JPH0650662A - 含水率の変化に従い風力と圧力を変換させうる木材の乾燥法 - Google Patents
含水率の変化に従い風力と圧力を変換させうる木材の乾燥法Info
- Publication number
- JPH0650662A JPH0650662A JP3123191A JP12319191A JPH0650662A JP H0650662 A JPH0650662 A JP H0650662A JP 3123191 A JP3123191 A JP 3123191A JP 12319191 A JP12319191 A JP 12319191A JP H0650662 A JPH0650662 A JP H0650662A
- Authority
- JP
- Japan
- Prior art keywords
- wood
- pressure
- water
- drying
- water content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B7/00—Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Drying Of Solid Materials (AREA)
Abstract
(57)【要約】 (修正有)
【目的】高圧高温の過熱蒸気の気流を用い、短時間で割
れや歪みを全く発生しない乾燥材にする。 【構成】木材内の組織の毛細管や細胞腔内の含有水も、
導管内の含有水と同様に発散できる木材にする乾燥の前
処理を行う。次に、前処理を終えた木材を木材の厚さに
関係なく均一に含水率低下する特徴を生かして、天然乾
燥を行い自由水を発散させる。被乾燥木材の含水率低下
に伴い、加圧を高めても圧縮状態が起きない木材の特徴
を生かして、過熱蒸気の圧力と温度を順次高め、高温の
風量を大きくし、短分間の間に熱風乾燥法と真空乾燥の
組合せを繰り返し、短時間の間に割れや歪みを発生させ
ずに乾燥を完了させる。
れや歪みを全く発生しない乾燥材にする。 【構成】木材内の組織の毛細管や細胞腔内の含有水も、
導管内の含有水と同様に発散できる木材にする乾燥の前
処理を行う。次に、前処理を終えた木材を木材の厚さに
関係なく均一に含水率低下する特徴を生かして、天然乾
燥を行い自由水を発散させる。被乾燥木材の含水率低下
に伴い、加圧を高めても圧縮状態が起きない木材の特徴
を生かして、過熱蒸気の圧力と温度を順次高め、高温の
風量を大きくし、短分間の間に熱風乾燥法と真空乾燥の
組合せを繰り返し、短時間の間に割れや歪みを発生させ
ずに乾燥を完了させる。
Description
【発明の詳細な説明】 本願は、従来からある風速を用いる木材乾燥法は、含水
率の変化に即応して風速を変化させることはできない
が、加圧状態の過熱蒸気を使用することにより、乾燥レ
ベルに応じて風速や温度を高めて乾燥時間を短縮しうる
ことの発見を用いた木材乾燥法に関するものである。従
来からある熱風式木材乾燥機は、割れや歪みの発生しや
すい含水率の高い木材でも乾燥する時、乾燥する木材に
割れや歪みの損失を少なくするためを考慮して、その乾
燥機に使用する扇風機の能力を計算して、風量風速を固
定した扇風機を付け、乾燥開始から乾燥完了まで、同じ
風量風速で行うものとして、誰も疑うものはいなかっ
た。然し温度だけは90C°未満の温度変化だけは行っ
ていた。冷静に判断すると、割れや歪みの発生しやすい
時期は、乾燥する木材の含水率の高い時に多く、含水率
が低くなるにつれ、割れ歪みの発生は少なくなるのは容
易に判断しうる。然し、含水率が低くなってから乾燥完
了までの時間は長くかかるのが、一般的に用いられてい
る乾燥機の実態であった。その上、含水率が低くなって
から、乾燥完了するまでの含有水の発散は困難であるた
め、熱風式木材乾燥機の扇風機の回転速度を電気的に変
更して、風量風速を変更する熱風式木材乾燥機を作るの
は、無意味なものとされていた。本願のAの工程を用い
て処理した木材は、含有水の発散が困難である細胞腔や
毛細管内の含有水の発散も容易になっているので、含水
率の低い状態になった時でも、含水率の高い時と同様に
発散しうる特徴がある。そのため、熱風式木材乾燥機の
扇風機の回転速度を、電気的に転換しうる乾燥機に対応
しうる。然し、この方法を用いたら、従来の熱風式木材
乾燥機より、乾燥時間を短縮しうるのは事実であるが、
そのレベルより比較にならない短時間で乾燥しうる方法
がある。それが、本願の発明となった。この方法は、従
来の常識では考えられない程の短時間で、厚さの厚い木
材も乾燥してしまう。そのため、熱風式木材乾燥機の扇
風機の回転速度を、電気的に転換する様な姑息な改良
を、無意味なものにしてしまうこととなった。本願は、
大学の林産学科や国の森林総合研究所が行っている木材
乾燥法では、想像さえも出来ない高度の技術であり、世
界の大学や研究所も試験機さえも作れない状態のため、
世界に学術文献さえもない技術である。一般の木材の関
係者でも理解しうる様に説明するのは困難であるが、そ
れなりに理解しうる様に噛み砕いて、教科書を作る様な
説明をして行くことにする。その目的のために、大学の
林産学科や国の森林総合研究所が行っている木材乾燥の
仕方を、強烈に批判しながら、本願を説明して行く事に
する。この強烈な批判を削除したら、一般の木材の関係
者には、世界的に学術文献も無い本願を理解しにくいと
思えるからである。この正論に則って批判するのは、一
般の業者にも理解しやすい様に、発明の詳細な説明を行
う特許出願の精神に則って記載するので、この批判は如
何なる事があっても削除することはしない。これは、大
学の林産学科や国の森林総合研究所の、半世紀の長きに
渉って、矛盾だらけの教育や指導を止めさせないと、木
材業者や日本国の主権者の国民や世界人類全体に、多大
の損失をさせられるからである。木材には、含有水の発
散の容易な導管と、含有水の発散の困難な細胞腔や極め
て細い毛細管とが、共存している事と、木材は乾燥が進
むにつれ収縮が発生する事と、含有水の発散むらが起き
れば収縮状態が異なり、そのために木材に割れや歪みが
発生する事は、誰でも知っている事である。それにもか
かわらず、大学の林産学科や国の森林総合研究所は、木
材内の細胞腔や極めて細い毛細管の含有水も、導管と同
様の状態で、含有水の発散しうる処置を取らずに、製材
後直ちに天然乾燥してから、熱風式木材乾燥機で木材乾
燥する半世紀前に開発された熱風式木材乾燥法を、今だ
に行っている。そのため、熱風式木材乾燥機の中だけの
割れや歪みを防ぐことのみ研究し、天然乾燥中の割れや
歪みの発生は不可抗力と嘯いている。木材加工する業者
にとっては、いずれの場所でも割れや歪みが発生すれば
損失であるのに相違は無い。その上、乾燥完了後の含水
率分布が均一でなければ、乾燥材を加工しても、その完
成品に後日割れや歪みや変形が発生する。大学の林産学
科や国の森林総合研究所が行っている熱風式木材乾燥法
を使用して、木材を乾燥しても均一な含水率分布の乾燥
材にする事は不可能である。これ等の矛盾に満ちた木材
乾燥法に執着している大学の林産学科や国の森林総合研
究所の学者が、でたらめな教育したり木材業者を指導し
ている無能ぶりを、一般の木材業者にも理解しやすい様
に、本願の実施例を用いて説明する課程で明らかにして
行く事にする。本願のAの前処理は、従来の乾燥法の様
に製材したら直ちに天然乾燥する工程を行わず、製材後
の含水率の高い製材品を圧力容器に入れて、圧力容器内
の空気を飽和蒸気に入れ換えて、飽和蒸気の圧力を大気
圧より若干高い圧力にして、その圧力を変動させる事か
ら始める。この様にしなければならない理由は、水の比
熱は木材の比熱の3倍もあるし、木材内の水は対流を起
こせる隙間も無いため含水率の高い木材を加熱するのは
因難である。その上、加圧状態に木材を置くと、低温の
含有水は木材の奥に押し込まれて行き、ますます木材全
体の温度を均一にするのは困難となるからである。この
ために、大気圧より若干高い圧力で加圧して、含有水が
木材の奥に押し込まれるのを少なくして、その加圧圧力
を変動させると、木材の温度が飽和蒸気の温度より低い
ために木材の表面に高温の凝縮水が発生する。その凝縮
水が圧力の上昇する過程で木材の内部に押し込まれて行
き、圧力を低下する過程で反動で木材内部の当初からあ
る含有水が木材表面方向へ移動する現象が発生する。こ
の木材内の水の移動状態を頻繁に繰り返すと、高温の凝
縮水と低温の当初からある含有水がまざり、木材内の水
の温度は自然に100C°に接近して行き、木材全体の
温度も、その水の温度と同一になって均一に上昇して行
く事になるが、この温度では不充分のために、飽和蒸気
の圧力の変動させる範囲全体を高くすると、同様な現象
の発生により、木材の中心部も含めて均一な温度にする
事ができる。その加熱する温度は120C°程度で目的
を達成するのに充分の温度としうる。この工法を用いて
も細胞腔内の水は動かないが、木材表面からの加熱では
なく、細胞腔の近くの水からの熱伝熱によって、細胞腔
内の水の温度も均一になる。細胞腔が密集している樹木
の種類によっては、この加熱処理しうる時間が若干異な
るのは言うまでもない。大学の林産学科や国の森林総合
研究所の学者が行っている木材の表面からの加熱する方
法では、比熱の関係から含水率の高い木材の加熱は困難
を極める。そして、過去にあったスチーミング・アンド
・バキューム法の様に、飽和蒸気の固定した加圧を用い
たら、その加圧圧力により、木材の中心部に低温の水の
塊が発生して、何時迄たっても木材の内部温度は均一に
ならない。大学の林産学科や国の森林総合研究所の学者
は、木材を加熱するにあたって、比熱の関係から、木材
内に水があれば加熱しにくいとした固定概念に捉われて
いるので、製材後直ちに天然乾燥して、木材内の水を無
くそうとしている事しか考えない程レベルが低い。その
上に、木材内に水があれば、その水を利用して木材の温
度を均一に高める事を考える事は出来ない程レベルは低
い。木材を乾燥する事は、木材内の水を無くす事であ
る。水を無くすには、水を蒸発させるか、沸騰させて気
体に転換させる以外に方法は無い。誰でも水を無くすた
めには、蒸発より沸騰の方が速い事を知っている。それ
にもかかわらず、大学の林産学科や国の森林総合研究所
の学者は、木材内の水を無くすのに、蒸発させる事のみ
に捉われて、木材内の水を均一に沸騰させる事を考えて
見様としない。その上、過去にあったスチーイミング・
アンド・バキューム法は、沸騰を用いているが、木材の
中心部迄均一温度にしうる事は出来ない工法であるの
で、木材表面からの加熱する方法となんら変わらないと
して、その欠点を解決して見様とさえしない程、大学の
林産学科や国の森林総合研究所の学者の熱伝熱のレベル
は低い。木材内の温度が均一に120C°程度にしてか
ら、圧力容器内の飽和蒸気を、圧力容器外に放出を始め
ると、大気圧以上の気圧でも、当初の圧力と比較して減
圧状態となり、木材内の水は沸騰する。大学の林産学科
や国の森林総合研究所の学者は、熱伝熱の知識が無いか
ら、大気圧以下に減圧しなければ減圧状態にならないと
し、大気圧以下に減圧しなければ沸騰を起こさないと錯
覚している程レベルは低い。木材内の温度が均一になっ
ておれば、水に沸騰させる現象となれば、木材内の全体
の水は木材のいずれの場所にあっても、均一に沸騰現象
が発生し気体になって発散する。このため、含有水の発
散が困難であった細胞腔内の水も、同時に加熱時に与え
られた熱量に比例して沸騰を起きる。与えられた熱量が
気化熱によって消耗してしまう迄沸騰による気体となっ
て発散して行く現象は続く。沸騰現象は気体になって発
散する現象のために、発散する水が前にあっても、その
中を通り抜けて発散するために、細胞腔がいくら接続し
ていても、全細胞腔は均一に発散して行く水の量は均一
である。このため、このAの事前処理を行った木材は、
均一に含有水の発散した空洞を持つ木材になっている。
次のBの中間工程に移っても、含有水の発散しにくいと
されている細胞腔の水は隣の細胞腔の空洞に移動しうる
空間が空いているために、細胞腔の水も、他の部分と同
様に発散して行く木材となっている。含有水の発散の障
害となっていた木材内の樹脂は、木材を加熱している温
度にて軟質となっており、沸騰する水の発散して行くの
に障害となる事は無いだけではなく、沸騰する蒸気圧で
水蒸気蒸留現象が発生して、テレピンとコロホニウムに
化学分解してしまい、テレピンは気体となって発散し、
コロホニウムは泡となって沸騰圧力により木材表面に押
し出されて行く現象が起こり、樹脂による含有水の発散
の障害を消滅しうる。水が沸騰する時、急激に沸騰させ
ると水蒸気爆発が起きる。この水蒸気爆発は、山や原子
炉を吹き飛ばす程の威力がある。0の次は無限と言う数
字の配列は無いから、水蒸気爆発にも種々のレベルは存
在する。そのため、急速に圧力低下させると、木材の内
部は大量の割れが発生し、使用できるものが無くなって
しまう。ゆっくり圧力低下させると水蒸気爆発は起きな
い。適当に圧力低下させると、木材内の水の沸騰する状
態が種々異なる現象が起きる。この理由は、木材の組織
により水を閉鎖している状態が異なり、水の発散の障害
となっている極めて細い毛細管の奥にある水や、細胞腔
内の水の沸騰する圧力は、簡単に水が発散しうる所の圧
力より高くなるのは当然の事である。このため、適当な
圧力で沸騰しうる様にすれば、水の発散の障害になって
いた極めて細い毛細管や細胞腔の入り口の紋孔付近に微
細な亀裂を作る水蒸気爆発を起こしうる。この適当な圧
力は樹木の種類によって異なるため、使用する樹木を電
子顕微鏡写真を用いて測定しなければ、この適当な圧力
は出せない。圧力容器内の飽和蒸気を放出し終わった
ら、圧力容器を密閉して、真空ポンプを動かし、大気圧
以下に減圧すると、上記の水蒸気爆発を除いた現象は再
び起きる。この現象が発生している時間はせいぜい30
分程度で、それ以上の時間になれば、上記の現象は発生
せずに、木材の表面蒸発を吸収して水分傾斜を増大させ
る事となってしまう。大学の林産学科や国の森林総合研
究所の学者には、熱伝熱の蓄積量の計算も出来ないレベ
ルの低い学者が多数いるため、圧力容器に付いている温
度計の表示温度と木材の温度とは別のものだと理解出来
ないで、論文作成したり、学生や木材業者を指導する学
者がいるのは、噴飯者である。以上のAの事前処理を終
えた木材は、木材の組織に関係は無く、いくら厚い木材
盤でも、木材の表面の3mmを除けば、水分傾斜を発生
させずに含水率低下して行く木材となっている。一般の
工業生産は、生産の障害になるものは、生産開始する以
前に、その障害になるものは取り除いてから生産を開始
するのが、工業生産の基本原則である。このAの事前処
理を行う事により、木材工業も、一般の工業の様な生産
の基本原則に則った工業生産をしうる様になった。この
ため、大学の林産学科や国の森林総合研究所の学者が、
指導している一般の工業生産の仕方を無視した木材乾燥
法を指導しているために、天然乾燥では、桟積みしてい
る木材の桟の間から、向こう側が見えない程、歪みが大
量に発生させていながら不可抗力と嘯いている。Aの事
前処理を終えた木材をBの中間処理の天然乾燥したら、
全く歪みが発生していないで、桟積みの間の空間は全量
同じ空間があいたまま、含水率低下が進んで行く。この
状態になるのは天然乾燥中の木材に水分傾斜を発生しな
いで含水率低下していると、木材乾燥の経験のある者な
ら理解出来るだろう。天然乾燥中の木材を、適当な時期
をみはらかって引抜き試験を実施すると、木材の厚さが
いくら厚くても、表面の3mmを除いて水分傾斜がほと
んど発生しないで含水率低下しているのが実証されてい
る。この状態を見た人は誰でも不可抗力として嘯いてい
た学者に騙されていた事に気が付く事であろう。日本に
は、全国に多数の大学の林産学科や、国の森林総合研究
所を姶め全国に多数の木材の研究所があり、それぞれに
多数の学者がいるにかかわらず、天然乾燥中の含水率の
分布を研究している論文は無い。乾燥機に入れる前と取
り出す時の試験データーを出しただけの論文が多数ある
が、製材してから、木材加工を始める間の全工程での割
れ歪み発生状況を調査しない研究論文は、木材乾燥の論
文とは言えない。Bの中間処理の仕方は、気候の良い地
方では通常の天然乾燥でも良い。気候の悪い地方では微
風を伴った除湿乾燥を行っても良い。このBの中間処理
を急ぐ場合は、次のCの工程に用いる過熱蒸気を用いる
処理を行えば、極端な程処理時間が短い。Bの中間処理
の方法については、木材内の自由水を無くすために行う
工程であるため、本願には、いずれの方法で処理された
としても問題とはならない。Bの中間処理を終えた木材
は、次の過熱蒸気を用いたCの工程に移行させる。世界
的に、木材に対する過熱蒸気の処理についての学術文献
の無い理由は、次に記載する理由による。
率の変化に即応して風速を変化させることはできない
が、加圧状態の過熱蒸気を使用することにより、乾燥レ
ベルに応じて風速や温度を高めて乾燥時間を短縮しうる
ことの発見を用いた木材乾燥法に関するものである。従
来からある熱風式木材乾燥機は、割れや歪みの発生しや
すい含水率の高い木材でも乾燥する時、乾燥する木材に
割れや歪みの損失を少なくするためを考慮して、その乾
燥機に使用する扇風機の能力を計算して、風量風速を固
定した扇風機を付け、乾燥開始から乾燥完了まで、同じ
風量風速で行うものとして、誰も疑うものはいなかっ
た。然し温度だけは90C°未満の温度変化だけは行っ
ていた。冷静に判断すると、割れや歪みの発生しやすい
時期は、乾燥する木材の含水率の高い時に多く、含水率
が低くなるにつれ、割れ歪みの発生は少なくなるのは容
易に判断しうる。然し、含水率が低くなってから乾燥完
了までの時間は長くかかるのが、一般的に用いられてい
る乾燥機の実態であった。その上、含水率が低くなって
から、乾燥完了するまでの含有水の発散は困難であるた
め、熱風式木材乾燥機の扇風機の回転速度を電気的に変
更して、風量風速を変更する熱風式木材乾燥機を作るの
は、無意味なものとされていた。本願のAの工程を用い
て処理した木材は、含有水の発散が困難である細胞腔や
毛細管内の含有水の発散も容易になっているので、含水
率の低い状態になった時でも、含水率の高い時と同様に
発散しうる特徴がある。そのため、熱風式木材乾燥機の
扇風機の回転速度を、電気的に転換しうる乾燥機に対応
しうる。然し、この方法を用いたら、従来の熱風式木材
乾燥機より、乾燥時間を短縮しうるのは事実であるが、
そのレベルより比較にならない短時間で乾燥しうる方法
がある。それが、本願の発明となった。この方法は、従
来の常識では考えられない程の短時間で、厚さの厚い木
材も乾燥してしまう。そのため、熱風式木材乾燥機の扇
風機の回転速度を、電気的に転換する様な姑息な改良
を、無意味なものにしてしまうこととなった。本願は、
大学の林産学科や国の森林総合研究所が行っている木材
乾燥法では、想像さえも出来ない高度の技術であり、世
界の大学や研究所も試験機さえも作れない状態のため、
世界に学術文献さえもない技術である。一般の木材の関
係者でも理解しうる様に説明するのは困難であるが、そ
れなりに理解しうる様に噛み砕いて、教科書を作る様な
説明をして行くことにする。その目的のために、大学の
林産学科や国の森林総合研究所が行っている木材乾燥の
仕方を、強烈に批判しながら、本願を説明して行く事に
する。この強烈な批判を削除したら、一般の木材の関係
者には、世界的に学術文献も無い本願を理解しにくいと
思えるからである。この正論に則って批判するのは、一
般の業者にも理解しやすい様に、発明の詳細な説明を行
う特許出願の精神に則って記載するので、この批判は如
何なる事があっても削除することはしない。これは、大
学の林産学科や国の森林総合研究所の、半世紀の長きに
渉って、矛盾だらけの教育や指導を止めさせないと、木
材業者や日本国の主権者の国民や世界人類全体に、多大
の損失をさせられるからである。木材には、含有水の発
散の容易な導管と、含有水の発散の困難な細胞腔や極め
て細い毛細管とが、共存している事と、木材は乾燥が進
むにつれ収縮が発生する事と、含有水の発散むらが起き
れば収縮状態が異なり、そのために木材に割れや歪みが
発生する事は、誰でも知っている事である。それにもか
かわらず、大学の林産学科や国の森林総合研究所は、木
材内の細胞腔や極めて細い毛細管の含有水も、導管と同
様の状態で、含有水の発散しうる処置を取らずに、製材
後直ちに天然乾燥してから、熱風式木材乾燥機で木材乾
燥する半世紀前に開発された熱風式木材乾燥法を、今だ
に行っている。そのため、熱風式木材乾燥機の中だけの
割れや歪みを防ぐことのみ研究し、天然乾燥中の割れや
歪みの発生は不可抗力と嘯いている。木材加工する業者
にとっては、いずれの場所でも割れや歪みが発生すれば
損失であるのに相違は無い。その上、乾燥完了後の含水
率分布が均一でなければ、乾燥材を加工しても、その完
成品に後日割れや歪みや変形が発生する。大学の林産学
科や国の森林総合研究所が行っている熱風式木材乾燥法
を使用して、木材を乾燥しても均一な含水率分布の乾燥
材にする事は不可能である。これ等の矛盾に満ちた木材
乾燥法に執着している大学の林産学科や国の森林総合研
究所の学者が、でたらめな教育したり木材業者を指導し
ている無能ぶりを、一般の木材業者にも理解しやすい様
に、本願の実施例を用いて説明する課程で明らかにして
行く事にする。本願のAの前処理は、従来の乾燥法の様
に製材したら直ちに天然乾燥する工程を行わず、製材後
の含水率の高い製材品を圧力容器に入れて、圧力容器内
の空気を飽和蒸気に入れ換えて、飽和蒸気の圧力を大気
圧より若干高い圧力にして、その圧力を変動させる事か
ら始める。この様にしなければならない理由は、水の比
熱は木材の比熱の3倍もあるし、木材内の水は対流を起
こせる隙間も無いため含水率の高い木材を加熱するのは
因難である。その上、加圧状態に木材を置くと、低温の
含有水は木材の奥に押し込まれて行き、ますます木材全
体の温度を均一にするのは困難となるからである。この
ために、大気圧より若干高い圧力で加圧して、含有水が
木材の奥に押し込まれるのを少なくして、その加圧圧力
を変動させると、木材の温度が飽和蒸気の温度より低い
ために木材の表面に高温の凝縮水が発生する。その凝縮
水が圧力の上昇する過程で木材の内部に押し込まれて行
き、圧力を低下する過程で反動で木材内部の当初からあ
る含有水が木材表面方向へ移動する現象が発生する。こ
の木材内の水の移動状態を頻繁に繰り返すと、高温の凝
縮水と低温の当初からある含有水がまざり、木材内の水
の温度は自然に100C°に接近して行き、木材全体の
温度も、その水の温度と同一になって均一に上昇して行
く事になるが、この温度では不充分のために、飽和蒸気
の圧力の変動させる範囲全体を高くすると、同様な現象
の発生により、木材の中心部も含めて均一な温度にする
事ができる。その加熱する温度は120C°程度で目的
を達成するのに充分の温度としうる。この工法を用いて
も細胞腔内の水は動かないが、木材表面からの加熱では
なく、細胞腔の近くの水からの熱伝熱によって、細胞腔
内の水の温度も均一になる。細胞腔が密集している樹木
の種類によっては、この加熱処理しうる時間が若干異な
るのは言うまでもない。大学の林産学科や国の森林総合
研究所の学者が行っている木材の表面からの加熱する方
法では、比熱の関係から含水率の高い木材の加熱は困難
を極める。そして、過去にあったスチーミング・アンド
・バキューム法の様に、飽和蒸気の固定した加圧を用い
たら、その加圧圧力により、木材の中心部に低温の水の
塊が発生して、何時迄たっても木材の内部温度は均一に
ならない。大学の林産学科や国の森林総合研究所の学者
は、木材を加熱するにあたって、比熱の関係から、木材
内に水があれば加熱しにくいとした固定概念に捉われて
いるので、製材後直ちに天然乾燥して、木材内の水を無
くそうとしている事しか考えない程レベルが低い。その
上に、木材内に水があれば、その水を利用して木材の温
度を均一に高める事を考える事は出来ない程レベルは低
い。木材を乾燥する事は、木材内の水を無くす事であ
る。水を無くすには、水を蒸発させるか、沸騰させて気
体に転換させる以外に方法は無い。誰でも水を無くすた
めには、蒸発より沸騰の方が速い事を知っている。それ
にもかかわらず、大学の林産学科や国の森林総合研究所
の学者は、木材内の水を無くすのに、蒸発させる事のみ
に捉われて、木材内の水を均一に沸騰させる事を考えて
見様としない。その上、過去にあったスチーイミング・
アンド・バキューム法は、沸騰を用いているが、木材の
中心部迄均一温度にしうる事は出来ない工法であるの
で、木材表面からの加熱する方法となんら変わらないと
して、その欠点を解決して見様とさえしない程、大学の
林産学科や国の森林総合研究所の学者の熱伝熱のレベル
は低い。木材内の温度が均一に120C°程度にしてか
ら、圧力容器内の飽和蒸気を、圧力容器外に放出を始め
ると、大気圧以上の気圧でも、当初の圧力と比較して減
圧状態となり、木材内の水は沸騰する。大学の林産学科
や国の森林総合研究所の学者は、熱伝熱の知識が無いか
ら、大気圧以下に減圧しなければ減圧状態にならないと
し、大気圧以下に減圧しなければ沸騰を起こさないと錯
覚している程レベルは低い。木材内の温度が均一になっ
ておれば、水に沸騰させる現象となれば、木材内の全体
の水は木材のいずれの場所にあっても、均一に沸騰現象
が発生し気体になって発散する。このため、含有水の発
散が困難であった細胞腔内の水も、同時に加熱時に与え
られた熱量に比例して沸騰を起きる。与えられた熱量が
気化熱によって消耗してしまう迄沸騰による気体となっ
て発散して行く現象は続く。沸騰現象は気体になって発
散する現象のために、発散する水が前にあっても、その
中を通り抜けて発散するために、細胞腔がいくら接続し
ていても、全細胞腔は均一に発散して行く水の量は均一
である。このため、このAの事前処理を行った木材は、
均一に含有水の発散した空洞を持つ木材になっている。
次のBの中間工程に移っても、含有水の発散しにくいと
されている細胞腔の水は隣の細胞腔の空洞に移動しうる
空間が空いているために、細胞腔の水も、他の部分と同
様に発散して行く木材となっている。含有水の発散の障
害となっていた木材内の樹脂は、木材を加熱している温
度にて軟質となっており、沸騰する水の発散して行くの
に障害となる事は無いだけではなく、沸騰する蒸気圧で
水蒸気蒸留現象が発生して、テレピンとコロホニウムに
化学分解してしまい、テレピンは気体となって発散し、
コロホニウムは泡となって沸騰圧力により木材表面に押
し出されて行く現象が起こり、樹脂による含有水の発散
の障害を消滅しうる。水が沸騰する時、急激に沸騰させ
ると水蒸気爆発が起きる。この水蒸気爆発は、山や原子
炉を吹き飛ばす程の威力がある。0の次は無限と言う数
字の配列は無いから、水蒸気爆発にも種々のレベルは存
在する。そのため、急速に圧力低下させると、木材の内
部は大量の割れが発生し、使用できるものが無くなって
しまう。ゆっくり圧力低下させると水蒸気爆発は起きな
い。適当に圧力低下させると、木材内の水の沸騰する状
態が種々異なる現象が起きる。この理由は、木材の組織
により水を閉鎖している状態が異なり、水の発散の障害
となっている極めて細い毛細管の奥にある水や、細胞腔
内の水の沸騰する圧力は、簡単に水が発散しうる所の圧
力より高くなるのは当然の事である。このため、適当な
圧力で沸騰しうる様にすれば、水の発散の障害になって
いた極めて細い毛細管や細胞腔の入り口の紋孔付近に微
細な亀裂を作る水蒸気爆発を起こしうる。この適当な圧
力は樹木の種類によって異なるため、使用する樹木を電
子顕微鏡写真を用いて測定しなければ、この適当な圧力
は出せない。圧力容器内の飽和蒸気を放出し終わった
ら、圧力容器を密閉して、真空ポンプを動かし、大気圧
以下に減圧すると、上記の水蒸気爆発を除いた現象は再
び起きる。この現象が発生している時間はせいぜい30
分程度で、それ以上の時間になれば、上記の現象は発生
せずに、木材の表面蒸発を吸収して水分傾斜を増大させ
る事となってしまう。大学の林産学科や国の森林総合研
究所の学者には、熱伝熱の蓄積量の計算も出来ないレベ
ルの低い学者が多数いるため、圧力容器に付いている温
度計の表示温度と木材の温度とは別のものだと理解出来
ないで、論文作成したり、学生や木材業者を指導する学
者がいるのは、噴飯者である。以上のAの事前処理を終
えた木材は、木材の組織に関係は無く、いくら厚い木材
盤でも、木材の表面の3mmを除けば、水分傾斜を発生
させずに含水率低下して行く木材となっている。一般の
工業生産は、生産の障害になるものは、生産開始する以
前に、その障害になるものは取り除いてから生産を開始
するのが、工業生産の基本原則である。このAの事前処
理を行う事により、木材工業も、一般の工業の様な生産
の基本原則に則った工業生産をしうる様になった。この
ため、大学の林産学科や国の森林総合研究所の学者が、
指導している一般の工業生産の仕方を無視した木材乾燥
法を指導しているために、天然乾燥では、桟積みしてい
る木材の桟の間から、向こう側が見えない程、歪みが大
量に発生させていながら不可抗力と嘯いている。Aの事
前処理を終えた木材をBの中間処理の天然乾燥したら、
全く歪みが発生していないで、桟積みの間の空間は全量
同じ空間があいたまま、含水率低下が進んで行く。この
状態になるのは天然乾燥中の木材に水分傾斜を発生しな
いで含水率低下していると、木材乾燥の経験のある者な
ら理解出来るだろう。天然乾燥中の木材を、適当な時期
をみはらかって引抜き試験を実施すると、木材の厚さが
いくら厚くても、表面の3mmを除いて水分傾斜がほと
んど発生しないで含水率低下しているのが実証されてい
る。この状態を見た人は誰でも不可抗力として嘯いてい
た学者に騙されていた事に気が付く事であろう。日本に
は、全国に多数の大学の林産学科や、国の森林総合研究
所を姶め全国に多数の木材の研究所があり、それぞれに
多数の学者がいるにかかわらず、天然乾燥中の含水率の
分布を研究している論文は無い。乾燥機に入れる前と取
り出す時の試験データーを出しただけの論文が多数ある
が、製材してから、木材加工を始める間の全工程での割
れ歪み発生状況を調査しない研究論文は、木材乾燥の論
文とは言えない。Bの中間処理の仕方は、気候の良い地
方では通常の天然乾燥でも良い。気候の悪い地方では微
風を伴った除湿乾燥を行っても良い。このBの中間処理
を急ぐ場合は、次のCの工程に用いる過熱蒸気を用いる
処理を行えば、極端な程処理時間が短い。Bの中間処理
の方法については、木材内の自由水を無くすために行う
工程であるため、本願には、いずれの方法で処理された
としても問題とはならない。Bの中間処理を終えた木材
は、次の過熱蒸気を用いたCの工程に移行させる。世界
的に、木材に対する過熱蒸気の処理についての学術文献
の無い理由は、次に記載する理由による。
イ.過熱蒸気の温度をいくら高くしていても、常圧の大
気中に過熱蒸気を放出すると、通常の飽和蒸気になって
しまい、温度は直ぐに、その飽和蒸気の温度になってし
まう。
気中に過熱蒸気を放出すると、通常の飽和蒸気になって
しまい、温度は直ぐに、その飽和蒸気の温度になってし
まう。
ロ.圧力容器の中に、過熱蒸気を噴射しても、圧力容器
内の圧力が一定であれば、直ぐに、過熱蒸気は飽和蒸気
になってしまう。
内の圧力が一定であれば、直ぐに、過熱蒸気は飽和蒸気
になってしまう。
この過熱蒸気の特性から、試験機を作っても、せいぜい
1米未満の試験機でないと、過熱蒸気による試験は行わ
れないので、木材の試験をするためには、短い木材では
試験にもならないために、過熱蒸気を用いる試験機も作
れなかつたので、研究論文はない。世界的に、研究論文
さえ無かった木材に対する過熱蒸気の処理を行うには、
次の方法を用い、過熱蒸気の特性を生かした木材の処理
を行えば、世界的に試験機さえも作れなかったにも関わ
らず、木材の加熱蒸気処理を行う事が出来る。圧力容器
の内部の左右の側壁に噴射管と、外部の左右の側壁に蒸
気放出管を取り付け、この放出管に連結した数個の穴を
圧力容器を用いて、Cの工程を行う。この圧力容器以外
に、ボイラーからの飽和蒸気を過熱蒸気にする過熱炉が
必要である。Aの事前処理とBの中間処理を行った事に
より、割れ歪みが発生する事が無くなった木材を、桟積
み状態にして、この圧力容器に入れる。この時の入れ方
に次の注意事項が必要である。一般の業者が解り易くす
るために、その理由も付けておく。
1米未満の試験機でないと、過熱蒸気による試験は行わ
れないので、木材の試験をするためには、短い木材では
試験にもならないために、過熱蒸気を用いる試験機も作
れなかつたので、研究論文はない。世界的に、研究論文
さえ無かった木材に対する過熱蒸気の処理を行うには、
次の方法を用い、過熱蒸気の特性を生かした木材の処理
を行えば、世界的に試験機さえも作れなかったにも関わ
らず、木材の加熱蒸気処理を行う事が出来る。圧力容器
の内部の左右の側壁に噴射管と、外部の左右の側壁に蒸
気放出管を取り付け、この放出管に連結した数個の穴を
圧力容器を用いて、Cの工程を行う。この圧力容器以外
に、ボイラーからの飽和蒸気を過熱蒸気にする過熱炉が
必要である。Aの事前処理とBの中間処理を行った事に
より、割れ歪みが発生する事が無くなった木材を、桟積
み状態にして、この圧力容器に入れる。この時の入れ方
に次の注意事項が必要である。一般の業者が解り易くす
るために、その理由も付けておく。
イ.桟木の厚さは、いくら薄くても支障はない。(この
理由は乾燥して行く過程で木材に歪みが発生しない事
と、木材の間は均一な気流が流れる様になっているから
である) ロ.桟積みした左右の高さは、圧力容器の上部の壁面に
届く程積載する必要がある。
理由は乾燥して行く過程で木材に歪みが発生しない事
と、木材の間は均一な気流が流れる様になっているから
である) ロ.桟積みした左右の高さは、圧力容器の上部の壁面に
届く程積載する必要がある。
ハ.積載した木材の先端と後部と、積載木材の間と、フ
ォクリフトの爪の入る場所の空間を、不要の木材で簡単
な閉鎖を行っておく。(ロとハの理由は桟積み空間を均
一な気流を流すために必要である) 以上の準備してから、扉を閉鎖し、圧力容器の底に溜ま
る凝結水を放出しうる程度のバルブを少し開けておく。
以上の準備を終えてから、ボイラーからの飽和蒸気を過
熱炉を通過させて過熱蒸気として、圧力容器内の片側の
噴射管より過熱蒸気を噴射させ、噴射している反対側の
蒸気放出管より、過熱蒸気を圧力容器外へ放出する。放
出量より、注入量が多い様にバルブ操作をしておけば、
圧力容器内の圧力は次第に上昇する。圧力容器内の圧力
が上昇する迄と、木材の温度が低い間は、過熱蒸気を噴
射していても、その過熱蒸気は直ぐに飽和蒸気になって
しまい、飽和蒸気による加熱と同様な状態となる。圧力
容器内の圧力が大気圧を越えて加圧状態になっても、木
材の温度が低い間は、飽和蒸気を用いた加熱と変わら
ず、過熱蒸気による効果は出ない。圧力容器内の過熱蒸
気を噴射している側の積載している木材と圧力容器に囲
まれている空間と、蒸気放出管につながり蒸気を放出し
ている側の積載している木材と圧力容器に囲まれた空間
との間に於いて、同じ圧力容器の中であるにかかわら
ず、圧力に差が発生する。噴射している側の圧力は放出
している側の圧力より若干高い現象が発生する。然し、
加圧状態となっているため、それぞれの空間内の圧力に
おいては、均一な状態であるので、次の事は容易に理解
しうるだろう。熱風式木材乾燥機の扇風機によって発生
した気流は、均一な状態で桟積み空間を流れないが、こ
の本願の方法では、桟積みしている木材の両側における
圧力において、均一な圧力の差があるため、いくら、桟
木の厚さが薄くても、その間に気流が発生する。そし
て、扇風機による気流と違い、圧力差による気流である
から、それぞれの桟積み空間に流れる気流に差が発生す
る事無く均一に流れる特徴が起きる。圧力容器内の圧力
が所定の圧力に達すると、過熱蒸気の噴射を止め、蒸気
の放出管は開けたままにしておくと、圧力容器内の圧力
は所定の圧力迄下がる。所定の圧力迄下がつたら、蒸気
放出を閉鎖し、前回と異なる方向より過熱蒸気の噴射と
蒸気放出を行う。これを圧力容器内の圧力を所定の圧力
になる迄続けて、同じ操作を繰り返して行うと、それぞ
れの木材内部の温度は、圧力変動させている範囲の高い
方に近付く温度上昇となってくる。木材の温度が、その
温度になってくると、過熱蒸気が飽和蒸気になってしま
っていた現象が無くなり、過熱蒸気のままの気流とな
る。過熱蒸気のままの気流が流れる様になると、圧力容
器内の圧力を変動させている加熱の仕方を行っているの
で、圧力を上昇させている間は、熱風式木材乾燥法と同
様の木材表面からの蒸発が起きる。それに反して圧力を
低下させている間は、木材の中心部からの沸騰が起き
る。短い時間で、熱風式木材乾燥法と真空乾燥法を交互
に行っているのと、同様な現象を発生させる木材乾燥法
が実現する。木材の業界は、大学の林産学科や国の森林
総合研究所の学者により、半世紀前の長い聞、木材を乾
燥するのは、熱風式木材乾燥機で乾燥するものとされて
しまっていた。そのため、乾燥機内での木材の損傷を少
なくするため、損傷の出やすい含水率の高い範囲での安
全な風量風速に合わせて扇風機を設計されており、含水
率低下に従い、風量風速を変化させても木材に損傷が出
にくい事すら考える事を出来なくされていた。勿論、一
般工業生産の様に、生産の障害原因を生産開始以前に除
去してから生産を開姶する常識さえも無い、レベルの低
い学者の教育や指導に疑問さえ持たなかったから、乾燥
している木材の含有水の発散の障害になるものを、乾燥
始める以前に除去しておかねばならないとする事さえも
行わなかった程度の教育や指導をされていた木材業者に
は、木材の含水率に応じて風量風速を変えて行けるもの
とする常識さえも、着想しうる状態にされていなかっ
た。一般の工業生産の常識に従い生産開始以前に生産の
障害原因を除去するAの事前処理を行った木材は、Bの
中間処理の天然乾燥中に割れ歪みや水分傾斜を発生させ
ずに含水率低下して行く事を記載してきた。木材加工を
開始するには、乾燥を完了してから開始するものだと、
大学の林産学科や国の森林総合研究所の学者は言う。こ
の事に疑問が出てきた。Aの事前処理を行った木材の以
後の乾燥過程に割れ歪みや水分傾斜を発生させないで乾
燥が進んでいる実態を見ると、乾燥完了しない時に加工
を始めたら、如何なる事になるかを行ってみた。含水率
23%以上であれば、切削した木材にささくれが発生す
るが、含水率22%以下になるとささくれが発生しな
い。そこで、含水率22%の木材は、やわらく加工がし
やすいので、その時に仕上げカンナを除いた加工を済ま
せてしまって、その加工済みの木材を桟積みして除湿乾
燥をしたが、全く割れ歪みや変形が発生しなかった。含
水率22%の木材は、やわらく加工は容易である。含水
率が平衡含水率迄低下すると、木材は固くなり加工がし
にくくなってしまう。この事は、乾燥中の木材に、含水
率が22%以下から平衡含水率に近付く過程で、木材内
の水分が無くなり、木材がむされてやわらくなる現象が
発生しにくくなっている事を意味している。木材の人工
乾燥の期間の間、この時期から含水率低下をさせるのに
長い時間を必要としている。乾燥中の木材に固くなって
行く現象が起きる事は、乾燥時間を長くかかる時期を短
縮させうる方法が存在している事を意味している。乾燥
する木材の含水率の高い間は、木材内の水によってむさ
れている事のために、木材に圧力をかけると細胞腔に圧
縮が起こり含有水の発散の障害となったり、収縮率の増
大となったりする欠点が発生する。乾燥過程に乾燥して
いる木材に固くなって行く事は、この時期から、順次乾
燥している木材に加圧圧力を増大させられる事を意味し
ている。又、乾燥している過程で、加熱温度を上昇させ
ると木材に変色が発生するが、この現象は木材内に含ま
れていた有機物質が木材内の水に溶けた染色液によって
変色してしまうのが、木材を加熱する事による変色の大
部分の理由であった。この事からして、木材内の水が無
くなり、木材が固くなって行く過程で、人工乾燥してい
る期間が長くかかっていた含水率22%以下の含水率に
なってから、加熱温度を上昇させても、乾燥している木
材に変色の問題も現象しうる事を意味している。以上の
理由から、乾燥期間の長くかかっていた含水率22%以
下の含水率になってきてから、徐々に、Cの工程の過熱
蒸気の温度を上昇させられる事と、圧力容器内の圧力を
高めて、Cの工程の過熱蒸気の気流の速度をあげられる
事を用いて、乾燥時間が長くかかっていた期間の時間の
短縮が考えられる。一般に使用されている大学の林産学
科や国の森林総合研究所が教育や指導している熱風式木
材乾燥法では、風速を上げたり加熱温度を150C°以
上にする事は出来無いが、Cの工程に用いる圧力容器内
の過熱蒸気処理を用いる方法を利用すると、圧力容器内
の圧力を高めて行くに従い過熱蒸気の風速を3m以上に
も速くする事は容易で、又、過熱蒸気の温度を高くする
事により、圧力容器内の木材を150C°以上に加熱す
る事は容易になる。一般の熱風式木材乾燥機では、厚さ
30mmの木材でも、そば柾材の乾燥は出来ないし、含
水率22%以下から最終乾燥迄に要する日数は4日以上
必要としている。これに反して、本願の過熱蒸気を用い
る方法では、そば柾材の乾燥は可能であるし、105m
mの木造建築に使用される構造用の木材でも、4〜6時
間で乾燥していまい、通常の常識では判断出来ない乾燥
時間を二十分の一にしてしまう極端な乾燥処理時間で終
えられる。その上、全乾燥過程で割れ歪みの損傷は全く
発生しない。そのため、木材工業では、木材乾燥中に割
れ歪みの損失が出るものとしていた常識は、全く消滅さ
せられる事となった以上、実施例を説明した様に、本願
は圧力容器内での飽和蒸気の変動加圧と、飽和蒸気の放
出と減圧を用いて、木材内の全含有水の移動を容易にす
るAの前処理を実施してから、木材内の自由水を発散さ
せるBの中間処理を終えてから、圧力容器に入れ、過熱
蒸気処理を行うC工程で、圧力容器内の圧力を高める事
により風速を速くしたり、過熱蒸気の温度を高めて木材
に対する加熱温度を高める事を用いて、乾燥させる時間
を極端に短縮する方法であるから、木材業者にとって、
乾燥の経費の節減や、乾燥中の割れ歪みのロス発生を宿
命としていたのから開放され、これ等の問題点があった
ため運転資金を増大させられていたのも解決される事
等、得る所大となった。大学の林産学科や国の森林総合
研究所による半世紀前の教育や指導から開放され、木材
業者にとって宿命としていた種々の乾燥経費の増大によ
り、販売価格を高くせざるを得なかったのが、価格低下
される事が可能となったため、日本国の憲法に記載され
ている日本国の主権者たる国民全体にも、潤う発明が出
来る事となった。そればかりか、現在地球温暖化の問題
で、森林資源の重要な事が世界的に叫ばれている。木材
製品にする全過程でロスを発生させる事は、それだけ余
分に木材資源を伐採しなければならず、それにより地球
温暖化が増大する事になる。このためにも大学の林産学
科や国の森林総合研究所の教育や指導している、半世紀
前の技術を葬りさせなければ、全人類に被害を受ける事
になるので、全世界の木材業者にも理解されやすい様
に、本願の申請にあたり、発明の詳細な説明の項を、詳
しく記載しておいた。この技術を、全人類のために利用
される事を希望して止まない。
ォクリフトの爪の入る場所の空間を、不要の木材で簡単
な閉鎖を行っておく。(ロとハの理由は桟積み空間を均
一な気流を流すために必要である) 以上の準備してから、扉を閉鎖し、圧力容器の底に溜ま
る凝結水を放出しうる程度のバルブを少し開けておく。
以上の準備を終えてから、ボイラーからの飽和蒸気を過
熱炉を通過させて過熱蒸気として、圧力容器内の片側の
噴射管より過熱蒸気を噴射させ、噴射している反対側の
蒸気放出管より、過熱蒸気を圧力容器外へ放出する。放
出量より、注入量が多い様にバルブ操作をしておけば、
圧力容器内の圧力は次第に上昇する。圧力容器内の圧力
が上昇する迄と、木材の温度が低い間は、過熱蒸気を噴
射していても、その過熱蒸気は直ぐに飽和蒸気になって
しまい、飽和蒸気による加熱と同様な状態となる。圧力
容器内の圧力が大気圧を越えて加圧状態になっても、木
材の温度が低い間は、飽和蒸気を用いた加熱と変わら
ず、過熱蒸気による効果は出ない。圧力容器内の過熱蒸
気を噴射している側の積載している木材と圧力容器に囲
まれている空間と、蒸気放出管につながり蒸気を放出し
ている側の積載している木材と圧力容器に囲まれた空間
との間に於いて、同じ圧力容器の中であるにかかわら
ず、圧力に差が発生する。噴射している側の圧力は放出
している側の圧力より若干高い現象が発生する。然し、
加圧状態となっているため、それぞれの空間内の圧力に
おいては、均一な状態であるので、次の事は容易に理解
しうるだろう。熱風式木材乾燥機の扇風機によって発生
した気流は、均一な状態で桟積み空間を流れないが、こ
の本願の方法では、桟積みしている木材の両側における
圧力において、均一な圧力の差があるため、いくら、桟
木の厚さが薄くても、その間に気流が発生する。そし
て、扇風機による気流と違い、圧力差による気流である
から、それぞれの桟積み空間に流れる気流に差が発生す
る事無く均一に流れる特徴が起きる。圧力容器内の圧力
が所定の圧力に達すると、過熱蒸気の噴射を止め、蒸気
の放出管は開けたままにしておくと、圧力容器内の圧力
は所定の圧力迄下がる。所定の圧力迄下がつたら、蒸気
放出を閉鎖し、前回と異なる方向より過熱蒸気の噴射と
蒸気放出を行う。これを圧力容器内の圧力を所定の圧力
になる迄続けて、同じ操作を繰り返して行うと、それぞ
れの木材内部の温度は、圧力変動させている範囲の高い
方に近付く温度上昇となってくる。木材の温度が、その
温度になってくると、過熱蒸気が飽和蒸気になってしま
っていた現象が無くなり、過熱蒸気のままの気流とな
る。過熱蒸気のままの気流が流れる様になると、圧力容
器内の圧力を変動させている加熱の仕方を行っているの
で、圧力を上昇させている間は、熱風式木材乾燥法と同
様の木材表面からの蒸発が起きる。それに反して圧力を
低下させている間は、木材の中心部からの沸騰が起き
る。短い時間で、熱風式木材乾燥法と真空乾燥法を交互
に行っているのと、同様な現象を発生させる木材乾燥法
が実現する。木材の業界は、大学の林産学科や国の森林
総合研究所の学者により、半世紀前の長い聞、木材を乾
燥するのは、熱風式木材乾燥機で乾燥するものとされて
しまっていた。そのため、乾燥機内での木材の損傷を少
なくするため、損傷の出やすい含水率の高い範囲での安
全な風量風速に合わせて扇風機を設計されており、含水
率低下に従い、風量風速を変化させても木材に損傷が出
にくい事すら考える事を出来なくされていた。勿論、一
般工業生産の様に、生産の障害原因を生産開始以前に除
去してから生産を開姶する常識さえも無い、レベルの低
い学者の教育や指導に疑問さえ持たなかったから、乾燥
している木材の含有水の発散の障害になるものを、乾燥
始める以前に除去しておかねばならないとする事さえも
行わなかった程度の教育や指導をされていた木材業者に
は、木材の含水率に応じて風量風速を変えて行けるもの
とする常識さえも、着想しうる状態にされていなかっ
た。一般の工業生産の常識に従い生産開始以前に生産の
障害原因を除去するAの事前処理を行った木材は、Bの
中間処理の天然乾燥中に割れ歪みや水分傾斜を発生させ
ずに含水率低下して行く事を記載してきた。木材加工を
開始するには、乾燥を完了してから開始するものだと、
大学の林産学科や国の森林総合研究所の学者は言う。こ
の事に疑問が出てきた。Aの事前処理を行った木材の以
後の乾燥過程に割れ歪みや水分傾斜を発生させないで乾
燥が進んでいる実態を見ると、乾燥完了しない時に加工
を始めたら、如何なる事になるかを行ってみた。含水率
23%以上であれば、切削した木材にささくれが発生す
るが、含水率22%以下になるとささくれが発生しな
い。そこで、含水率22%の木材は、やわらく加工がし
やすいので、その時に仕上げカンナを除いた加工を済ま
せてしまって、その加工済みの木材を桟積みして除湿乾
燥をしたが、全く割れ歪みや変形が発生しなかった。含
水率22%の木材は、やわらく加工は容易である。含水
率が平衡含水率迄低下すると、木材は固くなり加工がし
にくくなってしまう。この事は、乾燥中の木材に、含水
率が22%以下から平衡含水率に近付く過程で、木材内
の水分が無くなり、木材がむされてやわらくなる現象が
発生しにくくなっている事を意味している。木材の人工
乾燥の期間の間、この時期から含水率低下をさせるのに
長い時間を必要としている。乾燥中の木材に固くなって
行く現象が起きる事は、乾燥時間を長くかかる時期を短
縮させうる方法が存在している事を意味している。乾燥
する木材の含水率の高い間は、木材内の水によってむさ
れている事のために、木材に圧力をかけると細胞腔に圧
縮が起こり含有水の発散の障害となったり、収縮率の増
大となったりする欠点が発生する。乾燥過程に乾燥して
いる木材に固くなって行く事は、この時期から、順次乾
燥している木材に加圧圧力を増大させられる事を意味し
ている。又、乾燥している過程で、加熱温度を上昇させ
ると木材に変色が発生するが、この現象は木材内に含ま
れていた有機物質が木材内の水に溶けた染色液によって
変色してしまうのが、木材を加熱する事による変色の大
部分の理由であった。この事からして、木材内の水が無
くなり、木材が固くなって行く過程で、人工乾燥してい
る期間が長くかかっていた含水率22%以下の含水率に
なってから、加熱温度を上昇させても、乾燥している木
材に変色の問題も現象しうる事を意味している。以上の
理由から、乾燥期間の長くかかっていた含水率22%以
下の含水率になってきてから、徐々に、Cの工程の過熱
蒸気の温度を上昇させられる事と、圧力容器内の圧力を
高めて、Cの工程の過熱蒸気の気流の速度をあげられる
事を用いて、乾燥時間が長くかかっていた期間の時間の
短縮が考えられる。一般に使用されている大学の林産学
科や国の森林総合研究所が教育や指導している熱風式木
材乾燥法では、風速を上げたり加熱温度を150C°以
上にする事は出来無いが、Cの工程に用いる圧力容器内
の過熱蒸気処理を用いる方法を利用すると、圧力容器内
の圧力を高めて行くに従い過熱蒸気の風速を3m以上に
も速くする事は容易で、又、過熱蒸気の温度を高くする
事により、圧力容器内の木材を150C°以上に加熱す
る事は容易になる。一般の熱風式木材乾燥機では、厚さ
30mmの木材でも、そば柾材の乾燥は出来ないし、含
水率22%以下から最終乾燥迄に要する日数は4日以上
必要としている。これに反して、本願の過熱蒸気を用い
る方法では、そば柾材の乾燥は可能であるし、105m
mの木造建築に使用される構造用の木材でも、4〜6時
間で乾燥していまい、通常の常識では判断出来ない乾燥
時間を二十分の一にしてしまう極端な乾燥処理時間で終
えられる。その上、全乾燥過程で割れ歪みの損傷は全く
発生しない。そのため、木材工業では、木材乾燥中に割
れ歪みの損失が出るものとしていた常識は、全く消滅さ
せられる事となった以上、実施例を説明した様に、本願
は圧力容器内での飽和蒸気の変動加圧と、飽和蒸気の放
出と減圧を用いて、木材内の全含有水の移動を容易にす
るAの前処理を実施してから、木材内の自由水を発散さ
せるBの中間処理を終えてから、圧力容器に入れ、過熱
蒸気処理を行うC工程で、圧力容器内の圧力を高める事
により風速を速くしたり、過熱蒸気の温度を高めて木材
に対する加熱温度を高める事を用いて、乾燥させる時間
を極端に短縮する方法であるから、木材業者にとって、
乾燥の経費の節減や、乾燥中の割れ歪みのロス発生を宿
命としていたのから開放され、これ等の問題点があった
ため運転資金を増大させられていたのも解決される事
等、得る所大となった。大学の林産学科や国の森林総合
研究所による半世紀前の教育や指導から開放され、木材
業者にとって宿命としていた種々の乾燥経費の増大によ
り、販売価格を高くせざるを得なかったのが、価格低下
される事が可能となったため、日本国の憲法に記載され
ている日本国の主権者たる国民全体にも、潤う発明が出
来る事となった。そればかりか、現在地球温暖化の問題
で、森林資源の重要な事が世界的に叫ばれている。木材
製品にする全過程でロスを発生させる事は、それだけ余
分に木材資源を伐採しなければならず、それにより地球
温暖化が増大する事になる。このためにも大学の林産学
科や国の森林総合研究所の教育や指導している、半世紀
前の技術を葬りさせなければ、全人類に被害を受ける事
になるので、全世界の木材業者にも理解されやすい様
に、本願の申請にあたり、発明の詳細な説明の項を、詳
しく記載しておいた。この技術を、全人類のために利用
される事を希望して止まない。
Claims (1)
- 圧力容器内の木材に、飽和蒸気の圧力を変動させる加圧
を行ってから容器内の飽和蒸気を放出し減圧を行う工程
を用いて木材内の細胞腔や毛細管内の含有水も容易に動
ける木材にするAの前処理を行ってから、天然乾燥等の
方法を用いて木材内の自由水を無くすBの中間処理を終
えた後、圧力容器に入れ過熱蒸気を用いて圧力を変動さ
せる加圧をしながら過熱蒸気の一部を外部に放出する方
法により過熱蒸気の気流を作るCの工程を行い、Cの工
程中に木材内の含水率低下に従い加圧圧力や加圧温度を
高めて気流の風力や温度を高めて乾燥する速度を高める
ことを特徴とする木材乾燥法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3123191A JP2552961B2 (ja) | 1991-03-04 | 1991-03-04 | 含水率の変化に従い風力と圧力を転換させうる木材乾燥法 |
US07/945,981 US5392530A (en) | 1991-03-04 | 1992-03-04 | Method of seasoning lumber |
CA002081909A CA2081909C (en) | 1991-03-04 | 1992-03-04 | Method of seasoning lumber |
PCT/JP1992/000258 WO1992015435A1 (fr) | 1991-03-04 | 1992-03-04 | Procede de sechage du bois |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3123191A JP2552961B2 (ja) | 1991-03-04 | 1991-03-04 | 含水率の変化に従い風力と圧力を転換させうる木材乾燥法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0650662A true JPH0650662A (ja) | 1994-02-25 |
JP2552961B2 JP2552961B2 (ja) | 1996-11-13 |
Family
ID=14854449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3123191A Expired - Lifetime JP2552961B2 (ja) | 1991-03-04 | 1991-03-04 | 含水率の変化に従い風力と圧力を転換させうる木材乾燥法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5392530A (ja) |
JP (1) | JP2552961B2 (ja) |
CA (1) | CA2081909C (ja) |
WO (1) | WO1992015435A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104567326A (zh) * | 2014-12-24 | 2015-04-29 | 中国农业大学 | 一种控温控湿干燥茯苓的装置与方法 |
CN104567292A (zh) * | 2014-12-25 | 2015-04-29 | 宁德新能源科技有限公司 | 一种动力电池真空干燥设备 |
CN106482461A (zh) * | 2016-12-12 | 2017-03-08 | 南京淮腾机械科技有限公司 | 一种低温真空蒸汽干燥箱 |
CN109539710A (zh) * | 2019-01-14 | 2019-03-29 | 重庆海林生猪发展有限公司 | 粮食及农作物晾晒风干棚 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2756206B1 (fr) * | 1996-11-22 | 1999-01-29 | Laurencot Marie Therese | Poutre de bois de type reconstitue |
CA2246251A1 (en) * | 1997-09-02 | 1999-03-02 | Hyogo Izumi | Lumber production machine not requiring seasoning and manufacturing method thereof |
US6098679A (en) * | 1998-03-17 | 2000-08-08 | Noranda Forest Inc. | Dimensionally stable oriented strand board (OSB) and method for making the same |
RO118548B1 (ro) * | 2000-03-06 | 2003-06-30 | Technical System Keep Limited Company | Metodă de uscare a lemnului |
JP3562517B2 (ja) * | 2001-08-30 | 2004-09-08 | ヤマハ株式会社 | 楽器およびその製造方法 |
CA2520914C (en) * | 2003-02-04 | 2010-04-27 | Waco Construction Inc. | Kiln with process water evaporation system |
US7739829B2 (en) * | 2004-09-02 | 2010-06-22 | Virginia Tech Intellectual Properties, Inc. | Killing insect pests inside wood by vacuum dehydration |
US7676953B2 (en) * | 2006-12-29 | 2010-03-16 | Signature Control Systems, Inc. | Calibration and metering methods for wood kiln moisture measurement |
DE102009046187A1 (de) * | 2008-10-31 | 2010-05-06 | Kabushiki Kaisha Kawai Gakki Seisakusho, Hamamatsu-shi | Holzelement für ein Musikinstrument und Verfahren zu seiner Herstellung sowie System und Verfahren zur Resonanzbodenherstellung |
KR100945118B1 (ko) | 2009-07-06 | 2010-03-02 | (주)건조기술 | 과열증기를 이용한 목재표면 착색방법 |
US8291611B2 (en) | 2010-06-30 | 2012-10-23 | Eriksen Timothy L | Multiple stage even-drying wood kiln system and method |
CN105835197B (zh) * | 2016-06-23 | 2017-11-07 | 郑园 | 一种木材深度炭化方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2548403A (en) * | 1944-11-01 | 1951-04-10 | Elton V Smith | Lumber kiln |
JPS5044545A (ja) * | 1973-08-24 | 1975-04-22 | ||
US3959529A (en) * | 1974-06-14 | 1976-05-25 | The Dow Chemical Company | Wood treating process |
JPS56154012A (en) * | 1980-04-29 | 1981-11-28 | Hiyougo Izumi | Method of making winter grain of wood clear |
JPS574706A (en) * | 1980-06-12 | 1982-01-11 | Hiyougo Izumi | Wood in which defect do not generate and its manufacture |
US4343095A (en) * | 1981-03-24 | 1982-08-10 | The United States Of America As Represented By The Secretary Of Agriculture | Pressure dryer for steam seasoning lumber |
JPS57165206A (en) * | 1981-04-04 | 1982-10-12 | Hiyougo Izumi | Method of removing resin in resin bag |
JPH0622802B2 (ja) * | 1988-10-05 | 1994-03-30 | 株式会社サトウ | 木材の乾燥方法並びにその乾燥時における加色及び脱脂の同時加工方法 |
-
1991
- 1991-03-04 JP JP3123191A patent/JP2552961B2/ja not_active Expired - Lifetime
-
1992
- 1992-03-04 US US07/945,981 patent/US5392530A/en not_active Expired - Fee Related
- 1992-03-04 CA CA002081909A patent/CA2081909C/en not_active Expired - Fee Related
- 1992-03-04 WO PCT/JP1992/000258 patent/WO1992015435A1/ja active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104567326A (zh) * | 2014-12-24 | 2015-04-29 | 中国农业大学 | 一种控温控湿干燥茯苓的装置与方法 |
CN104567292A (zh) * | 2014-12-25 | 2015-04-29 | 宁德新能源科技有限公司 | 一种动力电池真空干燥设备 |
CN106482461A (zh) * | 2016-12-12 | 2017-03-08 | 南京淮腾机械科技有限公司 | 一种低温真空蒸汽干燥箱 |
CN109539710A (zh) * | 2019-01-14 | 2019-03-29 | 重庆海林生猪发展有限公司 | 粮食及农作物晾晒风干棚 |
Also Published As
Publication number | Publication date |
---|---|
US5392530A (en) | 1995-02-28 |
CA2081909A1 (en) | 1992-09-05 |
CA2081909C (en) | 1997-08-19 |
JP2552961B2 (ja) | 1996-11-13 |
WO1992015435A1 (fr) | 1992-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0650662A (ja) | 含水率の変化に従い風力と圧力を変換させうる木材の乾燥法 | |
Stamm et al. | Minimizing wood shrinkage and swelling effect of heating in various gases | |
US6345450B1 (en) | Process for treating green wood and for accelerating drying of green wood | |
Elustondo et al. | Advances in wood drying research and development | |
Lee et al. | Effect of pretreatment with high temperature and low humidity on drying time and prevention of checking during radio-frequency/vacuum drying of Japanese cedar pillar | |
CN106895664A (zh) | 一种控制木材皱缩的联合干燥方法 | |
Zongying et al. | Stress characteristics and stress reversal mechanism of white birch (Betula platyphylla) disks under different drying conditions | |
JP2698792B2 (ja) | 木材の処理方法 | |
JPH0298404A (ja) | 木材の乾燥方法並びにその乾燥時における加色及び脱脂の同時加工方法 | |
Rietz | Accelerating the kiln drying of hardwoods | |
EP0901893A1 (en) | Lumber production machine and method | |
Liu et al. | Integrated drying and thermo-hydro-mechanical modification of western hemlock veneer | |
JP2544231B2 (ja) | 過熱蒸気の変動圧気流を利用した複合材の製造法 | |
Innes | Improving seasoned hardwood timber quality: with particular reference to collapse | |
JP3109999B2 (ja) | 木質材料成形品の圧縮状態固定化方法及び木質材料の残留応力除去方法 | |
JPH1044107A (ja) | 木材内部の樹液等の流去方法とこの前処理を前提とした防腐剤の浸透処理方法 | |
JP2753699B2 (ja) | 木材処理方法 | |
JP2620777B2 (ja) | 成長の速い樹木の歪み発生性質の除去法 | |
JP2976961B2 (ja) | 人工乾燥の不要な木材にする生産機及びその製造方法 | |
Innes | Improving seasoned hardwood timber quality | |
JPH0383603A (ja) | 加熱蒸気使用の木材の多重染色法 | |
Zhang | Identification and evaluation of improved drying methods of New Zealand beeches by means of an energy-efficient kiln process | |
Eckelman | Forestry & Natural Resources | |
楊萍 et al. | Foundational Experimental Study on Compressive Wood: A Demonstration of Its Application for Woodworking Teaching | |
Mende et al. | Simple Camera for High-Quality Wood Drying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |