JP3511500B2 - Hydraulic circuit of construction machinery - Google Patents
Hydraulic circuit of construction machineryInfo
- Publication number
- JP3511500B2 JP3511500B2 JP2000208724A JP2000208724A JP3511500B2 JP 3511500 B2 JP3511500 B2 JP 3511500B2 JP 2000208724 A JP2000208724 A JP 2000208724A JP 2000208724 A JP2000208724 A JP 2000208724A JP 3511500 B2 JP3511500 B2 JP 3511500B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- pressure
- attachment
- hydraulic
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/161—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
- F15B11/162—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2225—Control of flow rate; Load sensing arrangements using pressure-compensating valves
- E02F9/2228—Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40515—Flow control characterised by the type of flow control means or valve with variable throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40523—Flow control characterised by the type of flow control means or valve with flow dividers
- F15B2211/4053—Flow control characterised by the type of flow control means or valve with flow dividers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/428—Flow control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/455—Control of flow in the feed line, i.e. meter-in control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50563—Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/52—Pressure control characterised by the type of actuation
- F15B2211/528—Pressure control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/57—Control of a differential pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/635—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
- F15B2211/6355—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/665—Methods of control using electronic components
- F15B2211/6654—Flow rate control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7142—Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/78—Control of multiple output members
- F15B2211/781—Control of multiple output members one or more output members having priority
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Operation Control Of Excavators (AREA)
- Servomotors (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、独立アタッチメン
ト回路を備えた建設機械の油圧回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic circuit for a construction machine having an independent attachment circuit.
【0002】[0002]
【従来の技術】特開2000−73409号公報に示さ
れる建設機械の油圧回路のように、第1油圧ポンプおよ
び第2油圧ポンプと、左走行回路、右走行回路および独
立アタッチメント回路との間に圧力補償型分流弁を設け
たものがある。2. Description of the Related Art As in the hydraulic circuit of a construction machine disclosed in Japanese Patent Laid-Open No. 2000-73409, between a first hydraulic pump and a second hydraulic pump and a left traveling circuit, a right traveling circuit and an independent attachment circuit. Some have a pressure-compensated shunt valve.
【0003】この圧力補償型分流弁には、走行回路に対
し独立アタッチメント回路に分流される流量を制御する
ための分流制御弁と、この分流制御弁の可変絞りの前後
差圧を一定に保つ圧力補償弁とが内蔵されている。This pressure compensating type shunt valve includes a shunt control valve for controlling a flow rate diverted to an independent attachment circuit with respect to a traveling circuit, and a pressure for maintaining a constant differential pressure across a variable throttle of the shunt control valve. Compensation valve and built-in.
【0004】分流制御弁は、第1油圧ポンプから左走行
回路に分流する作動油の流量と、第2油圧ポンプから右
走行回路に同時に分流する作動油の流量とが等しくなる
開口特性の内部油路を有するとともに、これらの内部油
路から分岐された内部油路で第1油圧ポンプから独立ア
タッチメント回路に分流する作動油の流量と、第2油圧
ポンプから独立アタッチメント回路に同時に分流する作
動油の流量とが等しくなる開口特性を有する。The diversion control valve is an internal oil having an opening characteristic in which the flow rate of hydraulic oil diverted from the first hydraulic pump to the left traveling circuit is equal to the flow rate of hydraulic oil diverted from the second hydraulic pump to the right traveling circuit at the same time. Of the hydraulic oil that has a passage and that divides from these internal oil passages into the independent attachment circuit from the first hydraulic pump and the hydraulic oil that divides from the second hydraulic pump into the independent attachment circuit at the same time. It has the opening characteristic that the flow rate becomes equal.
【0005】圧力補償弁は、左走行回路、右走行回路お
よび独立アタッチメント回路の回路圧の如何にかかわら
ず、分流制御弁の可変絞りの前後差圧を一定に保つよう
に制御することで可変絞りの開度に応じた流量を独立ア
タッチメント回路に供給する。The pressure compensating valve controls the variable throttle by maintaining the constant differential pressure across the variable throttle of the shunt control valve regardless of the circuit pressures of the left traveling circuit, the right traveling circuit and the independent attachment circuit. The flow rate according to the opening degree of is supplied to the independent attachment circuit.
【0006】このような建設機械に搭載されている油圧
ポンプには、図3に示すような、エンジン馬力によって
決まるポンプ吐出流量とポンプ吐出圧力との限界線図
(以下P−Q線図と呼ぶ)があり、ポンプ吐出圧力が高
圧になる程、ポンプ吐出流量が少なくなるように設定さ
れている。In a hydraulic pump mounted on such a construction machine, as shown in FIG. 3, a limit diagram (hereinafter referred to as PQ diagram) of pump discharge flow rate and pump discharge pressure determined by engine horsepower. ), The pump discharge flow rate is set to decrease as the pump discharge pressure increases.
【0007】[0007]
【発明が解決しようとする課題】この従来技術における
独立アタッチメント回路においては、圧力補償弁の働き
により、独立アタッチメント回路の回路圧に関係なく、
分流制御弁の可変絞りの開口量に応じた流量の作動油が
独立アタッチメント回路に供給されるため、独立アタッ
チメント回路の回路圧がリリーフ圧近くの高圧となり、
図3のP−Q線図に示されるようにポンプ吐出流量が減
少したときも、分流制御弁の可変絞りの開口量がかなり
開いている場合は、ポンプ吐出流量の殆どの流量が独立
アタッチメント回路に流れてしまう。In the independent attachment circuit of this prior art, the function of the pressure compensating valve allows the independent attachment circuit to operate regardless of the circuit pressure of the independent attachment circuit.
Since the hydraulic oil of the flow rate according to the opening amount of the variable throttle of the diversion control valve is supplied to the independent attachment circuit, the circuit pressure of the independent attachment circuit becomes a high pressure near the relief pressure,
As shown in the P-Q diagram of FIG. 3, even when the pump discharge flow rate decreases, if the opening amount of the variable throttle of the diversion control valve is considerably open, most of the pump discharge flow rate is an independent attachment circuit. Flows to.
【0008】このとき、本体側作業装置の常設アクチュ
エータ、すなわち、走行用および旋回用の油圧モータ
や、ブーム、アーム、バケットといったフロント作業機
用の油圧シリンダに流れる作動油は、圧力補償弁により
抑えられるため、アタッチメントと本体側作業装置との
連動操作において、独立アタッチメント回路がリリーフ
圧近くになった途端に、本体側作業装置のスピードが遅
くなってしまうという問題がある。At this time, the permanent compensating actuator of the main body side working device, that is, the hydraulic oil for traveling and turning, and the hydraulic cylinders for the front working machine such as the boom, arm and bucket are suppressed by the pressure compensating valve. Therefore, in the interlocking operation of the attachment and the main body side working device, the speed of the main body side working device becomes slow as soon as the independent attachment circuit becomes close to the relief pressure.
【0009】本発明は、このような点に鑑みなされたも
ので、常設アクチュエータ回路に供給される作動油量の
一部を、圧力補償された分流制御弁により分流して独立
アタッチメント回路に供給する場合、独立アタッチメン
ト回路の回路圧が過大に上昇しても、常設アクチュエー
タ回路に必要な作動油量を供給できるようにすることを
目的とするものである。The present invention has been made in view of the above circumstances, and a part of the amount of hydraulic oil supplied to a permanent actuator circuit is diverted by a pressure-compensated shunt control valve to be supplied to an independent attachment circuit. In this case, it is an object of the present invention to be able to supply the required amount of hydraulic oil to the permanent actuator circuit even if the circuit pressure of the independent attachment circuit rises excessively.
【0010】[0010]
【課題を解決するための手段】請求項1記載の発明は、
油圧ポンプから供給された作動油を制御して建設機械の
常設アクチュエータを駆動する常設アクチュエータ回路
と、常設アクチュエータ回路に供給される作動油の一部
を制御して建設機械のアタッチメントを常設アクチュエ
ータ回路とは独立に駆動する独立アタッチメント回路
と、油圧ポンプから常設アクチュエータ回路に供給され
る作動油の一部を分流して独立アタッチメント回路に供
給するとともに分流される作動油の流量をストロークに
応じた可変絞りで制御する分流制御弁と、分流制御弁の
可変絞りの前後差圧を一定に保つように制御する圧力補
償弁と、独立アタッチメント回路の回路圧を検出する圧
力センサと、分流制御弁をパイロット圧でストローク制
御する電磁比例弁と、圧力センサにより検出された独立
アタッチメント回路の回路圧が過大でない領域ではアタ
ッチメント用操作信号に応じて電磁比例弁を制御して分
流制御弁の可変絞りの開口面積を制御するとともに、圧
力センサにより検出された独立アタッチメント回路の回
路圧が過大な状態まで上昇した場合はアタッチメント用
操作信号と関係なく電磁比例弁を制御して分流制御弁の
可変絞りの開口面積を絞る方向に制御するコントローラ
とを具備した建設機械の油圧回路である。The invention according to claim 1 is
The permanent actuator circuit that controls the hydraulic oil supplied from the hydraulic pump to drive the permanent actuator of the construction machine, and the attachment of the construction machine to the permanent actuator circuit by controlling part of the hydraulic oil supplied to the permanent actuator circuit. Is an independent attachment circuit that drives independently, and a part of the hydraulic oil supplied from the hydraulic pump to the permanent actuator circuit is diverted to the independent attachment circuit and the flow rate of the diverted hydraulic oil is adjusted according to the stroke. Control valve, a pressure compensation valve that controls the differential pressure across the variable throttle of the shunt control valve to keep it constant, a pressure sensor that detects the circuit pressure of the independent attachment circuit, and a shunt control valve that uses the pilot pressure. Solenoid proportional valve with stroke control and independent attachment circuit detected by pressure sensor In the area where the circuit pressure is not excessive, the solenoid proportional valve is controlled according to the operation signal for attachment to control the opening area of the variable throttle of the diversion control valve, and the circuit pressure of the independent attachment circuit detected by the pressure sensor is excessive. The hydraulic circuit of the construction machine is provided with a controller that controls the solenoid proportional valve to control the opening area of the variable throttle of the shunt control valve in a direction to reduce the opening regardless of the operation signal for attachment when it rises to the state.
【0011】そして、独立アタッチメント回路に過大な
回路圧が生じていないときは、アタッチメント用操作信
号を受けたコントローラが、アタッチメント用操作信号
に比例した電気信号を電磁比例弁に出力し、この電磁比
例弁を介して分流制御弁をストローク制御する。一方、
独立アタッチメント回路に過大な回路圧が立った場合
は、その状態を圧力センサを介して検出したコントロー
ラが、アタッチメント用操作信号と拘わりなく電磁比例
弁を制御して、分流制御弁の可変絞りの開口面積を小さ
く絞ることにより、独立アタッチメント回路への供給油
量を減らすように制御する。これにより、独立アタッチ
メント回路への供給油量が減少した分、常設アクチュエ
ータ回路に供給される作動油量が回復し、アタッチメン
トと常設アクチュエータとが円滑に連動操作される。When an excessive circuit pressure is not generated in the independent attachment circuit, the controller which receives the operation signal for attachment outputs an electric signal proportional to the operation signal for attachment to the solenoid proportional valve, and the electromagnetic proportional valve. The diversion control valve is stroke-controlled via the valve. on the other hand,
If an excessive circuit pressure is generated in the independent attachment circuit, the controller that detects the state via the pressure sensor controls the solenoid proportional valve regardless of the attachment operation signal to open the variable throttle of the diversion control valve. By controlling the area to a small value, the amount of oil supplied to the independent attachment circuit is controlled to be reduced. As a result, the amount of hydraulic oil supplied to the permanent actuator circuit is recovered by the amount of oil supplied to the independent attachment circuit, and the attachment and the permanent actuator are smoothly interlocked.
【0012】請求項2記載の発明は、請求項1記載の建
設機械の油圧回路において、独立アタッチメント回路の
回路圧が過大な状態を、独立アタッチメント回路にリリ
ーフ圧に近い回路圧が生じた状態であるとしたものであ
り、そして、独立アタッチメント回路の回路圧がリリー
フ圧近くになるということは、アタッチメントがストー
ル状態に近いということであり、回路圧を保持できるだ
けの僅かな油量があれば十分であり、理にかなってい
る。According to a second aspect of the present invention, in the hydraulic circuit of the construction machine according to the first aspect, when the circuit pressure of the independent attachment circuit is excessive, the circuit pressure close to the relief pressure is generated in the independent attachment circuit. And the fact that the circuit pressure of the independent attachment circuit is close to the relief pressure means that the attachment is near the stall state, and a small amount of oil to hold the circuit pressure is enough. And it makes sense.
【0013】[0013]
【発明の実施の形態】以下、本発明を図1に示された実
施の一形態を参照しながら説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the embodiment shown in FIG.
【0014】図1に、2ポンプ式油圧ショベルにおける
圧力補償型分流弁を用いた独立アタッチメント回路の一
例を示す。FIG. 1 shows an example of an independent attachment circuit using a pressure compensation type flow dividing valve in a two-pump hydraulic excavator.
【0015】この図1にて、建設機械としての油圧ショ
ベルに搭載されたエンジン1により駆動される第1油圧
ポンプ2および第2油圧ポンプ3の吐出口は、圧力補償
型分流弁4を介して、左走行系グループの常設アクチュ
エータ回路5および右走行系グループの常設アクチュエ
ータ回路6と、この常設アクチュエータ回路5,6とは
独立に制御される独立アタッチメント回路7とに接続さ
れている。In FIG. 1, the discharge ports of a first hydraulic pump 2 and a second hydraulic pump 3 driven by an engine 1 mounted on a hydraulic excavator as a construction machine are connected via a pressure compensation type shunt valve 4. The permanent actuator circuit 5 of the left traveling system group, the permanent actuator circuit 6 of the right traveling system group, and an independent attachment circuit 7 that is controlled independently of the permanent actuator circuits 5 and 6.
【0016】常設アクチュエータ回路5,6は、第1油
圧ポンプ2および第2油圧ポンプ3から圧力補償型分流
弁4を経て供給された作動油をメインコントロール弁の
各種制御スプール(図示せず)により制御して、油圧シ
ョベルの常設アクチュエータである走行系および旋回系
の油圧モータ、フロント作業機の油圧シリンダ(ブーム
シリンダ、アームシリンダ、バケットシリンダ)の駆動
をそれぞれ制御する。The permanent actuator circuits 5 and 6 supply the operating oil supplied from the first hydraulic pump 2 and the second hydraulic pump 3 through the pressure compensating type diversion valve 4 by various control spools (not shown) of the main control valve. It controls to drive the hydraulic motors of the traveling system and the swing system, which are the permanent actuators of the hydraulic excavator, and the hydraulic cylinders (boom cylinder, arm cylinder, bucket cylinder) of the front working machine.
【0017】一方の常設アクチュエータ回路5は、第1
油圧ポンプ2から供給された作動油を制御し、少なくと
も左側履帯を駆動する左側走行用油圧モータを左走行用
スプールにより制御する左走行系グループであり、ま
た、他方の常設アクチュエータ回路6は、第2油圧ポン
プ3から供給された作動油を制御し、少なくとも右側履
帯を駆動する右側走行用油圧モータを右走行用スプール
により制御する右走行系グループである。One of the permanent actuator circuits 5 has a first
A left traveling system group that controls the hydraulic oil supplied from the hydraulic pump 2 and controls at least the left traveling hydraulic motor that drives the left crawler belt by the left traveling spool, and the other permanent actuator circuit 6 is 2 is a right traveling system group that controls hydraulic oil supplied from the hydraulic pump 3 and controls at least the right traveling hydraulic motor that drives the right crawler belt with the right traveling spool.
【0018】前記独立アタッチメント回路7は、第1油
圧ポンプ2および第2油圧ポンプ3から常設アクチュエ
ータ回路5,6に供給される作動油より圧力補償型分流
弁4にて分流された作動油を制御するアタッチメント用
制御スプール(図示せず)を含み、このアタッチメント
用制御スプールで制御された作動油により、油圧ショベ
ルのフロント作業機の先端部にバケットに替えて取付け
られた油圧ブレーカまたは圧砕機などのアタッチメント
を、常設アクチュエータ回路5,6とは独立に駆動す
る。The independent attachment circuit 7 controls the hydraulic oil divided by the pressure compensating flow dividing valve 4 from the hydraulic oil supplied from the first hydraulic pump 2 and the second hydraulic pump 3 to the permanent actuator circuits 5 and 6. Control spool for attachment (not shown) that controls the hydraulic fluid controlled by this control spool for attachment, such as a hydraulic breaker or a crusher attached to the tip of the front working machine of the hydraulic excavator in place of a bucket. The attachment is driven independently of the permanent actuator circuits 5,6.
【0019】この独立アタッチメント回路7は、アタッ
チメント用リリーフ弁8を備えており、このアタッチメ
ント用リリーフ弁8により、独立アタッチメント回路7
のリリーフ圧を設定する。The independent attachment circuit 7 is provided with a relief valve 8 for attachment, and the relief valve 8 for attachment allows the independent attachment circuit 7 to operate.
Set the relief pressure of.
【0020】前記圧力補償型分流弁4は、1つの分流制
御弁としての分流制御スプール10と、この分流制御スプ
ール10により独立アタッチメント回路7に分流される作
動油の流量を圧力補償する圧力補償弁としての1対の圧
力補償スプール11,12と、これらの圧力補償スプール1
1,12から独立アタッチメント回路7への出力回路に設
けられた逆止弁13,14とを内蔵している。The pressure compensating type shunt valve 4 includes a shunt control spool 10 as one shunt control valve, and a pressure compensating valve for compensating the flow rate of the working oil diverted to the independent attachment circuit 7 by the shunt control spool 10. Pair of pressure compensating spools 11 and 12 and these pressure compensating spools 1
It incorporates check valves 13 and 14 provided in the output circuit from 1 and 12 to the independent attachment circuit 7.
【0021】分流制御スプール10は、第1油圧ポンプ2
から左走行系グループの常設アクチュエータ回路5に供
給される作動油の一部を分流して独立アタッチメント回
路7に供給するとともに分流される作動油の流量をスト
ロークに応じた可変絞り39で制御し、同時に、第2油圧
ポンプ3から右走行系グループの常設アクチュエータ回
路6に供給される作動油の一部を分流して独立アタッチ
メント回路7に供給するとともに分流される作動油の流
量をストロークに応じた可変絞り40で制御するものであ
る。The diversion control spool 10 is the first hydraulic pump 2
From a part of the hydraulic oil supplied to the permanent actuator circuit 5 of the left traveling system group is supplied to the independent attachment circuit 7 and the flow rate of the divided hydraulic oil is controlled by the variable throttle 39 according to the stroke. At the same time, a part of the hydraulic oil supplied from the second hydraulic pump 3 to the permanent actuator circuit 6 of the right traveling system group is diverted to be supplied to the independent attachment circuit 7 and the flow rate of the diverted hydraulic oil is adjusted according to the stroke. It is controlled by the variable aperture 40.
【0022】さらに、一方の圧力補償スプール11は、一
側のばね16によって付勢されたスプールの両端部に、分
流制御スプール10のA1 ポートおよびB1 ポートからの
油圧が油路17,18を介してそれぞれ導入されており、分
流制御スプール10のB1 ポートおよびA1 ポートにおけ
る差圧(PB1−PA1)が一定差圧ΔPになると、ばね16
の付勢力に抗して、位置21より位置22へ切換り、さらに
差圧が大きくなると位置23へ切換わるよう設定してあ
る。Further, one of the pressure compensating spools 11 has oil pressure from the A1 port and the B1 port of the diversion control spool 10 through oil passages 17 and 18 at both ends of the spool biased by the spring 16 on one side. When the differential pressure (PB1-PA1) at the B1 port and A1 port of the diversion control spool 10 becomes a constant differential pressure ΔP, the spring 16
It is set to switch from the position 21 to the position 22 against the biasing force of and to switch to the position 23 when the differential pressure increases.
【0023】そして、この一方の圧力補償スプール11
は、前記差圧(PB1−PA1)、すなわち可変絞り39の前
後差圧を一定値に保つように圧力補償制御し、また、他
方の圧力補償スプール12は、同様に、分流制御スプール
10のB2 ポートおよびA2 ポートにおける差圧(PB2−
PA2)、すなわち可変絞り40の前後差圧を一定値に保つ
ように圧力補償制御する。Then, the pressure compensating spool 11 for one side is provided.
Is pressure-compensated and controlled so as to maintain the differential pressure (PB1-PA1), that is, the differential pressure across the variable throttle 39 at a constant value, and the other pressure-compensated spool 12 is likewise a shunt control spool.
Differential pressure (PB2−
PA2), that is, pressure compensation control is performed so that the differential pressure across the variable throttle 40 is maintained at a constant value.
【0024】この圧力補償スプール11のA1´ポートお
よび圧力補償スプール12のA2´ポートは、逆止弁13,1
4を経て1本化された独立アタッチメントライン31によ
り独立アタッチメント回路7に接続され、またB1´ポ
ートは、左走行系ライン32を経て左走行系グループの常
設アクチュエータ回路5に接続され、B2´ポートは、
右走行系ライン33を経て右走行系グループの常設アクチ
ュエータ回路6に接続されている。The A1 'port of the pressure compensation spool 11 and the A2' port of the pressure compensation spool 12 are connected to the check valves 13, 1
4 is connected to the independent attachment circuit 7 by a single independent attachment line 31, and the B1 'port is connected to the permanent actuator circuit 5 of the left traveling system group via the left traveling system line 32 and the B2' port. Is
It is connected to the permanent actuator circuit 6 of the right traveling system group via the right traveling system line 33.
【0025】前記分流制御スプール10をさらに詳しく説
明すると、この分流制御スプール10には、第1油圧ポン
プ2から常設アクチュエータ回路5の左走行系ライン32
に分流される作動油の内部油路35および独立アタッチメ
ント回路7の独立アタッチメントライン31に分流される
作動油の内部油路36と、第2油圧ポンプ3から常設アク
チュエータ回路6の右走行系ライン33に分流される作動
油の内部油路37および独立アタッチメント回路7の独立
アタッチメントライン31に分流される作動油の内部油路
38とが形成されている。The diversion control spool 10 will be described in more detail. On the diversion control spool 10, the left traveling system line 32 from the first hydraulic pump 2 to the permanent actuator circuit 5 is provided.
Internal oil passage 35 of the hydraulic oil that is diverted to and the internal oil passage 36 of the hydraulic oil that is diverted to the independent attachment line 31 of the independent attachment circuit 7, and the right traveling system line 33 of the permanent actuator circuit 6 from the second hydraulic pump 3. Internal oil passage 37 for the hydraulic oil that is diverted to and the internal oil passage for the hydraulic oil that is diverted to the independent attachment line 31 of the independent attachment circuit 7.
38 and are formed.
【0026】この分流制御スプール10の内部油路35,37
は、第1油圧ポンプ2から左走行系ライン32に分流され
る作動油の流量と、第2油圧ポンプ3から右走行系ライ
ン33に同時に分流される作動油の流量とが等しくなる開
口特性を有するとともに、内部油路36,38は、第1油圧
ポンプ2から独立アタッチメントライン31に分流される
作動油の流量と、第2油圧ポンプ3から独立アタッチメ
ントライン31に同時に分流される作動油の流量とが等し
くなる開口特性を有する。The internal oil passages 35, 37 of the flow dividing control spool 10
Is an opening characteristic in which the flow rate of the hydraulic oil diverted from the first hydraulic pump 2 to the left traveling system line 32 is equal to the flow rate of the hydraulic oil diverted from the second hydraulic pump 3 to the right traveling system line 33 at the same time. The internal oil passages 36 and 38 have the flow rates of the hydraulic oil that is split from the first hydraulic pump 2 to the independent attachment line 31, and the flow rates of the hydraulic oil that is split from the second hydraulic pump 3 to the independent attachment line 31 at the same time. And have the same opening characteristic.
【0027】独立アタッチメント回路7に分流される作
動油の内部油路36,38には、前記可変絞り39,40が設け
られている。これらの可変絞り39,40は、図2に示され
るように分流制御スプール10の弁ストロークに応じて開
口面積を変化させるこの分流制御スプール10は、スプリ
ング41の付勢力を一側面で受け、また、Pi ポートから
パイロット圧導入路42を経て導入されたパイロット圧を
他側面で受け、このパイロット圧による押圧力とスプリ
ング41の反発力との平衡点でスプール弁ストロークが制
御される。The variable throttles 39 and 40 are provided in the internal oil passages 36 and 38 of the hydraulic oil that is diverted to the independent attachment circuit 7. These variable throttles 39 and 40 change the opening area according to the valve stroke of the diversion control spool 10 as shown in FIG. 2. The diversion control spool 10 receives the biasing force of the spring 41 on one side, and , Pi port from the pilot pressure introducing path 42 is received on the other side, and the spool valve stroke is controlled at the equilibrium point between the pressing force by the pilot pressure and the repulsive force of the spring 41.
【0028】すなわち、Pi ポートのパイロット圧が小
さいほど、分流制御スプール10は位置43の側にあり、P
i ポートのパイロット圧が大きいほど、分流制御スプー
ル10は位置44を経て位置45にシフトし、可変絞り39,40
の開度が大きくなるように変化する。なお、分流制御ス
プール10から引出されたドレン油路46がタンク47に連通
されている。That is, the smaller the pilot pressure at the Pi port, the closer the shunt control spool 10 is to the position 43,
As the pilot pressure of the i port increases, the diversion control spool 10 shifts from position 44 to position 45, and the variable throttles 39, 40
The opening degree of changes. The drain oil passage 46 drawn out from the diversion control spool 10 is connected to the tank 47.
【0029】また、分流制御スプール10の右走行用部分
および圧力補償スプール12の作動原理は、分流制御スプ
ール10の左走行用部分および圧力補償スプール11と同一
であるため、P1 ポートをP2 ポートと、A1 ポートを
A2 ポートと、B1 ポートをB2 ポートと、また、A1
´ポートをA2´ポートと、B1´ポートをB2´ポート
と読替えることにより、その説明を省略する。Since the operating principle of the right traveling portion of the diversion control spool 10 and the pressure compensating spool 12 is the same as that of the left traveling portion of the diversion control spool 10 and the pressure compensating spool 11, the P1 port is referred to as the P2 port. , A1 port to A2 port, B1 port to B2 port, and A1 port
The description of the “port” is replaced with the A2 ′ port and the B1 ′ port is replaced with the B2 ′ port, and the description thereof is omitted.
【0030】次に、図1に示されるように、圧力補償型
分流弁4を独立アタッチメント回路7に接続する独立ア
タッチメントライン31に、独立アタッチメント回路7の
回路圧を検出するための圧力センサ51が設けられ、この
圧力センサ51の信号検出ライン52はコントローラ53の信
号入力部に接続されている。Next, as shown in FIG. 1, a pressure sensor 51 for detecting the circuit pressure of the independent attachment circuit 7 is provided in an independent attachment line 31 connecting the pressure compensation type shunt valve 4 to the independent attachment circuit 7. The signal detection line 52 of the pressure sensor 51 is connected to the signal input unit of the controller 53.
【0031】さらに、コントローラ53の入力部には、ア
タッチメント操作用の電気ジョイスティックである操作
レバー54が入力信号ライン55により接続されている。Further, an operation lever 54, which is an electric joystick for operating an attachment, is connected to an input section of the controller 53 by an input signal line 55.
【0032】また、コントローラ53の出力部が、出力信
号ライン56により電磁比例弁57のソレノイド58に接続さ
れている。The output section of the controller 53 is connected to the solenoid 58 of the solenoid proportional valve 57 by the output signal line 56.
【0033】この電磁比例弁57は、コントローラ53から
出力されたソレノイド58への制御電流値に応じて比例動
作し、分流制御スプール10をパイロット圧でストローク
制御する電磁弁であり、その1次ポートはパイロット油
圧源59に接続され、2次ポートは分流制御スプール10ヘ
の切換信号圧入力用のPiポートに接続されている。This solenoid proportional valve 57 is a solenoid valve which operates proportionally according to the control current value to the solenoid 58 output from the controller 53 and stroke-controls the shunt control spool 10 by pilot pressure, and its primary port. Is connected to the pilot hydraulic power source 59, and the secondary port is connected to the Pi port for inputting the switching signal pressure to the diversion control spool 10.
【0034】そして、この電磁比例弁57は、パイロット
油圧源59から供給された一定のパイロット1次圧を、コ
ントローラ53から出力されたソレノイド58への制御電流
値に応じて比例的に変化するパイロット2次圧に変換し
てPiポートに出力し、分流制御スプール10のストロー
クをスプリング41に抗して制御する。The solenoid proportional valve 57 is a pilot that proportionally changes the constant pilot primary pressure supplied from the pilot hydraulic pressure source 59 according to the control current value to the solenoid 58 output from the controller 53. The secondary pressure is converted and output to the Pi port, and the stroke of the flow dividing control spool 10 is controlled against the spring 41.
【0035】前記コントローラ53は、圧力センサ51によ
り検出された独立アタッチメント回路7の回路圧が、過
大でない領域、すなわちリリーフ弁8で設定されたリリ
ーフ圧の近くまで達していない状態では、アタッチメン
ト用の操作レバー54から出力されたレバー操作量に比例
した電気信号であるアタッチメント用操作信号を受け
て、このアタッチメント用操作信号に応じた電気信号
(電流)を電磁比例弁57のソレノイド58に出力し、この
電磁比例弁57を制御することで分流制御スプール10をス
トローク制御して、その可変絞り39,40の開口面積を制
御するが、独立アタッチメント回路7の回路圧が過大な
状態まで上昇した場合、すなわちリリーフ弁8で設定さ
れたリリーフ圧に近い回路圧が立った場合は、それを圧
力センサ51により検出して、アタッチメント用操作信号
と関係なく、電磁比例弁57のソレノイド58への電流値を
下げるように制御し、電磁比例弁57から出力される分流
制御弁切換圧を自動的に下げるように制御することで、
分流制御スプール10の可変絞り39,40の開口面積を小さ
く絞る方向に制御する。In the controller 53, the circuit pressure of the independent attachment circuit 7 detected by the pressure sensor 51 does not reach a region which is not excessive, that is, near the relief pressure set by the relief valve 8. Upon receiving an operation signal for attachment which is an electric signal proportional to the lever operation amount output from the operation lever 54, an electric signal (current) corresponding to the operation signal for attachment is output to the solenoid 58 of the solenoid proportional valve 57, By controlling the solenoid proportional valve 57, the diversion control spool 10 is stroke-controlled to control the opening areas of the variable throttles 39, 40. However, when the circuit pressure of the independent attachment circuit 7 rises to an excessive state, That is, when the circuit pressure close to the relief pressure set by the relief valve 8 rises, it is detected by the pressure sensor 51, Control so that the current value to the solenoid 58 of the solenoid proportional valve 57 is reduced regardless of the operation signal for the attachment, and the shunt control valve switching pressure output from the solenoid proportional valve 57 is automatically reduced. so,
The opening areas of the variable throttles 39, 40 of the diversion control spool 10 are controlled so as to be reduced.
【0036】次に、図1に示された実施形態の作用を、
図2も参照しながら説明する。Next, the operation of the embodiment shown in FIG.
Description will be made with reference to FIG.
【0037】車載エンジン1により駆動される第1油圧
ポンプ2および第2油圧ポンプ3から吐出された各吐出
油は、圧力補償型分流弁4を介して、二つの常設アクチ
ュエータ回路5,6と、独立アタッチメント回路7とに
分流供給される。The discharge oil discharged from the first hydraulic pump 2 and the second hydraulic pump 3 driven by the vehicle-mounted engine 1 is passed through the pressure compensation type shunt valve 4 to two permanent actuator circuits 5 and 6, and It is separately supplied to the independent attachment circuit 7.
【0038】一方の常設アクチュエータ回路5は、少な
くとも左走行用スプールにより左側履帯を駆動するため
の左側走行用油圧モータなどを制御し、また、他方の常
設アクチュエータ回路6は、少なくとも右走行用スプー
ルにより右側履帯を駆動するための右側走行用油圧モー
タなどを制御する。One permanent actuator circuit 5 controls at least the left traveling hydraulic motor for driving the left crawler belt by the left traveling spool, and the other permanent actuator circuit 6 includes at least the right traveling spool. Controls a right-side running hydraulic motor for driving the right-side crawler belt.
【0039】また、独立アタッチメント回路7は、フロ
ント作業機の先端部にバケットに替えて取付けられた油
圧ブレーカ、圧砕機などのアタッチメントに供給される
作動油をアタッチメント用スプールにより制御する。Further, the independent attachment circuit 7 controls the hydraulic oil supplied to the attachment such as a hydraulic breaker or a crusher attached to the front end of the front working machine in place of the bucket by the attachment spool.
【0040】前記圧力補償型分流弁4は、各々のポンプ
2,3から吐出された作動油を、分流制御スプール10お
よび圧力補償スプール11または12を経て常設アクチュエ
ータ回路5または6ヘ供給し、また、分流制御スプール
10で分流制御し、圧力補償スプール11,12で圧力補償
し、逆止弁13,14を経て合流した後、独立アタッチメン
ト回路7へ供給する。The pressure compensating type shunt valve 4 supplies the hydraulic oil discharged from each of the pumps 2 and 3 to the permanent actuator circuit 5 or 6 via the shunt control spool 10 and the pressure compensating spool 11 or 12, and , Shunt control spool
Flow control is performed at 10, the pressure is compensated at the pressure compensating spools 11 and 12, the flow is merged through the check valves 13 and 14, and then supplied to the independent attachment circuit 7.
【0041】分流制御スプール10は、Pi ポートからの
パイロット圧により、ばね41の付勢力に抗してストロー
ク変位し、図2に示されるような可変絞り39,40の開口
特性により、第1油圧ポンプ2に接続されたP1 ポート
からA1 ポートへの作動油の流量と、第2油圧ポンプ3
に接続されたP2 ポートからA2 ポートへの作動油の流
量とを自在に制御する。The diversion control spool 10 is stroke-displaced by the pilot pressure from the Pi port against the biasing force of the spring 41, and the opening characteristics of the variable throttles 39 and 40 as shown in FIG. The flow rate of hydraulic oil from the P1 port connected to the pump 2 to the A1 port, and the second hydraulic pump 3
It freely controls the flow rate of hydraulic oil from the P2 port connected to the A2 port.
【0042】Pi ポートにパイロット圧が負荷されてい
ないときは、全ポンプ流量がP1 ポートからB1 ポート
へ、P2 ポートからB2 ポートへ流れ、さらに圧力補償
スプール11,12の位置23を経て、左右の常設アクチュエ
ータ回路5,6の各種制御スプールに供給される。When the pilot pressure is not loaded on the Pi port, the total pump flow rate flows from the P1 port to the B1 port, from the P2 port to the B2 port, and further through the position 23 of the pressure compensation spools 11 and 12, to the left and right. It is supplied to various control spools of the permanent actuator circuits 5 and 6.
【0043】今、A1 ポートおよびB1 ポートの油圧を
各々PA1,PB1とし、分流制御スプール10の可変絞り39
の開度(図2)をAx とし、P1 ポートからA1 ポート
へ流れる作動油の流量をQA1とすると、次式(1)が成
り立つ。Now, the hydraulic pressures of the A1 port and the B1 port are set to PA1 and PB1, respectively, and the variable throttle 39 of the diversion control spool 10 is set.
Let Ax be the opening (Fig. 2) and QA1 be the flow rate of the hydraulic oil flowing from the P1 port to the A1 port.
【0044】
QA1=K・Ax ・(PB1−PA1)1/2 …(1)
(ただし、Kは定数)
ところで、圧力補償スプール11は、差圧(PB1−PA1)
がばね16で設定された一定差圧ΔPを超えると、ばね16
の付勢力に抗して、位置21より位置22へ切換り、さらに
差圧が大きくなると位置23へ切換わる。QA1 = K · Ax · (PB1-PA1) 1/2 (1) (where K is a constant) By the way, the pressure compensating spool 11 has a differential pressure (PB1-PA1).
Exceeds the constant differential pressure ΔP set by the spring 16, the spring 16
The position is switched from position 21 to position 22 against the urging force of No. 2 and when the differential pressure is further increased, position 23 is switched.
【0045】よって、分流制御スプール10が位置43にあ
るときは、(PB1−PA1)》ΔPとなって、圧力補償ス
プール11は位置23になり、全流量がB1´ポート側へ流
れる。Therefore, when the diversion control spool 10 is at the position 43, (PB1-PA1) >> ΔP, the pressure compensation spool 11 is at the position 23, and the total flow rate flows to the B1 'port side.
【0046】一方、分流制御スプール10が位置44または
位置45にあるときは、(B1´ポートの圧力PB1´)>
(A1´ポートの圧力PA1´)の場合、油はA1´ポート
側へ多量に流れようとするが、このとき差圧(PB1−P
A1)がΔPより大きくなると、圧力補償スプール11は、
位置23の方へシフトし、つまりA1´ポート側への作動
油の流量を規制する方向へシフトする。On the other hand, when the diversion control spool 10 is at the position 44 or the position 45, (B1 'port pressure PB1')>
In case of (A1 'port pressure PA1'), a large amount of oil tries to flow to the A1 'port side, but at this time, the differential pressure (PB1-P
When A1) becomes larger than ΔP, the pressure compensation spool 11 becomes
It shifts to the position 23, that is, in the direction in which the flow rate of the hydraulic oil to the A1 'port side is regulated.
【0047】逆に、PB1´<PA1´の場合、油はB1´
ポート側へ多量に流れようとするが、このとき差圧(P
B1−PA1)がΔPより小さくなると、圧力補償スプール
11は、ばね16の付勢力により位置21の方へシフトし、つ
まりB1´ポート側への作動油の流量を規制する方向へ
シフトする。On the contrary, when PB1 '<PA1', the oil is B1 '
Attempts to flow a large amount to the port side, but at this time the differential pressure (P
When B1-PA1) becomes smaller than ΔP, the pressure compensation spool
11 is shifted toward the position 21 by the urging force of the spring 16, that is, in the direction of restricting the flow rate of hydraulic oil toward the B1 'port side.
【0048】すなわち、圧力補償スプール11は、A1´
ポートの圧力PA1´およびB1´ポートの圧力PB1´の
如何にかかわらず、可変絞り39の前後差圧(PB1−PA
1)を一定値(ΔP)に保つように作動するため、式
(1)より、可変絞り39の開度Axに応じた流量QA1
が、A1´ポートから独立アタッチメント回路7に供給
される。That is, the pressure compensating spool 11 is A1 '.
Regardless of the port pressure PA1 'and B1' port pressure PB1 ', the differential pressure across the variable throttle 39 (PB1-PA
1) operates so as to maintain a constant value (ΔP), the flow rate QA1 according to the opening Ax of the variable throttle 39 is calculated from the equation (1).
Are supplied to the independent attachment circuit 7 from the A1 'port.
【0049】同様に、右走行用の圧力補償スプール12
も、分流制御スプール10の可変絞り40による分流に対し
て、左走行用の圧力補償スプール11と同様の作動原理で
圧力補償する。Similarly, the pressure compensation spool 12 for right running
Also, pressure compensation is performed on the shunt by the variable throttle 40 of the shunt control spool 10 according to the same operating principle as the pressure compensating spool 11 for left traveling.
【0050】また、分流制御スプール10は、P1 ポート
から内部油路36を経てA1 ポートと連通する開口特性
と、P2 ポートから内部油路38を経てA2 ポートと連通
する開口特性とが必ず同一になるため、常に等しく分流
された作動油の流量がA1´ポートおよびA2´ポートへ
供給され、同時にB1´ポートおよびB2´ポートへも等
しく分流された作動油の流量が供給される。このため、
左右の常設アクチュエータ回路5,6へ供給される作動
油の流量が常に同一となるので、左走行モータおよび右
走行モータへ供給される作動油の流量も常に同一とな
り、走行曲りが発生しない。In addition, the diversion control spool 10 has the same opening characteristic that communicates with the A1 port from the P1 port through the internal oil passage 36 and with the A2 port that communicates with the A2 port through the P2 port through the internal oil passage 38. Therefore, the equally divided flow rates of the hydraulic oil are always supplied to the A1 ′ port and the A2 ′ port, and at the same time, the equally divided flow rates of the hydraulic oil are also supplied to the B1 ′ port and the B2 ′ port. For this reason,
Since the flow rates of the hydraulic oil supplied to the left and right permanent actuator circuits 5 and 6 are always the same, the flow rates of the hydraulic oil supplied to the left traveling motor and the right traveling motor are always the same, and traveling bending does not occur.
【0051】そして、独立アタッチメントライン31に過
大な回路圧が生じていないときは、アタッチメント用の
操作レバー54からの電気信号を受けたコントローラ53
が、レバー操作量に比例した電気信号を電磁比例弁57の
ソレノイド58に出力し、この電磁比例弁57を介して分流
制御スプール10をストローク制御する。When no excessive circuit pressure is generated in the independent attachment line 31, the controller 53 which receives an electric signal from the operation lever 54 for attachment
Outputs an electric signal proportional to the lever operation amount to the solenoid 58 of the solenoid proportional valve 57, and the stroke of the flow dividing control spool 10 is controlled via the solenoid proportional valve 57.
【0052】一方、独立アタッチメントライン31に、リ
リーフ弁8で設定されたリリーフ圧に近い過大な圧力が
立った場合は、その圧力を検出した圧力センサ51からコ
ントローラ53に過負荷状態の信号が入るので、コントロ
ーラ53は、操作レバー54から指令された電磁比例弁57へ
の電流値の如何に拘らず、電磁比例弁57へ実際に出力さ
れる電流値を下げて、電磁比例弁57から分流制御スプー
ル10へ出力される切換圧を自動的に下げ、図2に示され
るように分流制御スプール10の可変絞り39,40の開口面
積を小さく絞ることにより、独立アタッチメント回路7
への供給油量を減らすように制御する。On the other hand, when an excessive pressure close to the relief pressure set by the relief valve 8 rises on the independent attachment line 31, a pressure sensor 51 that detects the pressure sends a signal of an overload condition to the controller 53. Therefore, the controller 53 reduces the current value actually output to the solenoid proportional valve 57 regardless of the current value to the solenoid proportional valve 57 instructed from the operation lever 54, and performs the shunt control from the solenoid proportional valve 57. The independent attachment circuit 7 is provided by automatically lowering the switching pressure output to the spool 10 and reducing the opening areas of the variable throttles 39 and 40 of the diversion control spool 10 as shown in FIG.
Control to reduce the amount of oil supplied to.
【0053】このように、独立アタッチメントライン31
にリリーフ圧に近い圧力が立った場合は、自動的に独立
アタッチメント回路7への供給油量が減るため、その
分、本体側作業装置の常設アクチュエータ、すなわち、
走行および旋回用の油圧モータや、ブーム、アーム、バ
ケットといったフロント作業機の油圧シリンダに、従来
技術の場合に比べ飛躍的に多量の油が流れるようにな
り、アタッチメントと本体側作業装置との連動操作にお
いて、アタッチメントがリリーフ圧近くになった途端、
本体側作業装置のスピードが遅くなってしまうというこ
とはない。In this way, the independent attachment line 31
When a pressure close to the relief pressure rises, the amount of oil supplied to the independent attachment circuit 7 is automatically reduced. Therefore, the permanent actuator of the main body side working device, that is,
A large amount of oil will flow through the hydraulic motors for traveling and turning, and the hydraulic cylinders of the front work equipment such as booms, arms, and buckets, as compared to the conventional technology, and the attachment and the work device on the main body side will work together. In operation, as soon as the attachment became close to the relief pressure,
The speed of the body side work device does not slow down.
【0054】なお、独立アタッチメント回路7の回路圧
がリリーフ圧近くになるということは、アタッチメント
がストール状態(過負荷停止状態)に近いということで
あり、回路圧を保持できるだけの僅かな油量があれば十
分であり、理にかなっている。The fact that the circuit pressure of the independent attachment circuit 7 becomes close to the relief pressure means that the attachment is close to the stall state (overload stop state), and a small amount of oil that can hold the circuit pressure is required. It suffices and makes sense.
【0055】[0055]
【発明の効果】請求項1記載の発明によれば、独立アタ
ッチメント回路に過大な回路圧が生じていないときは、
コントローラは、アタッチメント用操作信号に比例した
電気信号を電磁比例弁に出力し、この電磁比例弁を介し
て分流制御弁をストローク制御でき、一方、独立アタッ
チメント回路に過大な回路圧が立った場合は、その状態
を圧力センサを介して検出したコントローラが、アタッ
チメント用操作信号と拘わりなく電磁比例弁を制御し
て、分流制御弁の可変絞りの開口面積を小さく絞ること
により、独立アタッチメント回路への供給油量を減らす
ように制御でき、これにより、独立アタッチメント回路
への供給油量が減少した分、常設アクチュエータ回路に
供給される作動油量を回復でき、アタッチメントと常設
アクチュエータとを円滑に連動操作でき、建設機械の作
業性を向上できる。According to the invention of claim 1, when an excessive circuit pressure is not generated in the independent attachment circuit,
The controller outputs an electric signal proportional to the operation signal for attachment to the solenoid proportional valve, and the stroke control of the diversion control valve can be performed via this solenoid proportional valve.On the other hand, if excessive circuit pressure is generated in the independent attachment circuit, The controller that detects this state via the pressure sensor controls the solenoid proportional valve regardless of the operation signal for attachment, and reduces the opening area of the variable throttle of the diversion control valve to supply to the independent attachment circuit. It can be controlled to reduce the amount of oil, and as a result, the amount of hydraulic oil supplied to the permanent actuator circuit can be restored as much as the amount of oil supplied to the independent attachment circuit has decreased, allowing smooth operation of the attachment and permanent actuator. , The workability of construction machinery can be improved.
【0056】請求項2記載の発明によれば、独立アタッ
チメント回路の回路圧が過大な状態を、独立アタッチメ
ント回路にリリーフ圧に近い回路圧が生じた状態である
としたことにより、アタッチメントがストール状態に近
いときはその回路圧を保持できるだけの僅かな油量があ
れば十分であるから、独立アタッチメント回路の回路圧
が過大な状態に合理的に対応できる。According to the second aspect of the present invention, the state in which the circuit pressure of the independent attachment circuit is excessive is a state in which the circuit pressure close to the relief pressure is generated in the independent attachment circuit, so that the attachment is stalled. When it is close to, it is sufficient to have a small amount of oil to hold the circuit pressure, so that the circuit pressure of the independent attachment circuit can be reasonably dealt with in an excessive state.
【図1】本発明に係る建設機械の油圧回路の一実施の形
態を示す油圧回路図である。FIG. 1 is a hydraulic circuit diagram showing an embodiment of a hydraulic circuit of a construction machine according to the present invention.
【図2】同上油圧回路における分流制御弁の開口特性を
示す特性図である。FIG. 2 is a characteristic diagram showing an opening characteristic of a diversion control valve in the hydraulic circuit.
【図3】同上油圧回路における油圧ポンプの圧力−流量
特性を示すP−Q線図である。FIG. 3 is a PQ diagram showing the pressure-flow rate characteristic of the hydraulic pump in the hydraulic circuit.
2,3 油圧ポンプ 5,6 常設アクチュエータ回路 7 独立アタッチメント回路 10 分流制御弁としての分流制御スプール 11,12 圧力補償弁としての圧力補償スプール 39,40 可変絞り 51 圧力センサ 53 コントローラ 57 電磁比例弁 A few hydraulic pumps 5,6 Permanent actuator circuit 7 Independent attachment circuit 10 Flow control spool as flow control valve 11, 12 Pressure compensating spool as pressure compensating valve 39, 40 variable aperture 51 Pressure sensor 53 Controller 57 Solenoid proportional valve
フロントページの続き (56)参考文献 特開2000−73409(JP,A) 特開 昭53−41681(JP,A) 特開 昭56−90107(JP,A) 特開 昭60−137201(JP,A) 特開 平5−172115(JP,A) 特開 昭64−93605(JP,A) 特開 平7−190006(JP,A) 特表 平8−509054(JP,A) (58)調査した分野(Int.Cl.7,DB名) F15B 11/00 E02F 9/22 Continuation of the front page (56) References JP 2000-73409 (JP, A) JP 53-41681 (JP, A) JP 56-90107 (JP, A) JP 60-137201 (JP, A) JP 5-172115 (JP, A) JP 64-93605 (JP, A) JP 7-190006 (JP, A) Special table 8-509054 (JP, A) (58) Survey Fields (Int.Cl. 7 , DB name) F15B 11/00 E02F 9/22
Claims (2)
して建設機械の常設アクチュエータを駆動する常設アク
チュエータ回路と、 常設アクチュエータ回路に供給される作動油の一部を制
御して建設機械のアタッチメントを常設アクチュエータ
回路とは独立に駆動する独立アタッチメント回路と、 油圧ポンプから常設アクチュエータ回路に供給される作
動油の一部を分流して独立アタッチメント回路に供給す
るとともに分流される作動油の流量をストロークに応じ
た可変絞りで制御する分流制御弁と、 分流制御弁の可変絞りの前後差圧を一定に保つように制
御する圧力補償弁と、 独立アタッチメント回路の回路圧を検出する圧力センサ
と、 分流制御弁をパイロット圧でストローク制御する電磁比
例弁と、 圧力センサにより検出された独立アタッチメント回路の
回路圧が過大でない領域ではアタッチメント用操作信号
に応じて電磁比例弁を制御して分流制御弁の可変絞りの
開口面積を制御するとともに、圧力センサにより検出さ
れた独立アタッチメント回路の回路圧が過大な状態まで
上昇した場合はアタッチメント用操作信号と関係なく電
磁比例弁を制御して分流制御弁の可変絞りの開口面積を
絞る方向に制御するコントローラとを具備したことを特
徴とする建設機械の油圧回路。1. A permanent actuator circuit for controlling hydraulic oil supplied from a hydraulic pump to drive a permanent actuator of a construction machine, and an attachment of a construction machine by controlling a part of hydraulic oil supplied to the permanent actuator circuit. And an independent attachment circuit that drives independently of the permanent actuator circuit, and part of the hydraulic oil supplied from the hydraulic pump to the permanent actuator circuit is diverted to the independent attachment circuit and the flow rate of the diverted hydraulic oil is stroked. Flow control valve that controls the variable throttle according to the pressure control valve, a pressure compensation valve that controls the differential pressure across the variable throttle of the flow control valve to keep it constant, a pressure sensor that detects the circuit pressure of the independent attachment circuit, An electromagnetic proportional valve that controls the stroke of the control valve with pilot pressure and an independent valve detected by a pressure sensor. In the area where the circuit pressure of the attachment circuit is not too large, the solenoid proportional valve is controlled according to the operation signal for attachment to control the opening area of the variable throttle of the diversion control valve and the circuit of the independent attachment circuit detected by the pressure sensor. When the pressure rises to an excessive state, it is equipped with a controller that controls the solenoid proportional valve regardless of the operation signal for attachment to control the opening area of the variable throttle of the diversion control valve. The hydraulic circuit of the machine.
な状態は、独立アタッチメント回路にリリーフ圧に近い
回路圧が生じた状態であることを特徴とする請求項1記
載の建設機械の油圧回路。2. The hydraulic circuit for a construction machine according to claim 1, wherein the state in which the circuit pressure of the independent attachment circuit is excessive is a state in which a circuit pressure close to the relief pressure is generated in the independent attachment circuit.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000208724A JP3511500B2 (en) | 2000-07-10 | 2000-07-10 | Hydraulic circuit of construction machinery |
DE2001608309 DE60108309T2 (en) | 2000-07-10 | 2001-03-26 | Hydraulic circuit of a working machine |
EP20010302794 EP1172565B1 (en) | 2000-07-10 | 2001-03-26 | Hydraulic circuit for construction machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000208724A JP3511500B2 (en) | 2000-07-10 | 2000-07-10 | Hydraulic circuit of construction machinery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002021809A JP2002021809A (en) | 2002-01-23 |
JP3511500B2 true JP3511500B2 (en) | 2004-03-29 |
Family
ID=18705257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000208724A Expired - Fee Related JP3511500B2 (en) | 2000-07-10 | 2000-07-10 | Hydraulic circuit of construction machinery |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1172565B1 (en) |
JP (1) | JP3511500B2 (en) |
DE (1) | DE60108309T2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2807118B1 (en) * | 2000-03-28 | 2002-07-05 | Mannesmann Rexroth Sa | HYDRAULIC CIRCUIT FOR OPERATING MULTIPLE HYDRAULIC RECEIVERS |
CN103527539A (en) * | 2013-09-16 | 2014-01-22 | 洛阳中重自动化工程有限责任公司 | Synchronizing and pressure balancing hydraulic control circuit for multiple oil cylinders |
US9371843B2 (en) * | 2014-01-14 | 2016-06-21 | Caterpillar Inc. | Failsafe pilot supply selector valve |
CN108317114B (en) * | 2018-03-28 | 2023-11-03 | 江苏徐工工程机械研究院有限公司 | Feeding device control system for sand throwing fire extinguishing vehicle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61211505A (en) * | 1984-11-01 | 1986-09-19 | Toshiba Mach Co Ltd | Oil pressure control circuit of self-travelling hydraulic machine |
JPH091087A (en) * | 1995-06-12 | 1997-01-07 | Kobelco Kenki Eng Kk | Circulation passage for water spray device on rolling stock |
JP3365964B2 (en) * | 1998-08-28 | 2003-01-14 | 新キャタピラー三菱株式会社 | Hydraulic circuit of construction machinery |
-
2000
- 2000-07-10 JP JP2000208724A patent/JP3511500B2/en not_active Expired - Fee Related
-
2001
- 2001-03-26 EP EP20010302794 patent/EP1172565B1/en not_active Expired - Lifetime
- 2001-03-26 DE DE2001608309 patent/DE60108309T2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE60108309T2 (en) | 2006-03-02 |
DE60108309D1 (en) | 2005-02-17 |
EP1172565B1 (en) | 2005-01-12 |
EP1172565A3 (en) | 2003-11-12 |
JP2002021809A (en) | 2002-01-23 |
EP1172565A2 (en) | 2002-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2892939B2 (en) | Hydraulic circuit equipment of hydraulic excavator | |
JP3992612B2 (en) | Backhoe hydraulic circuit structure | |
JPWO2014192458A1 (en) | Hydraulic drive unit for construction machinery | |
JPWO2014148449A1 (en) | Hydraulic drive unit for construction machinery | |
WO2014021015A1 (en) | Hydraulic drive device for construction machine | |
JP6776334B2 (en) | Excavator and control valve for excavator | |
JP2004346485A (en) | Hydraulic driving device | |
JP2003004003A (en) | Hydraulic control circuit of hydraulic shovel | |
JP3511500B2 (en) | Hydraulic circuit of construction machinery | |
JP2012112466A (en) | Hydraulic system of construction machine | |
JP2003184815A (en) | Hydraulic controlled device of construction machine and hydraulic controlled device of hydraulic power shovel | |
JP2020153506A (en) | Hydraulic driving device of working machine | |
JP2020128778A (en) | Hydraulic drive system | |
JP4933299B2 (en) | Hydraulic control equipment for construction machinery | |
JP3692009B2 (en) | Control device for work machine | |
JP3006777B2 (en) | Load sensing hydraulic circuit | |
JP3511504B2 (en) | Hydraulic circuit of construction machinery | |
JP3081968B2 (en) | Cutoff cancellation mechanism in load sensing system | |
JP2005140153A (en) | Hydraulic control device for construction machine | |
JP5602034B2 (en) | Driving circuit device for wheeled traveling vehicle | |
JP3365964B2 (en) | Hydraulic circuit of construction machinery | |
JP2758335B2 (en) | Hydraulic circuit structure of construction machinery | |
JP3666830B2 (en) | Hydraulic regeneration circuit for hydraulic machine | |
JP2016099001A (en) | Hydraulic driving device for construction machine | |
WO2023074810A1 (en) | Excavator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031225 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |