、 赤外分光光度計 2 6は指示された測定波数帯域及び測定波数ステップ幅に応じて 赤外線強度を測定し、 分光スぺクトルを表す測定データを制御装置 1 6へ出力す る。
制御装置 1 6は磁気ディスク 2 8を備えており、 赤外分光光度計 2 6から入力 された測定結果を磁気ディスク 2 8に記憶する。 制御装置 1 6にはビデオプリン 夕 3 0を介してディスプレイ 3 2が接続されている。 制御装置 1 6は、 ビデオ力 メラ 2 4から出力されたビデオ信号等をビデオプリンタ 3 0を介してディスプレ ィ 3 2に出力し、 これによりディスプレイ 3 2には被分析試料 Aの映像等が表示 される。 また、 ビデオプリンタ 3 0は入力されたビデオ信号に基づき、 必要に応 じて被分析試料 Aの映像等をプリントする。 また、 制御装置 1 6にはディスプレ ィ 3 4も接続されている。 制御装置 1 6はディスプレイ 3 4に分析結果等の情報 を表示する。 制御装置 1 6にはデータ等を入力するためのキーボード 3 6も接続 されている。
次に本実施例の作用を説明する。 最初に被分析試料の測定処理を、 第 2図のフ ローチャートを参照して説明する。
ステップ 1 0 0では予め磁気ディスク 2 8等に記憶されている分光スぺクトル の測定波数帯域、 波数ステップ幅等の情報を読み出す。 本実施例において測定波 数帯域は水分ゃ炭酸ガス等の影響の少なぃ1000〜2000 0 111 - 1 (波長で 5000 〜 10000 n m) に設定され、 波数ステップ幅は例えば 4〜 1 6 c nT 1程度に設定さ れる。 また、 赤外面分析装置 1 0は被分析試料 S Aの分析面を、 例えば第 4図に 示すような 10 X 10の小領域 3 8や、 30 X 30の小領域等に分割し、 各々の小領域毎 に測定を行う。 このため各小領域の位置 (座標) に関する情報も読み出す。
ステップ 1 0 2では前記小領域の位置に関する情報に基づいて、 最初に測定を 行う小領域に赤外線が照射されるように X Yテーブル 1 8を移動させる。 ステツ プ 1 0 4では赤外線発生装置 1 2から赤外線を射出させる。 赤外線発生装置 1 2 から射出された赤外線は X Yテーブル 1 8及び被分析試料 S Aの最初に測定を行 う小領域を透過し、 一部は赤外線分光光度計 2 6に入射されて分光され、 残りは ビデオカメラ 2 4に入射される。 ステップ 1 0 6では赤外分光光度計 2 6に分光スぺクトルの測定波数帯域及び 波数ステップ幅を指示すると共に測定を開始させる。 これにより、 赤外分光光度 計 2 6は測定波数帯域の一端側の例えば 2000 c m—1の波数の赤外線より強度の測 定を開始し、 測定する赤外線の波数を測定波数帯域の他端側の例えば 1000 c m一 1の波数まで波数ステップ幅毎に順に赤外線強度を測定する。 測定デ一夕は制御 装置 1 6へ出力される。 赤外分光光度計 2 6が測定波数帯域の他端側の 1000 c m一1の波数まで赤外線強度を測定すると、 1つの小領域に対する分光スぺクトル の測定が終了し、 次のステップ 1 0 8では入力された測定データを磁気ディスク 2 8に記億する。
次のステップ 1 1 0では全ての小領域に対する測定処理が終了したか否か判定 する。 ステップ 1 1 0の判定が否定された場合にはステップ 1 0 2で次に測定を 行う小領域に赤外線が照射されるように X Yテーブル 1 8を駆動し、 ステップ 1 0 4乃至ステップ 1 1 0で上記と同様に測定処理を行う。 このようにして、 各小 領域に順に赤外線を照射して全ての小領域に対して測定処理を行う。 ステップ 1 1 0の判定が肯定されると、 本測定処理を終了する。
上記処理にぉレ、て n個の小領域に対して各々 p種類の波数の赤外線強度を測定 した場合、 表 1に示すような測定データ x , i、 ···、 χ Ρ ηが得られ、 これらの測定 データは磁気ディスク 2 8に記憶される。 なお、 各小領域には各々を区別するた めに便宜的に小領域番号し 2、 3、 · · · ηが付与されている。 また、 各小 領域毎の測定データ、 例えば小領域番号 1の小領域の測定データ (χ„、 χ 2】、 x 3 1、 ···、 X p i ) はこの小領域 1の分光スペクトルを表している。 表 1
Figure imgf000011_0001
次に上記の測定処理で得た測定データに基づいて被分析試料 S Aの面分析を行 う処理について第 3図のフローチャートを参照して説明する。 ステップ 2 0 0で は磁気ディスク 2 8に記憶された、 表 1に示すような測定データの読み込みを行 う。 ステップ 2 0 2では小領域の個数 nがサンプリング数 p以上か否か判定する c ステップ 2ひ 2の判定が否定された場合にはステップ 2 0 4へ移行する。
n個の小領域の各々に対して p種類の波数の赤外線強度を測定して得た測定デ 一夕から後述する主成分の抽出処理によつて主成分を抽出する場合、 データが少 ないとき、 すなわち n < pのときは固有値の解を得ることができないので、 ステ ッブ 2 0 4ではデータ数の削減を行う。 例えば、 各小領域毎に測定データの値の ピークを求め、 全ての小領域の測定データの値がピークとなっていない所定波数 の測定データ、 すなわち値がピーク未満の測光データを削除する。 測定データよ り抽出される主成分は、 測定データのばらつきが大きい変量 (波数) 、 例えばあ る小領域では測定データの値がピークとなっておりかつ他の小領域では測定デー 夕の値がピーク未満になっている波数に、 大きな重みを付与するため、 全ての小 領域でピーク未満の所定波数のデー夕を削除しても大きく影響を受けることはな 次のステップ 206では、 測定デ一タの平均値が 0でかつ分散が 1になるよう に各測定データの値を変更する正規化を行う。 これにより、 被分析面の状態、 例 えば光透過率のばらつきの影響等が排除される。 ステップ 208では主成分を抽 出する。 この主成分は、 例えば、 以下のような演算を行うことによって抽出され る。
P個の変量 (本実施例では波数) が n個体 (本実施例では各小領域) について 都 J定されているとき、 p個の変量 X! , χ2, - · , Χ Ρ を用いた(1)式に示す 合成変量 ζを考える。
Ζ = α ϊ A I ~l~ 3.2 X 2 +···+ 3 ί> A p 二 Δι S j X j •(i) この合成変量 zの分散 V (z) は、 (2)式に示すようになる。
1 „
V (z) =—— ∑ {a, (x!i— ) 十… +aP (Xpi- p ) } 2 -(2) n 1
主成分の抽出は、 この合成変量の分散を最大化することに相当する。 これによ り表 2に示すような p個の主成分を表す係数 a,】、 ···、 aPP及び固有値; I, 、 … λΡ が算出される。 なお主成分の導出過程の記載は省略する。
表 2
Figure imgf000012_0001
なお、 各固有値の関係は、
λ , ≥ λ 2 ≥……≥ λ ρ ≥ 0 〜(3) であり、 最大の固有値 λ , に対応する第 1主成分は、 固有ベクトル (a i l, aPP) の要素を係数とする合成変量
z 1 a u X ! + a 2j X 2 H haPlxP ·'·(4) で表現される。 同様に第 2主成分以降も、
Ζ 2 一 3】2X 1 "I" d 22 2 ~1" "i" ρ 2 X ρ
Ζ 3 = 3 ΐ3Χ】 + a 2aX2 Η a ρ 3 X ρ
: : : : …
L ― ipX】 十 i 2pX 2 +···つ p X
で表現される。 上記 (4) 式及び (5) 式から明らかなように、 固有べクトル (a n, ···, aPP) は各合成変量 z , 、 ···、 Zp において各変量毎に重み付けするための 係数である。 例えば、 被分析試料 SAが第 6図に示すような分光スぺクトルの物 質 A、 物質 B、 物質 Cの 3種類で構成され、 各変量、 すなわち波数毎の測定デー 夕の分散が波数 χ8 において最大の場合、 第 1主成分の固有ベクトル a 81の値が 大きくなり、 波数 x8 の赤外線を照射したときの測定データに大きな重みが付与 される。 従って、 波数 χ8 に赤外線強度のピークが発生している物質 Α、 Βとピ ークが発生していない物質 Cとでは、 第 1主成分の合成変量 ζ, 、 すなわち後述 する主成分得点の値が大きく異なることになる。 この値の違レ、によつて物質を容 易に分類することができる。
また、 前述のように各主成分は各波数における測定デー夕の分散に応じて定ま り、 各小領域の測定データの値に高い精度を必要としない。 このため、 従来のよ うに複数回測定して平均値を演算し、 ピーク等における赤外線強度の測定精度を 向上させる必要はなく、 測定時間が短縮され、 データ量が少なくなるので分析時 間をも短縮することができる。
ステップ 2 1 0では主成分数 D及び被分析面を構成する物質の数を表す物質数 Mを決定する。 主成分数 Dは次のステップ 2 1 2以降の分類等の処理で採用する 主成分の数のことで、 固有値; Iが以下の (6) 式を満たす主成分を採用する。
•(6)
2 ( (但但しし、、 mm == 11、、 一、 p )
上記 (6) 式は本発明の発明者が実験より得た経験式であり、 (6) 式を満足しな い主成分は固有値 λが低く、 もとの変量の全分散のうちその主成分で説明される 割合、 所謂寄与率が低い。 このため、 次のステップ 2 1 2以降の分類等の処理へ の影響が小さく、 分類等の処理で主成分として採用しなくても問題等が発生する ことはない。 また、 採用された主成分の数と同数だけの物質を分析できるため、 ステップ 2 1 0では物質数 Μとして主成分数 Dと同一の値を設定する。
ステップ 2 1 2では各主成分に対する主成分得点を各小領域毎に演算する。 こ の主成分得点は前記 (4) 式及び (5) 式の変量 X , , χ 2 , ■ · , χ Ρ に、 測定デ 一夕 x】i、 x 2】、 x 3 1、 一、 x P】代入して計算した主成分 、 ···、 Ζ ρ の値で あり、 ここではステップ 2 1 0で採用された主成分に対する主成分得点のみを各 小領域毎に演算する。 例えば主成分数 D = 3の場合には、 表 3に示すように各小 領域の第 1乃至第 3主成分に対する主成分得点 Z 、 ···、 z 3 nを演算する。
表 3
Figure imgf000014_0001
なお、 主成分得点は各々のデータ (本実施例では小領域毎の測定データ) と各 主成分との関係を表し、 例えば第 1主成分の主成分得点が最も高いまたは中央の 小領域は、 第 1主成分が表す特徴を顕著に有しており、 第 1主成分で大きな重み が付与された波数でピークが生じていると判断することができる。 従って、 主成 分得点の大きさに基づいて分類すれば、 同一小領域群に分類された小領域は同一 物質で構成されていると判断することができる。
ステップ 2 1 4では各小領域を主成分得点に基づいて分類する。 この分類方法 としては、 例えば各小領域の第 1主成分に対する主成分得点 Z H、 ···、 z l nが基 準得点 (例えば、 1 ) 以上か否か判定し、 主成分得点が基準得点以上である小領 域を第 1主成分に対応する小領域であるとして分類する。 次に、 第 1主成分に分 類されなかった小領域について第 2主成分に対応する主成分得点 ζ 2 ι、 ···、 z 2 nが基準得点以上か否か判定し、 上記と同様に分類する。 さらに第 2主成分に分 類されなかった小領域について第 3主成分に対応する主成分得点 z 3 1、 一、 Z 3 πが基準得点以上か否か判定し、 上記と同様に分類する。 主成分の数が 3より大 きい場合についても上記と同様に処理する。 なお、 本実施例では基準得点の初期 値として 1が設定されている。 分類が終了すると分類結果を第 5図 (Β ) に示す ようにディスプレイ 3 4に表示する。 この分類結果は実際の被分析面のイメージ でかつ分類された小領域群毎に同一の色で着色して表示される。 なお、 上記分類 処理でいずれの主成分得点も基準得点以下であった未分類の小領域 (例えば第 5 図 (Β ) の領域 Β ) については、 着色しないで表示される。
ステップ 2 1 6では実体と同一か否か判定する。 赤外面分析装置 1 0のォペレ 一夕は、 第 5図 (Α) に示すようなディスプレイ 3 2に表示された被分析試料 A の被分析面の映像と、 第 5図 (B ) に示すようなディスプレイ 3 4に表示された 分類結果と、 を比較し、 例えば前記分類結果が被分析面の実際の色分布等と一致 しているか否かを判定し、 判定結果をキーボード 3 6を操作して入力する。 例え ば第 5図 (B ) において小領域 4 0及び小領域 4 2は実体と一致していないと判 断される。 このような場合には実体と同一でないという判定結果が入力される。 実体と同一でないという判定結果が入力された場合には、 ステップ 2 1 8で移行 し、 前記着色しないで表示された未分類の小領域が有るか否か判定する。 ステツ プ 2 1 8の判定が肯定された場合には、 ステップ 2 2 0で基準得点から 0. 1 を減 算し、 ステップ 2 1 4へ戻る。 これにより、 分類の基準を下げて再度分類が行わ れる。 また、 ステップ 2 1 8の判定が否定された場合には、 主成分数 D及び物質 数 Mの値を実体に合うように修正してステップ 2 1 2へ戻り、 ステップ 2 1 6の 判定が肯定されるまでステップ 2 1 2乃至ステップ 2 2 2の処理を繰り返す。 ステップ 2 1 6の判定が肯定された場合にはステップ 2 2 4へ移行し、 同一物 質で構成されていると分類された小領域群毎に、 小領域群内で最も主成分得点の 高レ、小領域である最良点を抽出する。 ステップ 2 2 6では各小領域群の最良点と して抽出された各小領域に対し、 第 2図のフローチヤ一トの測定処理と同様に赤 外線を照射すると共に赤外線の波数を変化させて赤外線の強度を測定する。 これ により第 7図に示すように各最良点毎にスぺクトルが得られ、 これをディスプレ ィ 3 4に表示する。
次のステップ 2 2 8では赤外面分析装置 1 0で各最良点を構成する物質の推定 (同定) を行うか否か判定する。 表示されているスペクトルを参照して物質の推 定を行うことは熟練を要する。 赤外面分析装置 1 0を操作しているオペレータが 熟練者である場合には本ステップ 2 2 8の判定は肯定されるが、 オペレータが物 質の推定に熟練していない場合にはステップ 2 2 8の判定が否定される。 ステツ プ 2 2 8の判定が肯定された場合にはステップ 2 3 0へ移行し、 予め記憶されて いるスペクトルの中で類似しているスペクトルを検索する。 ここで、 最良点は小 領域群内で最も主成分得点の高レ、小領域であるので、 各主成分が表現している特 徵を最も顕著に有している小領域である。 従って、 各主成分が物質の特徴を的確 に表現している場合には各最良点の物質を容易に推定することができる。
ステップ 2 3 2ではステップ 2 2 6で測定された各最良点のスぺクトルが既存 の物質のスぺクトルであるか否か判定する。 例えばステップ 2 3 0の処理で類似 しているスペクトルが無い場合、 または熟練者による物質の推定で、 物質が何で あるか判断がつかなかった場合にこの判定が否定される。 ステップ 2 3 2の判定 が否定された場合は、 主成分が各小領域を構成する物質の特徴を的確に表現して いない、 例えば最良点の小領域が複数の物質で構成されている等が考えられる。 このため、 ステップ 2 3 4で物質数 Mの値を修正してステップ 2 1 2へ戻る。 ス テツプ 2 3 2の判定が肯定された場合には処理を終了する。
このように、 本実施例では各波長を変量とする複数の主成分を抽出して複数の 主成分に対する主成分得点を各小領域毎に演算し、 主成分得点に基づいて各小領 域を分類するようにしたので、 複数回測定してピーク等における赤外線強度の測 定精度を向上させる必要はなく、 測定時間を短縮することができ、 デ一夕量が少 なくなることによつて分析時間も短縮することができる。
なお、 本実施例では被分析試料 S Aを透過する赤外線の強度を測定して分光ス ぺクトルを求めていたが、 被分析試料 S Aを反射する赤外線の強度を測定して分 光スペクトルを求めてもよい。 また、 被分析面に可視光を照射しラマン散乱を利 用して分光スぺクトルを求めてもよい。
なお、 上記では被分析試料を移動させることによって被測定面を多数の小領域 に分割して測光する例について説明してが、 本発明はこれに限定されるものでは なく、 回転多面鏡やガルバノメータミラー等を用いて赤外線を被測定面上に走査 して被分析試料を移動させることなく被測定面を多数の小領域に分割して測光す るようにしてもよい。
また、 上記では主成分得点が最も高いまたは中央の小領域を抽出して分析する 例について説明したが、 抽出する小領域の主成分得点の値は実験等によって定め ることができ、 主成分得点に基づいて物質の分析に最適な小領域を抽出して分析 することができる。

Claims

請求の範囲
1 . 被分析面を多数の小領域に分割して測光することにより各小領域の分光ス ぺクトルを求め、
前記求められた各小領域の分光スぺクトルから複数の主成分を抽出し、 前記抽出された複数の主成分の各々に対する主成分得点を各小領域毎に演算し、 特定主成分の主成分得点が所定値以上の小領域が同じ群に含まれるように多数 の小領域を複数の群に分類し、
分類された各群を構成する物質を分析する、
面分析方法。
2. 前記各群を構成する物質の分析は、 前記各群から前記特定主成分の主成分 得点から最適小領域を抽出し、 該抽出した小領域の分光スぺクトルに基づいて行 う特許請求の範囲 1記載の面分析方法。
3 . 固有値が以下の式を満足する主成分を抽出する特許請求の範囲 1記載の面分 析方法。
2
但し、 m= l、 ···、 pで、 pは各小領域でサンプリングされたデータの個数で あ o
4 . 被分析面を多数の小領域に分割して測光することにより各小領域の分光ス ぺクトルを求める測光手段と、
前記求められた各小領域の分光スぺクトルから複数の主成分を抽出し、 前記抽 出された複数の主成分の各々に対する主成分得点を各小領域毎に演算する演算手 段と、
特定主成分の主成分得点が所定値以上の小領域が同じ群に含まれるように複数 の小領域を複数の群に分類する分類手段と、
分類された各群を構成する物質を分析する分析手段と、 を する面分析装置。
5 . 前記分析手段は、 前記各群から前記特定主成分の主成分得点の代表小領域 を抽出し、 抽出した小領域の分光スぺクトルに基づいて各群を構成する物質を分 析する特許請求の範囲 4記載の面分析装置。
6 . 固有値が以下の式を満足する主成分を抽出する特許請求の範囲 4記載の面分 析装置。 λ π
2
但し、 m = l、 ···、 pで、 pは各小領域でサンプリングされたデ一夕の個数で める。
PCT/JP1992/000335 1991-03-19 1992-03-19 Method and device for analyzing area WO1992016827A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69228537T DE69228537T2 (de) 1991-03-19 1992-03-19 Methode und vorrichtung zur oberflächenanalyse
US08/108,744 US5418367A (en) 1991-03-19 1992-03-19 Method and device for analyzing substances contained in an area
EP92907117A EP0577835B1 (en) 1991-03-19 1992-03-19 Method and device for analyzing area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5475791A JPH1096691A (ja) 1991-03-19 1991-03-19 面分析方法及び面分析装置
JP3/54757 1991-03-19

Publications (1)

Publication Number Publication Date
WO1992016827A1 true WO1992016827A1 (en) 1992-10-01

Family

ID=12979646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000335 WO1992016827A1 (en) 1991-03-19 1992-03-19 Method and device for analyzing area

Country Status (5)

Country Link
US (1) US5418367A (ja)
EP (1) EP0577835B1 (ja)
JP (1) JPH1096691A (ja)
DE (1) DE69228537T2 (ja)
WO (1) WO1992016827A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111445964A (zh) * 2020-03-27 2020-07-24 合肥金星机电科技发展有限公司 成分分析结果的可视化方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936233A (en) * 1998-02-26 1999-08-10 The Curators Of The University Of Missouri Buried object detection and neutralization system
US6389881B1 (en) 1999-05-27 2002-05-21 Acoustic Systems, Inc. Method and apparatus for pattern match filtering for real time acoustic pipeline leak detection and location
US6673554B1 (en) * 1999-06-14 2004-01-06 Trellie Bioinformatics, Inc. Protein localization assays for toxicity and antidotes thereto
US6734962B2 (en) * 2000-10-13 2004-05-11 Chemimage Corporation Near infrared chemical imaging microscope
CA2448390C (en) * 2001-05-24 2011-08-23 M.E.S. Medical Electronic Systems Ltd. Semen analysis
JP2006119076A (ja) * 2004-10-25 2006-05-11 Jasco Corp マッピングデータ解析装置及び方法
JP4637643B2 (ja) * 2005-05-18 2011-02-23 日本分光株式会社 分光分析装置
JP4856436B2 (ja) * 2006-02-08 2012-01-18 日本分光株式会社 マッピングデータ表示方法、プログラム、および装置
JP4709129B2 (ja) * 2006-12-19 2011-06-22 株式会社堀場製作所 試料分析装置
WO2014076789A1 (ja) * 2012-11-15 2014-05-22 株式会社島津製作所 分析対象領域設定装置
JP6324201B2 (ja) 2013-06-20 2018-05-16 キヤノン株式会社 分光データ処理装置、及び分光データ処理方法
CN109116391B (zh) * 2018-07-23 2020-06-23 武汉大学 一种基于改进正交分解的区域划分方法
US10775530B1 (en) * 2019-08-29 2020-09-15 Peter Wilk Apparatus and method of detecting a mineral in the ground

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352198A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Picture input apparatus of netlike red corpuscle
JPS6147522A (ja) * 1984-08-14 1986-03-08 Tech Res & Dev Inst Of Japan Def Agency 映像装置
JPH01232316A (ja) * 1988-03-12 1989-09-18 Hitachi Ltd 赤外吸収スペクトル測定顕微鏡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352198A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Picture input apparatus of netlike red corpuscle
JPS6147522A (ja) * 1984-08-14 1986-03-08 Tech Res & Dev Inst Of Japan Def Agency 映像装置
JPH01232316A (ja) * 1988-03-12 1989-09-18 Hitachi Ltd 赤外吸収スペクトル測定顕微鏡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0577835A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111445964A (zh) * 2020-03-27 2020-07-24 合肥金星机电科技发展有限公司 成分分析结果的可视化方法
CN111445964B (zh) * 2020-03-27 2023-05-12 合肥金星智控科技股份有限公司 成分分析结果的可视化方法

Also Published As

Publication number Publication date
DE69228537T2 (de) 1999-07-08
EP0577835A1 (en) 1994-01-12
US5418367A (en) 1995-05-23
DE69228537D1 (de) 1999-04-08
EP0577835B1 (en) 1999-03-03
EP0577835A4 (ja) 1994-01-26
JPH1096691A (ja) 1998-04-14

Similar Documents

Publication Publication Date Title
US10976246B2 (en) Spectroscopic characterization of seafood
US11542461B2 (en) Analysis device
US7042567B2 (en) Imaging method and apparatus for the non-destructive analysis of paintings and monuments
WO1992016827A1 (en) Method and device for analyzing area
US7745789B2 (en) Measuring technique
TWI292030B (en) High density multi-channel detecting device
US9002113B2 (en) Processing and analyzing hyper-spectral image data and information via dynamic database updating
US20050083521A1 (en) System and method for detection and identification of optical spectra
JP2013044729A (ja) 塗布状態測定方法
US20110052019A1 (en) Analyzing Objects Via Hyper-Spectral Imaging and Analysis
WO2016080442A1 (ja) 品質評価方法及び品質評価装置
ATE195179T1 (de) Gerät zur durchführung einer spektralanalyse einer optischen lichtquelle mittels bildaufnahme und trennung bestimmter spektraler ordnungen
US8729455B2 (en) Device for capturing and detecting of objects
JP2007155630A (ja) 多層薄膜の膜厚測定方法および膜厚測定装置
Algazinov et al. Methods of measuring the spectral characteristics and identifying the components of grain mixtures in real-time separation systems
KR101764704B1 (ko) 독소 측정장치
WO2022217062A1 (en) Mid-infrared probe using etalon fringes for spectroscopic tissue discrimination
Vetter et al. A Fiber Optic Reflection-UV/Vis/NIR-System for Non-Destructive Analysis of Art Objects
Coma et al. Soft and hard modelling methods for deconvolution of mixtures of Raman spectra for pigment analysis. A qualitative and quantitative approach
JP2544428B2 (ja) 応力測定方法及び応力測定装置
JP2002198342A (ja) ウェーハ研磨装置の研磨終点検出装置
CN107449585A (zh) 一种声光滤波器角孔径的测量装置及测量方法
Peng et al. Breakdown Spectroscopy
JP2001108617A (ja) 有機材料の材質判別装置
IT202100017702A1 (it) Apparecchiatura e metodo per eseguire una analisi non distruttiva di una tavola di legno

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08108744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1992907117

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992907117

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992907117

Country of ref document: EP