JP2552961B2 - 含水率の変化に従い風力と圧力を転換させうる木材乾燥法 - Google Patents

含水率の変化に従い風力と圧力を転換させうる木材乾燥法

Info

Publication number
JP2552961B2
JP2552961B2 JP3123191A JP12319191A JP2552961B2 JP 2552961 B2 JP2552961 B2 JP 2552961B2 JP 3123191 A JP3123191 A JP 3123191A JP 12319191 A JP12319191 A JP 12319191A JP 2552961 B2 JP2552961 B2 JP 2552961B2
Authority
JP
Japan
Prior art keywords
wood
pressure
water
drying
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3123191A
Other languages
English (en)
Other versions
JPH0650662A (ja
Inventor
兵五 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3123191A priority Critical patent/JP2552961B2/ja
Priority to US07/945,981 priority patent/US5392530A/en
Priority to CA002081909A priority patent/CA2081909C/en
Priority to PCT/JP1992/000258 priority patent/WO1992015435A1/ja
Publication of JPH0650662A publication Critical patent/JPH0650662A/ja
Application granted granted Critical
Publication of JP2552961B2 publication Critical patent/JP2552961B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00

Description

【発明の詳細な説明】本願は、従来からある風速を用い
る木材乾燥法は、含水率の変化に即応して風速を変化さ
せることはできないが、加圧状態の過熱蒸気を使用する
ことにより、乾燥レベルに応じて風速や温度を高めて乾
燥時間を短縮しうることの発見を用いた木材乾燥法に関
するものである。従来からある熱風式木材乾燥機は、割
れや歪みの発生しやすい含水率の高い木材でも乾燥する
時、乾燥する木材に割れや歪みの損失を少なくするため
を考慮して、その乾燥機に使用する扇風機の能力を計算
して、風量風速を固定した扇風機を付け、乾燥開始から
乾燥完了まで、同じ風量風速で行うものとして、誰も疑
うものはいなかった。然し温度だけは90C°未満の温
度変化だけは行っていた。冷静に判断すると、割れや歪
みの発生しやすい時期は、乾燥する木材の含水率の高い
時に多く、含水率が低くなるにつれ、割れ歪みの発生は
少なくなるのは容易に判断しうる。然し、含水率が低く
なってから乾燥完了までの時間は長くかかるのが、一般
的に用いられている乾燥機の実態であった。その上、含
水率が低くなってから、乾燥完了するまでの含有水の発
散は困難であるため、熱風式木材乾燥機の扇風機の回転
速度を電気的に変更して、風量風速を変更する熱風式木
材乾燥機を作るのは、無意味なものとされていた。本願
のAの工程を用いて処理した木材は、含有水の発散が困
難である細胞腔や毛細管内の含有水の発散も容易になっ
ているので、含水率の低い状態になった時でも、含水率
の高い時と同様に発散しうる特徴がある。そのため、熱
風式木材乾燥機の扇風機の回転速度を、電気的に転換し
うる乾燥機に対応しうる。 然し、この方法を用いた
ら、従来の熱風式木材乾燥機より、乾燥時間を短縮しう
るのは事実であるが、そのレベルより比較にならない短
時間で乾燥しうる方法がある。それが、本願の発明とな
った。この方法は、従来の常識では考えられない程の短
時間で、厚さの厚い木材も乾燥してしまう。そのため、
熱風式木材乾燥機の扇風機の回転速度を、電気的に転換
する様な姑息な改良を、無意味なものにしてしまうこと
となった。本願は、大学の林産学科や国の森林総合研究
所が行っている木材乾燥法では、想像さえも出来ない高
度の技術であり、世界の大学や研究所も試験機さえも作
れない状態のため、世界に学術文献さえもない技術であ
る。一般の木材の関係者でも理解しうる様に説明するの
は困難であるが、それなりに理解しうる様に噛み砕い
て、教科書を作る様な説明をして行くことにする。その
目的のために、大学の林産学科や国の森林総合研究所が
行っている木材乾燥の仕方を、強烈に批判しながら、本
願を説明して行く事にする。この強烈な批判を削除した
ら、一般の木材の関係者には、世界的に学術文献も無い
本願を理解しにくいと思えるからである。この正論に則
って批判するのは、一般の業者にも理解しやすい様に、
発明の詳細な説明を行う特許出願の精神に則って記載す
るので、この批判は如何なる事があっても削除すること
はしない。これは、大学の林産学科や国の森林総合研究
所の、半世紀の長きに渉って、矛盾だらけの教育や指導
を止めさせないと、木材業者や日本国の主権者の国民や
世界人類全体に、多大の損失をさせられるからである。
木材には、含有水の発散の容易な導管と、含有水の発散
の困難な細胞腔や極めて細い毛細管とが、共存している
事と、木材は乾燥が進むにつれ収縮が発生する事と、含
有水の発散むらが起きれば収縮状態が異なり、そのため
に木材に割れや歪みが発生する事は、誰でも知っている
事である。それにもかかわらず、大学の林産学科や国の
森林総合研究所は、木材内の細胞腔や極めて細い毛細管
の含有水も、導管と同様の状態で、含有水の発散しうる
処置を取らずに、製材後直ちに天然乾燥してから、熱風
式木材乾燥機で木材乾燥する半世紀前に開発された熱風
式木材乾燥法を、今だに行っている。そのため、熱風式
木材乾燥機の中だけの割れや歪みを防ぐことのみ研究
し、天然乾燥中の割れや歪みの発生は不可抗力と嘯いて
いる。木材加工する業者にとっては、いずれの場所でも
割れや歪みが発生すれば損失であるのに相違は無い。そ
の上、乾燥完了後の含水率分布が均一でなければ、乾燥
材を加工しても、その完成品に後日割れや歪みや変形が
発生する。大学の林産学科や国の森林総合研究所が行っ
ている熱風式木材乾燥法を使用して、木材を乾燥しても
均一な含水率分布の乾燥材にする事は不可能である。こ
れ等の矛盾に満ちた木材乾燥法に執着している大学の林
産学科や国の森林総合研究所の学者が、でたらめな教育
したり木材業者を指導している無能ぶりを、一般の木材
業者にも理解しやすい様に、本願の実施例を用いて説明
する課程で明らかにして行く事にする。本願のAの前処
理は、従来の乾燥法の様に製材したら直ちに天然乾燥す
る工程を行なわず、製材後の含水率の高い製材品を圧力
容器に入れて、凝結水を放出するバルブを開けたまま、
4kg以上の圧力を有するボイラーからの蒸気を圧力容
器内に噴射すると、圧力容器内の空気は次第に凝結水を
放出するバルブより出て行き、凝結水を放出バルブよ
り、蒸気が吹き出す様になれば、順次このバルブの開放
を少なくするにつれ、圧力容器内の圧力の上昇が始ま
り、圧力容器内の圧力を変動させる運転に入れば、圧力
容器内の空気を飽和蒸気に入れ換えた状況となって、圧
力容器内に満たされた飽和蒸気の圧力を大気圧より若干
高い圧力にして、その圧力を変動させる事から始める。
この様にしなければならない理由は、水の比熱は木材の
比熱の3倍もあるし、木材内の水は対流を起こせる隙間
も無いため含水率の高い木材を加熱するのは困難であ
る。その上、加圧状態に木材を置くと、低温の含有水は
木材の奥に押し込まれて行き、ますます木材全体の温度
を均一にするのは困難となるからである。このために、
大気圧より若干高い圧力で加圧して、含有水が木材の奥
に押し込まれるのを少なくして、その加圧圧力を変動さ
せると、木材の温度が飽和蒸気の温度より低いために木
材の表面に高温の凝縮水が発生する。その凝縮水が圧力
の上昇する過程で木材の内部に押し込まれて行き、圧力
を低下する過程で反動で木材内部の当初からある含有水
が木材表面方向へ移動する現象が発生する。この木材内
の水の移動状態を頻繁に繰り返すと、高温の凝縮水と低
温の当初からある含有水がまざり、木材内の水の温度は
自然に100C°に接近して行き、木材全体の温度も、
その水の温度と同一になって均一に上昇して行く事にな
るが、この温度では不充分のために、飽和蒸気の圧力の
変動させる範囲全体を高くすると、同様な現象の発生に
より、木材の中心部も含めて均一な温度にする事ができ
る。その加熱する温度は120C°程度で目的を達成す
るのに充分の温度としうる。この工法を用いても細胞腔
内の水は動かないが、木材表面からの加熱ではなく、細
胞腔の近くの水からの熱伝熱によって、細胞腔内の水の
温度も均一になる。細胞腔が密集している樹木の種類に
よっては、この加熱処理しうる時間が若干異なるのは言
うまでもない。大学の林産学科や国の森林総合研究所の
学者が行っている木材の表面からの加熱する方法では、
比熱の関係から含水率の高い木材の加熱は困難を極め
る。そして、過去にあったスチーミング・アンド・バキ
ューム法の様に、飽和蒸気の固定した加圧を用いたら、
その加圧圧力により、木材の中心部に低温の水の塊が発
生して、何時迄たっても木材の内部温度は均一にならな
い。大学の林産学科や国の森林総合研究所の学者は、木
材を加熱するにあたって、比熱の関係から、木材内に水
があれば加熱しにくいとした固定概念に捉われているの
で、製材後直ちに天然乾燥して、木材内の水を無くそう
としている事しか考えない程レベルが低い。その上に、
木材内に水があれば、その水を利用して木材の温度を均
一に高める事を考える事は出来ない程レベルは低い。木
材を乾燥する事は、木材内の水を無くす事である。水を
無くすには、水を蒸発させるか、沸騰させて気体に転換
させる以外に方法は無い。誰でも水を無くすためには、
蒸発より沸騰の方が速い事を知っている。それにもかか
わらず、大学の林産学科や国の森林総合研究所の学者
は、木材内の水を無くすのに、蒸発させる事のみに捉わ
れて、木材内の水を均一に沸騰させる事を考えて見様と
しない。その上、過去にあったスチーイミング・アンド
・バキューム法は、沸騰を用いているが、木材の中心部
迄均一温度にしうる事は出来ない工法であるので、木材
表面からの加熱する方法となんら変わらないとして、そ
の欠点を解決して見様とさえしない程、大学の林産学科
や国の森林総合研究所の学者の熱伝熱のレベルは低い。
木材内の温度が均一に120C°程度にしてから、圧力
容器内の飽和蒸気を、圧力容器外に放出を始めると、大
気圧以上の気圧でも、当初の圧力と比較して減圧状態と
なり、木材内の水は沸騰する。大学の林産学科や国の森
林総合研究所の学者は、熱伝熱の知識が無いから、大気
圧以下に減圧しなければ減圧状態にならないとし、大気
圧以下に減圧しなければ沸騰を起こさないと錯覚してい
る程レベルは低い。木材内の温度が均一になっておれ
ば、水に沸騰させる現象となれば、木材内の全体の水は
木材のいずれの場所にあっても、均一に沸騰現象が発生
し気体になって発散する。このため、含有水の発散が困
難であった細胞腔内の水も、同時に加熱時に与えられた
熱量に比例して沸騰を起きる。与えられた熱量が気化熱
によって消耗してしまう迄沸騰による気体となって発散
して行く現象は続く。沸騰現象は気体になって発散する
現象のために、発散する水が前にあっても、その中を通
り抜けて発散するために、細胞腔がいくら接続していて
も、全細胞腔は均一に発散して行く水の量は均一であ
る。このため、このAの事前処理を行った木材は、均一
に含有水の発散した空洞を持つ木材になっている。次の
Bの中間工程に移っても、含有水の発散しにくいとされ
ている細胞腔の水は隣の細胞腔の空洞に移動しうる空間
が空いているために、細胞腔の水も、他の部分と同様に
発散して行く木材となっている。含有水の発散の障害と
なっていた木材内の樹脂は、木材を加熱している温度に
て軟質となっており、沸騰する水の発散して行くのに障
害となる事は無いだけではなく、沸騰する蒸気圧で水蒸
気蒸留現象が発生して、テレピンとコロホニウムに化学
分解してしまい、テレピンは気体となって発散し、コロ
ホニウムは泡となって沸騰圧力により木材表面に押し出
されて行く現象が起こり、樹脂による含有水の発散の障
害を消滅しうる。水が沸騰する時、急激に沸騰させると
水蒸気爆発が起きる。この水蒸気爆発は、山や原子炉を
吹き飛ばす程の威力がある。0の次は無限と言う数字の
配列は無いから、水蒸気爆発にも種々のレベルは存在す
る。そのため、急速に圧力低下させると、木材の内部は
大量の割れが発生し、使用できるものが無くなってしま
う。ゆっくり圧力低下させると水蒸気爆発は起きない。
適当に圧力低下させると、木材内の水の沸騰する状態が
種々異なる現象が起きる。この理由は、木材の組織によ
り水を閉鎖している状態が異なり、水の発散の障害とな
っている極めて細い毛細管の奥にある水や、細胞腔内の
水の沸騰する圧力は、簡単に水が発散しうる所の圧力よ
り高くなるのは当然の事である。このため、適当な圧力
で沸騰しうる様にすれば、水の発散の障害になっていた
極めて細い毛細管や細胞腔の入り口の紋孔付近に微細な
亀裂を作る水蒸気爆発を起こしうる。この適当な圧力は
樹木の種類によって異なるため、使用する樹木を電子顕
微鏡写真を用いて測定しなければ、この適当な圧力は出
せない。圧力容器内の飽和蒸気を放出し終わったら、圧
力容器を密閉して、真空ポンプを動かし、大気圧以下に
減圧すると、上記の水蒸気爆発を除いた現象は再び起き
る。この現象が発生している時間はせいぜい30分程度
で、それ以上の時間になれば、上記の現象は発生せず
に、木材の表面蒸発を吸収して水分傾斜を増大させる事
となってしまう。大学の林産学科や国の森林総合研究所
の学者には、熱伝熱の蓄積量の計算も出来ないレベルの
低い学者が多数いるため、圧力容器に付いている温度計
の表示温度と木材の温度とは別のものだと理解出来ない
で、論文作成したり、学生や木材業者を指導する学者が
いるのは、噴飯者である。以上のAの事前処理を終えた
木材は、木材の組織に関係は無く、いくら厚い木材盤で
も、木材の表面の3mmを除けば、水分傾斜を発生させ
ずに含水率低下して行く木材となっている。一般の工業
生産は、生産の障害になるものは、生産開始する以前
に、その障害になるものは取り除いてから生産を開始す
るのが、工業生産の基本原則である。このAの事前処理
を行う事により、木材工業も、一般の工業の様な生産の
基本原則に則った工業生産をしうる様になった。このた
め、大学の林産学科や国の森林総合研究所の学者が、指
導している一般の工業生産の仕方を無視した木材乾燥法
を指導しているために、天然乾燥では、桟積みしている
木材の桟の間から、向こう側が見えない程、歪みが大量
に発生させていながら不可抗力と嘯いている。Aの事前
処理を終えた木材をBの中間処理の天然乾燥したら、全
く歪みが発生していないで、桟積みの間の空間は全量同
じ空間があいたまま、含水率低下が進んで行く。この状
態になるのは天然乾燥中の木材に水分傾斜を発生しない
で含水率低下していると、木材乾燥の経験のある者なら
理解出来るだろう。天然乾燥中の木材を、適当な時期を
みはらかって引抜き試験を実施すると、木材の厚さがい
くら厚くても、表面の3mmを除いて水分傾斜がほとん
ど発生しないで含水率低下しているのが実証されてい
る。この状態を見た人は誰でも不可抗力として嘯いてい
た学者に騙されていた事に気が付く事であろう。日本に
は、全国に多数の大学の林産学科や、国の森林総合研究
所を始め全国に多数の木材の研究所があり、それぞれに
多数の学者がいるにかかわらず、天然乾燥中の含水率の
分布を研究している論文は無い。乾燥機に入れる前と取
り出す時の試験データーを出しただけの論文が多数ある
が、製材してから、木材加工を始める間の全工程での割
れ歪み発生状況を調査しない研究論文は、木材乾燥の論
文とは言えない。Bの中間処理の仕方は、気候の良い地
方では通常の天然乾燥でも良い。気候の悪い地方では微
風を伴った除湿乾燥を行っても良い。このBの中間処理
を急ぐ場合は、次のCの工程に用いる過熱蒸気を用いる
処理を行えば、極端な程処理時間が短い。Bの中間処理
の方法については、木材内の自由水を無くすために行う
工程であるため、本願は、いずれの方法で処理されたと
しても問題とはならない。Bの中間処理を終えた木材
は、次の過熱蒸気を用いたCの工程に移行させる。世界
的に、木材に対する過熱蒸気の処理についての学術文献
の無い理由は、次に記載する理由による。 イ.過熱蒸気の温度をいくら高くしていても、常圧の大
気中に 過熱蒸気を放出すると、通常の飽和蒸気になっ
てしまい、温度は直ぐに、その飽和蒸気の温度になって
しまう。 ロ.圧力容器の中に、過熱蒸気を噴射しても、圧力容器
内の圧力が一定であれば、直ぐに、過熱蒸気は飽和蒸気
になってしまう。この過熱蒸気の特性から、試験機を作
っても、せいぜい1米未満の試験機でないと、過熱蒸気
による試験は行われないので、木材の試験をするために
は、短い木材では試験にもならないために、過熱蒸気を
用いる試験機も作れなかったので、研究論文はない。世
界的に、研究論文さえ無かった木材に対する過熱蒸気の
処理を行うには、次の方法を用い、過熱蒸気の特性を生
かした木材の処理を行えば、世界的に試験機さえも作れ
なかったにも関わらず、木材の加熱蒸気処理を行う事が
出来る。圧力容器の内部の左右の側壁に噴射管と、外部
の左右の側壁に蒸気放出管を取り付け、この放出管に連
結した数個の穴をあけた圧力容器を用いて、Cの工程を
行う。この圧力容器以外に、ボイラーからの飽和蒸気を
過熱蒸気にする過熱炉が必要である。Aの事前処理とB
の中間処理を行った事により、割れ歪みが発生する事が
無くなった木材を、桟積み状態にして、この圧力容器に
入れる。この時の入れ方に次の注意事項が必要である。
一般の業者が解り易くするために、その理由も付けてお
く。 イ.桟木の厚さは、いくら薄くても支障はない。(この
理由は乾燥して行く過程で木材に歪みが発生しない事
と、木材の間は均一な気流が流れる様になっているから
である) ロ.桟積みした左右の高さは、圧力容器の上部の壁面に
届く程積載する必要がある。 ハ.積載した木材の先端と後部と、積載木材の間と、フ
ォクリフトの爪の入る場所の空間を、不要の木材で簡単
な閉鎖を行っておく。(ロとハの理由は桟積み空間を均
一な気流を流すために必要である)以上の準備してか
ら、扉を閉鎖し、圧力容器の底に溜まる凝結水を放出し
うる程度のバルブを少し開けておく。以上の準備を終え
てから、ボイラーからの飽和蒸気を過熱炉を通過させて
過熱蒸気として、圧力容器内の片側の噴射管より過熱蒸
気を噴射させ、噴射している反対側の蒸気放出管より、
過熱蒸気を圧力容器外へ放出する。放出量より、注入量
が多い様にバルブ操作をしておけば、圧力容器内の圧力
は次第に上昇する。圧力容器内の圧力が上昇する迄と、
木材の温度が低い間は、過熱蒸気を噴射していても、そ
の過熱蒸気は直ぐに飽和蒸気になってしまい、飽和蒸気
による加熱と同様な状態となる。圧力容器内の圧力が大
気圧を越えて加圧状態になっても、木材の温度が低い間
は、飽和蒸気を用いた加熱と変わらず、過熱蒸気による
効果は出ない。圧力容器内の過熱蒸気を噴射している側
の積載している木材と圧力容器に囲まれている空間と、
蒸気放出管につながり蒸気を放出している側の積載して
いる木材と圧力容器に囲まれた空間との間に於いて、同
じ圧力容器の中であるにかかわらず、圧力に差が発生す
る。噴射している側の圧力は放出している側の圧力より
若干高い現象が発生する。然し、加圧状態となっている
ため、それぞれの空間内の圧力においては、均一な状態
であるので、次の事は容易に理解しうるだろう。熱風式
木材乾燥機の扇風機によって発生した気流は、均一な状
態で桟積み空間を流れないが、この本願の方法では、桟
積みしている木材の両側における圧力において、均一な
圧力の差があるため、いくら、桟木の厚さが薄くても、
その間に気流が発生する。そして、扇風機による気流と
違い、圧力差による気流であるから、それぞれの桟積み
空間に流れる気流に差が発生する事無く均一に流れる特
徴が起きる。圧力容器内の圧力が所定の圧力に達する
と、過熱蒸気の噴射を止め、蒸気の放出管は開けたまま
にしておくと、圧力容器内の圧力は所定の圧力迄下が
る。所定の圧力迄下がったら、蒸気放出を閉鎖し、前回
と異なる方向より過熱蒸気の噴射と蒸気放出を行う。こ
れを圧力容器内の圧力を所定の圧力になる迄続けて、同
じ操作を繰り返して行うと、それぞれの木材内部の温度
は、圧力変動させている範囲の高い方に近付く温度上昇
となってくる。木材の温度が、その温度になってくる
と、過熱蒸気が飽和蒸気になってしまっていた現象が無
くなり、過熱蒸気のままの気流となる。過熱蒸気のまま
の気流が流れる様になると、圧力容器内の圧力を変動さ
せている加熱の仕方を行っているので、圧力を上昇させ
ている間は、熱風式木材乾燥法と同様の木材表面からの
蒸発が起きる。それに反して圧力を低下させている間
は、木材の中心部からの沸騰が起きる。短い時間で、熱
風式木材乾燥法と真空乾燥法を交互に行っているのと、
同様な現象を発生させる木材乾燥法が実現する。木材の
業界は、大学の林産学科や国の森林総合研究所の学者に
より、半世紀前の長い間、木材を乾燥するのは、熱風式
木材乾燥機で乾燥するものとされてしまっていた。その
ため、乾燥機内での木材の損傷を少なくするため、損傷
の出やすい含水率の高い範囲での安全な風量風速に合わ
せて扇風機を設計されておリ、含水率低下に従い、風量
風速を変化させても木材に損傷が出にくい事すら考える
事を出来なくされていた。勿論、一般工業生産の様に、
生産の障害原因を生産開始以前に除去してから生産を開
始する常識さえも無い、レベルの低い学者の教育や指導
に疑問さえ持たなかったから、乾燥している木材の含有
水の発散の障害になるものを、乾燥始める以前に除去し
ておかねばならないとする事さえも行わなかった程度の
教育や指導をされていた木材業者には、木材の含水率に
応じて風量風速を変えて行けるものとする常識さえも、
着想しうる状態にされていなかった。一般の工業生産の
常識に従い生産開始以前に生産の障害原因を除去するA
の事前処理を行った木材は、Bの中間処理の天然乾燥中
に割れ歪みや水分傾斜を発生させずに含水率低下して行
く事を記載してきた。木材加工を開始するには、乾燥を
完了してから開始するものだと、大学の林産学科や国の
森林総合研究所の学者は言う。この事に疑問が出てき
た。Aの事前処理を行った木材の以後の乾燥過程に割れ
歪みや水分傾斜を発生させないで乾燥が進んでいる実態
を見ると、乾燥完了しない時に加工を始めたら、如何な
る事になるかを行ってみた。含水率23%以上であれ
ば、切削した木材にささくれが発生するが、含水率22
%以下になるとささくれが発生しない。そこで、含水率
22%の木材は、やわらく加工がしやすいので、その時
に仕上げカンナを除いた加工を済ませてしまって、その
加工済みの木材を桟積みして除湿乾燥をしたが、全く割
れ歪みや変形が発生しなかった。含水率22%の木材
は、やわらく加工は容易である。含水率が平衡含水率迄
低下すると、木材は固くなり加工がしにくくなってしま
う。この事は、乾燥中の木材に、含水率が22%以下か
ら平衡含水率に近付く過程で、木材内の水分が無くな
り、木材がむされてやわらくなる現象が発生しにくくな
っている事を意味している。木材の人工乾燥の期間の
間、この時期から含水率低下をさせるのに長い時間を必
要としている。乾燥中の木材に固くなって行く現象が起
きる事は、乾燥時間を長くかかる時期を短縮させうる方
法が存在している事を意味している。乾燥する木材の含
水率の高い間は、木材内の水によってむされている事の
ために、木材に圧力をかけると細胞腔に圧縮が起こり含
有水の発散の障害となったり、収縮率の増大となったり
する欠点が発生する。乾燥過程に乾燥している木材に固
くなって行く事は、この時期から、順次乾燥している木
材に加圧圧力を増大させられる事を意味している。又、
乾燥している過程で、加熱温度を上昇させると木材に変
色が発生するが、この現象は木材内に含まれていた有機
物質が木材内の水に溶けた染色液によって変色してしま
うのが、木材を加熱する事による変色の大部分の理由で
あった。この事からして、木材内の水が無くなり、木材
が固くなって行く過程で、人工乾燥している期間が長く
かかっていた含水率22%以下の含水率になってから、
加熱温度を上昇させても、乾燥している木材に変色の問
題も減少しうる事を意味している。以上の理由から、乾
燥期間の長くかかっていた含水率22%以下の含水率に
なってきてから、徐々に、Cの工程の過熱蒸気の温度を
上昇させられる事と、圧力容器内の圧力を高めて、Cの
工程の過熱蒸気の気流の速度をあげられる事を用いて、
乾燥時間が長くかかっていた期間の時間の短縮が考えら
れる。一般に使用されている大学の林産学科や国の森林
総合研究所が教育や指導している熱風式木材乾燥法で
は、風速を上げたり加熱温度を150C°以上にする事
は出来無いが、Cの工程に用いる圧力容器内の過熱蒸気
処理を用いる方法を利用すると、圧力容器内の圧力を高
めて行くに従い過熱蒸気の風速を3m以上にも速くする
事は容易で、又、過熱蒸気の温度を高くする事により、
圧力容器内の木材を150C°以上に加熱する事は容易
になる。一般の熱風式木材乾燥機では、厚さ30mmの
木材でも、そば柾材の乾燥は出来ないし、含水率22%
以下から最終乾燥迄に要する日数は4日以上必要として
いる。これに反して、本願の過熱蒸気を用いる方法で
は、そば柾材の乾燥は可能であるし、105mmの木造
建築に使用される構造用の木材でも、4〜6時間で乾燥
していまい、通常の常識では判断出来ない乾燥時間を二
十分の一にしてしまう極端な乾燥処理時間で終えられ
る。その上、全乾燥過程で割れ歪みの損傷は全く発生し
ない。そのため、木材工業では、木材乾燥中に割れ歪み
の損失が出るものとしていた常識は、全く消滅させられ
る事となった以上、実施例を説明した様に、本願は圧力
容器内での飽和蒸気の変動加圧と、飽和蒸気の放出と減
圧を用いて、木材内の全含有水の移動を容易にするAの
前処理を実施してから、木材内の自由水を発散させるB
の中間処理を終えてから、圧力容器に入れ、過熱蒸気処
理を行うC工程で、圧力容器内の圧力を高める事により
風速を速くしたり、過熱蒸気の温度を高めて木材に対す
る加熱温度を高める事を用いて、乾燥させる時間を極端
に短縮する方法であるから、木材業者にとって、乾燥の
経費の節減や、乾燥中の割れ歪みのロス発生を宿命とし
ていたのから開放され、これ等の問題点があったため運
転資金を増大させられていたのも解決される事等、得る
所大となった。大学の林産学科や国の森林総合研究所に
よる半世紀前の教育や指導から開放され、木材業者にと
って宿命としていた種々の乾燥経費の増大により、販売
価格を高くせざるを得なかったのが、価格低下される事
が可能となったため、日本国の憲法に記載されている日
本国の主権者たる国民全体にも、潤う発明が出来る事と
なった。そればかりか、現在地球温暖化の問題で、森林
資源の重要な事が世界的に叫ばれている。木材製品にす
る全過程でロスを発生させる事は、それだけ余分に木材
資源を伐採しなければならず、それにより地球温暖化が
増大する事になる。このためにも大学の林産学科や国の
森林総合研究所の教育や指導している、半世紀前の技術
を葬りさせなければ、全人類に被害を受ける事になるの
で、全世界の木材業者にも理解されやすい様に、本願の
申請にあたり、発明の詳細な説明の項を、詳しく記載し
ておいた。この技術を、全人類のために利用される事を
希望して止まない。

Claims (1)

  1. (57)【特許請求の範囲】圧力容器内に満たされた 飽和蒸気の圧力を変動させる加
    圧を行ってから容器内の飽和蒸気を放出し減圧を行う工
    程を、同圧力容器内に入れている木材に行い、同木材内
    の細胞腔や毛細管内の含有水も容易に動ける木材にする
    Aの前処理を行ってから、天然乾燥等の方法を用いて木
    材内の自由水を無くすBの中間処理を終えた後、Aの工
    程とBの工程を経た木材を圧力容器に入れ過熱蒸気を用
    いて圧力を変動させる加圧をしながら過熱蒸気の一部を
    外部に放出する方法により過熱蒸気の気流を作るCの工
    程を行い、Cの工程中に木材内の含水率低下に従い加圧
    圧力や加熱温度を高めることにより、気流の風速や温度
    を上げ乾燥する速度を速めることを特徴とする木材乾燥
    法。
JP3123191A 1991-03-04 1991-03-04 含水率の変化に従い風力と圧力を転換させうる木材乾燥法 Expired - Lifetime JP2552961B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3123191A JP2552961B2 (ja) 1991-03-04 1991-03-04 含水率の変化に従い風力と圧力を転換させうる木材乾燥法
US07/945,981 US5392530A (en) 1991-03-04 1992-03-04 Method of seasoning lumber
CA002081909A CA2081909C (en) 1991-03-04 1992-03-04 Method of seasoning lumber
PCT/JP1992/000258 WO1992015435A1 (fr) 1991-03-04 1992-03-04 Procede de sechage du bois

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3123191A JP2552961B2 (ja) 1991-03-04 1991-03-04 含水率の変化に従い風力と圧力を転換させうる木材乾燥法

Publications (2)

Publication Number Publication Date
JPH0650662A JPH0650662A (ja) 1994-02-25
JP2552961B2 true JP2552961B2 (ja) 1996-11-13

Family

ID=14854449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3123191A Expired - Lifetime JP2552961B2 (ja) 1991-03-04 1991-03-04 含水率の変化に従い風力と圧力を転換させうる木材乾燥法

Country Status (4)

Country Link
US (1) US5392530A (ja)
JP (1) JP2552961B2 (ja)
CA (1) CA2081909C (ja)
WO (1) WO1992015435A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756206B1 (fr) * 1996-11-22 1999-01-29 Laurencot Marie Therese Poutre de bois de type reconstitue
CA2246251A1 (en) * 1997-09-02 1999-03-02 Hyogo Izumi Lumber production machine not requiring seasoning and manufacturing method thereof
US6098679A (en) * 1998-03-17 2000-08-08 Noranda Forest Inc. Dimensionally stable oriented strand board (OSB) and method for making the same
RO118548B1 (ro) * 2000-03-06 2003-06-30 Technical System Keep Limited Company Metodă de uscare a lemnului
JP3562517B2 (ja) * 2001-08-30 2004-09-08 ヤマハ株式会社 楽器およびその製造方法
US7043853B2 (en) * 2003-02-04 2006-05-16 Waco Construction Co., Inc. Kiln with process water evaporation system
WO2006028572A2 (en) * 2004-09-02 2006-03-16 Virginia Tech Intellectual Properties, Inc. Killing insect pests inside wood by vacuum dehydration
US7676953B2 (en) * 2006-12-29 2010-03-16 Signature Control Systems, Inc. Calibration and metering methods for wood kiln moisture measurement
US8460798B2 (en) * 2008-10-31 2013-06-11 Kabushiki Kaisha Kawai Gakki Seisakusho Wood member for musical instrument and method of manufacturing the same, as well as soundboard manufacturing system and method
KR100945118B1 (ko) 2009-07-06 2010-03-02 (주)건조기술 과열증기를 이용한 목재표면 착색방법
US8291611B2 (en) 2010-06-30 2012-10-23 Eriksen Timothy L Multiple stage even-drying wood kiln system and method
CN104567326B (zh) * 2014-12-24 2016-05-18 中国农业大学 一种控温控湿干燥茯苓的装置与方法
CN104567292B (zh) * 2014-12-25 2017-12-26 宁德新能源科技有限公司 一种动力电池真空干燥设备
CN105835197B (zh) * 2016-06-23 2017-11-07 郑园 一种木材深度炭化方法
CN106482461A (zh) * 2016-12-12 2017-03-08 南京淮腾机械科技有限公司 一种低温真空蒸汽干燥箱
CN109539710A (zh) * 2019-01-14 2019-03-29 重庆海林生猪发展有限公司 粮食及农作物晾晒风干棚

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548403A (en) * 1944-11-01 1951-04-10 Elton V Smith Lumber kiln
JPS5044545A (ja) * 1973-08-24 1975-04-22
US3959529A (en) * 1974-06-14 1976-05-25 The Dow Chemical Company Wood treating process
JPS56154012A (en) * 1980-04-29 1981-11-28 Hiyougo Izumi Method of making winter grain of wood clear
JPS574706A (en) * 1980-06-12 1982-01-11 Hiyougo Izumi Wood in which defect do not generate and its manufacture
US4343095A (en) * 1981-03-24 1982-08-10 The United States Of America As Represented By The Secretary Of Agriculture Pressure dryer for steam seasoning lumber
JPS57165206A (en) * 1981-04-04 1982-10-12 Hiyougo Izumi Method of removing resin in resin bag
JPH0622802B2 (ja) * 1988-10-05 1994-03-30 株式会社サトウ 木材の乾燥方法並びにその乾燥時における加色及び脱脂の同時加工方法

Also Published As

Publication number Publication date
US5392530A (en) 1995-02-28
JPH0650662A (ja) 1994-02-25
CA2081909A1 (en) 1992-09-05
WO1992015435A1 (fr) 1992-09-17
CA2081909C (en) 1997-08-19

Similar Documents

Publication Publication Date Title
JP2552961B2 (ja) 含水率の変化に従い風力と圧力を転換させうる木材乾燥法
Navi et al. Effects of thermo-hydro-mechanical treatment on the structure and properties of wood
US4246704A (en) Process and plant for drying solid wood in planks or semifinished products by means of a superheated steam system
US1328505A (en) Process of drying lumber
Smith et al. Supercritical fluid (SCF) treatment: its effect on bending strength and stiffness of ponderosa pine sapwood
US2414808A (en) Wood treatment
US2422557A (en) Process for seasoning timber
Wright et al. Steam bending of wood; Embellishments to an ancient technique
US1328658A (en) Process of drying lumber
US2334586A (en) Wood-preserving apparatus
JPH0298404A (ja) 木材の乾燥方法並びにその乾燥時における加色及び脱脂の同時加工方法
JP2544231B2 (ja) 過熱蒸気の変動圧気流を利用した複合材の製造法
JPH1044107A (ja) 木材内部の樹液等の流去方法とこの前処理を前提とした防腐剤の浸透処理方法
EP0901893A1 (en) Lumber production machine and method
US2535925A (en) Method of drying wood
US1255340A (en) Impregnation of wood, &c.
GB1211221A (en) Method of autoclaving articles
MacLean Effect of temperature on the dimensions of green wood
Rietz Accelerating the kiln-drying of hardwoods
JP3109999B2 (ja) 木質材料成形品の圧縮状態固定化方法及び木質材料の残留応力除去方法
FR2143137A1 (en) Fuel element - for boiling water, pressurized water fast breeder or high temp gas cooled reactors
Kozhin et al. Application of the depressurization method in high-temperature oscillating drying of large-size lumber products.
US403144A (en) Process of preserving lumber
US430055A (en) Wallace c
Innes Improving seasoned hardwood timber quality: with particular reference to collapse

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees