WO1992014285A1 - Dispositif oscillant pour laser pulse du type a pompage par decharge transversal - Google Patents

Dispositif oscillant pour laser pulse du type a pompage par decharge transversal Download PDF

Info

Publication number
WO1992014285A1
WO1992014285A1 PCT/JP1991/000153 JP9100153W WO9214285A1 WO 1992014285 A1 WO1992014285 A1 WO 1992014285A1 JP 9100153 W JP9100153 W JP 9100153W WO 9214285 A1 WO9214285 A1 WO 9214285A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
electrode
main electrode
main
dielectric
Prior art date
Application number
PCT/JP1991/000153
Other languages
English (en)
Japanese (ja)
Inventor
Hajime Nakatani
Atsushi Sugitatsu
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP1991/000153 priority Critical patent/WO1992014285A1/fr
Priority to US07/752,573 priority patent/US5347531A/en
Priority to DE69109479T priority patent/DE69109479T2/de
Priority to CA002050490A priority patent/CA2050490C/fr
Priority to EP91903287A priority patent/EP0532751B1/fr
Priority claimed from CA002050490A external-priority patent/CA2050490C/fr
Publication of WO1992014285A1 publication Critical patent/WO1992014285A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0384Auxiliary electrodes, e.g. for pre-ionisation or triggering, or particular adaptations therefor

Definitions

  • the present invention relates to a lateral discharge excitation pulse laser oscillator including an electron-adhesive gas, and particularly to the configuration of the preionization electrode.
  • Fig. 5 is a cross-sectional view showing the discharge electrode part of the conventional lateral discharge excitation pulse laser oscillator shown in, for example, DOESF / 9004—T2 (19777) '''.
  • (1) is the first main electrode
  • (la) is the outer shape of the tip of the main electrode (1)
  • 4 -inch tube is the second main electrode
  • (3) is the main electrode generated between the main electrodes (1) and (2.)
  • (4) is located near the first main electrode
  • (5) is a quartz pie with an outer diameter of about 5 which contains the auxiliary electrode (4) and is arranged so as to be in contact with the first main electrode (1).
  • (6a) and (6b) are the corona discharges generated on the surface of the dielectric pipe
  • (7a) and (7b) are the corona discharge starting points. is there .
  • the laser gas is excited by the main discharge (3), and the laser oscillates in a direction perpendicular to the plane of the drawing. Since the conventional lateral discharge excitation pulse laser oscillation device is configured as described above, the corona discharge intensifies the light emission due to the corona discharge. There is a problem that the ultraviolet light generated from the vicinity of the start point () or (7 b) is not effectively emitted to the main discharge electrodes (1) and (2).
  • the present invention has been made to solve the above-mentioned problems. Therefore, it is possible to increase the amount of ultraviolet light to be emitted, and effectively use the ultraviolet rays as a main electrode. shall be the form state that can with ether morphism this and to'm Ri F 2 gas of good jar to Let 's also suspended the have electronic adhesion strength Do not gas a record in - the gas including cases in However, it is possible to achieve a uniform main discharge and, consequently, to obtain a pulsed-laser oscillation device capable of oscillating with high efficiency. You
  • the lateral discharge excitation pulse laser oscillator related to the present invention has a longer extension length of the corona discharge, and a strong part of the corona discharge.
  • the pre-ionization part was configured so as to face the main electrode, Ryu. With this configuration, the emission length of ultraviolet rays is increased by increasing the extension length of the corona discharge, and the light emission amount is increased even during the corona discharge. Arrange the electrodes so that ultraviolet light generated from near the discharge start point illuminates the air between the main electrodes.
  • FIG. 1 is a cross-sectional view showing a pulsed-laser oscillating device for horizontal discharge discharge excitation according to an embodiment of the present invention
  • Fig. 2 is a diagram showing the present invention.
  • the cross-sectional views of the power-discharge section, and Figs. 3 and 4 for explaining the power-dissipation extension, are shown in other implementations of this invention.
  • FIG. 3 is a cross-sectional view of a pulsed-laser oscillating device for lateral discharge excitation showing an example.
  • Fig. 5 is a cross-sectional view of a conventional pulsed lasing oscillator with lateral discharge excitation.
  • Fig. 1 is a cross-sectional view of the pulsed laser excitation device in the horizontal direction perpendicular to the laser emission optical axis of the pulse laser emission device.
  • (b) is a column-shaped auxiliary electrode spaced apart on both sides of the second main electrode (2), (5a) and (5b) are auxiliary electrodes (4 a)
  • (8a) and ( ⁇ b) are the dielectric type (5a),
  • (6d) is the corona discharge
  • (7a), (7b), (7c) is the corona discharge (& a), (6b), (6c)
  • the starting point of the corona discharge at which (6d) starts (9) is the surface of the electrode surface where the first main electrode (1) faces the second main electrode (2)
  • the center point, (10) is the first one determined by the line connecting the corona discharge starting point (7c) and the center point (9).
  • Direction, ⁇ ) is that the surface perpendicular to the direction in which the corona discharge (6) near the corona opening electrode (8b) develops is perpendicular to the laser oscillation optical axis.
  • the crossing lines indicate the second direction.
  • the configuration in this figure corresponds to the creeping discharge at the creepage when there is an electrode on the back surface, and the starting points of discharge ( 7a ), (7b), (7b)
  • the corona discharge started from c) and (7d) progresses along the surface of the dielectric pipes (5a) and (5b), and the corona discharge (6a) starts. ), (6b), (6e), (6d).
  • the development length of the corona discharge (6a) is indicated by a symbol in the figure.
  • the extension length of the discharge is approximately equal to half the outer circumference of the dielectric pipe (5) in this case.
  • Fig. 2 shows the shape of each type of K-discharge and the extension of the K-discharge discharge.
  • Figure 2 (a) shows the case where two corona start electrodes (8a) and (8b) are placed on the surface of a dielectric pipe (5) consisting of a cylindrical pipe.
  • Fig. 2 (b) shows a quaternary corona opening starting electrode (8a, (8b)) on the surface of a cylindrical dielectric pipe (5).
  • Fig. 2 (c) shows one starting point on the surface of the dielectric pipe (5) consisting of a square pipe.
  • Fig. 2 (d) shows the induction of a cylindrical pipe.
  • the starting electrode of the ⁇ -na is an electrode extending in a direction perpendicular to the plane of the drawing.
  • the corona discharge is extended by directing the dielectric pipe (5) perpendicular to the laser optical axis. It is almost equal to half of the outer circumference as viewed from the cross section.
  • the corona opening electrode (8) is used as the bite to get close to the dielectric pipe (5). If so, the corona discharge length is almost equal to half the pitch of this pitch.
  • the arrangement has the largest emission of light, for example, the corona discharge propagation length is half that of Fig. 2 (Fig. 2).
  • the emission of ultraviolet rays is halved, and the corona discharge propagation length is reduced to one-fourth compared to Fig. 1.
  • the emission amount of the ultraviolet ray is Immediately regardless of the fact that the surface of the dielectric pipe (5) is almost entirely covered by corona discharge (6), The electrode arrangement having a longer corona discharge discharge length has a larger ultraviolet ray generation amount, and the ultraviolet ray generation amount is the same as that of the corona discharge discharge length.
  • UV radiation from one corona discharge (6) was measured very finely. The amount is corona discharge Many were near the starting point (7), and it was found that it decreased as it reached the tip of the discharge (6).
  • the development length of the corona discharge is increased, and the start point of the corona discharge (7) faces the position where the main discharge (3) occurs. It has been found that the reserve ionization amount can be increased.
  • ultraviolet light propagates through the gas spout while diverging due to the corona discharge (6), and the force is absorbed by the gas in the process. If the location where the rhona discharge (6) is generated is as close as possible to the main electrodes (1) and (2), the reserve ionization can be increased. However, if the dielectric pipe (5) is too close to the first main electrode (1), the first main electrode (1) and the opening start electrode (8 ), So they need to be separated by a certain degree or more.
  • the purple electrode effective for the main electrode (1) is located.
  • the position where the outside line is illuminated is desired.
  • ultraviolet light having a high luminous intensity near the starting point (7) of the corner discharge is strongly radiated in the second direction ⁇ ).
  • This second direction CU) coincides with the first direction (10) connecting the center point (9) of the first main electrode (1) and the corona discharge start point (7e).
  • Preliminary preparation When ionization increases. If the angle between the first direction 0) and the second direction ⁇ ) is ⁇ , then the reserve ionization is proportional to cos ⁇ .
  • parameter I is a quantity representing the intensity of the preliminary ionization.
  • 1 5 or more, the efficiency of laser oscillation increases (more than 3%).
  • the value of parameter I is There is a necessary power S to double.
  • the first main electrode (1) and the minimum distance L (14) of the dielectric pipe (5) are set to the first main electrode (1) and the second main electrode.
  • the minimum gap length g of (2) is set to 1.05 times or more and 1.5 times or less, the laser oscillation is efficiently performed, and the force is also reduced to the first main power. There was no arc discharge between the electrode (1) and the dielectric pipe (5).
  • the minimum separation distance L C1) between the first main electrode (1) and the conductor type (5) is 1.17 times g. .
  • Fig. S is a cross-sectional view showing another embodiment of the present invention.
  • the dielectric pipe (5) is located on both sides of the center of the second main electrode (2). It is arranged so that it is embedded in the device. Also, the corona starting electrode (8) is integrated with the second main electrode (2). By adopting this structure, it is possible to omit the start electrode (8) of the core ⁇ , so that the structural force is required. It is not only a simple structure, but there is no structure that will obstruct the gas flow 02) between the main electrodes (1) and (2). Because The gas can be flowed at high speed. Therefore, it is advantageous to operate the laser upside down.
  • FIG. 4 is a cross-sectional view showing another embodiment of the present invention.
  • the dielectric pipes (5a) and (5b) are embedded in the second main electrode (2).
  • the dielectric pipes (5a), (5b) are partially (13a), (13) with the second main electrode (2).
  • is arranged with a buoyancy> from the second main electrode (2) by a distance d or more. If the distance d is greater than the thickness of the dielectric pipe (5), the corona discharge (6) has a longer propagation length as shown in FIG. The amount of separation can be increased.
  • the dielectric pipe (5) is arranged so as to be embedded in the second main electrode (2), it does not obstruct the gas flow 02). Since the gas can be circulated at high speed, the laser can be operated at a high repetition rate.
  • the corona opening starting electrode (8) has a uniform shape in the direction of the laser optical axis.
  • an aluminum ceramic containing aluminum as a main component as a dielectric material is used.
  • the power described in this case the same effect can be achieved even if another material is used for the laser of the above type.
  • the development length of corona discharge is extended, and the ultraviolet light emitted from the strong portion of corona discharge is increased.
  • the laser gas between the main electrodes and preparatory ionization By irradiating the laser gas between the main electrodes and preparatory ionization, uniform main discharge is obtained and the laser oscillation efficiency is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

L'invention se rapporte à un dispositif oscillant pour laser pulsé du type à pompage par décharge transversal, qui contient un gaz de capture des électrons, et plus particulièrement à la configuration des électrodes d'ionisation préliminaires (4a, 4b, 8a, 8b). Un tel dispositif oscillant pour laser pulsé du type à excitation par décharge transversale présente des parties d'ionisation préliminaire, telles que les parties dominantes de la décharge par effet corona se dirigent vers la partie comprise entre les électrodes principales (1, 2), grâce à l'importance de la longueur de développement (l) de la décharge par effet corona. Ces longueurs de développement importantes (l) augmentent la quantité de rayons ultraviolets émis et les électrodes (4a, 4b, 8a, 8b) sont disposées pour que l'air compris entre les électrodes principales (1, 2) soit irradié par les rayons ultraviolets émis de la zone proche des régions initiatrices de la décharge par effet corona, ces régions initiatrices émettant une lumière dont l'intensité est supérieure à celle des autres régions des décharges par effet corona. Ainsi, on obtient une décharge principale homogène et on améliore l'efficacité de l'oscillation laser.
PCT/JP1991/000153 1991-02-08 1991-02-08 Dispositif oscillant pour laser pulse du type a pompage par decharge transversal WO1992014285A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1991/000153 WO1992014285A1 (fr) 1991-02-08 1991-02-08 Dispositif oscillant pour laser pulse du type a pompage par decharge transversal
US07/752,573 US5347531A (en) 1991-02-08 1991-02-08 Transverse discharging excitation pulse laser oscillator apparatus
DE69109479T DE69109479T2 (de) 1991-02-08 1991-02-08 Mit transversaler entladung gepumpter pulslaser.
CA002050490A CA2050490C (fr) 1991-02-08 1991-02-08 Oscillateur de laser pulse a excitation par decharge transverse
EP91903287A EP0532751B1 (fr) 1991-02-08 1991-02-08 Laser pulse du type a pompage par decharge transversale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1991/000153 WO1992014285A1 (fr) 1991-02-08 1991-02-08 Dispositif oscillant pour laser pulse du type a pompage par decharge transversal
CA002050490A CA2050490C (fr) 1991-02-08 1991-02-08 Oscillateur de laser pulse a excitation par decharge transverse

Publications (1)

Publication Number Publication Date
WO1992014285A1 true WO1992014285A1 (fr) 1992-08-20

Family

ID=25674775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000153 WO1992014285A1 (fr) 1991-02-08 1991-02-08 Dispositif oscillant pour laser pulse du type a pompage par decharge transversal

Country Status (1)

Country Link
WO (1) WO1992014285A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577870A1 (fr) * 1992-07-06 1994-01-12 Mitsubishi Denki Kabushiki Kaisha Dispositif laser oscillateur impulsionel à excitation par décharge
WO1994009536A1 (fr) * 1992-10-09 1994-04-28 Cymer Laser Technologies Pre-ionisateur pour lasers
WO2024009662A1 (fr) * 2022-07-05 2024-01-11 ギガフォトン株式会社 Chambre pour appareil laser à gaz, appareil laser à gaz et procédé de fabrication de dispositif électronique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122179A (en) * 1980-02-29 1981-09-25 Mitsubishi Electric Corp Gas laser device
JPS61116888A (ja) * 1984-11-12 1986-06-04 Mitsubishi Electric Corp 放電励起型短パルスレ−ザ装置
JPH01298779A (ja) * 1988-05-27 1989-12-01 Toshiba Corp パルスレーザ電極

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122179A (en) * 1980-02-29 1981-09-25 Mitsubishi Electric Corp Gas laser device
JPS61116888A (ja) * 1984-11-12 1986-06-04 Mitsubishi Electric Corp 放電励起型短パルスレ−ザ装置
JPH01298779A (ja) * 1988-05-27 1989-12-01 Toshiba Corp パルスレーザ電極

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577870A1 (fr) * 1992-07-06 1994-01-12 Mitsubishi Denki Kabushiki Kaisha Dispositif laser oscillateur impulsionel à excitation par décharge
WO1994009536A1 (fr) * 1992-10-09 1994-04-28 Cymer Laser Technologies Pre-ionisateur pour lasers
WO2024009662A1 (fr) * 2022-07-05 2024-01-11 ギガフォトン株式会社 Chambre pour appareil laser à gaz, appareil laser à gaz et procédé de fabrication de dispositif électronique

Similar Documents

Publication Publication Date Title
EP0532751B1 (fr) Laser pulse du type a pompage par decharge transversale
US6466599B1 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
JP2771428B2 (ja) 高出力ビーム発生装置
JP2000196168A (ja) レ―ザ装置
JPH04324986A (ja) 放電励起パルスレーザ発振装置
WO1992014285A1 (fr) Dispositif oscillant pour laser pulse du type a pompage par decharge transversal
JP3428632B2 (ja) ガスレーザ装置用コロナ予備電離電極
JP3088579B2 (ja) レーザ装置
JP2001177173A (ja) ガスレーザ発振器
JP2002313599A (ja) プラズマ処理装置及びプラズマ点灯方法
JP2004186310A (ja) 気体レーザのコロナ予備電離方法及び装置
JPH0716048B2 (ja) 横方向放電励起パルスレーザ発振装置
JPH07169444A (ja) 誘電体バリヤ放電ランプ装置
RU2281581C1 (ru) Источник спонтанного излучения
JPH073893B2 (ja) ガスレ−ザ発生装置
JP3159528B2 (ja) 放電励起エキシマレーザ装置
JPH0793127B2 (ja) 無電極放電ランプ
TWI249176B (en) Plasma discharging device
JPH04237176A (ja) エキシマレーザー装置
JPS5851581A (ja) 横方向励起型ガスレ−ザ装置
JP2001044542A (ja) ガスレーザ装置用コロナ予備電離電極
JP2007221052A (ja) レーザ装置
JPS6034277B2 (ja) 横方向励起型ガスレ−ザ装置
JP2005353386A (ja) エキシマ放電ランプ装置
JPS63186483A (ja) 気体レ−ザ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2050490

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991903287

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1991903287

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991903287

Country of ref document: EP