WO1992016754A1 - Hydraulic circuit improved in operability in load sensing system - Google Patents

Hydraulic circuit improved in operability in load sensing system Download PDF

Info

Publication number
WO1992016754A1
WO1992016754A1 PCT/JP1992/000268 JP9200268W WO9216754A1 WO 1992016754 A1 WO1992016754 A1 WO 1992016754A1 JP 9200268 W JP9200268 W JP 9200268W WO 9216754 A1 WO9216754 A1 WO 9216754A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
actuator
load sensing
variable displacement
Prior art date
Application number
PCT/JP1992/000268
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Imai
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1992016754A1 publication Critical patent/WO1992016754A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/163Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for sharing the pump output equally amongst users or groups of users, e.g. using anti-saturation, pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • F15B2211/253Pressure margin control, e.g. pump pressure in relation to load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31529Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the present invention relates to a hydraulic circuit for improving operability of a vehicle equipped with a hydraulic drive device including a load sensing system.
  • FIG. 1 shows a schematic configuration of a hydraulic motor for traveling (hereinafter referred to as a traveling motor) and a hydraulic circuit for a boom cylinder of a hydraulic actuator for driving a working machine such as a boom, an arm, and a bucket.
  • a traveling motor a hydraulic motor for traveling
  • a boom cylinder of a hydraulic actuator for driving a working machine such as a boom, an arm, and a bucket.
  • a pump 1 driven by a power source such as an engine, and a traveling motor 2 for the left drive wheel driven by pressure oil discharged from the pump 1, and a right side Drive wheel travel motor 2R, boom cylinder 2B, and closed center directional control valve 3 that switches the direction of pressure oil sent from pump 1 to left and right travel motors 2L, 2R and boom cylinder 2B.
  • L, 3.3 B and regulator 4 for controlling the flow rate of pressure oil discharged from pump 1 It has a sensing valve (referred to as a lower LS valve) 5.
  • the discharge pressure PP of the pump 1 is led by a pilot surface 16 branched from the pump discharge circuit 6, and at the other end, the traveling motors 2L and 2R are connected.
  • load pressure P LS caries Chi highest pressure in each Akuchiyue Ichita to the, shuttle valve 1 0, 1 1 and pi Lock preparative circuit 1 2 e also is led via a direction switching valve 3
  • the pressure relief valve 8 L. 8 R 8 B provided at the outlet port of L> 3 R and 3 B respectively has the above-mentioned load pressure P LS or the via-lot surface 15 L, 15 R, 1 Guided through 5B ':, ...?
  • the pressure oil flow QA supplied to the tubing is determined by setting the pump discharge pressure to PP When the number is c and the opening area of the directional control valves 3L, 3R, 3 ⁇ is A.
  • Actuator load pressure is PLS, it can be expressed by the following formula.
  • the actuator flow QA is controlled according to the opening area A of the directional control valve, that is, the operating stroke of the operating lever. .
  • a hydraulic excavator sometimes drives a working machine such as a boom, an arm, and a bucket while traveling in a work site.
  • a working machine such as a boom, an arm, and a bucket
  • the speed reduction rate of traveling is large for the following reasons.
  • the load pressure PLS3 acts on each of the pressure supplement valves 8L, 8R, and 8B because the load pressure PLS3 of the bump cylinder is larger than the load pressures PLS1 and PLS2 of the traveling motor. Accordingly, the pressure augmentation valves 8L and 8R are throttled greatly when only traveling, and the flow rate supplied to the traveling motors 2L and 2R is reduced, so that the speed is reduced. At this time, the flow rate to each actuator can be expressed by the following equation.
  • the pressure compensation characteristic is reduced by reducing the spring tension of the pressure supplement valve 8 L> 8 R installed in the traveling hydraulic circuit so that the flow rate supplied to the traveling motors 2 L and 2 R does not decrease. It can also be done.
  • this measure has a problem in that when the vehicle makes a gentle turn from straight traveling, the traveling speed of the drive wheels on the outer side of the turning surface decreases, and the vehicle cannot be operated as intended by the operator. Disclosure of the invention
  • the present invention focuses on the above-mentioned conventional problems, and makes it possible to minimize the traveling speed ratio as much as possible and to operate the vehicle as the operator intends when traveling and driving of the work machine are performed simultaneously. It is intended to provide a hydraulic circuit for improving operability in a load sensing system.
  • the present invention provides a variable displacement hydraulic pump, an actuator driven by pressure oil discharged from the variable displacement hydraulic pump, and a flow of pressure oil supplied from the variable displacement hydraulic pump to the actuator. And a discharge amount control means for controlling the flow rate of the pressure oil discharged from the variable displacement hydraulic pump.
  • the discharge amount control means drives the displacement variable means of the variable displacement hydraulic pump.
  • a LS valve that controls the drive of the regulator according to the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator, and maintains the differential pressure at a set value.
  • a throttle is provided in the load sensing surface for transmitting the signal pressure to the pressure compensating valve provided between the directional switching valve and the actuator, and the throttle extends from this load sensing surface to the oil tank.
  • a circuit is provided with a throttle and a switching valve, and a means for switching the switching valve based on the operating condition of the actuator operating lever or the pressure condition generated by operating the operating lever is provided.
  • the means for switching the switching valve includes a means for detecting operation of the actuator operating lever, and a command current to the solenoid valve based on a detection signal output from the detecting means. It consists of a controller and a solenoid valve that transmits the pilot pressure to the switching valve.
  • the controller outputs a command current to the solenoid valve by operating at least one of the left and right travel levers for controlling the left and right travel motors and at least one of the work implement operation levers.
  • a throttle and a switching valve are provided in the ⁇ -sensing surface for transmitting the signal pressure to the pressure compensation valve, and at least one of the left and right traveling levers and at least one of the work implement operation levers are operated. Therefore, a means for switching the switching valve is provided, so that when the work machine is operated during traveling, the switching valve is switched, and oil flows to the load sensing circuit.
  • the throttle provided in this circuit causes a signal pressure lower than the maximum pressure of the load to act on the pressure supplement valve of the directional control valve that controls the traveling motor.
  • FIG. 1 is a partial hydraulic circuit diagram showing the basic configuration of the present invention
  • Fig. 2 is an enlarged cross-sectional view of the pressure augmentation valve
  • Fig. 3 is the hydraulic oil flow supplied to the traveling motor when the work implement lever is operated during traveling.
  • FIG. 4 is a partial hydraulic circuit diagram showing a basic configuration of a hydraulic drive device provided with a conventional load sensing system. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the schematic configuration of the hydraulic surface for the travel motor and the boom cylinder of the work equipment actuator in the code sensing system used for the hydraulic excavator.
  • the load sensing system has one pump 1 and pump 1
  • the traveling motor 2 for the left driving wheel driven by the pressure oil discharged the traveling motor 2 R for the right driving wheel, the bump cylinder 2 B, and the left and right traveling motors 2 L, 2 R and the boom cylinder 2 from the pump 1.
  • the directional control valves 3L, 3R, 3B are respectively connected to the surfaces 6L, 6R, 6B branched from the discharge circuit 6 of the pump 1, and the directional control valves 3L, 3R, 3B to the traveling motor 2L.
  • 2R and circuits 7L, 7R, 7B leading to the boom cylinder 2B are provided with pressure compensating valves 8L, 8R, 8B, respectively.
  • the load pressure of each of the traveling motors 2 and 2R and the like of the cylinder 2B is passed through pilot circuits 9L, 9R and 9B and shuttle valves 10 and 11 respectively.
  • the maximum value PLS is guided to one end of the LS valve 5 via the pilot circuit 12.
  • variable throttle 14a is provided in the branch surface 13 of the pilot circuit 12 and the maximum value PLS of the actuator load pressure is changed to a signal pressure PLS after passing through the variable throttle 14a.
  • 'A respectively guided to the pressure recovery valves 8L, 8R, and 8B through the pilot surface paths 15L, 15R, and 15B.
  • the other end of the LS valve 5 is connected to a pilot surface path 16 branched from the circuit 6, and receives the discharge pressure PP of the pump 1.
  • the traveling levers 17L and 17R provided near the driver's seat and the operating lever 17B for driving the boom are connected to PPC valves 18L, 18R and 18B, respectively. Pilot surfaces 19L, 19R, and 19B from valves 18L, 18R, and 18B are connected to directional valves 3L, 3R, and 3B, respectively.
  • the output wires 21 L, 21 R, 21 B of the pressure switches 20 L, 20 R, 20 B for detecting the pilot pressure are all connected to the controller 22. It is connected to the.
  • a circuit 15c leading to the oil tank 15a is provided on the extension of the pilot circuit 15L, and a variable throttle 14b and a switching valve 23 are provided in the circuit 15c. ing. Also, a solenoid valve 26 is provided on a pilot surface 25 connecting the fixed hydraulic pump 24 and a part of the switching valve 23, and a solenoid is provided on the solenoid of the solenoid valve 26. Output wiring of roller 2 2 7 Is connected.
  • At least one of the pressure switches 20 L and 20 R for detecting the pilot pressure of the PPC valves 18 L and 18 R is turned on, and the pilot switch of the PPC valve 18 B is turned on.
  • the pressure switch 20B for detecting the V-to-pressure is turned ON, the command current is output to the solenoid valve 26 via the output wiring 7.
  • the signal pressure PLS 'acting on the pressure supplementary valves 8L, 8, 8B becomes lower than the PLS by passing through the variable throttle 14a.
  • the variable throttle 14 b is provided with a pressure compensating valve when the switching valve 23 is switched and the pressure oil in the pilot circuits 15 L, 15 R, and 15 B is drained through the surface path 15 c.
  • 8L Provided to maintain the signal pressure acting on 8E, 8 ⁇ above a certain value.
  • each of the pressure supplement valves 8L, 8R, 8 ⁇ comprises a check valve 8a slidable in the valve body, a supplement screw 8c, a spring 8d, and a signal pressure PLS. 'Is guided into the spring chamber 8f from the hole 8e provided in the supplementary screw 8c.
  • the hydraulic oil that has passed through the directional control valves 3 L, 3 and 3B enters the check valve 8a from the passage 8g, and pushes the supplementary piston 8c and the spring 8d to the right in FIG. , And flow into Actuate Tappo 8h.
  • the pressure in the spring chamber 8 f also becomes PLS'. If the pressure in the inlet chamber 8 g of the check valve 8a is P1, the diameter of the check valve 8a is equal to the diameter of the piston 8c. It increases by the spring force of d. However, the spring force is weak enough against the signal pressure PLS '
  • the pressure recovery valves 8L, 8R, and 8B have a characteristic that their inlet pressures PLP2 and P3 are almost equal to the signal pressure PLS '.
  • the flow rate Q3 to the boom cylinder 2B is
  • the pressure compensation function is lost, and only the check valve 8a functions. That is, the pressure compensating valve 8B acts as a check valve, and in the boom circuit, the above equation is obtained.
  • variable throttles 14a and 14b By adjusting the variable throttles 14a and 14b, the signal pressure PLS 'of the pressure compensation valves 8L and 8R Since the size of the excavator can be changed, it is possible to supply an optimal flow rate to the traveling side according to the purpose of use of the hydraulic excavator. Further, the variable diaphragms 14a and 14b may be fixed diaphragms in some cases.
  • Fig. 3 shows the relationship between the position of the stroke of the boom operation lever and the flow rate of hydraulic oil supplied to the traveling motor.
  • the hydraulic oil flow supplied to the left and right traveling motors 2L and 2R is the left and right traveling levers 17L and 17R. Is the flow rate according to the manipulated variable, and this is 100%.
  • the boom operation lever 17B is operated to the full stroke position gF in this state, when the switching valve 23 is OFF, that is, in the case of a normal load sensing system, the boom operation lever 17B is supplied to the left and right traveling motors 2L and 2B. Pressure oil flow is reduced to about 50%.
  • the switching valve 23 is ON, the flow rate of the hydraulic oil is maintained at 70 to 80%, and the low speed shock when operating the boom operation lever is small.
  • pressure switches 20L, 20B, 20B for detecting the pilot pressures of the PPC valves 18L, 18R, 18B are provided.
  • the present invention is not limited to this, and a limit switch or a proximity switch that operates when the stroke of the actuator operation lever exceeds a certain value may be used.
  • the pressure compensation characteristics of the directional control valves 3L, 3R, 3B for controlling the actuators are made variable, so that when the directional control valve 23 is switched, the directional control valves 3L, 3R , 3 B, the pressure difference before and after becomes large, the flow distribution proportional to their opening area is temporarily broken, and more pressure oil flows to a specific actuator. Therefore, if this study is applied to the left and right traveling motors 2L and 2R of the hydraulic excavator, the traveling deceleration rate when traveling and driving of the work equipment are performed at the same time is reduced, and the hydraulic excavator is operated as the operator intends. be able to. In addition, since the speed reduction during operation of the work equipment is reduced, operator fatigue is reduced and work efficiency is improved. Industrial applicability
  • the present invention is useful as a hydraulic circuit for improving the operability of a vehicle equipped with a hydraulic drive device equipped with a load sensing system, particularly a hydraulic excavator.

Abstract

According to the present invention, a running speed reduction rate can be reduced as much as possible and a vehicle can be operated as an operator wishes when running and driving of a working machine are performed simultaneously. For this purpose, a throttle (14a) is provided in a load sensing circuit for transmitting signal pressure to pressure compensating valves (8L, 8R, 8B) provided between direction change-over valves (3L, 3R, 3B) and actuators (2L, 2R, 2B), a throttle (14b) and a change-over valve (23) are provided in a circuit extending from this load sensing circuit to an oil tank, and a means for changing over the change-over valve (23) on the basis of operating conditions and the like of an actuator operating lever is provided. When the working machine is operated during running, the change-over valve (23) is changed over, whereby low signal pressure acts on the pressure compensating valves (8L, 8R, 8B) of a running motor, whereby a signal pressure equal to the maximum pressure of the load acts on an LS valve (5), whereby the pressure difference across the direction change-over valves (3L, 3R) on the running side is increased, so that much more pressure oil is passed to the running side, to thereby decrease a running speed reduction rate.

Description

明 細 害 ロー ドセ ンシ ングシステムにおける操作性向上油圧面路 技 術 分 野  Improvement of operability in load sensing system Hydraulic surface technology
本発明は、 ロー ドセ ンシ ングシステムを備えた油圧駆動装置を搭載する車両の 操作性向上油圧回路に関する。  The present invention relates to a hydraulic circuit for improving operability of a vehicle equipped with a hydraulic drive device including a load sensing system.
背 景 技 術  Background technology
ロー ドセ ンシングシステムを備えた油圧駆動装置を搭載する車両、 たとえば油 圧掘削機においては、 図 4に示す油圧回路を用いている。 同図は、 走行用油圧モ ータ (以下走行モータという) と、 ブーム、 アーム、 バケ ツ ト等の作業機を駆動 する油圧ァクチュヱータのうちブームシリ ンダに関する油圧回路の概略構成を示 したもので、 ヱンジン等の動力源によつて駆動される 1個の可変容量形油圧ポン プ (以下ポンプという) 1 と、 このポンプ 1 が吐出する圧油によって駆動される 左側駆動輪の走行モータ 2し 、 右側駆動輪の走行モータ 2 R 、 ブーム シ リ ン ダ 2 B と、 ポンプ 1 から左右走行モータ 2 L , 2 R およびブームシリ ンダ 2 B に 送られる圧油の方向を切り換えるク ローズドセ ンタの方向切換弁 3 L , 3 . 3 B と、 ポンプ 1 が吐出する圧油の流量を制御する レギュ レータ 4および口一 ! セ ン シ ング弁 ( 下 L S弁という) 5 とを備えている。  Vehicles equipped with a hydraulic drive equipped with a load sensing system, such as hydraulic excavators, use the hydraulic circuit shown in FIG. FIG. 1 shows a schematic configuration of a hydraulic motor for traveling (hereinafter referred to as a traveling motor) and a hydraulic circuit for a boom cylinder of a hydraulic actuator for driving a working machine such as a boom, an arm, and a bucket. One variable displacement hydraulic pump (hereinafter referred to as a pump) 1 driven by a power source such as an engine, and a traveling motor 2 for the left drive wheel driven by pressure oil discharged from the pump 1, and a right side Drive wheel travel motor 2R, boom cylinder 2B, and closed center directional control valve 3 that switches the direction of pressure oil sent from pump 1 to left and right travel motors 2L, 2R and boom cylinder 2B. L, 3.3 B and regulator 4 for controlling the flow rate of pressure oil discharged from pump 1 It has a sensing valve (referred to as a lower LS valve) 5.
L S弁 5の一端には、 ポンプ吐出回路 6から分岐するパイ ロ ッ ト面路 1 6 によ つてポ ンプ 1 の吐出圧 P P が導かれ、 他端には走行モータ 2 L , 2 R をはじめと する各ァクチユエ一タの負荷圧 P LSのう ち最高の圧力が、 シャ トル弁 1 0 , 1 1 およびパイ ロ ッ ト回路 1 2などを介して導かれている e また、 方向切換弁 3 L > 3 R , 3 B の出口ポー トにそれぞれ設けられた圧力補僙弁 8 L . 8 R 8 B に ^ 前記負荷圧 P LSかバィ ロ ッ ト面路 1 5 L , 1 5 R , 1 5 B を介して導かれて ':、.? チユエータに供給される圧油流量 Q A は、 ポ ンプ吐出圧を P P 、 流量 数を c、 方向切換弁 3L , 3R , 3 β の開口面積を A .. ァクチユエータ負荷圧を PLSとすると、 下記の式で表すことができる。 At one end of the LS valve 5, the discharge pressure PP of the pump 1 is led by a pilot surface 16 branched from the pump discharge circuit 6, and at the other end, the traveling motors 2L and 2R are connected. load pressure P LS caries Chi highest pressure in each Akuchiyue Ichita to the, shuttle valve 1 0, 1 1 and pi Lock preparative circuit 1 2 e also is led via a direction switching valve 3 The pressure relief valve 8 L. 8 R 8 B provided at the outlet port of L> 3 R and 3 B respectively has the above-mentioned load pressure P LS or the via-lot surface 15 L, 15 R, 1 Guided through 5B ':, ...? The pressure oil flow QA supplied to the tubing is determined by setting the pump discharge pressure to PP When the number is c and the opening area of the directional control valves 3L, 3R, 3β is A. Actuator load pressure is PLS, it can be expressed by the following formula.
Q = c A (PP 一 PLS) 1/2 Q = c A (PP-PLS) 1/2
差圧 (PP — PLS ) は一定になるように制御されているのて、 ァクチユエ一 タ流量 QA は方向切換弁の開口面積 A、 すなわち操作レバーの操作ス トロークに 応じて制御されることになる。  Since the differential pressure (PP-PLS) is controlled to be constant, the actuator flow QA is controlled according to the opening area A of the directional control valve, that is, the operating stroke of the operating lever. .
ところて、 油圧掘削機が作業現場内を走行しながらブーム、 アーム、 バケツ ト 等の作業機を駆動することがある。 このような複合操作をすると、 下記理由によ り走行の缄速率が大きい。  However, a hydraulic excavator sometimes drives a working machine such as a boom, an arm, and a bucket while traveling in a work site. When such a combined operation is performed, the speed reduction rate of traveling is large for the following reasons.
今、 ポンプ 1 の吐出圧を PP 、 吐出量を QP とし、 左走行モータ 2L 、 右走 行モータ 2 β への流量をそれぞれ Ql , Q2 、 作業機たとえばブームを駆動する ブ一ムシリ ンダ 2 Β への流量を Q3 、 前記各ァクチユエータを制御する方向切換 弁 3 L , 3 , 3 Β の開口面積をそれぞれ A 1 , A2 , A3 とし、 方向切換弁 3 L , 3 R , 3 B の出口圧をそれぞれ PI , P2 , P 3 、 各ァクチユエ一タの食荷 圧をそれぞれ P LSI , PLS2 , PLS3 、 流量係数を c とすると、  Now, assume that the discharge pressure of pump 1 is PP and the discharge amount is QP, the flow rates to left running motor 2L and right running motor 2β are Ql and Q2, respectively, , The opening areas of the directional control valves 3 L, 3, 3 す る that control the actuators are A 1, A 2, A 3, respectively, and the outlet pressures of the directional control valves 3 L, 3 R, 3 B are respectively PI, P2, P 3, the food pressure of each actuator is P LSI, PLS2, PLS3, and the flow coefficient is c,
ブ一ムシリ ンダ負荷圧 PLS3 が走行モータの負荷圧 P LSI , PLS2 より大きい ので、 各圧力補僙弁 8L , 8 R , 8B には前記負荷圧 PLS3 が作用する。 従って 、 圧力補俊弁 8 L , 8 R は走行のみを行っているときょりも大き く絞られ、 走行 モータ 2L , 2 R に供給される流量が减るため、 減速されることになる。 このと きの各ァクチユエ一タへの流量は、 それぞれ下記の式で表すことができる。  The load pressure PLS3 acts on each of the pressure supplement valves 8L, 8R, and 8B because the load pressure PLS3 of the bump cylinder is larger than the load pressures PLS1 and PLS2 of the traveling motor. Accordingly, the pressure augmentation valves 8L and 8R are throttled greatly when only traveling, and the flow rate supplied to the traveling motors 2L and 2R is reduced, so that the speed is reduced. At this time, the flow rate to each actuator can be expressed by the following equation.
Ql - c Al X ( PP - P 1 ) 1/2 ^ c X Al ( P P - P LS3 ) 1/2 Q2 = c A 2 ( PP - P2 ) 1/2 ^ c x A2 x (PP - P LS3 ) 1/2 Q3 = c x A 3 ( PP — P 3 ) l z ^ c x A 3 (PP - P LS3 :! 1/2 また .. 各 Tクキュヱ一々への流量配分は、 QP = Q1 - Q2 - Q3 たから - - A I ( A1 - A2 - A3 :) x QP Ql-c Al X (PP-P 1) 1/2 ^ c X Al (PP-P LS3) 1/2 Q2 = c A 2 (PP-P2) 1/2 ^ cx A2 x (PP-P LS3) 1/2 Q3 = cx A 3 (PP — P 3) lz ^ cx A 3 (PP-P LS3: 1/2 or .. The flow distribution to each T queue is QP = Q1-Q2-Q3 --AI (A1-A2-A3 :) x QP
Q A 2 / ( A 1 - A 2 * A 3 ) Q P  Q A 2 / (A 1-A 2 * A 3) Q P
Q ■ = Λ3 ' ( Al 一 A2 — A3 ) QP となり、 前記開口面積 A l , A 2 , A 3 に比例している。 Q ■ = Λ3 '(Al-A2 — A3) QP Which is proportional to the opening areas A l, A 2, and A 3.
そこで、 走行モータ 2 L , 2 R に供給される流量が減らないように走行用油圧 回路に設置された圧力補僙弁 8 L > 8 R のばね張力を小さ く して、 圧力補償特性 をゆる くすることもできる。 しかし、 この対策では直進走行から緩旋回したとき 、 旋面外側の駆動輪の走行速度が低下して、 オペレータの意図した通りに車両を 操作するこ とができないという問題点がある。 発 明 の 開 示  Therefore, the pressure compensation characteristic is reduced by reducing the spring tension of the pressure supplement valve 8 L> 8 R installed in the traveling hydraulic circuit so that the flow rate supplied to the traveling motors 2 L and 2 R does not decrease. It can also be done. However, this measure has a problem in that when the vehicle makes a gentle turn from straight traveling, the traveling speed of the drive wheels on the outer side of the turning surface decreases, and the vehicle cannot be operated as intended by the operator. Disclosure of the invention
本発明は上記従来の問題点に着目し、 走行と作業機駆動とを同時に行った場合 に、 走行缄速率を可能な限り小さ く し、 オペレータの意志通りに車両を操作する ことができるような、 ロー ドセ ンシングシステムにおける操作性向上油圧回路を 提供することを目的としている。  The present invention focuses on the above-mentioned conventional problems, and makes it possible to minimize the traveling speed ratio as much as possible and to operate the vehicle as the operator intends when traveling and driving of the work machine are performed simultaneously. It is intended to provide a hydraulic circuit for improving operability in a load sensing system.
このために、 本発明は可変容量形油圧ポンプと、 この可変容量形油圧ポ ンプが 吐出する圧油によって駆動されるァクチユエ一タと、 可変容量形油圧ポンプから ァクチユエータに供給される圧油の流れを制御する方向切換弁と、 可変容量形油 圧ポンプが吐出する圧油の流量を制御する吐出量制御手段とを備え、 この吐出量 制御手段が、 可変容量形油圧ポンプの容量可変手段を駆動する レギユ レータ と、 可変容量形油圧ポンプの吐出圧とァクチユエ一タの負荷圧との差圧に応じて前記 レギュ レータの駆動を制御し、 差圧を設定値に保持する L S弁とからなる油圧駆 動装置において、  For this purpose, the present invention provides a variable displacement hydraulic pump, an actuator driven by pressure oil discharged from the variable displacement hydraulic pump, and a flow of pressure oil supplied from the variable displacement hydraulic pump to the actuator. And a discharge amount control means for controlling the flow rate of the pressure oil discharged from the variable displacement hydraulic pump. The discharge amount control means drives the displacement variable means of the variable displacement hydraulic pump. And a LS valve that controls the drive of the regulator according to the differential pressure between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator, and maintains the differential pressure at a set value. In the drive,
方向切換弁とァクチユエータ との間に設けられた圧力補儻弁に信号圧を伝達す るロー ドセ ンシング面路に絞りを設け、 このロー ドセ ンシ ング面路から油タ ン 'ク に至る回路に絞り と切換弁とを設けると共に、 ァクチュヱ一タ操作レバーの操作 条件または操作レバーの操作によって生じる圧力条件に基づいて、 前記切換弁を 切換える手段を設ける構成としている  A throttle is provided in the load sensing surface for transmitting the signal pressure to the pressure compensating valve provided between the directional switching valve and the actuator, and the throttle extends from this load sensing surface to the oil tank. A circuit is provided with a throttle and a switching valve, and a means for switching the switching valve based on the operating condition of the actuator operating lever or the pressure condition generated by operating the operating lever is provided.
こ の切換弁を切換える手段は、 ァクチュヱータ操作レバーの操作を検出する手 段と、 この検出手段が出力する検出信号に基づいて電磁弁に指令電流を出力す . コ ン ト ローラと、 切換弁に切換えパイ 口ッ ト圧を伝達する電磁弁とから構成され ている The means for switching the switching valve includes a means for detecting operation of the actuator operating lever, and a command current to the solenoid valve based on a detection signal output from the detecting means. It consists of a controller and a solenoid valve that transmits the pilot pressure to the switching valve.
また、 コ ン ト ローラは、 左右走行モータを制御する左右走行レバーの少なく と も一方と、 作業機操作レバ一の少なく とも一つが操作されることによって、 電磁 弁に指令電流を出力している。  In addition, the controller outputs a command current to the solenoid valve by operating at least one of the left and right travel levers for controlling the left and right travel motors and at least one of the work implement operation levers. .
このように、 圧力補俊弁に信号圧を伝達する α—ドセンシング面路に絞りと切 換弁とを設け、 左右走行レバーの少なく とも一方と、 作業機操作レバーの少なく とも一つが操作されることによってこの切換弁を切換える手段を設けたので、 走 行中に作業機を操作すると切換弁が切換えられ、 ロードセ ンシング回路に油の流 れができる。 そしてこの回路に設けた絞りにより、 負荷の最高圧よりも低い信号 圧が、 走行モータを制御する方向切換弁の圧力補儍弁に作用することになる。 一 方、 L S弁には負荷の最髙圧に等しい信号圧 P LSが作用するので、 走行側の方向 切換弁の前後差圧は従来よりも大きくなり、 走行側により多くの圧油が流れる 従って、 走行の減速率を小さく抑えることができる。 図面の簡単な説明  Thus, a throttle and a switching valve are provided in the α-sensing surface for transmitting the signal pressure to the pressure compensation valve, and at least one of the left and right traveling levers and at least one of the work implement operation levers are operated. Therefore, a means for switching the switching valve is provided, so that when the work machine is operated during traveling, the switching valve is switched, and oil flows to the load sensing circuit. The throttle provided in this circuit causes a signal pressure lower than the maximum pressure of the load to act on the pressure supplement valve of the directional control valve that controls the traveling motor. On the other hand, since the signal pressure P LS equal to the minimum pressure of the load acts on the LS valve, the pressure difference between the front and rear of the directional control valve on the traveling side becomes larger than before, and more hydraulic oil flows on the traveling side. However, the running deceleration rate can be kept small. BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明の基本構成を示す部分油圧回路図、 図 2は圧力補俊弁の拡大断面 図、 図 3は走行中に作業機レバーを操作したとき走行モータに供給される圧油流 量の変化を示す図表、 図 4は従来のロー ドセ ンシングシステムを備えた油圧駆動 装置の基本構成を示す部分油圧回路図である。 発明を実施するための最良の形態  Fig. 1 is a partial hydraulic circuit diagram showing the basic configuration of the present invention, Fig. 2 is an enlarged cross-sectional view of the pressure augmentation valve, and Fig. 3 is the hydraulic oil flow supplied to the traveling motor when the work implement lever is operated during traveling. FIG. 4 is a partial hydraulic circuit diagram showing a basic configuration of a hydraulic drive device provided with a conventional load sensing system. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本癸明に係る口一ドセンシングシステムにおける操作性向上油圧回路 実施例について、 図面を参照して説明する。 なお、 図】 は油圧掘削機に用いられ るコー ドセ ン シングシステムのうち、 走行モータと、 作業機用ァクチユエ一タ うちブームシリ ンダに関する油圧面路の概略構成を示したものである。  Hereinafter, an embodiment of a hydraulic circuit for improving operability in a mouth sensing system according to the present invention will be described with reference to the drawings. The figure shows the schematic configuration of the hydraulic surface for the travel motor and the boom cylinder of the work equipment actuator in the code sensing system used for the hydraulic excavator.
図 において、 ロードセ ンシ ングシステムは 1個のポンプ 1 と、 ポンプ 1 が吐 出する圧油によって駆動される左側駆動輪の走行モータ 2し 、 右側駆動輪の走 行モータ 2 R 、 ブ一ムシリ ンダ 2 B と、 ポンプ 1から左右走行モータ 2 L , 2 R およびブームシリ ンダ 2 B に送られる圧油の方向を切り換えるク ローズドセ ンタ の方向切換弁 3 L > 3 R , 3 B と、 ポンプ 1 が吐出する圧油の流量を制御するレ ギユ レータ 4および L S弁 5 とを備えている。 In the figure, the load sensing system has one pump 1 and pump 1 The traveling motor 2 for the left driving wheel driven by the pressure oil discharged, the traveling motor 2 R for the right driving wheel, the bump cylinder 2 B, and the left and right traveling motors 2 L, 2 R and the boom cylinder 2 from the pump 1. The closed-center directional control valve 3 L> 3 R, 3 B that switches the direction of the pressure oil sent to B, and the regulator 4 and the LS valve 5 that control the flow rate of the pressure oil discharged from the pump 1 Have.
方向切換弁 3L , 3 R , 3 B は、 ポンプ 1 の吐出回路 6から分岐する面路 6 L , 6 R , 6 B にそれぞれ接続され、 方向切換弁 3L , 3R , 3 B から走行モータ 2 L , 2 R およびブームシリ ンダ 2B に至る回路 7 L , 7 R , 7 B にそれぞれ圧 力補儐弁 8 L , 8 R , 8 B が設けられている。 各走行モータ 2し 、 2 R をはじめ とするブ一ム シリ ンダ 2 B の負荷圧は、 それぞれパイ ロ ッ ト回路 9 L , 9 R , 9 B およびシャ トル弁 1 0 , 1 1 を経て、 その最大値 PLSがパイ ロ ッ ト回路 1 2を 介して L S弁 5の一端に導かれている。 また、 パイ ロ ッ ト回路 1 2の分岐面路 1 3に可変絞り 1 4 aが設けられ、 前記ァクチユエ一タ負荷圧の最大値 PLSは、 可 変絞り 1 4 aを経た後、 信号圧 PLS' と してそれぞれパイ ロ ッ ト面路 1 5 L , 1 5 R , 1 5 B を介して圧力補復弁 8L , 8R , 8 B に導かれている。 L S弁 5の 他端は回路 6から分岐したパイ ロ ッ ツ ト面路 1 6に接続されてポンプ 1 の吐出圧 PP を受けている。  The directional control valves 3L, 3R, 3B are respectively connected to the surfaces 6L, 6R, 6B branched from the discharge circuit 6 of the pump 1, and the directional control valves 3L, 3R, 3B to the traveling motor 2L. , 2R and circuits 7L, 7R, 7B leading to the boom cylinder 2B are provided with pressure compensating valves 8L, 8R, 8B, respectively. The load pressure of each of the traveling motors 2 and 2R and the like of the cylinder 2B is passed through pilot circuits 9L, 9R and 9B and shuttle valves 10 and 11 respectively. The maximum value PLS is guided to one end of the LS valve 5 via the pilot circuit 12. Further, a variable throttle 14a is provided in the branch surface 13 of the pilot circuit 12 and the maximum value PLS of the actuator load pressure is changed to a signal pressure PLS after passing through the variable throttle 14a. 'Are respectively guided to the pressure recovery valves 8L, 8R, and 8B through the pilot surface paths 15L, 15R, and 15B. The other end of the LS valve 5 is connected to a pilot surface path 16 branched from the circuit 6, and receives the discharge pressure PP of the pump 1.
運転席近傍に設けられた走行レバー 1 7 L , 1 7 R とブームを駆動する操作レ バー 1 7 B は、 それぞれ P P C弁 1 8 L , 1 8 R , 1 8 B に連結され、 これらの P P C弁 1 8 L , 1 8 R , 1 8 B から出るパイ ロ ッ ト面路 1 9 L , 1 9 R , 1 9 B は、 それぞれ方向切換弁 3 L , 3R , 3 B に接続されている。 また、 前記パイ ロ ッ ト圧を検出する圧力スィ ッチ 2 0 L , 2 0 R , 2 0 B の出力配線 2 1 L . 2 1 R , 2 1 B は、 いずれもコ ン ト ローラ 2 2 に接続されている。  The traveling levers 17L and 17R provided near the driver's seat and the operating lever 17B for driving the boom are connected to PPC valves 18L, 18R and 18B, respectively. Pilot surfaces 19L, 19R, and 19B from valves 18L, 18R, and 18B are connected to directional valves 3L, 3R, and 3B, respectively. The output wires 21 L, 21 R, 21 B of the pressure switches 20 L, 20 R, 20 B for detecting the pilot pressure are all connected to the controller 22. It is connected to the.
ノ、。イ ロ ッ ト回路 1 5 L の延县上に油タ ンク 1 5 a に至る回路 1 5 cが設けられ 、 この回路 1 5 c には可変絞り 1 4 b と切換弁 2 3 とが設置されている。 また、 固定式油圧ポンプ 2 4 と切換弁 2 3の ¾部とを結ぶパイ ロ ッ ト面路 2 5に電磁弁 2 6が設けられ、 電磁弁 2 6のソ レノ イ ドにはコ ン ト ローラ 2 2の出力配線 2 7 が接続されている。 No ,. A circuit 15c leading to the oil tank 15a is provided on the extension of the pilot circuit 15L, and a variable throttle 14b and a switching valve 23 are provided in the circuit 15c. ing. Also, a solenoid valve 26 is provided on a pilot surface 25 connecting the fixed hydraulic pump 24 and a part of the switching valve 23, and a solenoid is provided on the solenoid of the solenoid valve 26. Output wiring of roller 2 2 7 Is connected.
コ ン ト ローラ 2 2は、 P P C弁 1 8L , 1 8R のパイロッ ト圧を検出する圧力 スィ ッチ 2 0L , 2 0R のいずれか一つ以上が ONとなり、 かつ P P C弁 1 8 B のパイ r> V ト圧を検出する圧力スィ ツチ 2 0 B が ONとなったとき、 出力配線 7を介して電磁弁 2 6に指令電流を出力する。  In the controller 22, at least one of the pressure switches 20 L and 20 R for detecting the pilot pressure of the PPC valves 18 L and 18 R is turned on, and the pilot switch of the PPC valve 18 B is turned on. > When the pressure switch 20B for detecting the V-to-pressure is turned ON, the command current is output to the solenoid valve 26 via the output wiring 7.
L S弁 5に作用する負荷圧の最大値 PLSに対し、 圧力補僙弁 8L , 8 , 8B に作用する信号圧 PLS' は、 可変絞り 1 4 aを経ることにより PLSより低い圧と なる。 なお、 可変絞り 1 4 bは、 切換弁 2 3が切換えられてパイロッ ト回路 1 5 L , 1 5R , 1 5B 内の圧油が面路 1 5 cを経てドレンされる際に、 圧力補償弁 8L : 8E , 8Β に作用する信号圧を一定値以上に維持するために設けられてい る。  With respect to the maximum value PLS of the load pressure acting on the LS valve 5, the signal pressure PLS 'acting on the pressure supplementary valves 8L, 8, 8B becomes lower than the PLS by passing through the variable throttle 14a. Note that the variable throttle 14 b is provided with a pressure compensating valve when the switching valve 23 is switched and the pressure oil in the pilot circuits 15 L, 15 R, and 15 B is drained through the surface path 15 c. 8L: Provided to maintain the signal pressure acting on 8E, 8Β above a certain value.
前記圧力補僙弁 8L , 8R , 8 Β は図 2に示すように、 弁本体内を摺動自在の 逆止め弁 8 a、 補僙ビス ト ン 8 c、 ばね 8 dからなり、 信号圧 PLS' は補俊ビス ト ン 8 cに設けられた穴 8 eからばね室 8 f 内に導かれている。 方向切換弁 3 L , 3 , 3B を通った圧油は通路 8 gから逆止め弁 8 a内に入り、 補俊ピス トン 8 cとばね 8 dとを図 2の右方に押してシー ト面を開き、 ァクチユエ一タポ一 ト 8 hに流れる。  As shown in FIG. 2, each of the pressure supplement valves 8L, 8R, 8Β comprises a check valve 8a slidable in the valve body, a supplement screw 8c, a spring 8d, and a signal pressure PLS. 'Is guided into the spring chamber 8f from the hole 8e provided in the supplementary screw 8c. The hydraulic oil that has passed through the directional control valves 3 L, 3 and 3B enters the check valve 8a from the passage 8g, and pushes the supplementary piston 8c and the spring 8d to the right in FIG. , And flow into Actuate Tappo 8h.
今、 信号圧を PLS' とするとばね室 8 f 内の圧力も PLS' となる。 また逆止弁 8 aの入口室 8 gの圧力を P1 とすると、 逆止弁 8 aの柽と褚僙ピス ト ン 8 cの 径は等しいので、 圧力 P1 は信号圧 PLS' より戻しばね 8 dのばね力分だけ高く なる。 しかし、 ばね力は信号圧 PLS' に対し充分弱いので  Now, assuming that the signal pressure is PLS ', the pressure in the spring chamber 8 f also becomes PLS'. If the pressure in the inlet chamber 8 g of the check valve 8a is P1, the diameter of the check valve 8a is equal to the diameter of the piston 8c. It increases by the spring force of d. However, the spring force is weak enough against the signal pressure PLS '
P 1 PLS'  P 1 PLS '
とみなすことができる。 即ち、 圧力補復弁 8 L , 8 R , 8 B には、 その入口圧 P L P2, P 3 が信号圧 PLS' とほほ'等しいという特性がある。 Can be considered. That is, the pressure recovery valves 8L, 8R, and 8B have a characteristic that their inlet pressures PLP2 and P3 are almost equal to the signal pressure PLS '.
次に上記操作性向上油圧回路の動作について説明する。  Next, the operation of the operability improving hydraulic circuit will be described.
油圧掘削機が走行中にブームを駆動させると、 図 1において前記圧力スィ ツチ 2 0 L , 2 O R . 2 OB かそれぞれ 0 となり、 コ ン ト ローラ 2 2の指令電流に より電磁弁 2 6が励磁され、 切換弁 2 3が切換えられる。 この時、 各ァクチユエ ータ負荷圧の最大値 PLSは、 ブ一ムシリ ンダ負荷圧 PLS3 であるから、 この最大 値 PLSと信号圧 PLS' の差圧 ΔΡは When the boom is driven while the hydraulic excavator is traveling, the pressure switches 20 L, 2 OR. 2 OB in FIG. 1 are each 0, and the command current of the controller 22 is reduced to 0. As a result, the solenoid valve 26 is excited, and the switching valve 23 is switched. At this time, since the maximum value PLS of each actuator load pressure is the boost cylinder load pressure PLS3, the differential pressure ΔΡ between this maximum value PLS and the signal pressure PLS 'is
ΔΡ = PLS- PLS' - PLS3 - PLS'  ΔΡ = PLS- PLS '-PLS3-PLS'
となる。  Becomes
そこで、 左右走行モータ 2 L , 2R への流量 Ql , Q2 はそれぞれ下記の式で 表すこ とができる。  Therefore, the flow rates Ql, Q2 to the left and right traveling motors 2L, 2R can be expressed by the following equations, respectively.
Ql = c X Al X (PP - P 1 ) 1/2 Ql = c X Al X (PP-P 1) 1/2
^ c X Al (PP - PLS' ) 1/2 ^ c X Al (PP-PLS ') 1/2
= c Al X (PP — PLS3 +厶 P) 1/2 = c Al X (PP — PLS3 + mum P) 1/2
Q2 = c A2 (PP - P2 ) 1/2 Q2 = c A2 (PP-P2) 1/2
- c A2 ( P P - P LS' ) 1/2 -c A2 (PP-P LS ') 1/2
= c A2 (PP - PLS3 +厶 P) 1/2 = c A2 (PP-PLS3 + um P) 1/2
従って、 左右走行モータ 2L , 2R に対する流景 Ql', Q2 は従来より差圧△ P分だけ多 く なる。  Therefore, the scenes Ql 'and Q2 for the left and right traveling motors 2L and 2R are larger by the differential pressure △ P than in the past.
また、 ブームシリ ンダ 2 B への流量 Q3 は  The flow rate Q3 to the boom cylinder 2B is
Q3 = c A3 X (PP - P3 ) 1/ Q3 = c A3 X (PP-P3) 1 /
- c A3 (PP 一 PLS3 ) 1/2 -c A3 (PP-PLS3) 1/2
で表される。 It is represented by
その理由は、 ブームシリ ンダ食荷圧 PLS3 が信号圧 PLS' よりも高いため、 図 2に示す補俊ビス ト ン 8 c は右端に押しつけられる。 従って、 圧力補僙弁 8 B で は、 その入口圧 (方向切換弁 3 B の出口圧) P3 とブーム シ リ ンダ負荷圧 PLS3 との関係が、  The reason for this is that the boom cylinder food pressure PLS3 is higher than the signal pressure PLS ', so the booster button 8c shown in Fig. 2 is pressed to the right end. Therefore, in the pressure supplement valve 8B, the relationship between the inlet pressure (outlet pressure of the direction switching valve 3B) P3 and the boom cylinder load pressure PLS3 is
P 3 ^ P LS3  P 3 ^ P LS3
となって圧力補僙機能がな く なり、 逆止め弁 8 aのみが機能する。 即ち、 圧力補 償弁 8 B はチェッ ク弁と して作用し、 ブーム回路では上式のようになる。 As a result, the pressure compensation function is lost, and only the check valve 8a functions. That is, the pressure compensating valve 8B acts as a check valve, and in the boom circuit, the above equation is obtained.
可変絞り 1 4 a , 1 4 bを調節すれば、 圧力補僙弁 8 L , 8 R の信号圧 PLS' の大きさを変えることができるので、 油圧掘削機の使用目的に合った最適流量を 走行側に供給することができる。 また、 可変絞り 1 4 a, 1 4 bは場合により固 定絞りとしてもよい。 By adjusting the variable throttles 14a and 14b, the signal pressure PLS 'of the pressure compensation valves 8L and 8R Since the size of the excavator can be changed, it is possible to supply an optimal flow rate to the traveling side according to the purpose of use of the hydraulic excavator. Further, the variable diaphragms 14a and 14b may be fixed diaphragms in some cases.
図 3は、 ブーム操作レバーのス ト口ーク位置と、 走行モータに供給される圧油 流量との関係を示したものである。 油圧掘削機が走行していて、 ブーム操作レハ' - 1 7 B が中立位置 Nにあるとき、 左右走行モータ 2L , 2 R に供給される圧油 流量は、 左右走行レバー 1 7L , 1 7 R の操作量に応じた流量であり、 これを 1 0 0 %とする。 この状態でブーム操作レバー 1 7B をフルス トロ一ク位 gFに操 作すると、 切換弁 2 3が O F Fのときすなわち通常のロー ドセンシングシステム の場合は、 左右走行モータ 2L , 2B に供袷される圧油流量が約 5 0 %に減少す る。 しかし切換弁 2 3が ONのときは、 前記圧油流量が 7 0〜 8 0 %に保たれ, かつブーム操作レバー操作時の缄速ショ ックも小さい。  Fig. 3 shows the relationship between the position of the stroke of the boom operation lever and the flow rate of hydraulic oil supplied to the traveling motor. When the hydraulic excavator is traveling and the boom operation lever '-17B is in the neutral position N, the hydraulic oil flow supplied to the left and right traveling motors 2L and 2R is the left and right traveling levers 17L and 17R. Is the flow rate according to the manipulated variable, and this is 100%. When the boom operation lever 17B is operated to the full stroke position gF in this state, when the switching valve 23 is OFF, that is, in the case of a normal load sensing system, the boom operation lever 17B is supplied to the left and right traveling motors 2L and 2B. Pressure oil flow is reduced to about 50%. However, when the switching valve 23 is ON, the flow rate of the hydraulic oil is maintained at 70 to 80%, and the low speed shock when operating the boom operation lever is small.
本実施例では、 ァクチユエータ操作レバーの操作を検出する手段として、 P P C弁 1 8L , 1 8 R , 1 8 B のパイロッ ト圧を検出する圧力スィ ッチ 2 0 L , 2 0 B , 2 0B を用いたが、 これに限るものではなく、 ァクチユエ一タ操作レバー のス ト ロークが一定値以上になったときに作動するリ ミ ツ トスイ ツチまたは近接 スイ ツチ等を用いてもよい。  In this embodiment, as means for detecting the operation of the actuator operation lever, pressure switches 20L, 20B, 20B for detecting the pilot pressures of the PPC valves 18L, 18R, 18B are provided. However, the present invention is not limited to this, and a limit switch or a proximity switch that operates when the stroke of the actuator operation lever exceeds a certain value may be used.
以上説明したように本発明によれば、 ァクチユエータを制御する方向切換弁 3 L , 3R , 3 B の圧力補僙特性を可変にしたので、 切換弁 2 3が切換えられると 方向切換弁 3L , 3R , 3 B の前後差圧が大き くなり、 それらの開口面積に比例 する流量配分が一時的に崩れ、 特定のァクチュヱータにより多くの圧油が流れる 。 そこで本究明を油圧掘削機の左右走行モータ 2L , 2R にに適用すると、 走行 と作業機駆動とを同時に行った場合の走行減速率が小さくなり、 オペレータの意 志通りに油圧掘削機を操作することができる。 また、 作業機操作時の減速'ンョ . - クも小さくなるので、 オペレータの疲労が軽減され、 作業能率を向上させる。 産業上の利用可能性 As described above, according to the present invention, the pressure compensation characteristics of the directional control valves 3L, 3R, 3B for controlling the actuators are made variable, so that when the directional control valve 23 is switched, the directional control valves 3L, 3R , 3 B, the pressure difference before and after becomes large, the flow distribution proportional to their opening area is temporarily broken, and more pressure oil flows to a specific actuator. Therefore, if this study is applied to the left and right traveling motors 2L and 2R of the hydraulic excavator, the traveling deceleration rate when traveling and driving of the work equipment are performed at the same time is reduced, and the hydraulic excavator is operated as the operator intends. be able to. In addition, since the speed reduction during operation of the work equipment is reduced, operator fatigue is reduced and work efficiency is improved. Industrial applicability
本発明は、 ロー ドセ ンシ ングシステムを備えた油圧駆動装置を搭載する車両- 特に油圧掘削機等の操作性を向上する油圧回路として有用である。  INDUSTRIAL APPLICABILITY The present invention is useful as a hydraulic circuit for improving the operability of a vehicle equipped with a hydraulic drive device equipped with a load sensing system, particularly a hydraulic excavator.

Claims

請 求 の 範 囲 The scope of the claims
1 . 可変容量形油圧ポンプと、 この可変容量形油圧ポンプが吐出する圧油によつ て駆動されるァクチユエ一タと、 前記可変容量形油圧ポンプからァクチユエータ に供給される圧油の流れを制御する方向切換弁と、 可変容量形油圧ポンブが吐出 する圧油の流量を制御する吐出量制御手段とを備え、 前記吐出量制御手段が、 可 変容量形油圧ポンプの容量可変手段を駆動するレギュ レータと、 可変容量形油圧 ポンプの吐出圧とァクチユエータの負荷圧との差圧に応じて前記レギュレータの 駆動を制御し、 この差圧を設定値に保持する L S弁とからなる油圧駆動装置にお いて、  1. A variable displacement hydraulic pump, an actuator driven by pressure oil discharged from the variable displacement hydraulic pump, and controlling a flow of pressure oil supplied from the variable displacement hydraulic pump to the actuator. Directional switching valve, and discharge amount control means for controlling the flow rate of pressure oil discharged from the variable displacement hydraulic pump, wherein the discharge amount control means drives a displacement variable means of the variable displacement hydraulic pump. And a LS valve that controls the drive of the regulator in accordance with the pressure difference between the discharge pressure of the variable displacement hydraulic pump and the load pressure of the actuator, and maintains the pressure difference at a set value. And
前記方向切換弁とァクチュヱ一タとの間に設けられた圧力補僙弁に信号圧を伝 達するロードセンシング回路に絞りを設け、 このロードセンシング面路から油タ ンクに至る面路に絞りと切換弁を設けると共に、 ァクチユエ一夕操作レバーの操 作条件またはこの操作レバーの操作によって生じる圧力条件に基づいて、 前記切 換弁を切換える手段を設けたことを特徴とするロードセンシングシステムにおけ る操作性向上油圧面路。  A throttle is provided in a load sensing circuit that transmits a signal pressure to a pressure compensation valve provided between the direction switching valve and the actuator, and the throttle is switched to a surface from the load sensing surface to the oil tank. Operability in a load sensing system, characterized in that a valve is provided, and a means for switching the switching valve is provided based on an operating condition of the operating lever or a pressure condition generated by operating the operating lever. Improved hydraulic surface.
2 . 前記切換弁を切換える手段は、 ァクチュヱータ操作レバーの操作を検出する 手段と、 この検出手段が出力する检出信号に基づいて電磁弁に指令電流を出力す るコ ン ト ローラと、 この切換弁に切換えパイ 口ッ ト圧を伝達する電磁弁とから構 成されたとを特徵とする請求の範囲 1記載のロードセ ンシングシステムにおける 操作性向上油圧面路。 2. The means for switching the switching valve includes means for detecting operation of an actuator operating lever, a controller for outputting a command current to the solenoid valve based on an output signal output by the detecting means, 2. The hydraulic surface for improving operability in a load sensing system according to claim 1, wherein the hydraulic surface is configured to include a solenoid valve that transmits a switching pressure to a valve.
3 . 前記コ ン ト ローラは、 前記ァクチュヱータのう ちの左右走行モータを制御す る左右走行レバーの少なく とも一方と、 作業機を制御する作業機操作レバーの少 なく とも一つが操作されることによって、 前記電磁弁に措令電流を出力すること を特钹とする請求の範囲 2記載のロー ドセ ンシングシステムにおける操作性向上 油圧回路。 3. The controller is operated by operating at least one of the left and right travel levers for controlling the left and right travel motors of the actuator and at least one of the work implement operation levers for controlling the work implement. 3. The hydraulic circuit for improving operability in a load sensing system according to claim 2, wherein a command current is output to the solenoid valve.
PCT/JP1992/000268 1991-03-15 1992-03-06 Hydraulic circuit improved in operability in load sensing system WO1992016754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3075708A JP3006777B2 (en) 1991-03-15 1991-03-15 Load sensing hydraulic circuit
JP3/75708 1991-03-15

Publications (1)

Publication Number Publication Date
WO1992016754A1 true WO1992016754A1 (en) 1992-10-01

Family

ID=13583998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000268 WO1992016754A1 (en) 1991-03-15 1992-03-06 Hydraulic circuit improved in operability in load sensing system

Country Status (2)

Country Link
JP (1) JP3006777B2 (en)
WO (1) WO1992016754A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094991A1 (en) * 2011-01-11 2012-07-19 徐州徐工挖掘机械有限公司 Apparatus for improving excavating operation characteristic and grading work characteristic of excavator
EP1996350B1 (en) * 2006-03-22 2014-10-22 Avdel UK Limited Improved hydraulic damper valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102400966B (en) * 2011-09-29 2014-09-17 徐州重型机械有限公司 Loading and unloading switching device and oil supply system and engineering machinery applying same
CN104709834B (en) * 2013-12-11 2017-08-04 北汽福田汽车股份有限公司 Turn round speed-adjusting and control system and crane
CN107458459A (en) * 2017-07-20 2017-12-12 郭向阳 Walking steer-drive and its control method
CN112833058B (en) * 2021-01-21 2023-03-31 长沙中联重科环境产业有限公司 Load-sensitive hydraulic system and hedge trimming equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116965A (en) * 1980-11-24 1982-07-21 Linde Ag Hydraulic pressure driving system with variable discharging pump
JPS61206804A (en) * 1985-03-08 1986-09-13 Kawasaki Heavy Ind Ltd Parallel multibranch hydraulic circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116965A (en) * 1980-11-24 1982-07-21 Linde Ag Hydraulic pressure driving system with variable discharging pump
JPS61206804A (en) * 1985-03-08 1986-09-13 Kawasaki Heavy Ind Ltd Parallel multibranch hydraulic circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1996350B1 (en) * 2006-03-22 2014-10-22 Avdel UK Limited Improved hydraulic damper valve
WO2012094991A1 (en) * 2011-01-11 2012-07-19 徐州徐工挖掘机械有限公司 Apparatus for improving excavating operation characteristic and grading work characteristic of excavator

Also Published As

Publication number Publication date
JPH04285303A (en) 1992-10-09
JP3006777B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
JP4799624B2 (en) Hydraulic drive control device
US8146355B2 (en) Traveling device for crawler type heavy equipment
US7891458B2 (en) Steering system for engineering vehicle
US6176083B1 (en) Apparatus and method for controlling displacement of steering pump for work vehicle
US7350353B2 (en) Hydraulic circuit
WO2004083646A1 (en) Oil pressure circuit for working machines
WO1997003292A1 (en) Hydraulic driving device
US10006472B2 (en) Construction machine
JP2003004003A (en) Hydraulic control circuit of hydraulic shovel
WO1992016754A1 (en) Hydraulic circuit improved in operability in load sensing system
JP2003184815A (en) Hydraulic controlled device of construction machine and hydraulic controlled device of hydraulic power shovel
JP2677983B2 (en) Excavator flow controller
US20210340720A1 (en) Hydraulic Drive System for Work Machine
JP3006778B2 (en) Hydraulic circuit for improving operability in load sensing system
JP2753624B2 (en) Hydraulic shock absorber control device for construction machinery
KR20040094186A (en) construction equipment travel control device and its method
JP3626590B2 (en) Actuator bleed-off control device
JP3511500B2 (en) Hydraulic circuit of construction machinery
JP3692009B2 (en) Control device for work machine
JPH11229444A (en) Hydraulic controller for construction machinery and its hydraulic control method
JP3876294B2 (en) Boom control device for boom type work vehicle
US5315827A (en) Apparatus for switching flow rate for attachment
JP3666830B2 (en) Hydraulic regeneration circuit for hydraulic machine
JP3248549B2 (en) Auto accelerator device
JP2002317471A (en) Oil pressure control circuit for hydraulic shovel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT