WO1992015435A1 - Procede de sechage du bois - Google Patents

Procede de sechage du bois Download PDF

Info

Publication number
WO1992015435A1
WO1992015435A1 PCT/JP1992/000258 JP9200258W WO9215435A1 WO 1992015435 A1 WO1992015435 A1 WO 1992015435A1 JP 9200258 W JP9200258 W JP 9200258W WO 9215435 A1 WO9215435 A1 WO 9215435A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
pressure
water
drying
temperature
Prior art date
Application number
PCT/JP1992/000258
Other languages
English (en)
French (fr)
Inventor
Hyogo Izumi
Original Assignee
Hyogo Izumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Izumi filed Critical Hyogo Izumi
Priority to US07/945,981 priority Critical patent/US5392530A/en
Priority to CA002081909A priority patent/CA2081909C/en
Publication of WO1992015435A1 publication Critical patent/WO1992015435A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00

Definitions

  • the present invention relates to a method for drying wood, which does not generate any cracking distortion in the entire process of turning the wood into a dried material, uses an air stream of superheated steam, shortens the drying time in the dryer, and reduces the rotation rate of the dryer. It relates to a method of drying wood that increases the weight of wood.
  • the above method a is a drying method in which the loss of cracks and strains is extremely large and the moisture content is not uniform, and furthermore, the lower the moisture content becomes, the more difficult it becomes to disperse the moisture content.
  • the length of the tunnel kiln has to be enlarged because no measures can be taken to promote the reduction of the water content.
  • the method (b) is a general method of drying wood used in many parts of the world, but with some changes, we pay close attention to the operation of hot-air wood dryers, Luck to reduce the occurrence of cracks in wood Although it is turned over, it generates a large amount of crack distortion loss during natural drying before artificial drying, which is neglected.
  • the method C is a method of drying wood, which involves repeating the cycle of heating and pressurizing using saturated steam and depressurizing to below atmospheric pressure a number of times, resulting in high equipment depreciation costs.
  • the moisture content of the wood to be dried cannot be reduced below 20%. The cause of this is that if the water contained from the beginning of the wood is pushed into the center of the wood during the process of heating under pressure and a low-temperature water mass is generated, the specific heat of this water will be 3 times the specific heat of the wood.
  • An object of the present invention is to provide a method capable of increasing the rotation rate of a dryer and drying the wood without causing cracking distortion. Therefore, when the causes of the above-mentioned a.b.c methods of drying timber that do not meet the above objectives were examined, it was found that the following common defects existed.
  • the tissue in which the water is present inside the wood is a conduit. Tubes are roughly divided into cell cavities.
  • the water contained in the conduit can be easily diverged, but some capillaries are so thin that only water molecules can pass through them. Water cannot escape. Therefore, regardless of the method of drying the wood, a. B. C, the state of release of water content differs for each tissue, and the whole wood does not become in a state where the water content can be reduced uniformly.
  • the shrinkage of the wood occurs as the water content decreases, so that a decrease in the non-uniform water content causes uneven shrinkage, which results in cracking of the wood. .
  • pretreatment is required so that the water contained in the conduits, capillaries and cell cavities can be released at the same ratio at any time during the entire drying process. Not done.
  • the temperature of the air to be heated is high when the water content in the wood is high, a large amount of loss due to cracking occurs in the wood, and the pressure of the gas to be heated is increased to saturated steam and the pressure is increased.
  • the characteristic of wood is that the cell cavities are compressed, making it difficult for the contained water to escape. Contrary to this, as the wood emits free water and the total moisture content falls below 22%, the tissues of the wood become stronger and the cell cavities are compressed even if the pressure applied to the wood is increased in sequence. It will be in a state where it will not be done.
  • the natural drying method or a drying method similar to the natural drying method is used until the wood emits free water after the first step is performed without suddenly performing the drying step, there is no loss of cracking and drying. There is no recognition that the rotation rate of the machine can be increased.
  • the reduction in moisture content becomes extremely slow and difficult with any drying process.
  • the gas to be heated is air, it prevents cracking distortion loss in wood. It is extremely difficult to do so, and it is not possible to increase the temperature and wind speed of the air to be heated to increase the speed of water content reduction because of its limitations.
  • the gas to be heated is saturated steam in order to prevent cracking distortion in the wood, the moisture content of the wood does not drop below 20% even if a decompression step is added.
  • the gas to be heated is made into superheated steam, the divergence of the contained water can be promoted without loss of cracking strain. Therefore, if the moisture content decreases at a rate of 22% or less, the wood will have the strength to withstand the pressure and high temperature, and at the same time, the wood will decrease at a slower rate. Therefore, it is not considered that the speed of decreasing the water content can be further increased by using the ability to increase the temperature and pressure of the superheated steam.
  • the method of the present invention which can achieve the above-mentioned object, is to store the wood to be dried in a pressure vessel in a pile, and to introduce saturated steam whose pressure is fluctuated into the vessel and pressurize and heat.
  • the first step of pretreatment so that the water contained in the conduits, capillaries, and cell cavities can be released at the same ratio, and removing the wood from the pressure vessel until the wood releases free water
  • It includes a second step of performing processes such as natural drying, and a third step of storing the wood in a pressure vessel again, introducing superheated steam, and converting the wood into a dried material using a high-temperature airflow whose pressure fluctuates.
  • the first step by changing the pressure of the saturated steam in the pressure vessel, low-temperature content water originally present in the wood and high-temperature condensed water generated on the wood surface are mixed.
  • the old and new water content in the wood is set to the highest temperature, and the heat transfer of the high-temperature content water makes the temperature of all the wood including the cell cavities inside the wood a uniform high temperature.
  • After the temperature inside the wood is made uniform, By releasing Japanese steam to lower the pressure in the container to atmospheric pressure, all the water contained in the wood is boiled uniformly.
  • the water content in the tissue such as conduits, capillaries, and cell cavities, is reduced. Pre-treatment of wood to be evenly diverged can be performed, and dried wood can be obtained without any loss of cracking strain.
  • the introduction and discharge of saturated steam from the pressure vessel is controlled, and the saturated steam pressure is increased or decreased in a relatively low pressure range of 1 atm or more and 2 atm or less.
  • the saturated vapor pressure can be increased or decreased in a relatively high pressure range of 1 to 2 atm to boil all the water contained in the wood at atmospheric pressure. It is preferable to adopt a step heating method for obtaining a uniform temperature.
  • the relatively low pressure range is about 1.2 to 1.8 kg / cm2
  • the relatively high pressure range is about 1.6 to 2.0 kg / cm2.
  • wood emits about 30% of water.However, there is no need to repeat pressurization and heating and decompression as in the steaming 'and' vacuum method. Have achieved.
  • the subsequent second step it is preferable to use natural drying or a low-temperature drying method close to natural drying because the rotation rate of the dryer can be increased.
  • the temperature of the air to be heated is high when the water content in the wood is high, a large amount of loss occurs due to cracking and distortion in the wood, and the cell cavity is compressed when the heating gas is saturated and the pressurized pressure is increased. Makes it difficult to diverge contained water Therefore, these steps cannot be used.
  • the third step is to supply and release superheated steam. Controlling the pressure in the container to increase or decrease within a predetermined range is frequently repeated, and an airflow of over-ripened steam is generated in the container. This results in a state similar to that in which the step of alternately repeating the hot-air drying method and the vacuum drying method is frequently repeated, and the speed of decreasing the water content can be increased.
  • the direction of the flow of the superheated steam is reversed at the lower limit of the predetermined pressure range, whereby the speed of decreasing the water content can be further increased.
  • the superheated steam is at a temperature of 160 to 300 and a pressure of about 41 (8002, from 2.0 kg ZciD2 to 4.0 kg / cm2, 0.8 to 1.2 kg / cm2 It is preferable to apply a pressure fluctuation of the following range. It is possible to evaporate the water on the surface of the wood during the pressure increase and to release the water inside the wood during the pressure decrease.
  • the loss of cracking distortion in the wood drying process can be eliminated, the raw material yield can be improved, the turnover rate of the dryer can be increased, and the burden of depreciation can be reduced.
  • Increased speed can save fuel and labor costs, and can increase the thickness of the wood to be dried, allowing it to be dried even if it is thicker, and then improving the yield of wood processing by lumbering. Therefore, the cost of the timber industry can be reduced.
  • FIG. 1 is a schematic diagram showing a pressure vessel used in the present invention and its attached equipment.
  • Fig. 2 is a schematic cross-sectional view of the pressure vessel in Fig. 1.
  • reference numeral 2 denotes a cylindrical pressure vessel having an inner diameter of about 1,800 thighs and a length of 13 m, which has a front door 3, and has a pile of timber 1 shown with a chain line and a frame 4 inside. Can be accommodated.
  • an injection pipe 11.1.2 and a discharge pipe 13.1.4 each having a large number of openings (not shown) are arranged in the longitudinal direction around the inside of the container 2. As shown in FIG. 1, the injection pipe 11.
  • valve 12 is connected to the boiler 6 via a common pipe line 15, a valve 23, and a pressure reducing valve 5 with the respective valves 21 and 22.
  • Valve 23 and pressure reducing valve 5 are also bypassed by a line including valve 24, heater 7 and pressure reducing valve 8.
  • the discharge pipes 13 and 14 communicate with the outside world via pipes 16 and 17 and valves 25 and 26, respectively.
  • the pressure vessel 2 is also connected to a vacuum pump 9 via a valve 27 and communicates with the outside world via a valve 28.
  • Reference numeral 29 denotes a drain valve of the pressure vessel 2.
  • tunnels used in the Americas A 10-O ram square lumber and board made of American pine, rugga and hiba, which cannot be dried by a kiln dryer, are piled on a gantry 4 and sent to a pressure vessel 2.
  • the front door 3 was closed.
  • valve 2 When the opening of the valve 29 is reduced, the pressure in the pressure vessel 2 starts to rise. When the pressure in pressure vessel 2 rises to about 1.8 kg / cm2, valve 2
  • the reaction force applied to the interior of the wood causes a phenomenon in which the low-temperature content water that originally existed inside the wood was pushed out to the surface of the wood, and this pressure vessel 2
  • high-temperature condensed water and low-temperature-contained water are mixed, and the thickness of the wood is measured in minutes, which is 1/2 the time converted into minutes. After some 50 minutes, the internal temperature of the wood will be almost 100 ° C.
  • the water content in the conduit inside the wood moves due to pressure fluctuations, making it easy to unify the temperature, but the water content in the cell cavity does not move even with pressure fluctuations.
  • the water contained in the cell cavities also has the same temperature due to heat transfer from the high-temperature water contained in the conduit inside the entire wood.
  • the valves 21 and 22 are closed to stop the injection of saturated steam into the pressure vessel 2, and at the same time, the opening of the valve 29 is expanded to open the pressure vessel.
  • the steam in 2 starts to be released, all the water contained in wood 1 boils all at once and uniformly.
  • the size of the opening of the valve 29 was expanded while observing the indication of the pressure in the pressure vessel 2 with the attached meter.
  • the wood taken out of the pressure vessel 2 after the first step is appropriately cut, rapidly frozen at 120 to freeze the total water content, cut, and then cut with an electron microscope.
  • the area where the water is present is white and the area where the water is diverged is black. Since the ratio of black and white is the same for each cell cavity, it is confirmed that uniform cavities are generated in all cell cavities.
  • valve 29 When the pressure in the pressure vessel 2 approaches the atmospheric pressure, the valve 29 is closed, the operation of the vacuum pump 9 is started, and at the same time, the valve 27 is opened, and the pressure in the pressure vessel 2 is reduced to the atmospheric pressure or less. In about 20 minutes after increasing the amount of divergence of the total water contained in (1), close valve 27 and stop operation of vacuum pump 9 and open valve 28 to bring the pressure in pressure vessel 2 to atmospheric pressure. Then, open the door 3 and remove the wood 1 placed on the gantry 4 from the pressure vessel 2 to complete the first process.
  • the reason why the vacuum pump is stopped for about 20 minutes is to calculate the amount of heat given to the wood 1 by saturated steam and the amount of heat of vaporization when water is converted to gas when it is reduced to atmospheric pressure.
  • the vacuum pump When the vacuum pump is operated, the risk of loss of heat to boil the water contained in wood 1 increases, and the vaporized water from the wood surface is absorbed, causing a water gradient in wood 1. Therefore, the water contained in the wood 1 is contrary to the pretreatment of the wood drying in the first step of the present invention, in which the water contained in the wood 1 is uniformly reduced regardless of the thickness of the wood.
  • the rate of pressure decrease in the pressure vessel 2 by operating this vacuum pump differs depending on the initial water content at the time of starting the first step. There is no doubt that operating this vacuum pump for about 20 minutes will have the effect of shortening the period in which the free water in the wood 1 in the second step is released.
  • the total time of the first process is about 3 hours, so two rotations can be performed during normal working hours.
  • the first step is a pretreatment for drying wood that does not cause cracking or distortion during the subsequent wood drying period, so the decrease in water content in the first step is only about 30%. Has not declined. However, the water content is reduced uniformly regardless of the thickness of the wood, and the water content of the entire wood is reduced evenly in the subsequent processes regardless of the thickness of the wood. This has been released from the regulatory concept that cracking distortion occurs during the drying process.
  • the first step is the pretreatment of wood drying, in which the pressurization of saturated steam is fluctuated and depressurization is performed only once in a very short time, and the wood is uniformly dried regardless of thickness.
  • the steaming and vacuum method differs from the steaming and vacuum method, which aims to reduce the water content by repeating the fixed pressurized heating and depressurizing of the heated saturated steam.
  • the wood 1 removed from the pressure vessel 2 is put into a second step, where natural climates free from drying costs and free water are released, in regions with good weather.
  • each cell cavity has a cavity into which the contained water has diffused.
  • the water contained in each cell cavity also starts to release as gas.
  • Wood that has undergone the first step has a cavity in which the contained water diffuses in the adjacent cell cavity, so there is a place where the vaporized gas can move in the cavity. Therefore, simultaneous movement of water contained in all cell cavities is possible.
  • the simultaneous transfer of water contained in the cell cavities was difficult with any of the wood drying methods currently used worldwide, but it became possible only with the pretreatment for drying in the first step. Now you can do it.
  • the wood 1 is loaded on the gantry 4 again, stored in the pressure vessel 2, the front door 4 is closed, and the third step is started. At this time, it is necessary to pay attention to stacking the timber 1 on the side so that both sides of the timber 1 can be rubbed against the wall of the pressure vessel 2 and the space before and after and in the middle of the loaded timber 1.
  • the space for the forklift's claws is to be covered on both sides with unnecessary wood.
  • valves 21, 22, 23, 29 are opened, valves 24, 25, 26, 27, 28 are closed, and saturated steam is introduced into the vessel for about 3 minutes. We started by spraying and wetting the surface of wood 1.
  • the valve 23 is closed, the valve 24 is opened, and the saturated steam from the boiler 6 is reduced to about 4 kgZcm2 by the pressure valve 8 and then heated to 130 to 300 by the superheater 7 to overheat.
  • the steam is injected into the container 2 through the injection pipes 11 and 12.
  • the valve 29 was squeezed to reduce its opening degree. Initially, the above We started with the low steam temperature of the eyes.
  • the valve 22 is closed to stop the injection from the injection pipe 12, and at the same time, the valve 26 is opened to release the steam from the discharge pipe 17 to the outside, and the superheated steam from the injection pipe 11 A horizontal airflow was generated toward the discharge pipe 17 through the stack space of the wood 1 in the inside. Since there is a pressure difference between the side with the injection pipe and the side with the discharge pipe in the space surrounded by the timber 1 and the container 2, a uniform airflow flows in the timber 1 stacking space. Because of the flow of air due to the pressure difference, there is no unevenness in the flow of air unlike a hot air dryer.
  • the injection amount of steam is slightly larger than the discharge amount, the pressure in the container 2 gradually increases, and when the pressure reaches approximately 2.5 kg / cm2, the injection of the superheated steam is stopped by closing the valve 21.
  • the valve 26 is closed, the valves 25 and 22 are opened, and the superheated steam is injected. From 1 2, the air flows toward the discharge pipe 16 by passing through the wood 1 stacking space.
  • the valves 21, 22, 25, and 26 used solenoid valves in advance, and their operation was automated in conjunction with the pressure in the container.
  • wood 1 When this operation was continued for about 2 to 3 hours, the water content of wood 1 was reduced to 22% or less. During the entire period of wood drying, this method of drying wood with a water content of 22% or less means that all of the currently used methods for drying wood are difficult to reduce the water content. It is said that cracks and distortions are likely to occur during drying. In addition, the drying of wood with a moisture content of 22% or less should be at a time when cracking and distortion are likely to occur at the same time as the rate of decrease in moisture content is slowing down with all current wood drying methods. Unlike wood with a high water content, wood 1 has a strong internal structure, so that even if the pressurizing pressure is increased, no compression occurs in the cell cavities, etc., and the heating temperature increases. However, they are not trying to take advantage of this feature, as it is time for wood 1 to be no longer damaged.
  • the present invention pays attention to the advantages of wood having a water content of 22% or less, and utilizes the fact that the water contained in the first step is made of wood that can be uniformly dispersed regardless of the thickness of the wood.
  • the pressure fluctuation inside vessel 2 was increased to change it to about 2.5 kg / cm2 and about 3.5 kg / cm2, and at the same time, the temperature was raised from the temperature of superheated steam at the time of previous operation.
  • the temperature is increased, the temperature of the airflow flowing on the surface of the wood 1 is increased and the speed is also increased, so that the evaporation and emission from the wood surface portion and the boiling emission from the center of the wood are alternately promoted.
  • the final processing time for drying wood in the third step is about 6 hours during normal working hours, compared to a few days of wood drying in all current wood drying methods.
  • the process was completed without any cracking or distortion, and the turnover rate of the dryer was greatly increased.
  • the characteristic of the method of the present invention is that the property of the wood itself that emits uneven water content is removed before starting the drying, so that the wood in the drying process is removed.
  • it is possible to take a method of reducing the water content while always keeping the water content uniform throughout the entire surface, thereby completely eliminating the occurrence of cracks and distortions and drying. It has also become possible to eliminate all the issues raised in the background.
  • Wood has the property of warping to the opposite side of the center of the lumber when it is sawn, and the pygmy wood has the property of warping in the form of stubs.
  • the advantage is obtained that by-product of the own weight of the wood itself, the wood is dried as it is as a straight wood, as a by-product.
  • the drying is completed and the thickness is adjusted to the appropriate thickness for the intended use. By cutting, a method to further improve the yield can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Drying Of Solid Materials (AREA)

Description

明 細 書
木材乾燥方法
技術分野
この発明は木材の乾燥法に関し、 木材が乾燥材になる全過程にお いて割れ歪みを全く発生させず、 過熱蒸気の気流を用レ、乾燥機内で の乾燥時間を短縮し乾燥機の回転率を高める木材の乾燥法に関する ものである。
背景技術
木材を製材品として使用するためには、 木材を乾燥しなければな らないが、 現在使用されている木材の乾燥法は次の通りである。 a . アメリカ大陸で使用されている、 木材の中央に熱風を吹き付け て、 両端より排気させるトンネル窯方式の木材の乾燥法、
b . ヨーロッパや日本や多くの国で使用している、 長期間の天然乾 燥をしてから、 熱風式木材乾燥機を使用する木材の乾燥法、 c 圧力容器を使用して、 飽和蒸気による加圧加熱と大気圧以下に 減圧を繰り返して行うスチミング'アンド ·バキューム法と称して いる木材の乾燥法がある。
上記 aの方式は、 割れや歪みのロスが極端に多く、 含水率も決し て均一にならない乾燥法であり、 その上、 含水率が低くなつて、 含 有水の発散が困難になってからの、 含水率低下を促進しうる対応が 取れないので、 トンネル窯の長さが巨大化せざるをえない欠点もあ 。
他方、 bの方式は、 世界の多くで用いられている一般的な木材の 乾燥方法であるが、 多少の変化はあっても、 熱風式木材乾燥機の運 転に細心の注意を払 、、 木材に割れ歪みの口ス発生を少なくする運 転の仕方をしているが、 人工乾燥を行う前の天然乾燥の間に大量の 割れ歪みのロスを発生させており、 これは不可避なこととして放置 している。
さらに、 Cの方法は、 飽和蒸気を用いた加熱加圧する工程と大気 圧以下に減圧する工程を組み合わせたサイクルを何回も繰り返して 行う木材の乾燥法であるため、 設備の償却費が高くかかる一方、 乾 燥すべき木材の含水率を 2 0 %以下に減少させられない。 この原因 は、 加圧加熱している工程時に、 木材の当初からある含有水が木材 の中心部に押し込まれ、 低温の水塊が発生してしまうと、 この水の 比熱は木材の比熱の 3倍もあるため、 加圧加熱の時間をいくら延長 しても、 木材内の温度は同一にならず、 木材内の温度が不均一のま ま大気圧以下に減圧しても、 含有水が沸騰発散するのは木材の表面 だけであり、 加圧加熱時に木材に与えられた熱量からして、 大気圧 以下に減圧する工程での時間を延長しても、 含有水の発散は、 沸騰 が起きず、 材料表面からの蒸発水吸収の状態となってしまう。 この ため、 熱風式木材乾燥機の含水率低下の状態と変わりがなくなり、 何回も加圧加熱と減圧を繰り返さねばならず、 乾燥コストの面から、 使用されることは無くなってしまった。
発明の開示
本発明は木材を割れ歪みを生じさせることなく、 乾燥機の回転率 を高め、 乾燥させることができる方法を提供することを目的とする。 そこで、 現在使用されている上記 a . b . cの木材の乾燥法につ いて上記目的に沿わない原因を検討すると、 下記に記載する共通し た欠点が存在していることが分かった。
第 1に、 木材の内部に含有水が存在している組織は、 導管. 毛細 管. 細胞腔に大別される。 導管内の含有水の発散は容易であるが、 毛細管の中には水の分子程度しか通過できない程細くなつている所 があり、 細胞腔は袋状になっており小さな紋ロを通さねば含有水が 発散できない。 このため、 a . b . cのいずれの木材の乾燥法を用 いても含有水の発散状況は各組織ごとに異なり、 木材全体が均一に 含水率低下しうる状態とならない。 また、 含水率の低下して行く状 況に従い木材に収縮が起こるので、 含水率の不均一状態での低下は 収縮の不均一の原因となり、 この結果、 木材に割れ歪みが発生する ことになる。 この状況を防止するためには、 全乾燥過程のいずれの 時でも、 導管、 毛細管、 細胞腔のいずれの含有水も、 同じ比率にて 発散できるようにする前処理が必要であるが、 それがなされていな い。
第 2に、 木材内の含水率の高い時に、 加熱する空気の温度を高め ると木材に割れ歪みによるロスが大量に発生するし、 また、 加熱す る気体を飽和蒸気にし加圧圧力を高めると細胞腔が圧縮して含有水 の発散が困難になる木材の特徴がある。 この状態と反して、 木材が 自由水を発散して全体の含水率が 2 2 %以下になるにつれ、 木材の 各組織が強くなり、 木材に加える圧力を順次高めて行っても細胞腔 が圧縮してしまわない状態となってくる。 したがって、 いきなり乾 燥工程を行わず、 第 1の工程を行ってから、 木材が自由水を発散す るまでは天然乾燥またはそれに近い乾燥方法を採用すれば、 割れ歪 みの損失もなく、 乾燥機の回転率を高められるとの認識がない。 第 3に木材が自由水を発散した後はいずれの乾燥工程を用いても 含水率の低下が甚だしく遅くなり、 困難となってくる。 そして、 加 熱する気体が空気であれば木材に割れ歪みのロスの発生を防止する ことは困難をきわめるので、 加熱する空気の温度や風速を高めて含 水率低下のスピードを高めようとしても、 それに限界があり実施で きない。 また、 木材に割れ歪みを発生させないために加熱する気体 を飽和蒸気にすると減圧工程を加えても木材の含水率は 2 0 %以下 に低下しない。 これに対し、 加熱する気体を過熱蒸気にすると割れ 歪みのロスが発生しないで含有水の発散を促進することができる。 そこで、 含水率低下のスピードが遅くなる 2 2 %以下の含水率にな つてくれば、 木材に加圧と高温に耐えられる強度ができてくると同 時に、 含水率低下のスピードが遅くなる木材があるので、 過熱蒸気 の温度と圧力を高められることを利用して、 含水率低下のスピード を更に高められることが考察されていない。
したがって、 上記の目的を達成し得るこの発明の方法は、 圧力容 器に乾燥すべき木材を桟積みして収容し、 その容器内に加圧圧力が 変動する飽和蒸気を導入して加圧加熱して、 導管、 毛細管、 細胞腔 のいずれの含有水も、 同じ比率にて発散できるようにする前処理す る第 1工程と、 圧力容器より木材を取出して木材が自由水を発散す るまで天然乾燥等の工程を行う第 2工程と、 その木材を再び圧力容 器に収容し過熱蒸気を導入し、 圧力が変動する高温気流を用いてこ れを乾燥材にしてしまう第 3工程を含む。
本発明によれば、 第 1工程において、 圧力容器内の飽和蒸気の圧 力を変動させることにより、 木材の内部に当初からある低温の含有 水と木材表面に発生する高温の凝結水を混合させ、 木材内の新旧の 含有水を高温の钧一の温度として、 この高温の含有水の熱伝熱によ り木材の内部の細胞腔を含めた全木材の温度を均一な高温にするこ とができ、 木材の内部の温度を均一にしてから、 圧力容器内より飽 和蒸気を放出して容器内の圧力を大気圧に向けて低下させることに より、 木材の内部の全含有水を均一に沸騰させる。 これにより、 木 材内の全含有水が均一に沸騰する現象を用いて、 木材の乾燥を開始 する前に、 木材内の組織である導管. 毛細管. 細胞腔に含まれてい る全含有水を均一に発散させる木材にする前処理を行い、 割れ歪み のロスが全く発生させないで乾燥木材にすることができる。
上記第 1工程では、 上記圧力容器の飽和蒸気の導入および排出を 制御して、 1気圧以上 2気圧以下の比較的低い圧力範囲で飽和蒸気 圧を増減させて木材内の当初からある低温の含有水を木材の中心部 に集めないように昇温させた後、 1気圧以上 2気圧以下の比較的高 い圧力範囲で飽和蒸気圧を増減させて木材内の全含有水を大気圧で 沸騰可能な均一温度にする段階加熱方法を採用するのが好ましい。 上記 2段階昇温方法で、 比較的低い圧力範囲は約 1 . 2〜 1 . 8 kg ノ cm2であって、 比較的高い範囲の基本の範囲は約 1 . 6〜2 . 0 kg/cm2であるのが適当であって、 上記の範囲の圧力上昇中に木材 表面の高温の水分を内部に押し込み、 下降中に木材内 ¾Jの低温の水 分を表面に押し出して、 全体の温度を均一化することができる。 上記第 1工程によって、 木材は約 3 0 %の水分を発散するが、 ス チーミング 'アンド 'バキューム法のように加圧加熱と減圧を繰り 返す必要がなく、 1回だけ減圧を行えば目的を達成している。
これ以後の第 2工程は天然乾燥または天然乾燥に近い低温乾燥法 を採用するのが、 乾燥機の回転率を高められるので好ましい。 木材 内の含水率の高い時に、 加熱する空気の温度を高めると木材に割れ 歪みによるロスが大量に発生するし、 また、 加熱する気体を飽和蒸 気にし加圧圧力を高めると細胞腔が圧縮して含有水の発散が困難に なるので、 これらの工程を用いることはできない。
しかし、 木材の自由水が発散した後は含水率低下のスピードが遅 くなるが、 木材に加圧と高温に耐えられる強度ができてくるので、 第 3工程は、 過熱蒸気の供給と放出を制御して容器内の圧力を所定 の範囲で増減させることを頻繁に繰り返すと共に、 容器内に過熟蒸 気の気流を生成させる。 これにより、 熱風式乾燥法と真空乾燥法を 交互に繰り返さす工程を頻繁に繰り返されるのと同様の状態となり、 含水率低下のスピードを高めることができる。
また、 上記第 3工程で、 上記所定の圧力範囲の下限で上記過熱蒸 気の気流の方向を逆転するようにすることにより含水率低下のスピ 一ドを更に高めることができる。
上記過熱蒸気は温度 1 6 0〜3 0 0で、 圧力約 4 1(8 002を使用 し、 2 . 0 kgZciD2から 4 . 0 kg/cm2の範囲で、 0 . 8〜 1 . 2 kg/cm2の圧力変動を与えるのが好ましく、 圧力上昇中に木材表面 部分の水分を蒸発させ、 圧力下降中に木材内部の水分を放出するこ とができる。
したがって、 本発明によれば、 木材の乾燥工程における割れ歪み のロスを無くし、 原料歩留まりを向上させることができ、 乾燥機の 回転率を高めて償却費の負担を減少させることができ、 乾燥のスピ 一ドを高めて燃料費と人件費を節減することができ、 乾燥する木材 の厚さを厚くても乾燥できるようにして乾燥してから製材して木材 加工の歩留まりを向上することができるので、 木材工業のコストを 低減させることができる。
次に、 この発明の上記並びにその他の特徴および機能を、 添付図 面を参照しつつその推奨実施例について解説を加えつつ詳細に説明 する。
図面の簡単な説明
第 1図は、 この発明に実施に用いられた圧力容器とその付属設備 に示す概要図である。 第 2図は、 第 1図の圧力容器の概要横断図面 め 。
両図を通じて同じ構成要素は同じ引用数字で示す。
推奨実施例の説明
現在世界で使用されている木材の乾燥法では長期間の日数をかけ ねば乾燥材にすることができない 1 0 0画の角材又は 1 0 O ramの厚 さを有する盤材を、 割れ歪みのロスを全く発生させないで乾燥材に する推奨実施例を用いて、 この発明を説明してゆくことにする。 図において、 2は内径約 1 8 0 0腿、 長さ 1 3 mの円筒形圧力容 器で、 前扉 3を有し、 鎖線で耠郭を示す桟積みされた木材 1を架台 4と共に内部に収容し得るようになつている。 容器 2の内部周辺に は第 2図に示すように多数の開孔 (図示せず) を有する噴射管 1 1 . 1 2と放出管 1 3 . 1 4が長手方向に配置されている。 噴射管 1 1 . 1 2は第 1図に示すようにそれぞれの弁 2 1、 2 2と共通の管路 1 5、 弁 2 3、 減圧弁 5を介してボイラー 6に接続されている。 弁 2 3と減圧弁 5はまた弁 2 4、 加熱器 7、 減圧弁 8を含む管路により バイバスされている。 放出管 1 3、 1 4はそれぞれ管路 1 6、 1 7 と弁 2 5、 2 6を介して外界に連通している。 圧力容器 2はまた弁 2 7を介して真空ポンプ 9に接続されると共に、 弁 2 8を介して外 界に連絡している。 2 9は圧力容器 2のドレンバルブである。 次 に、 上記の装置を用いたこの発明の第 1の段階の実施例を説明する。 先ず、 被乾燥木材として、 アメリカ大陸で使用されているトンネ ル窯方式の乾燥機では乾燥できないァメリカ大陸産のマツ、 ッガ、 ヒバを製材した厚さの 1 0 O ramの角材および盤材を架台 4上に桟積 みして圧力容器 2にに送り込み、 前扉 3を閉じた。
第 1段階は、 木材の含水率がいくら高くても良く、 木材内に自由 水があることが必要条件であることに注意を要する。
次に、 弁 2 4、 2 5、 2 6、 2 7、 2 8を閉じ、 弁 2 1、 2 2、 2 3、 2 9を開いて、 ボイラー 6から減圧弁 5を通過した圧力約 4 kg/cm2 の圧力を有する飽和蒸気を噴射管 1 1 . 1 2より圧力容器 2内に噴射を開始し、 圧力容器 2内にある空気を弁 2 9より放出さ せる。 やがて、 弁 2 9より蒸気の放出量が大となってきたら、 圧力 容器 2内の空気の放出が終わっていると判断して、 弁 2 9の開放を 少なくした。
弁 2 9の開放を少なくすると、 圧力容器 2内の圧力が上昇が始ま る。 圧力容器 2内の圧力が約 1 . 8 kg/cm2 まで上昇すると、 弁 2
1、 2 2を自動的に閉鎖して、 圧力容器 2内に飽和蒸気の噴射を止 めた。 弁 2 9が少し開いているので、 圧力容器 2内の圧力が低下し て行く。 約 1 . 2 kgZcm2迄低下してくると、 弁 2 1、 2 2を自動 的に開いて圧力容器 2内に飽和蒸気の噴射を開始した。 このように して圧力容器 2内の圧力を約 1 . 2〜1 . 8 kgZcm2 の間を頻繁に 往復させた。 この間で注意を要するのは、 圧力容器 2内に噴射する 飽和蒸気の圧力が約 3 kg/cra2以下になると効果が減少してしまう ことと、 圧力容器 2内の圧力が約 1 . 8 kg/cm2以上にすると木材 内に当初からある含有水が木材の中心部に押し込まれて、 木材内の 温度の均一化の障害になることである。
木材の温度より高い温度を有する飽和蒸気が木材にあたると、 木 材の表面に木材内の含有水の温度より遥かに高い温度を有する凝結 水が発生するが、 圧力容器 2内の圧力を約 1 . 2〜1 . 8 kg/cm2 の範囲にて頻繁に変動させると、 圧力が上昇する過程で、 木材表面 に発生している高温の凝結水が木材内部に押し込まれて行く。 圧力 が低下する過程で、 その木材内部に加えられた反動により、 木材内 部に当初から存在していた低温の含有水が木材の表面に押し出され てくる現象が発生するので、 この圧力容器 2内の圧力変動を頻繁に 繰り返すことにより、 高温の凝結水と低温の当初からある含有水が 混合し、 木材の厚さを讓で計測した数字を分で換算した時間の 1 / 2の時間である 5 0分を経ると、 木材の内部温度はほぼ 1 0 0 °Cに 揃うことになる。
木材の内部温度が高くなると、 圧力容器内の圧力を高めても木材 内の当初から存在していた低温の含有水が木材の中心部に押し込ま れて低温の水塊の発生する心配が無くなつたので、 圧力を頻繁に変 動させる基本の巾を約 1 . 6〜2 . 0 kgZcni2 に上昇させて、 先 記載した原理に基づき木材表面に発生する高温の凝結水と木材内部 に存在している比較的に温度の低い含有水とを混合させる。 この圧 力変動させる時間は先に記載した時間の計算方法での時間の 2倍の 時間である 1 0 0分を経ると、 木材の内部の温度は、 この変動させ ている圧力巾の最高の飽和蒸気 E力に比例した温度である 1 2 (TC に揃うことになる。
この時注意を要することは、 樹種と使用目的により、 この圧力を 頻繁に変動させている巾を若干変化させる必要があることと、 変動 する時間を若干変化させる必要があることである。 この変化させる 巾は上記に記載した数値と大差はない。 この巾を変化させても、 木 材内部の温度は変動させている温度の最高の飽和蒸気の温度に比例 した温度になる。
この状態の温度になる説明の補足をしておくと、 木材内部の導管 内の含有水は圧力変動により動き温度の統一が容易であるが、 細胞 腔内の含有水は圧力変動でも動かないが、 上記に記載した時間を経 ると、 木材内部全体にある導管内部に含まれている高温水からの熱 伝熱により、 細胞腔内の含有水も同一の温度となる。
この木材内部の温度を均一にする工程の時間が過ぎると、 弁 2 1、 2 2を閉め、 圧力容器 2内への飽和蒸気の噴射を停止すると同時に、 弁 2 9の開放を広げて圧力容器 2内の蒸気の放出を開始すると、 木 材 1内の全含有水は一斉に均一に沸騰する。 圧力容器 2内の圧力の 表示を付随している計器で見ながら弁 2 9の開放の大きさを拡大し て行った。 この時注意を要するのは、 圧力容器 2からの蒸気の放出 の仕方が遅ければ、 木材 1内の含有水の沸騰量が少ない状態で木材 1に与えられた熱量は消失してしまうことと、 放出の仕方が余りに も速すぎると木材 1の内部は破壊されてしまうことである。 木材 1 の樹種の持つ組織の強度により、 圧力容器 2からの蒸気の放出速度 が若干相違するのは止むを得ない。
木材 1の内部の温度を均一にしているので、 木材 1内の全含有水 の沸騰量は均一で、 含有水の沸騰に差がないため、 木材 1内の含水 率は木材 1の厚さに関係なく均一に低下することになる。 木材の 内部組織の毛細管の部分的なくびれや細胞腔の出口にある紋孔の中 には、 水の分子程度の大きさの水が辛うじて通過する大きさしかな いものが存在しているが、 その部分の前後において沸騰する圧力に 大差が起きるので、 その大きくなつた圧力差により、 その部分に拡 大ゃ亀裂の現象が発生する。 木材を乾燥するにあたつて含有水の発 散が困難であつた細胞腔内の含有水も同時に沸騰を起こすので、 沸 騰して気体になった含有水は隣の細胞腔の中を通って発散するので、 全細胞腔に含有水の発散した空洞が発生する。
この状態は、 第 1の工程を終えて圧力容器 2より取り出した木材 を適当に切断して、 一 2 0で以下に急速冷凍して全含有水を氷結さ せてから裁断し、 電子顕微鏡にて細胞腔を撮影すると含有水が存在 している所は白く写り含有水が発散した所は黒く写る。 この白黒の 割合は各細胞腔とも同じ比率のため、 全細胞腔に均一な空洞が発生 していることが確認される。
圧力容器 2内の圧力が大気圧に近付いて来ると、 弁 2 9を閉め、 真空ポンプ 9の運転を開始すると同時に弁 2 7を開き、 圧力容器 2 内の圧力を大気圧以下に減圧し木材 1の全含有水の発散量を増大さ せて、 約 2 0分経てば弁 2 7を閉じ真空ポンプ 9の運転を停止し、 弁 2 8を開いて圧力容器 2内の圧力を大気圧に戻し、 扉 3を開いて、 架台 4に乗せた木材 1を圧力容器 2より取り出して第 1の工程が終 える。
真空ポンプを運転する時間を約 2 0分で止める理由は、 飽和蒸気 により木材 1に与えられた熱量と大気圧に低下する時の水が気体に 転換する時の気化熱量を計算すると、 それ以上の真空ポンプを運転 すると、 木材 1内の含有水を沸騰させる熱量が無くなっている危険 率が増大して、 木材表面からの気化水を吸収することとなり木材 1 の水分傾斜が発生することとなるので、 木材 1内の含有水を木材の 厚さに関係なく均一に含水率低下する木材にする本発明の第 1のェ 程の木材乾燥の前処理に反することになるからである。 この真空ポンプを運転して圧力容器 2内の圧力低下の割合は、 第 1の工程を開始する時の初期含水率により異なる。 この真空ポンプ を約 2 0分運転することにより、 第 2の工程の木材 1内の自由水を 発散させる期間を短縮させる効果があるのには間違いはない。
木材の厚さが 1 0 0腿あっても、 第 1の工程の全時間は約 3時間で あるので、 通常の勤務時間内で 2回転を行うことができる。
なお、 第 1の工程は、 以後の木材乾燥の期間中に割れや歪みを発 生させない木材にする乾燥の前処理であるので、 第 1の工程にての 含水率低下は約 3 0 %しか低下していない。 しかし木材の厚さに関 係なく均一に含水率低下しており、 以後の工程においても木材の厚 さに関係なく木材全体の含水率が均一に低下して行くようにしてい るので、 木材が乾燥する過程において割れ歪みが発生するものとし ていた規制概念から開放されるようになっている。
第 1の工程は、 飽和蒸気の変動加圧と極めて短時間の減圧を一回 だけを行い、 厚さに関係なく均一に含水率低下する木材にする木材 乾燥の前処理であるので、 過去にあつた飽和蒸気の固定した加圧加 熱と減圧を操り返して、 含水率低下を目的としていたスチーミング. アンド. バキューム法と異なる。
第 1の工程を終わり圧力容器 2から取り出した木材 1を、 気候の 良い地方は、 乾燥経費のかからない天然乾燥を行い自由水を発散さ せる第 2の工程に入る。
第 1の工程の乾燥の前処理を行っていない通常の天然乾燥では、 木 材の内部の組織の導管内の含有水の発散は容易であるが、 毛細管の —部にあるくびれて極めて細くなつている部分の奥にある含有水の 発散は困難であること、 細胞腔内の含有水の発散は困難であるため、 天然乾燥中に含水率の分布ムラが大きくなり、 ひいては、 木材の収 縮に大差が出てきて割れ歪みが起きる原因となる。 第 1の工程の中 の説明にて、 極めて細くなつている部分を有する毛細管や細胞腔の 出口の紋孔の中での極めて小さい紋孔に、 沸騰圧力差により拡大や 亀裂が起きることを説明して、 その部分の含有水の発散に支障が出 なくなつていることを明らかにしてきた。 現在世界で行われている 総ての木材乾燥法では、 細胞腔内の含有水の発散を促進させる処理 が行われていない。
第 1の工程の中で、 各細胞腔に含有水の発散した空洞を持たして いることを記載してきた。 第 2の工程の天然乾燥にて木材内の自由 水を発散させる時、 各細胞腔内の含有水も気体となつて発散が開始 する。 これに対し、 第 1の工程を行っていない通常の木材では、 細 胞腔内の含有水が気体となって発散しょうとしても行く所がない。 第 1の工程を行った木材は、 隣の細胞腔に含有水の発散した空洞を 有しているので、 その空洞部分に蒸発気体を移動しうる場所がある。 そのため、 全細胞腔内の含有水の同時移動が可能となっている。 現 在世界的に行われているいずれの木材乾燥法でも、 細胞腔内の含有 水の同時移動が困難であったのが、 第 1の工程の乾燥の前処理を行 つたことにより始めて可能にすることができるようになつた。
第 2の工程の天然乾燥において、 含有水の発散が困難になる所を 無くなっているので、 従来では天然乾燥中に発生する割れ歪みの防 止するは不可能とされていた既成概念は消滅させられ、 割れ歪みの 発生は完全に防止することができるようになった。 それにより、 割 れが大量に発生するとしていた厚さの厚い木材も割れを発生させな いで乾燥できることとなった。 通常、 厚さの厚い木材も含水率低下の速度は、 第 1の工程を行つ たことにより約 2倍以上速くなつている。 世界の大部分は、 乾燥経 費のかからない天然乾燥を行えるが、 気候条件が悪く天然乾燥でき ない地方では、 乾燥経費をかけて除湿乾燥か極めて低温での熱風式 木材乾燥を用いて、 自由水を発散させる第 2の工程を行わざるを得 ない。
第 1の工程を終えてから第 3の工程に入る迄に、 木材の内部に残 存している自由水を除去する第 2の工程が必要な理由は、 第 3のェ 程にて過熱蒸気の気流を利用して木材 1を加熱する時、 自由水が残 つている間過熱蒸気が直ぐに飽和蒸気に変わつてしまい、 過熱蒸気 を利用する効果が表れ難いからである。
第 2の工程にて自由水を無くした後、 再び木材 1を架台 4に積載 して圧力容器 2に収容して前扉 4を閉じ、 第 3の工程に入る。 この 時注意をしておく必要があるのは、 桟積みされている木材 1の両側 を圧力容器 2の壁面に擦れるように積載することと、 積載している 木材 1の前後と途中の空間とフォクリフトの爪が入る空間を、 不要 の木材で両側をふさいでおくことである。
第 3の工程は、 先ず、 弁 2 1、 2 2、 2 3、 2 9を開き、 弁 2 4、 2 5、 2 6、 2 7、 2 8を閉じ、 飽和蒸気を約 3分間容器内に噴射 して木材 1の表面を濡らすことから始めた。
次に、 弁 2 3を閉じ、 弁 2 4を開き、 ボイラー 6からの飽和蒸気 を威圧弁 8により約 4 kgZcm2 に減圧した後過熱器 7により 1 3 0 〜3 0 0でに加熱して過熱蒸気としたものを噴射管 1 1、 1 2を介 して容器 2内に噴射する。 容器 2内部の圧力が約 1 . 5 kgZcm2 に 達したとき、 弁 2 9を絞ってその開口度を減じた。 当初は上記の過 熱蒸気温度の低い目の温度から始めた。
次に、 弁 2 2を閉じて噴射管 1 2からの噴射を止めると同時に、 弁 2 6を開いて放出管 1 7から外部に蒸気を放出させ、 噴射管 1 1 からの過熱蒸気を容器 2内の木材 1の桟積み空間を通して放出管 1 7に向かう水平の気流を生成させた。 木材 1と容器 2に囲まれた空 間において、 噴射管のある側と放出管のある側とで圧力差があるた め、 木材 1の桟積み空間に均一な気流の流れとなる。 圧力差による 気流の流れのため、 熱風式乾燥機のように気流の流れ方にムラが発 生することはない。 蒸気の注入量を放出量より僅かに多くすると、 容器 2内の圧力が次第に上昇してきて圧力が約 2 . 5 kg/cm2 にな ると、 弁 2 1を閉じて過熱蒸気の注入を停止すれば、 容器 2内の圧 力が次第に低下して行き圧力が約 1 . 5 kg/cni2迄低下すると、 弁 2 6を閉じ、 弁 2 5と 2 2を開いて、 逆に過熱蒸気を噴射管 1 2か ら木材 1の桟積み空間を通過させて放出管 1 6に向かう気流の流れ にする。 上記の弁 2 1、 2 2、 2 5、 2 6は予め電磁弁を用い、 容 器内の圧力と連動させてその操作を自動化しておいたので、 容器 2 内の圧力は自動的に約 1 . 5 kgZcm2 と約 2 . 5 kgZcm2 の間を往 復し、 約 3分間毎にその上下限において容器 2内の気流が逆転させ る運転操作を実現させる。 気流の流れ方が約 3分毎に変わるので木 材 1に与えられる熱量に差が生じない。
この容器 2内の圧力が上昇する過程では過熱蒸気の気流による熱 風式木材乾燥法と同じ状況となり木材 1の表面部分からの蒸発が起 きる。 圧力が下降する過程では真空乾燥法と同じ状況となり木材 1 の内部より沸騰発散が起きる。 約 3分間の間に熱風式木材乾燥法と 真空乾燥法とを組み合わせて行うのと同様の状態となるので、 木材 表面に濡れを補耠していることと第 1の工程により均一に含水率低 下して行く木材にしていることとで、 割れや歪みを発生させずに含 水率低下の速度を速められる。
この運転操作を約 2〜 3時間続けて行うと、 木材 1の含水率は、 含水率 2 2 %以下となった。 木材の乾燥の全期間において、 この含 水率 2 2 %以下の含水率の木材の乾燥と言うのは、 現在世界的に行 われている木材の乾燥法の総てが、 含水率低下が困難にして乾燥中 に割れや歪みが出やすい時期とされいる。 また、 この含水率 2 2 % 以下の木材の乾燥は、 現在の総ての木材乾燥法では、 含水率低下の 速度は遅くなつてくると同時に、 割れや歪みが発生しやすい時期だ とすることのみに気が取られ、 含水率の高い時期の木材と異なり、 木材 1の内部の組織が強くなり加圧圧力を高めても細胞腔等に圧縮 が起こらない状態となり、 又加熱温度が高くしても木材 1に損傷が 出なくなっている時期だとして、 この特徴を生かす対策を取ろうと していない。
この発明は、 含水率 2 2 %以下の木材の利点の特徵を注目し、 第 1の工程にて含有水を木材の厚さに関係なく均一に発散しうる木材 にしていることを利用して、 容器 2内の圧力変動巾を高めて約 2 . 5 kg/cm2 と約 3 . 5 kg/cm2の圧力巾に変更させると同時に、 先 の運転していた当時の過熱蒸気の温度より温度を高めると、 木材 1 の表面を流れる気流の温度を高くして速度も速くなるので、 木材表 面部分よりの蒸発発散と木材の中心からの沸騰発散が交互に起るの が促進される。 この状態を約 3〜4時間行うと、 割れや歪みを全く 発生させず、 現在一般に行われている木材の乾燥法では乾燥不可能 とされていた木材の厚さが 1 0 O mmもある木材 1の角や盤材の厚さ のいずれの場所においても含水率はほぼ 1 2 %に均一に揃った木材 となった。 そこで、 弁 2 4を閉じ、 弁 2 9の開放を大きくして容器 2内の圧力を大気圧にしてから、 扉 3を開けて木材 1を取り出した c この木材は水分含有率がほぼ均一な水分傾斜のない、 また水分傾 斜を生じな 、乾燥材となっている。 従来の乾燥方法で乾燥させた木 材では通常水分含有率が中心に向けて放物線状に増加するのと対比 することができる。
産業上の利用可能性
第 3の工程による木材の乾燥の最終処理時間は、 現在世界で行わ れている総ての木材の乾燥法では数日の木材乾燥期間を必要として いたのが、 通常勤務時間内の約 6時間で割れや歪みを全く発生させ ずに完了させられ、 乾燥機の回転率を大幅に高めることとなった。 上記のように、 この発明の方法の特徴は、 木材自身が持っている 不均一な含有水を発散させる性質を乾燥を開始する前に除去してし まいっているために、 乾燥過程の木材内の水分がその全体に亙って 常に均一に保ちながら含水率低下させる方法を取れることとなり、 これにより割れや歪みの発生を完全に無くして乾燥できることとな り、 しかも、 当初に記載した発明の背景にて取り上げた諸問題を全 部解消させることも可能となった。
木材を乾燥する過程において、 割れ歪みのロスを全く発生させず に乾燥材にできると言うことは、 それだけ、 森林の伐採量を減少さ せられることを意味しているので、 それは製材の業務の経済性のみ ならず、 森林資源の保護と地球環境の保全にも役立つこととなる。 木材には、 製材する時原木の中心の反対側に反る性質や平奎材は力 ッブ状に反る性質があるが、 第 1の工程の飽和蒸気を使用する割れ 歪みを発生させない前処理の時、 自らの木材の自重にて直材のまま 乾燥して行く木材になつてしまう利点が副産物として得られる。 現在世界的に使用されている木材の乾燥法では、 割れ歪みを発生さ せることなく 1 0 0顏の厚さのある木材でも第 1の前処理は通常勤 務時間内に 2回転、 第 3の最終乾燥も通常勤務時間内の 6時間で完 了でき、 第 2の工程の割れ歪みを発生させることなく自由水を発散 させる工程には乾燥機を使用しないため、 乾燥機の回転効率が良く なり、 償却費. 燃料. 人件費が大幅に低減できる副産物も得られる こととなった。
従来からの世界的に行われてレ、た木材の乾燥法では乾燥不可能の されていた厚さの限界が無くなつたことにより、 乾燥を完了してか ら適当の使用目的の厚さに裁断することにより更に歩留まりを向上 させる方法もとれることとなった。
木材内の複雑な組織にもかかわらず均一に含有水を発散させられ ることと、 通常の木材の乾燥法の常識を超越した非常な高温高圧を 利用する方法を記載しているので、 木材の業界にもこの技術を用い た技術革新がおきるものと考えられる。
上記の実施例は、 発明の例証のために提示したものであって、 発 明の限定を意味するものではない。 それには、 添付のクレームに定 義されるこの発明の技術的範囲において、 種々の改革を加え得るこ とは言うまでもない。

Claims

請求の範囲
1 . 木材を圧力容器に収容し、 その容器に飽和蒸気を導入排出し て容器内加圧圧力を変動させて木材内の温度を均一にし、 その均一 温度状態で容器内の飽和蒸気を放出して木材内の各組織内の全含有 水を沸騰発散させて木材を均一乾燥化質にする第 1工程と、 上記圧 力容器から取り出した木材から自由水を排出する乾燥に付する第 2 工程と、 自由水を排出した木材を再び圧力容器内に収容し、 その容 器内に過熱蒸気の気流を作り出して木材を加圧加熱して含有水を除 去する第 3工程を含む木材の乾燥法。
2 . 上記第 1工程が、 上記圧力容器の飽和蒸気の導入および排出 を制御して、 1気圧以上 2気圧以下の比較的低い圧力範囲で飽和蒸 気圧を増減させて木材内の当初からある低温の含有水を木材の中心 部に集めないように昇温させた後、 1気圧以上 2気圧以下の比較的 高い圧力範囲で飽和蒸気圧を増減させて木材内の全含有水を大気圧 で沸騰可能な均一温度にする段階と、 圧力容器内の蒸気を放出して 大気圧まで次第に減じて木材内部の各組織内の水分を沸騰させて木 材を均一に水分発散可能な性質にする段階を含む請求項 1記載の木 材の乾燥法。
3 . 上記第 3工程が、 過熱蒸気の供給と放出を制御して容器内の 圧力を所定の範囲で増減させることを頻繁に繰り返すと共に、 容器 内に過熱蒸気の気流を生成させる段階を含む請求項 1記載の木材の 乾燥法。
4 . 上記第 3工程で処理する自由水を排出した木材が含水率低下 が困難になる含水率 2 2 %以下であって、 第 3工程中木材内の含有 水分の低下に伴い木材内の材質が堅くなるにつれ、 過熱蒸気の温度 と圧力を高めて、 木材内の含有水分の発散を促進容易にする請求項 1記載の木材の乾燥法。
5 . 上記第 3工程で、 上記所定の圧力範囲の下限で上記過熟蒸気 の気流の方向を逆転するようにした請求項 1記載の木材の乾燥法。
6 . 上記第 3の段階で、 過熱蒸気が温度 1 6 0〜 3 0 0 °C、 圧力 が約 4 kgZcm2であって、 約 1 . 0〜4 . 0 kgZcm2の範囲で、 0 . 8〜1 . 2 4 kg/cm2の圧力変動を行わせ、 圧力上昇中に木材表面 部分の水分を蒸発させ、 圧力下降中に木材内部の水分を放出する請 求項 3記載の木材の乾燥法。
7. 上記第 1工程で、 比較的低い圧力範囲が約 1 . 2〜 1 . 8 kg /cm2であって、 比較的高い範囲の基本の範囲は約 1 . 6〜2 . 0 kg/cm2であって、 上記の範囲の圧力上昇中に木材表面の高温の水 分を内部に押し込み、 下降中に木材内部の低温の水分を表面に押し 出して、 全体の温度を均一化する請求項 1記載の木材の乾燥法。
8 . 請求項 1〜 8の何れかの方法で乾燥された水分傾斜がなく、 かつ水分侯斜の生じない乾燥木材。
PCT/JP1992/000258 1991-03-04 1992-03-04 Procede de sechage du bois WO1992015435A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/945,981 US5392530A (en) 1991-03-04 1992-03-04 Method of seasoning lumber
CA002081909A CA2081909C (en) 1991-03-04 1992-03-04 Method of seasoning lumber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/123191 1991-03-04
JP3123191A JP2552961B2 (ja) 1991-03-04 1991-03-04 含水率の変化に従い風力と圧力を転換させうる木材乾燥法

Publications (1)

Publication Number Publication Date
WO1992015435A1 true WO1992015435A1 (fr) 1992-09-17

Family

ID=14854449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000258 WO1992015435A1 (fr) 1991-03-04 1992-03-04 Procede de sechage du bois

Country Status (4)

Country Link
US (1) US5392530A (ja)
JP (1) JP2552961B2 (ja)
CA (1) CA2081909C (ja)
WO (1) WO1992015435A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945118B1 (ko) 2009-07-06 2010-03-02 (주)건조기술 과열증기를 이용한 목재표면 착색방법
US8104190B2 (en) * 2006-12-29 2012-01-31 Signature Control Systems, Inc. Wood kiln moisture measurement calibration and metering methods

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756206B1 (fr) * 1996-11-22 1999-01-29 Laurencot Marie Therese Poutre de bois de type reconstitue
CA2246251A1 (en) * 1997-09-02 1999-03-02 Hyogo Izumi Lumber production machine not requiring seasoning and manufacturing method thereof
US6098679A (en) * 1998-03-17 2000-08-08 Noranda Forest Inc. Dimensionally stable oriented strand board (OSB) and method for making the same
RO118548B1 (ro) * 2000-03-06 2003-06-30 Technical System Keep Limited Company Metodă de uscare a lemnului
JP3562517B2 (ja) * 2001-08-30 2004-09-08 ヤマハ株式会社 楽器およびその製造方法
CA2520914C (en) * 2003-02-04 2010-04-27 Waco Construction Inc. Kiln with process water evaporation system
US7739829B2 (en) * 2004-09-02 2010-06-22 Virginia Tech Intellectual Properties, Inc. Killing insect pests inside wood by vacuum dehydration
DE102009046187A1 (de) * 2008-10-31 2010-05-06 Kabushiki Kaisha Kawai Gakki Seisakusho, Hamamatsu-shi Holzelement für ein Musikinstrument und Verfahren zu seiner Herstellung sowie System und Verfahren zur Resonanzbodenherstellung
US8291611B2 (en) 2010-06-30 2012-10-23 Eriksen Timothy L Multiple stage even-drying wood kiln system and method
CN104567326B (zh) * 2014-12-24 2016-05-18 中国农业大学 一种控温控湿干燥茯苓的装置与方法
CN104567292B (zh) * 2014-12-25 2017-12-26 宁德新能源科技有限公司 一种动力电池真空干燥设备
CN105835197B (zh) * 2016-06-23 2017-11-07 郑园 一种木材深度炭化方法
CN106482461A (zh) * 2016-12-12 2017-03-08 南京淮腾机械科技有限公司 一种低温真空蒸汽干燥箱
CN109539710A (zh) * 2019-01-14 2019-03-29 重庆海林生猪发展有限公司 粮食及农作物晾晒风干棚

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154012A (en) * 1980-04-29 1981-11-28 Hiyougo Izumi Method of making winter grain of wood clear
JPS574706A (en) * 1980-06-12 1982-01-11 Hiyougo Izumi Wood in which defect do not generate and its manufacture
JPS57165206A (en) * 1981-04-04 1982-10-12 Hiyougo Izumi Method of removing resin in resin bag
JPH0298404A (ja) * 1988-10-05 1990-04-10 Sato:Kk 木材の乾燥方法並びにその乾燥時における加色及び脱脂の同時加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548403A (en) * 1944-11-01 1951-04-10 Elton V Smith Lumber kiln
JPS5044545A (ja) * 1973-08-24 1975-04-22
US3959529A (en) * 1974-06-14 1976-05-25 The Dow Chemical Company Wood treating process
US4343095A (en) * 1981-03-24 1982-08-10 The United States Of America As Represented By The Secretary Of Agriculture Pressure dryer for steam seasoning lumber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154012A (en) * 1980-04-29 1981-11-28 Hiyougo Izumi Method of making winter grain of wood clear
JPS574706A (en) * 1980-06-12 1982-01-11 Hiyougo Izumi Wood in which defect do not generate and its manufacture
JPS57165206A (en) * 1981-04-04 1982-10-12 Hiyougo Izumi Method of removing resin in resin bag
JPH0298404A (ja) * 1988-10-05 1990-04-10 Sato:Kk 木材の乾燥方法並びにその乾燥時における加色及び脱脂の同時加工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104190B2 (en) * 2006-12-29 2012-01-31 Signature Control Systems, Inc. Wood kiln moisture measurement calibration and metering methods
KR100945118B1 (ko) 2009-07-06 2010-03-02 (주)건조기술 과열증기를 이용한 목재표면 착색방법

Also Published As

Publication number Publication date
US5392530A (en) 1995-02-28
CA2081909A1 (en) 1992-09-05
CA2081909C (en) 1997-08-19
JP2552961B2 (ja) 1996-11-13
JPH0650662A (ja) 1994-02-25

Similar Documents

Publication Publication Date Title
WO1992015435A1 (fr) Procede de sechage du bois
CN100579741C (zh) 木材超高温热处理方法
US4246704A (en) Process and plant for drying solid wood in planks or semifinished products by means of a superheated steam system
US4099337A (en) Method of curing concrete articles by water vaporization
AU2002231836B2 (en) Method for treating and drying of wood
EP0744012B1 (en) Method and arrangement for drying wood
CN106166780B (zh) 一种橡胶木高温热改性材及其生产方法
Lee et al. Effect of End-Covering and Low Pressure Steam Explosion Treatment on Drying...
RU2110026C1 (ru) Способ, устройство и нагреватель для сушки древесины
Cloutier et al. Densification of wood veneers under the effect of heat, steam and pressure
JP7118400B2 (ja) 木材の乾燥方法
JP2681220B2 (ja) 過熱蒸気の変動圧気流を利用した多重染色法
JP2753699B2 (ja) 木材処理方法
CN108340457A (zh) 一种柳杉的浸渍增强处理方法
JPS6157993B2 (ja)
JPH10315203A (ja) 木質材への薬液類の含浸方法及び該方法により製造された木質材
JP3813938B2 (ja) 木質材の寸法安定化処理方法
JP2000146438A (ja) 木材の乾燥方法及び装置
EP0901893A1 (en) Lumber production machine and method
Zashchepkina et al. Thermal modification of wood by the method of thermo-mechanical dehydration with pressure drop
JP2006123385A (ja) 木材乾燥における蒸煮方法
JP3204564B2 (ja) 木材組織の透過性改善法
JPH0139882B2 (ja)
JPH04306481A (ja) 木材の乾燥方法及び乾燥装置
GB1601534A (en) Method of curing concrete articles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

WWE Wipo information: entry into national phase

Ref document number: 2081909

Country of ref document: CA