WO1992012114A1 - Process for producing simultaneously aromatic hydroxy and carbonyl compounds - Google Patents

Process for producing simultaneously aromatic hydroxy and carbonyl compounds Download PDF

Info

Publication number
WO1992012114A1
WO1992012114A1 PCT/JP1991/001754 JP9101754W WO9212114A1 WO 1992012114 A1 WO1992012114 A1 WO 1992012114A1 JP 9101754 W JP9101754 W JP 9101754W WO 9212114 A1 WO9212114 A1 WO 9212114A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
compounds
metal
yield
Prior art date
Application number
PCT/JP1991/001754
Other languages
English (en)
French (fr)
Inventor
Fujio Matsuda
Katsuharu Miyata
Takazo Katoh
Eiiti Sugiyama
Kaoru Inoue
Original Assignee
Mitsui Toatsu Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals, Inc. filed Critical Mitsui Toatsu Chemicals, Inc.
Priority to EP92901915A priority Critical patent/EP0519084B1/en
Priority to DE69122859T priority patent/DE69122859T2/de
Publication of WO1992012114A1 publication Critical patent/WO1992012114A1/ja
Priority to KR92702023A priority patent/KR950008274B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/58Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for simultaneously producing a carbonyl compound which is extremely important as an industrial raw material and an aromatic hydroxy compound such as phenols, particularly, an aromatic compound such as benzene under mild reaction conditions. It relates to a novel method for producing phenols directly from group III compounds and oxygen with high yield.
  • ketones and aldehydes such as ketones and aldehydes from olefins
  • Hicker method is conventionally known as the most industrial method. That is, no.
  • This is a method for producing carbonyl compounds such as aldehydes and ketones in a liquid phase by reacting olefins with water and oxygen in the presence of radium ion and copper ions.
  • the example generated by is not yet known.
  • An object of the present invention is to provide a method for producing an aromatic hydroxy compound such as phenol from an aromatic compound represented by benzene or a benzene derivative in a high yield under mild conditions. It is here.
  • Another object of the present invention is to further improve the yield of the aromatic hydroxy compound by the presence of the olefin X together with the aromatic compound, and to convert the carbonyl compound into the aromatic hydroxy compound while further improving the yield of the aromatic hydroxy compound.
  • the purpose is to provide a method for co-production.
  • the present inventors have conducted intensive studies on the above-mentioned problems, and as a result, from aromatic compounds represented by benzene and benzene derivatives, to oxidizing agents such as oxygen, and X-rays.
  • oxidizing agents such as oxygen, and X-rays.
  • at least one platinum group metal or a platinum group metal compound is used.
  • This is a method in which an oxidation reaction is performed in the presence of at least one metal having two or more valences as a metal compound or a catalyst composed of these metal compounds.
  • olefins are shared in the reaction system.
  • the yield of aromatic hydroxy compounds can be significantly improved.
  • acetoaldehyde, acetic acid, acetone, acrolein, methylethylketon, ⁇ -ketoester, and ketocarbonyl compounds derived from orefins are also available. Representative carbonyl compounds are also produced.
  • the aromatic compounds used in the method of the present invention include benzene, substituted benzenes, naphthalene, substituted naphthalenes, anthracene, substituted anthracenes, juren, substituted dulenes, and the like. 6-membered ring condensed compound, thiophene, substituted thiophenes, frans, substituted frans, pyridine, substituted pyridines, quinoline, substituted dinolines, etc. And other heteroaromatic compounds.
  • Examples of the substituent possessed by these aromatic compounds include an alkyl group such as methyl, ethyl propyl and butyl, a carboxyl group, a nitro group, an amino group, a cyano group, an acetyl group, an alkoxy group, Examples include a hydroxyl group, an acetyl group, a nitrogen element, a mercapto group, and a thioalkoxy group. These may be used alone or in combination of two or more.
  • the olefins used in the method of the present invention are aliphatic, having at least one carbon-carbon double bond. It is a cyclic hydrocarbon, preferably an olefin having 30 or less carbon atoms. These olefins may be heteroatom-containing compounds such as oxygen-containing, nitrogen-containing, and sulfur-containing. In addition, those in which an aromatic group is partially substituted are also included. When there are two or more carbon-carbon double bonds, these double bonds may be conjugated, but at least one double bond is non-conjugated. Is preferred.
  • ethylene, propylene, butenes, butagens, pentenes, pentagenes, pentatrienes, hexenes, and hexagenes Aliphatic hydrocarbons such as hexatrienes, and oxygen-containing compounds such as vinyl alcohol, aryl alcohol, acrylate, acrylate, vinyl ether, and aryl ether.
  • Nitrogen-containing olefins such as refins, arylamines, etc .; sulfur-containing olefins such as arinomelcaptan, vinyl thioethers; cyclopentene; Cyclopentenes having substituents, cyclopentenes, cyclopentenes having substituents, cyclohexenes having substituents, and cyclohexenes having substituents , Hexahexane and substituents Hexagens, cyclooctenes and cyclooctenes having substituents, cyclohexenes and cyclooctanes having substituents, cyclohexenes Alicyclic olefins such as octatrienes and cyclotatrienes having a substituent, styrene, substituted styrenes, divinylbenzene Benzene, substituted divinylbenzenes, propylbenzenes
  • substituents of these alicyclic olefins and aromatic olefins include an alkyl group such as methyl, ethyl, and propyl, a carboxyl group, and a nitro group.
  • alkyl group such as methyl, ethyl, and propyl
  • carboxyl group such as methyl, ethyl, and propyl
  • a nitro group such as methyl, ethyl, and propyl
  • a carboxyl group such as methyl, ethyl, and propyl
  • a carboxyl group such as methyl, ethyl, and propyl
  • a nitro group such as methyl, ethyl, and propyl
  • a carboxyl group such as methyl, ethyl, and propyl
  • a nitro group such as methyl, ethyl, and propyl
  • a carboxyl group such as methyl, ethyl
  • the aromatic hydroxy compound defined in the method of the present invention is a compound in which at least one hydroxy group is directly bonded to carbon forming an aromatic ring of the above-mentioned aromatic compound. More specifically, at least one carbon-hydrogen bond at the carbon forming the aromatic ring of the above-mentioned aromatic compound has been converted to a carbon-hydroxy bond.
  • benzene, phenol, hydroquinone, resorcin, etc. are produced from benzene, naphthol, dihydroxynaphthalene, etc. are produced from naphthalene.
  • Toluene produces mono- and polyhydroxytoluenes
  • anisol produces methoxyphenol, methoxyresorcin and the like.
  • a compound having at least one hydroxy group directly bonded to an aromatic carbon is produced from the aromatic compound. Depending on the reaction conditions, --
  • Quinones such as zokinonone, naphthoquinone or anthraquinone, are also formed together with aromatic hydroxy compounds.
  • the carbonyl compound defined in the method of the present invention is a compound having a carbon-oxygen double bond, and more specifically, at least one carbon-containing compound of the above-mentioned olefin compound.
  • examples of the sulfonyl compound formed from ethylene include acetate acetic acid and acetic acid
  • examples of the carbonyl compound formed from propylene include acetate and acrylonitrile.
  • Rainyl, propionic acid, etc., and the carbonyl compounds generated from butenes include methylethyl ketone, butyl aldehyde, butanoic acid, and the like.
  • the above-mentioned olefins also produce aldehydes, carboxylic acids, ketones and the like.
  • the platinum group metal used as a catalyst in the method of the present invention is a metal represented by the element symbol Ru, Rh, Pd, 0s, Ir and Pt, which may be in the form of powder or particles. It is preferred to use. Further, it can be used by being supported on silica, alumina, activated carbon, zeolite, and the like.
  • platinum group metal compounds are inorganic and organometallic compounds of Ru, Rh, Pd, 0s, Ir and Pt, and metal salts and metal complexes thereof. Specifically, if it is exemplified by a molecular formula or an exponential formula,
  • Ru compounds include RuF 5 , RuF 6 , RuCl 3 , RuCl 4 , RuBr 3, Rul 3, Ru0 2 , Ru0 4, Ru (0H) 3, RuS 2,
  • Ru (C 5 H 5) is a (C 5 H 4 COCH 3) compound such.
  • RhF 3 RhF 5
  • RhF 6 RhCl 3
  • RhBr 3 Rh 2 0 3
  • RH0 2 Rh 2 S 3
  • OsF 4 OsFs, 0sF 6 , OsC, OsCl 4, OsBr 4, OsF 2 0 3, 0s0 2, 0s0 4, OsS 2,
  • Pt compound PtF 2, PtF 4, PtF 6, PtC, PtCl 4, PtBr 2, PtBr 4, Pt 1 2, PtI 4, PtO, Pt 3 0 4, Pt0 2, PtS, PtS 2, Pt (S0 4) 2, Pt ( CN) 2, Na 2 [PtCl 4], K 2 [PtCl 4], (NH 4) 2 [PtCl 4 ⁇ , H 2 [PtCl 6], Na 2 [PtCl 6], K 2 [PtCl 6 ], (NH 4 ) 2 [PtCl 6 ], K 2 [PtBr 4 ], Na 2 [PtBr 6 ], K 2 [PtBr 6 ], (NH 4 ) 2 [PtBr 6 ], Na 2 [PtBr 6 ], K 2 [PtBr 6 ], (NH 4 ) 2 [PtBr 6 ], Na 2 [Pt "], K 2 [Pt ⁇ ,
  • platinum group metal compounds have water of crystallization in their molecules.
  • examples of the amount that can be easily carried out include, for example, 'preferably a benzene when performed in a batch reaction.
  • a metal that can exist in two or more types of valence states is a metal in which a metal compound has a plurality of valences, for example, a monovalent and divalent compound (excluding a platinum group metal) It is.
  • a metal halogen in compound MX MX
  • MX is a metal atom in here, X represents a halo gain down atoms
  • MX 2 monovalent and divalent case of the same metal Nioiteko that say Nono b Genide is present.
  • the same metal is a metal having a plurality of valences, each of which can exist a metal compound.
  • valence of copper is 1 compounds CuCl 2, CuF 2, Cu ( C10 3) 2, CuS0 4, valence compounds of divalent copper say CuO is present.
  • metals defined in this way include element symbols, Ag, Au, Ce, Co, Cr, Cs, Cu, Eu, Fe, Ge, Hg, In, Mn, and Mo. , Nb, Ni, Np, Pa, Pb, Po, Pr, Rb, Re, Sb, Se, Sm, Sn, Ta, Te, Th, Tl, U, V, W, Yb and Zr
  • these metals or one or more compounds of these metals are subjected to a reaction.
  • Ag 2 Te AgN 3, AgN0 2, AgN0 3, AgCNO, Ag [PF 6], Ag 2 HP0 4, Ag 2 P0 4, Ag 4 P 2 0 7, AgPO s, Ag 3 As0 3, Ag 3 As0 4, Ag [SbF 6], Ag 2 C 2, Ag 2 C0 3, AgCN, AgNCO, AgSCN, Ag [BF 4], Ag (CH 3 C00), Ag 2 (C 2 0 4), Ag 2 Cr0 4, Ag 2 Cr0 7,
  • AuCl AuCl 3, AuBr, AuBr 3, Aul, Au 13, Au 2 0 3, Au (OH) 3,, Au 2 S, Au 2 S 3, Au 2 P s, AuCN, Au (CN) 3 ⁇ 3H 2 0 , H [AuCl 4 3, Na [AuCl 4],
  • Ce (C10 4) Ce 2 0 3, Ce0 2, Ce (0H) 3, Ce (0H) 4, Ce 2 S 3, Ce 2 (S0 4 ) 3, Ce 2 CS0 4) 3, Ce 2 (S0 4) 2, Ce 2 Se 3, Ce 2 Te 3, Ce (N0 3) 3, Ce (N0 3) 4, CeP0 4, CeC 2,
  • Ce 2 (C 2 0 4) 3 which is [Ce (C 5 H 7 0 2) 3]
  • [Ce (C 5 H 7 0 2) inorganic ⁇ beauty organic Se Li um compounds such as 4.
  • Co compounds such as CoF 2 , CoF 3 , CoCl 2 , Co (C10 4 ) 2 , CoBr 2 , Col 2, CoO, C02 O 3, C03 O4, Co (OH) 2, CoS, Co 2 S 3 , C0S2, C0SO4, Co (S0) 4, CoSe, CoSe0 4, Co (N0 3) 2, Co 2 P, Co 3 (P0 4) 2, CoAsS, Co 3 (As0 4) 2, CoC0 3, Co (CN ) 2, Co (SCN) 2 , CoSi 2, C02S1O4, CoCr0 4, AI2C0O4, CoFe 2 0 4, Co (CH 2 C00) 2, Co (CH 3 C00) 3, Co (C 2 0 4), Co (NH 4) 2 (S0 4) 2, CoK 2 (S0 4) 2, [ Co (NH 3 ) 6 ] Cl 2 ,
  • Co 2 (C0) s Co 2 (C0) s, Co 2 (C0) e (C 2 H 2 ), CO 3 (C0) 9 (CH), CO 4 (C0) 12 , Co (C 6 H B ) 2 , [Co (C 6 H 6 ) 2 ] + Br 3 , Co (C 5 H) (C 4 H 4 ),
  • CrF 2 is a Cr compound, CrF 3, CrCl 2, CrCl 3, Cr (Cl 4) 8, CrBr 3, Cr 12, Cr ", Crl 2 0 2, CrO, Cr 2 0 3, Cr0 3, Cr (0H) 2, Cr (0H ) 3, CrS, Cr 2 S 3, CrS0 4, Cr 2 (S0 4) 3, CrN, Cr (N0 3) 3, CrP, CrPO Cr 3 C 2,
  • CsTi (S0 4) is 4, CrCs (S0 4) 2 , Cs 2 [CoC 1 4] inorganic and organic Se Siu beam compounds such.
  • Cu compounds include CuF 2 , CuCl, CuCl 2 , Cu (C10 3 ) 2 , Cu (C10 4 ) 2 , CuBr, CuBr 2 , Cul, Cu 20 , CuO, Cu (0H) 2.
  • Eu compounds include EuF 2 , EuFs, EuCl 2 , EuCl 3 , one
  • Fe compounds include FeF 2 , FeF 3 , FeCl 2 , FeCl 3 , Fe (C10 4 ) 2 , Fe (C10 4 ) 3 , FeBr 2 , FeBr 3 , Fel 2 ,
  • FeO Fe 2 0 3, Fe 3 0 4, Fe 3 (0H) 2, FeO (OH), FeS,
  • Fe (CBH 5) C 5 H 4 CH0
  • GeF 2 is a Ge compound, GeF 4, GeCl 2, GeCl 4, GeBr 3, GeBr 4, Gel 2, Gel 4, GeCl 2 0, GeO, Ge0 2, GeS, GeS 2, GeSe 2, GeH 4, K 2 [GeF 6 ], ⁇ 2 [Ge (C 2 0 4 ) 3 ], [Ge (C 5 H 7 0 2 ) 3 ] C 10 4 , Ge (CH 3 ) 4 , Ge (C 2 H 5 ) " Inorganic and organic germanium compounds such as Ge (C 6 H 5 ) 4 .
  • Hg compounds include Hg 2 F 2 , HgF 2 , Hg 2 Cl 2 , HgCl 3 , Hg (C10 4 ) 2 , Hg 2 Br 2 , HgBr 2 , Hg 2 I 2 , Hgl 2 , Hg 4 C10 3 ,
  • HgO Hg 2 S, HgS, Hg 2 S0 4, HgS0 4, HgSe, HgTe, Hg 3 N 2, Hg 2 (N 3) 2, Hg 2 (N0 3) 2, Hg (N0 3) 2, HgClNH 2 , Hg 3 P0
  • Hg 3 (P0 4) Hg (CN) 2, Hg (CN) 2 ⁇ HgO, Hg (CN0) 2, HgC0 3, Hg 2 (SCN) 2, Hg (SCN) 2, HgCrO Hg 2 (CH 3 COO) 2, Hg (CH 3 COO) 2, KHgls, [HgCl 2 (NH 3) 2], K 2 [Hg (CN) 4 ], K 2 [Hg (SCN) 4 ], CoHg (SCN) Hg (CH 3 ) 2 , Hg (CH 2 Br) 2 , Hg (C 3 H 5 ) 2 , Hg (C 6 H 5 ) 2 , Hg (CCl 2 Br) (C e H 5 ),
  • Hg (C ⁇ C 6 H 5) 2, HgCKCsHs), HgBr (C 6 H 5), HgI (CH 3), HgKCH "), Hg (CH 3 C00) (C 6 H 5), Hg (CH 3 C00) (CH 2 C 6 H 5 ) and other inorganic and organic mercury compounds.
  • MnF 2 MnF 3, MnCl 2 , Mn (C10 4) 2, MnBr 2, nl 2, MnO, Mn 2 0 3, n0 2, Mn 3 0 4, ⁇ 2 0-, MnO ( OH), Mn (0H) 2 , MnS, MnS 2 , MnSO 3 , MnSO 4 , Mn 2 (SO 4 ) 3 , MnSe, MnTe, n (N0 3 ) 2 , MnP, Mn (PH 2 0 2 ) 2 , Mn (H 2 P0 4) 2 , MnHPO "Mn 3 (P0 4) 2, MnP0 4, Mn 2 P 2 0 7, nAs, Mn 3 C, nC0 3, MnSi, MnSi0 3, Fe 2 n0 4, Mn ( CH 3 C00) 2, Mn ( C 2 0 4), Mn (NH 4) 2 (S0 4) 2, KM
  • MoF 3 MoF 5, MoFe, M0CI2, M0CI3, MoCl 4, oCl 5, MoBr 2, MoBr 3, MoBr Mol 2, oCl 3 0, M02CI 5 O 3, M0CI4O, MoCl 2 0 z, 0O2, M0O 3, MoO (OH ) 3, M0S2, 0S 3, M0S 4, MoSe 2, MoTe 2, Mo 2 C, MoC, MoSi 2, o 2 B, oB, MoB 2, Mo 2 (CH 3 C00) It is an inorganic and organic molybdenum compound such as 4 .
  • NiF 2 is a Ni compound, N1CI2, Ni (C10 4) 2, NiBr 2, Nil 2, NiO, Ni (0H) 2, NiS, NiS 4, NiSO NiSe, NiSe0 4, Ni (N0 3) 2, Ni 2 P, Ni 2 (P0 4) 2, NiAs, NiC0 3, Ni (C0 3) 2 (0H) 6, Ni (CN) 2, Ni (SCN) 2, NiB, Ni [BF 4] 2, Ni (CH 3 C00) 2, NiC 2 0 "NH4N1CI3, K 2 Ni (S0 4) 2, (NH 4) 2 N i (SO 4) 2,
  • Ni (C 4 H 9 NC) 4 Ni (C 3 H 5 ) 2 , [ ⁇ NiBr (C 3 H 5 ) 2 ], Ni (C 5 H 5 ) 2 , Ni (C 3 H 5 ) (C 5 H 5 ), Ni 2 (C 2 H 2 ) (C 5 H 5 ) 2 , NiCl (C 5 H 5 ) Inorganic and organic nickel compounds such as ⁇ (P (CeH 5 ) 3 ⁇
  • Np compound is NPF 3, NpF 4, NpCls, NpCl 4, NpBr 3 Npl 3, Np0 2, Nps0 8, NpH 2, NpH Netw Puniumu compounds such as 3.
  • Pa Compound PAF 5 and PaC, PaCls, a PaBr 5, Pal 4, Pals, Pa0 2, Pa 2 0 pro store click Chiniumu compounds such as 5.
  • Re compounds include ReF 4 , ReF 6 , ReF 7 , ReCl 3 , ReCl 4 , eCl 5, ReBr 3, ReCl 4 0, ReC10 3, Re0 2, Re0 3, Re 2 0 7, ReS 2, Re 2 S 7, K 2 [ReCl 6], K 2 [ReCl 5 0], Re 2 ( CO), 0 , ReCKCO) 5 , Re 2 (CH) (C0) 5 , ReH (C0) 5 , Re (CO) 3 (C 5 H 5 ), Re (N 2 ) (C0) (C 5 H 5 ), ReH (C 5 H 5 ) 2 , Na [ReH s ] and other inorganic and organic rhenium compounds.
  • SeF 4 SeF 6, Se 2 Cl 2, SeCl 4, Se 2 Br 2, SeBr 4, Sel 4, SeOF 2, SeOCl 2, SeOBr 2, Se0 2, Se0 3, SeS, SeS 2 a seS0 3, Se 4 N 4, H 2 Se, H 2 Se0 3, H 2 Se0 Selector emission compounds such as 4.
  • Sm compounds include SmF 2 , S m F 3 , S ffi Cl 2 , S m Cl 3 ,
  • TaF 5 is a Ta compound, TaCl 2, TaCl 5, TaBr 4, TaBr 5, Tal 4, Ta0 2, Ta 2 0 5, TaS 2, TaN, Ta 3 N 5, TaC, TaB 2,
  • ThF 4 As a Th compound ThF 4, ThCl 4, Th ( C10 4) 4, and ThBr 4, Th, Th0 2, ThS 2, Th (S0 4) 2, Th 3 N "Th (N0 3)
  • TiF 3 is a Ti compound, TiF 4, TiCl 2, TiCl 3, TiBr 2, TiBr 3, TiBr 4, Ti 12, Ti I 4, TiO, Ti 2 0 3, Ti0 2, H 2 Ti0 3, H4T1 O4, T1CI2O, TiS 2, Ti 2 (S0 4) 3, Ti (S0 4) 2, TiOS0 4, TiSe 2, TiN, Ti (N0 3) 4, TiC, TiSi 2, TiB, TiB 2, TiH 2, Na 2 [TiF 6 ],
  • Titanium compounds such as TiCl 3 (CH 3 ) and Ti (CH 2 C 6 H 5 ) 4 .
  • TiF is a Tl compounds, TIFs, T1C1, T1C1 3, T1C1 4, --
  • TlBr, TlBrs T1I, T1I 3 , T1 20 , T10 3 , T10H, T1 2 S, T1 2 S 3 , T and SO "T1 2 (S0 4 ) 3 , Tl 2 Se, T1N 3 , T1N0 3 , T1 (N0 3 ) 3 , T "P0" TI2CO3, T1CN, T1SCN, T1 (CH 3 C00), T1 2 (C 2 0 4 ), A1T1 (S0 4 ) 2 , K 3 [T1C1 6 ], ⁇ 1 (0 ⁇ ⁇ 7 0 2), T1 ( C 6 H 6), a data re um compounds such as T1 (CH S) 3.
  • V compound VF 3 VF "VF 5, VCI 2, VCls, VCI4, VBr 2, VBr 3, VI 2, VI 3, V0, V 2 0 3, V0 2, 0 2 0 5, VF 2 0, VF 3 0, VC10, VCI 2O, VC O, VCIO2, VBrO, VBr 2 0, VBr 3 0, VS, V 2 S 3, V 2 SB, VSO 4, V 2 (S0 4) 3, VOSO4, VN, VC, V 2 Si, VSi 2, V (CH 3 C00) 3, KV (S0 4) 2, K 3 [V (C 2 0 4) 3], (NH 4) 2 [V0 (C 2 0 4) 2], [V ( C 5 H 7 0 2) 2], [V0 (C 5 H 7 0 2) 2],
  • WF 6 is a W compound, WCI 2, WCI4, WC1 5 , WC1 6, WBr 5, WBr 6, WI 2, WI4, W0 2, W0 3, WF4 O, WCI4O,
  • WBr 4 0, WC1 2 0 2 , WS 2, WS 3, W 2 C, WC, WSi 2, W 2 B, WB, WB 2, W 2 B 5, K 3 [W 2 C1 9], K 3 [ W 2 (CN) 8 ], K 4 [W (CN) 8 ], W (C0) 6, W 2 (C0) 6 (C 5 0 5) 2,
  • YbF 2 is a Yb compound, YbF 3, YbCl 2, YbCl 3 ⁇ 6H 2 0, YbBr 2, YbBr 3, Y l 2, Ybl 3, Yb0 3, Yb 2 (S0 4) 3, Yb (N0 3 ) 3 Yb (CH 3 C00) 3, Yb 2 (C 2 0 4) is a Lee Tsu ether Biumu compound of 3, and the like.
  • the Zr compounds include ZrF 3 , ZrF 4 , ZrCls, ZrCl 3 , ZrCl 4 , ZrBr 3 , ZrBr 4 , Zrl 3 , Zrl 4 , ZrO 2 , ZrCl 20 , ZrS 2 ,
  • ZrSiO ZrB 2 ZrH 2 , K 2 [ZrF 6 ], Na 2 [ZrF 6 ], (NH 4 ) 3 [ZrF T ], Zr (CH 3 C00) 4 , [Zr (C 5 H 7 0 2 ) 4 ], ZrCl 2 (C 5 H 5 ) 2 , (CsZrHCl) (C 5 H 5 ) 2 , Zr (CH 3 ) 2 (C 5 H 5 ) 2 , ZrBr 3 (C 5 H 5 ) 2 , Zr (CH 2 C 6 H 5 ) 4 and the like.
  • These metal compounds may contain water of crystallization or may be non-crystalline water.
  • the amount of the metal or the metal compound which can exist in two or more valence states is not particular limitation on the amount of the metal or the metal compound which can exist in two or more valence states as the metal compound.
  • 100 g of benzene is preferably in the range of 0.01 to 20 g, more preferably 0.01 g to 2 g, in terms of metal weight.
  • at least one selected from the group consisting of iron group metals, iron group metal compounds, alkali metals and alkali metal compounds may be added to the reaction system as a catalyst component. I like it. This improves the phenol yield and selectivity.
  • the alkali metal is a metal represented by an elemental symbol of Li, Na, K, Rb, or Cs
  • the alkali metal compound indicates a compound of these alkali metals.
  • the following are specific examples of alkali metal compounds.
  • Is a Li compound LiF, LiCl, LiBr, Li I , LiCL0 3, LiCIO "LiBrOa, Li I0 3, Li 2 0, Li 2 0 2, LiOH, Li 2 S, LiSH, Li 2 S0" LiHSO Li 3 N, LiN 3, LiN0 2, LiN0 3, LiNH 2, Li 3 P0 4, LiH 2 P0 4, Li 3 As0 4, Li 2 C 2, Li 2 C0 3, LiHC0 3, LiSCN, Li (CH 3), Li (CH CH 2 ), Li (iC 3 H 7 ), Li (nC 4 H 9 ),
  • NaF is a Na compound, NaHF 2, NaCl, NaCIO, NaC10 2, NaCI0 3, NaC10 4, NaBr, NaBr0 3, Nal, NaI0 3, NaI0 4, Na 3 H 2 IOe, Na 2 0, Na 2 0 , Na 2 0 2, Na 2 0 2 ⁇ 8H 2 0, Na0 2, NaOH, Na 2 S, NaHS, Na 2 S 4, Na 2 S0 3, NaHS 0 3, Na 2 S0 4, NaHSO "Na 2 S 2 0 3, Na 2 S 2 04, Na 2 S 3 05, Na 2 S 3 0 6, Na 2 S 3 0 7, Na 2 S 3 0 8, NaS0 3 F, Na 2 Se, Na 2 Se0 3, Na 2 Se0 4, Na 2 Te , Na 2 Te0 3, Na 2 Te0 4, Na 2 H 4 TeO e, NaN 3, Na 2 N 2 0 2, NaN0 2, NaN0 3, NaNH 2, NaPH 2 0 2, NaPH0 3, NaHPH0 3, Na 3 P0 4, Na 2 HP0 4, Na 4
  • K 2 S, K 2 S, K 2 S 2, K 2 S 3 »K 2 S 4 K 2 S 5 »K H S, K 2 S 03, K H S 03,
  • the Rb compound is the aforementioned rubidium compound.
  • the cesium compound described above is used as the Cs compound.
  • these compounds can be used irrespective of whether they contain water of crystallization or non-crystal water. .
  • these metals or metal compounds are used by being supported on silica, alumina, activated carbon, zeolite, etc. I don't care.
  • the amount of the iron group metal, the iron group metal compound, the alkali metal or the alkali metal compound is not particularly limited, but, for example, in a batch reaction, preferably 100 or less in terms of metal weight, preferably benzene.
  • the range is from 0.001 to 20 g per g, and more preferably from 0.01 to 2 g.
  • the oxidizing agent used in the method of the present invention is a substance capable of supplying an oxygen molecule, an oxygen atom, an oxygen ion or the like to the reaction system in a reaction state.
  • oxygen molecules oxygen molecules, air, dilution air, hydrogen peroxide, and commonly used organic and inorganic peroxides are exemplified, and one or more of these are used.
  • the inside of the reaction system is preferably in an acidic state.
  • This acidic state is generally achieved by adding an acidic substance, for example, Brenstead acid, Lewis acid or the like, to the reaction system.
  • the blended acid include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and boric acid.
  • carboxylic acids such as acetic acid, formic acid, benzoic acid, trichloroacetic acid, and oxalic acid, sulfonates, heteropoly acids, zeolites, and mixed oxides.
  • Examples of the Louis acid include aluminum chloride, ferric chloride, zeolites, mixed metal oxides and the like. It is not limited to only these acidic substances.
  • a solvent or a gas which is inert to the catalyst and the reaction reagent into the reaction system and dilute the reaction system.
  • aliphatic saturated hydrocarbons such as methane, ethane, propane, butane, hexane, and cyclohexane
  • inert gases such as nitrogen, argon, and helium.
  • the reaction temperature is not particularly limited, but is preferably in the range of 0 to 400 ° C., more preferably 10 to 300 ° C. c If the reaction temperature is extremely low, The conversion of fins and Z or aromatic compounds (reaction reagents) is low, in other words, the reaction rate is extremely reduced, and the productivity of reaction products is reduced. On the other hand, if the reaction is carried out at a reaction temperature of 400 ° C. or more, undesired side reactions and the like proceed to increase by-products, and the raw materials such as olefins and / or aromatic compounds, And the stability of the carbonyl compound and the Z or aromatic hydroxy compound are also unfavorable, and the reaction selectivity is lowered, which is not economical.
  • the reaction can be carried out under any of reduced pressure, increased pressure and normal pressure.
  • Reaction efficiency reaction per unit volume It is not desirable to operate at too low a pressure from the viewpoint of efficiency). Further, it is not preferable to carry out the reaction at an excessively high pressure from the viewpoint of the economical efficiency of the equipment such as a reactor.
  • the preferred operating pressure range is 0.05 to 300 atm, and more preferably 0.5 to 200 atm.
  • the reaction can be carried out in any state of a liquid phase, a gas-liquid phase or a gas phase reaction.
  • the catalyst can be used in either homogeneous or heterogeneous form. These catalysts can be used in any of a solution state, a two-layer separation state, a two-liquid mixed state, a slurry state, a fixed bed, a moving bed, and a fluidized bed.
  • the present invention can be carried out in any reaction method such as a normal batch reaction, a semi-batch reaction in which some raw materials or catalysts are continuously supplied, or a continuous flow reaction. is there. Further, there is no particular limitation on the order of addition and the method of addition of each component such as a reaction raw material, an oxidizing substance, and a catalyst.
  • reaction time is not particularly limited, but is usually 0.1 second to 30 hours, preferably 0.5 second to 15 hours.
  • reaction product can be separated and recovered from the catalyst or the like by filtration, extraction, or distillation. It can be.
  • the aromatic hydroxy compound and the carbonyl compound, which are the target products are separated from the above separated and recovered products by a sequential treatment method such as solvent extraction, distillation, alkaline treatment, and acid treatment, or a combination of these. It can be separated, purified and obtained by ordinary separation and purification methods such as operation. Unreacted raw materials (aromatic compounds, olefin compounds and oxidizing substances) can be recovered and recycled to the reaction system.
  • the reaction When the reaction is carried out by a fixed bed or fluidized bed continuous reaction method, a part or all of the catalyst which has been deactivated or deactivated by the reaction is regenerated after the reaction is interrupted.
  • the catalyst can be used again in a reaction, or a part of the catalyst can be continuously or intermittently withdrawn, regenerated, recycled to the reactor again, and reused. You can also do it.
  • new catalyst can be continuously or intermittently flooded into the reactor.
  • the reaction When the reaction is carried out by a moving bed continuous reaction or a homogeneous catalyst continuous reaction, the catalyst can be separated, regenerated and reused similarly to the batch reaction.
  • the reaction was performed under exactly the same conditions as in Example 1 except that ethylene was not charged, and the reaction solution was analyzed by the same method. As a result, the yield of phenol was 0.2% and the yield of p-benzoquinone was 0.1%.
  • Example 2 The reaction and analysis were carried out under the same conditions and method as in Example 2 except that cupric chloride dihydrate in Example 2 was replaced with 0.05% cuprous chloride. As a result, the yield of funinol was 1.8% and the yield of acetoaldehyde was 10.8%, and the formation of a small amount of p-benzoquinone was confirmed.
  • the composition of the reaction mixture was 4.0 g of benzene, 20 g of 0.1 N sulfuric acid, 0.25 g of palladium sulfate, 0.26 g of copper sulfate (pentahydrate) and The reaction was carried out in the same manner as in Example 1 except that 0.07 g of copper powder, oxygen pressure S kg Z cm 2 , and ethylene 5 kg / cm 2 were charged. A yield of 2.0% and a yield of acetoaldehyde of 9.2% were obtained. The formation of p-benzoquinone was hardly observed.
  • the composition of the reaction solution was 4.0 g of benzene, 6 g of acetic acid, 0.05 g of radium, 0.04 g of copper acetate, and 0.04 g of copper acetate.
  • 0.9 g of water, oxygen pressure 15 kg / cm 2 , ethylene pressure 1 S kg Z cm 2 , reaction temperature 180, reaction time 1 hour, and others As a result of carrying out the reaction and analysis under the same conditions as in Example 1, a phenol yield of 6.4% and an acetoaldehyde yield of 13.3% were obtained. Further, the phenyl acetate yield was 0.7%.
  • Example 1 In Example 1, except that the catalyst was 0.05 g of potassium nitrate and 0.05 g of cupric nitrate (trihydrate), and the 0.1 N hydrochloric acid was replaced with 0.1 N nitric acid. All reactions and analyzes were performed under the same conditions and method as in Example 1. As a result, the yield of funinol was 5.3%, the yield of acetoaldehyde was 7.1%, and the yield of p-benzoquinone was 2.1%.
  • Example 2 Instead of ethylene in Example 1, 4.3 g of propylene, 14.2 g of butene, 4.0 g of cyclopentene, and 4.0 g of cyclohexene were used, respectively. The reaction and analysis were carried out under exactly the same conditions and method as in Example 1 except that 0 g and 4.0 g of styrene were charged. As a result, as shown in Table 2, phenol and carbonyl compounds were formed in good yields, respectively.
  • the produced carbonyl compounds were acetone (Example 11), methylethyl ketone (Example 12), cyclopentanone (Example 13), cyclohexano (Example 14) and an asset penon (Example 15).
  • Example 1 instead of benzene, they were replaced by toluene, phenol, naphthalen, naphthosol, aninzur, and p-xylene, respectively.
  • the reaction and analysis were performed under the same conditions and method as in Example 1 except that the amount of each lens was 4 g.
  • Table 3 products were obtained in good yields.
  • Example 16 Tosolen 6.5 1.6 9.8 Example 17 Phenyl (raw material) 7.1 10.9 Example 18 Naphthalene 5.0 0.7 8.6 Example 19 Naphthol (raw material) 6.0 7.1 Example 20 anisol 5.2 1.4 9.1 Example 21 p-xylene 7.0 tr & nce 9.5 Example 22
  • Example 1 Performed in Example 1 except that the oxygen charged was 9% oxygen and 9% nitrogen and the mixed gas was 10 O kg Z cm 2 As a result of carrying out under the same conditions as in Example 1, the yields of phenol, p-benzoquinone and acetoaldehyde were 3.9%, 0.7% and 5.6%, respectively.
  • the oxygen charged was 9% oxygen and 9% nitrogen and the mixed gas was 10 O kg Z cm 2
  • the yields of phenol, p-benzoquinone and acetoaldehyde were 3.9%, 0.7% and 5.6%, respectively.
  • Example 23 The reaction was carried out under the same conditions as in Example 23 except that in Example 23, instead of palladium chloride, ruthenium chloride and rhodium chloride were each added at 0.28 mmo 1 each. . Table 4 shows the results.
  • Example 23 The reaction was performed under the same conditions as in Example 23 except that 0.787 mmol of CoCl 2 CrCls, SnCl 2 and MnCl 2 were used instead of the copper powder used in Example 23. As a result, as shown in Table 5, the catalytic action was also observed for metals other than copper.
  • Example 26 CoCl 2 0.9 0 1.2
  • Example 27 CrCl 3 0.3 0 0.2
  • Example 28 SnCl 2 0.6 0 0.8
  • Example 29 MnCl 2 1.2 0.1 2.2
  • Example 30 to 3 3
  • HY-type zeolite was loaded with 1% by weight of palladium chloride and 4% by weight of cupric chloride by a conventional impregnation method 150.
  • C heat treated for 12 hours, fill 7 ml bilex reaction tubes, heat to 150, 175, 200, and 250 ° C, respectively.
  • base to Nze down 3. 0 g / H r, profile pin les down 2. 5 ml / min., successively with N 2/0 2 9 1 /9 vol ratio gas 5 0 ml Zm in. the feed rate
  • the reaction mixture was introduced into a reaction tube, and the reaction was performed for 2 hours.
  • the reaction gas was cooled and liquefied with a dry ice-methanol refrigerant and analyzed. Table 6 shows the product yield in the reaction solution. [ ⁇ 6] Reaction temperature Yield (%)
  • Example 22 Except for using a catalyst in which the same amount of palladium chloride and cupric chloride as in Examples 22 to 25 was supported on NaY-type zeolite in the same manner as in Example 22, the catalyst was used.
  • Example 22 Except for using a catalyst in which the same amount of palladium chloride and cupric chloride as in Examples 22 to 25 was supported on NaY-type zeolite in the same manner as in Example 22, the catalyst was used.
  • Example 34 150 0.5 3.2
  • Example 35 175 0.9 4.7
  • Example 36 200 1.3 5.6
  • Example 37 250 2.1 1.5
  • Example 1 0.01 g of ferrous chloride tetrahydrate, 0.01 g of ferric chloride and 0.05 g of lithium chloride were further added, —
  • Example 1 The reaction and analysis were carried out under the same conditions and methods as in Example 1 except that only ferric chloride hexahydrate was not used in the method carried out in Example 38. As a result, the phenol yield was 7.4% and the acetate aldehyde yield was 19.4%. Production of p-benzoquinone was not confirmed.
  • Example 4 All procedures were performed in the same manner as in Example 38 except that 8 kg / cm 2 of propylene was used instead of ethylene. As a result of carrying out a reaction and analysis under the same conditions and methods as in Example 1, the phenol yield was 6.6% and the acetate yield was 22.4%. No production of p-benzoquinone was observed.
  • Example 4 3
  • Example 4 2 After performing Example 4 2, further re-charged pro pin les emissions 8 kg Z cm 2, the reaction temperature was 1 0 0 ° C, further in the same manner as in Example 4 2, continued for 3 hours Was. As a result, a phenol yield of 10.1% and an acetate yield of 30.4% were obtained. No production of p-benzoquinone was confirmed.
  • Example 43 After performing Example 43, propylene was further charged again at 8 kg Z cm 2 , and then the reaction and analysis were performed in the same manner as in Example 43. As a result, the phenol yield was 13.6% and the acetate yield was 37.9%. No formation of p-benzoquinone was observed.
  • Example 42 The reaction and analysis were carried out under the same conditions and method as in Example 42 except that only lithium chloride was not charged in the method carried out in Example 42. As a result, the phenol yield was 6.2% and the acetate yield was 20.3%, and no p-benzoquinone was generated.
  • Example 38 Instead of ethylene in Example 38, 4.2 g of butene-1 was charged, and the other conditions were the same as in Example 38, and all were carried out under the same conditions and method. This resulted in 6.0% of phenol, methyl --
  • Example 38 In the same manner as in Example 38, 4.0 g of cyclohexene was charged in place of ethylene, and the other conditions were the same as in Example 38. As a result, the phenol yield was 5.8%, and the cyclohexanone yield was 8.7%. -No benzoquinone formation was observed.
  • Example 38 instead of benzene, respectively, toluene, naphtholen, anisol, p-xylene, and
  • Example 38 Reaction and analysis were performed under the same conditions and methods as in Example 38 except that the amount of methyl naphthalene was changed to 4 g each. As shown, the products were obtained in good yields.
  • Example 8 Yield (%) Aromatic compound Hydroxide CH 3 CH0
  • Example 48 Tonolenene 8.2 24.9
  • Example 49 Naphthalen 6.1 1.22.7
  • Example 50 Aniso 7.2 24.2
  • Example 51 P-Xylene 9.2 25.6
  • Example 52a Monomethylnaphthalene 8.9.26.3
  • Example 5 3 Instead of oxygen in the Example 3 8, oxygen 9% except were charged mixture of 9 1% nitrogen gas 1 0 O kg Z cm 2 was carried out the reaction under the same conditions as in Example 3 8. As a result, the yield was 7.2% for phenol and 20.2% for acetoaldehyde. No production of p-benzoquinone was confirmed.
  • Example 53 The reaction was carried out under the same conditions as in Example 53 except that the reaction time was changed to 1 hour in Example 53. As a result, the yields of phenol and acetoaldehyde were 5.4% and 17.7%, respectively. No production of p-benzoquinone was confirmed.
  • Example 54 The reaction was carried out under the same conditions as in Example 54 except that 0.1 N hydrochloric acid was replaced with 0.1 N sulfuric acid in Example 54. As a result, the yields of phenol and acetoaldehyde were 4.8% and 18.3%, respectively. No production of p-benzoquinone was observed.
  • Example 54 was carried out under the same conditions as in Example 54 except that sodium chloride and 0.05 g of cesium chloride were added instead of lithium chloride, respectively. The results are shown in Table 9. No p-benzoquinone was produced in each reaction. (Table 9)
  • Example 55 The reaction was carried out under the same conditions as in Example 55 except that 0.05 g of copper sulfate was further added in Example 55. As a result, the yields of phenol and acetoaldehyde were 5.1% and 18.5%, respectively. There was no production of p-benzoquinone.
  • Example 59 was carried out under the same conditions as in Example 59 except that the reaction temperature was changed to 180 ° C and sulfuric acid was changed to 0.1 N acetic acid. As a result, the yields of phenol and acetoaldehyde were 7.0% and 19.1, respectively. p—Benzoquinone was not formed.
  • HY-type zeolite is prepared by a conventional impregnation method using 1% by weight of palladium chloride and 4% by weight of cupric chloride 96 y 0.5% by weight of iron tetrahydrate, 0.5% by weight of ferric chloride hexahydrate and 1% by weight of lithium chloride supported and heated at 150 for 12 hours were heated to 7%.
  • m 1 Pyrex reaction tubes were filled and heated to 150 ° C, 170 ° C, 200 ° C, and 250 ° C, respectively, to which benzene 3.Og ZHr, water 3. 9 g / H r, pro pin Le emissions 2.
  • Example 61 150 1.3 8.6
  • Example 62 175 1.9 9.2
  • Example 63 200 2.7 11.9
  • Example 64 250 4. 6 6.1
  • the catalyst was converted to NaY type zeolite with the same amount of palladium chloride, cupric chloride, ferrous chloride tetrahydrate and ferric chloride tetrahydrate and lithium chloride as in Examples 61 to 64.
  • the reaction was carried out under the same conditions and in the same manner as in Examples 22 to 25, except that a catalyst supported by the same method was used as a catalyst.
  • the results are shown in Table 11. 1
  • Aromatic hydroxy compounds and carbonyl compounds can be produced simultaneously.
  • Aromatic compounds are directly oxidized to produce aromatic hydroxy compounds efficiently, and the yield of these aromatic hydroxy compounds is increased by the addition of olefins. It can be done.
  • a carbonyl compound such as aldehyde and ketone can be produced with high selectivity and high efficiency.
  • phenol can be produced by direct oxidation under mild conditions of low temperature and low pressure.
  • an aromatic hydroxy compound and a carbonyl compound can be produced simultaneously, and an aromatic hydroxy compound can be produced under mild conditions by direct oxidation of the aromatic compound.
  • the yield of the aromatic hydroxy compound can be increased by adding the compounds. Therefore, according to the present invention, industrially important materials such as phenol, aceto hildehyde, and aceton can be simultaneously and advantageously produced in terms of safety, process, and economy. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Materials For Photolithography (AREA)

Description

一 一
明 細 芳香族 ヒ ドロキシ化合物 とカ ルボニル化合物の併産法
〔技術分野〕
本発明は工業原料と して極めて重要なカ ルボニル化合 物 と フ エ ノ ール類の如き芳香族ヒ ドロキシ化合物を同時 に生成する方法、 と く に温和な反応条件下でベ ンゼンな どの芳香族化合物 と酸素か ら直接フ ェ ノ 一ル類を高い収 率で生成する新規な方法に関する。
〔背景技術〕
従来、 ベ ンゼン等の芳香族化合物 と酸素か ら直接ーェ 程でフ ノ ール等の芳香族 ヒ ドロキシ化合物を製造する 方法は、 触媒の存在下に、 ベ ンゼ ン類と酸素を気相 も し く は液相で反応させる方法が知 られている。 例えば、 ベ ンゼ ン と酸素の気相反応の場合、 日本国公開特許、 特開 昭 5 6 - 8 7 5 2 7 号に記載さ れてレ、る よ う に、 ベ ンゼ ンの完全酸化がお こ り、 極めてフ エ ノ ールの選択率は低 い.。 又、 液相反応の場合では、 有機合成化学誌、 第 4 1 巻、 839頁 ( 1 9 8 3 年) にみ られる よ う に、 銅塩と酸 素を用いてベンゼンを酸化する方法があるが、 ベ ンゼ ン の転化率が極端に低 く 、 フ X ノ ールの収率も低い。
更に、 パラ ジウム系触媒を用い、 1 , 1 0 — フ エ ナ ン ト ロ リ ン及び一酸化炭素の存在下にベ ンゼ ンを酸素で酸 化する方法が 日本国公開特許、 特開平 2 - 1 9 8 0 9 号 に開示されているが、 こ の方法 も ま たフ エ ノ ールの収率 は極めて低い。 その為、 ベ ンゼンの直接酸化によ る フ エ ノ ールの製造方法が従来か ら望まれているが、 未だにェ 業化はされていない。
又、 日本国特許、 特開平 2 - 2 3 6 3 3 8 号には金属 リ ン酸塩触媒を用いて、 ベンゼン と水から フ ヱ ノ ールを 製造する方法が開示されている。 こ の方法によれば、 フ エ ノ 一ル収率が 6 %前後と従来にない高い収率で得られ るが、 反応温度が 5 0 0 で前後と高 く 、 未だ充分経済的 な製造方法には到っていない。
一方、 ォ レ フ ィ ン類か らのケ ト ン、 アルデヒ ド等の力 ルポニル化合物の製造法は従来、 所謂ヮ ッ カー法が最も 工業的な方法と して知られている。 即ち、 ノ、。ラ ジウムィ オ ン及び銅イオンの存在下に、 ォ レ フ ィ ン類と水と酸素 を反応させてアルデヒ ド類、 ケ ト ン類等のカルボニル化 合物を液相で製造する方法である。
こ の方法では、 例えば、 ォ レ フ ィ ン類と してエチ レ ン を原料とすればァセ ト アルデヒ ドが生成し、 プロ ピ レ ン を原料とすればアセ ト ンが生成する。 その他のォ レ フ ィ ン類から生成するカルボニル化合物に関 しては、 An gew. Ch em. Vo l - 71 , p p l 76 ( 1 959 ) に詳し く 説明 してある。
然しながら、 カルボニル化合物 と フ エ ノ ール類等の芳 香族ヒ ドロキシ化合物を同時に併産する方法は未だかつ て知られていない。 加えて、 ベンゼンから直接酸素によ り フ エ ノ ールを製造する方法と して、 3 0 0 °C以下の温 和な条件でフ ヱ ノ ール収率が 1 0 %程度と極めて高収率 一
で生成 した例は未だかって知 られていない。
〔発明の開示〕
本発明の 目的は、 ベンゼン及びベ ンゼン誘導体等に代 表される芳香族化合物か ら フ エ ノ ール等の芳香族 ヒ ドロ キシ化合物を温和な条件で高収率で製造する方法を提供 する こ とにある。 本発明の別の 目的は芳香族化合物 と と も にォ レ フ X ン類を存在させて芳香族 ヒ ドロキシ化合物 の収率を一層向上させ乍らカ ルボニル化合物を芳香族 ヒ ドロキシ化合物 と と も に併産する方法を提供する こ と に ある。
本発明者らは、 上記課題に関 して鋭意検討を行っ た結 果、 ベ ンゼ ン及びベ ンゼ ン誘導体に代表さ れる芳香族化 合物か ら酸素等の酸化剤か ら フ X ノ ール等に代表さ れる 芳香族 ヒ ドロキシ化合物を温和な条件で高収率に製造す る方法を見出 した。 本発明方法は、 芳香族化合物を酸化 剤によ り 直接酸化 して芳香族 ヒ ドロキシ化合物を製造す る に際 して少な く と も 1 種の白金族金属 も し く は白金族 金属化合物 と金属化合物 と して 2 種以上の原子価を持ち う る少 く と も 1 種の金属 も し く は こ れ らの金属化合物 と か らなる触媒の存在下に酸化反応を行う方法であ り、 且 つ、 こ の反応を実施する にあた り、 エチ レ ン、 プロ ピ レ ン、 ブテ ン 一 1 、 ブタ ジエ ン、 ア ク リ ロニ ト リ ル、 ァ ク リ ル酸、 スチ レ ン等で代表されるォ レ フ イ ン類を共存さ せて行う方法である。
本発明方法においては、 反応系内にォ レ フ ィ ン類を共 存させる こ とが必須であ り、 これによ り、 芳香族ヒ ドロ キシ化合物の収率は格段に向上する。 加えて、 ォ レ フ ィ ン類か ら誘導されるァセ ト アルデヒ ド、 酢酸、 アセ ト ン、 ァ ク ロ レイ ン、 メ チルェチルケ ト ン、 α—ケ トエステル、 ーケ ト カ ルボニル化合物等に代表されるカルボニル化 合物も併産される。
この結果、 本発明方法を実施する こ とで、 極めて効率 の高い且つ、 経済性の観点から極めて有利な芳香族 ヒ ド ロキシ化合物 とカルボニル化合物の併産方法が提烘され る ο
〔発明を実施するための最良の形態〕
本発明方法に用い られる芳香族化合物はベンゼン、 置 換ベンゼン類、 ナフ タ レ ン、 置換ナフ タ レ ン類、 ア ンス ラセ ン、 置換ア ンスラセ ン類、 ジュ レ ン、 置換ジュ レ ン 類等の炭素 6 員環縮合化合物、 チォフ ェ ン、 置換チオ フ ェ ン類、 フ ラ ン、 置換フ ラ ン類、 ピ リ ジン、 置換ピ リ ジ ン類、 キノ リ ン、 置換ジノ リ ン類等のへテロ芳香族化合 物等である。 これら芳香族化合物が有する置換基と して は、 メ チル、 ェチルプロ ピル、 ブチル基等のアルキル基、 カルボキシル基、 ニ ト ロ基、 ア ミ ノ 基、 シァノ 基、 ァセ チル基、 アルコキシ基、 ヒ ドロキシル基、 ァセ トキシ基、 ノヽロゲン元素、 メ ルカプ ト基、 チォアルコキシ基等であ る。 これらは単独で又は 2 種以上を使用する。
本発明方法において用い られるォ レ フ ィ ン類とは少な く と も 1 個の炭素一炭素二重結合を有する、 脂肪族、 Β旨 環式炭化水素であ り 、 好ま し く は炭素数 3 0 以下のォ レ フ ィ ン類であ る。 これ らのォ レ フ ィ ン類は、 含酸素、 含 窒素、 含硫黄等の含へテロ原子化合物であ って も構わな い。 又、 部分的に芳香族基が置換 している もの も含ま れ る。 炭素 -炭素二重結合が 2 個以上存在する場合には、 こ れら二重結合が共役 していて も差 し支えないが、 少な く と も 1 個の二重結合が非共役である こ とが好ま しい。 具体的にはエチ レ ン、 プロ ピ レ ン、 ブテ ン類、 ブタ ジェ ン類、 ペ ンテ ン類、 ペ ン タ ジェ ン類、 ペ ンタ ト リ エ ン類 へキセ ン類、 へキサジェ ン類、 へキサ ト リ ェ ン類等の脂 肪族炭化水素類、 ビニルアルコ ール、 ァ リ ルアルコ ール ア ク リ ル酸、 ア ク リ ル酸エステル、 ビニルエーテル、 ァ リ ルエーテル等の含酸素ォ レ フ ィ ン類、 ァ リ ルア ミ ン類 等の含窒素ォ レ フ ィ ン類、 ァ リ ノレメ ルカ ブタ ン、 ビニル チォエーテル類等の含硫黄ォ レ フ ィ ン類、 シ ク ロペ ンテ ン及び置換基を有する シ ク ロペ ン テ ン類、 シ ク ロペ ン 夕 ジェ ン及び置換基を有する シ ク ロペン夕 ジェ ン類、 シ ク 口へキセ ン及び置換基を有する シ ク ロへキセ ン類、 シ ク 口へキサジェ ン及び置換基を有する シ ク ロへキサジェ ン 類、 シ ク ロォ ク テ ン及び置換基を有する シ ク ロォ ク テ ン 類、 シ ク ロォ ク 夕 ジェ ン類及び置換基を有する シ ク ロ ォ ク タ ジェ ン類、 シ ク ロォ ク タ ト リ ェ ン類及び置換基を有 する シ ク ロォ ク タ ト リ エ ン類等の脂環式ォ レ フ ィ ン類、 ス チ レ ン 、 置換ス チ レ ン類、 ジ ビニルベ ン ゼ ン 、 置換ジ ビニルベ ン ゼ ン類、 プ ロ ぺニルベ ン ゼ ン、 置換プ ロ ぺニ ルベ ンゼ ン類、 ブテュルベンゼン、 置換ブテニルベ ンゼ ン類、 シク ロへキセニルベンゼン、 置換シク 口へキセニ ルベンゼン類、 ビニルナフ タ レ ン、 置換ビニルナフ タ レ ン等の芳香族ォ レ フ イ ン類等である。 こ こ においてこれ ら脂環式ォ レ フ ィ ン類及び芳香族ォ レ フ ィ ン類が有する 置換基は、 メ チル、 ェチル、 及びプロ ピル基等のアルキ ル基、 カルボキシル基、 ニ ト ロ基、 ア ミ ノ 基、 シァノ 基 ァセチル基、 ヒ ドロキシ基、 ァセ トキシ基、 アルコキシ 基、 ク ロル元素、 臭素、 フ ッ素等のハロゲ ン元素、 メ ノレ カ プ ト基及びチォアルコキシ基等である。 これらォ レ フ ィ ンは単独で又は 2種以上を甩いる。
又、 本発明方法において定義される芳香族ヒ ドロキシ 化合物とは、 上記した芳香族化合物の芳香族環を形成す る炭素に直接ヒ ドロキシ基本が少な く と も 1 個以上結合 した化合物であ り、 更に詳し く は、 上記芳香族化合物の 芳香環を形成する炭素における炭素一水素結合が少な く と も 1 個以上炭素ー ヒ ドロキシ結合に変換された もので ある。 例えば、 ベンゼンからは、 フ エ ノ ール、 力テコ ー ルハイ ドロキノ ン、 レ ゾルシン等が生成し、 ナフタ レ ン からは、 ナフ ト ール類、 ジ ヒ ドロキシナフ タ レ ン類等が 生成し、 トルエ ンか らはモノ 及びポ リ ヒ ドロキシ ト ルェ ン類、 ァニソ一ルからはメ トキシフ ェ ノ ール、 メ トキシ レ ゾルシ ン等が生成する。 同様に して上記芳香族化合物 からは、 直接芳香族炭素に結合した ヒ ドロキシ基を 1 以 上有する化合物が生成する。 反応条件によ っては、 ベン - -
ゾキ ノ ン、 ナ フ ト キ ノ ン又はア ンス ラ キ ノ ン と い っ た、 キノ ン類も同時に芳香族 ヒ ドロキシ化合物 と と も に生成 する。
本発明方法において定義されるカルボニル化合物 と は 炭素一酸素二重結合を有する化合物であ り、 さ らに詳 し く は上記ォ レ フ ィ ン化合物が有する少な く と も 1 個の炭 素 -炭素二重結合か ら変換された炭素 -酸素二重結合を 有する化合物であ る。 例えば、 エチ レ ンか ら生成する 力 ルポニル化合物 と してはァセ ト アルデ ヒ ド、 酢酸等であ り、 プロ ピ レ ンか ら生成する カルボニル化合物 と しては アセ ト ン、 ァ ク ロ レイ ン、 プロ ピオ ン酸等であ り、 ブテ ン類か ら生成する カ ルボニル化合物と しては、 メ チルェ チルケ ト ン、 ブチルアルデヒ ド、 ブタ ン酸等であ る。 上 記ォ レ フ イ ン類は同様に、 アルデヒ ド、 カ ルボン酸、 ケ ト ン等が生成する。
本発明方法に触媒と して使用 される、 白金族金属は元 素記号で、 Ru, Rh, Pd, 0s, Ir及び Ptで表される金属であ り これを粉末 も し く は粒状等で使用する こ とが好ま しい。 又、 シ リ カ、 アル ミ ナ、 活性炭及びゼォラ イ ト等に担持 させて使用する こ と もでき る。
更に白金族金属化合物は、 Ru, Rh, Pd, 0s, Ir及び Ptの無 機及び有機金属化合物であ り、 これらの金属塩、 金属錯 体等である。 具体的には、 分子式も し く は示性式で例示 すれば、
Ru化合物 と しては、 RuF5 , RuF6 , RuCl3, RuCl4 , RuBr3 , Rul 3 , Ru02 , Ru04 , Ru(0H)3 , RuS2
K2[RuC"] , [Ru(NH3)6]Cl2 , [Ru(NH3) 52) ] CI 2
[Ru(CioH8N2)3]Cl2 · 6Η20 , Ru(NH3)6]Br3
[RuCI(NH3)5]Cl2 , 4 [ u(CN)6] · 3Η20 , RuCl2(C0)3, RuCI2 {P(CeH5)3} 3 , RuCKC0)3(C3H5),
Ru(C0)2(C3H5)2 , Ru(CH3)(C0)2(C5H5 ) 2 ,
Ru2(C0)4(C5H5)2 , Ru3(G0) i 2 , Ru(C5H5)2
Ru(C5H5)(C5H4COCH3) 等の化合物である。
Rh化合物 と しては、 RhF3 , RhF5 , RhF6 , RhCl3 , RhBr3 , Rh203 , RH02 , Rh2S3 , Rh2(S04)3
Rh(N03)3 , KRh(S04)2 , Na3 [RhCle] , K3 [RhCle] ,
(NH4)3 [R Cl6] , [Rh(C5H702)3] , Rh2 (CH3 COO) 4 (H20) 2 , Na3 [Rh(N02)6] , h(NH3)6]Cl3 , [RhCl (NH3 ) 5 ] CI 2
[Rh(C2HsN2)3]Cl3 · 3H20 , K3 [ h(CN)6] ,
RhCl {P(C6H5)3} 3 , RhCKCO) {P(C6H5)3} 2 ,
RhH(CO) {P(C6H5)3} 3 , Rh2Cl2(C0)4 , Rl (C0)12 , Rh4(C0) i 6 , Rh(C2H4)2 (C5H5),Rh {C4(C6H5)4} (C5H5) , Rh2Cl2(C2H4)" [Rh(C5H5)2] [PF6], [Rh(C5H5) 2Br3 , Rh2C
12(C8H】2 ) 2 等の化合物である。
Pd化合物と しては PdF2 , PdCl2 , PdBr2 , Pdl2 , PdO, Pd02 , PdS, PdS04 , Pd(N03)2 , Pd(CN)2
NaztPdCU] , K2 [PdCI4], (NH4 ) 2 [PdCl 4 ] , K2 [PdCl6] , (NH4)2[PdCl6],K2[PdBr4] , Pd(CH3C00)2 , Pd(C5H702) , [Pd(NH3)4]Cl2, [Pd(C2H8N2)2]Cl2, [PdCl 2 (C2H8 CN) 2 ], [PdCl2(C6H5CN)2], K2[Pd(CN)4], Pd {P(C6H5)3} 4, 一 一
PdC" { P(C6HS)3} 2 , Pd(C4H9NC)2 , Pd(02 ) (C4H9NC) 2 Pd2 (C 1 7H , 40)3, Pd(CH3 ) 2 (C , oH8N2 ), Pd(CH3 ) 2 { P(C2H5 ) 3 } Pd2Cl4 (C2H4)2 , Pd(C2H4) {P(C ) 2 , Pd(C3Hs)2 , Pd2Cl2(C3H5)2, Pd(C3H5)(C5H5), PdCl2 { C4(C6H6 ) 4 }
PdCl2(C8Hi 2) , { Pd(C5H 702 )(C8H1 2) } BF4 等の化合物 であ る。
Os化合物 と しては、 OsF4 , OsFs , 0sF6 , OsC , OsCl 4 , OsBr4 , OsF203 , 0s02 , 0s04 , OsS2
Na2 [0sCl6] , K3 [0sC"], K2 [0sCl6] , K2 [02C102] , K4 [0s(CN)6] , 03(C0) 12 , 0s(C6Hs ) 2 , 0s(C5H5)
(CsH4C0CH3) 等の化合物である。
Ir化合物 と しては、 IrF3 , IrF5 , IrF6 , IrCl2 , IrCl s , IrCl4 , IrBr3 , IrBr4 , Irl3 , Irl4 , lr203, Ir02 , Ir2S3 , IrS2, IrSe2 , K3 [ I rC 16 ], Na 2 [ I rC 16 ] , K2 [IrCl6] , (NH4)2[InCl6] , K3 [ Ir (C204 ) 3 ] · 4H20, [Ir(NH3)6]Cl3 , [IrCKNH3)5]Cl2 , K3 [Ir(CN)6] , trans-IrCKCO) {P(C6H5)2} , IrH(CO) { P(C6H5)3} , Ir(C0)2(C6H6) , IrCl {P(C6HB)3} 3, trans-IrCl (N2) { P(C6H5 ) 3 } a , IrCKC2H4 ) : { P(C6H5 ) 3 } ,
Ir2Cl2(C8HI 2)2 , Ir2(C0) 12 等の化合物である。
Pt化合物 と しては、 PtF2 , PtF4 , PtF6 , PtC , PtCl 4 , PtBr2 , PtBr4 , Pt 12 , PtI4 , PtO, Pt 304 , Pt02 , PtS, PtS2 , Pt(S04)2 , Pt(CN)2 , Na2 [PtCl4], K2 [PtCl4], (NH4)2 [PtCl4〗 , H2[PtCl6], Na2 [PtCl 6], K2 [PtCl6], (NH4)2 [PtCl6], K2 [PtBr4], Na2 [PtBr6], K2[PtBr6], (NH4)2[PtBr6], Na2[Pt"], K2[Pt 〗,
(NH4)2[PtI6] , H2[Pt(0H)6] , Na2[Pt(0H)6】 ,
K2[Pt(0H)6] , [Pt(C5H702)2] , [Pt(NH3)4]Cl2
cis- [PtCl2(NH3)2] , trans-[PtCl2(NH3)2] ,
[Pt(NH3)4] [PtCl4], PtCl2(C6H5CN)2], [Pt(C2H8N2)2]Cl2
K2 [Pt(SCN)4], K2[Pt(CN)4], Ba[Pt(CN)4], [Pt (NH3 ) 6 ] CI 4
[PtCl(NH3)5]Cl3, cis- [PtCし(NH3)2), trans- [PtC 14 (NH3 ) 2 ] , [Pt(C2H8N2)3]Cl4 , cis-PtC" {P(C6H5)3} 2
Pt {P(CeH5)3} 4 , Pt(02) {P(C6H5)3} 2 , Pt(CO)2 {P(CeH5)3} i trans-[PtI(CH3) {P(C2HS)3} 2], cis-[Pt(C6H5)2
{P(C2H5)3 } 2], trans-[Pt(C6H6)2 {P(C2H5)3} 2],
cis-[PtCl2(C6H5NC) {P(C2H5)3} ], Pt {C2C6H5) 2
{P(C6H5)3} 2], Pt(C2H4)3, Pt(C2H4) {P(CeH5)3} 2],
K[PtCl3(C2H4)] , Pt(C3H5)2 ,Pt(C 2 ) 2 ,
PtCl2(C8H12), [PtI(CH3 ) 3 ] 4 等の化合物である。
これら白金族金属の化合物はその分子に結晶水を有し
ていて も使用する には何ら差し支えない。 又、 これらの
白金族金属化合物をシ リ カ、 アル ミ ナ、 活性炭、 ゼオラ
ィ ト等の担体に担持して使用する こ と も無論可能である。
これら白金族金属及び白金族金属化合物の一種以上を反
応に供する。 , これら白金族金属、 又は白金族金属化合物の使用量は
特に限定はされないが、 実施し易い量と して例示すれば、 ' 例えばバッ チ式反応で行な う場合には好ま し く はベ ンゼ
ン 1 0 0 g当 り、 金属重量換算で 0. 0 0 0 5〜 1 0 g、 - -
更に好ま し く は 0. 0 1 gか ら 1 g の範囲で使用する。
本発明方法で触媒と して使用する、 金属化合物 と して
2 種類以上の原子価状態を存在させう る金属 とは、 金属 化合物 と して複数の価数、 例えば 1 価 と 2 価の化合物が 存在 し う る金属 (但 し白金族金属を除 く ) の こ とである。 具体的には、 例えば金属ハロゲ ン化物では M X, M X 2 ( こ こ において Mは金属原子、 X はハロ ゲ ン原子を表す) といっ た同一金属においてこ の場合 1 価と 2 価のノヽロ ゲ ン化物が存在している。 こ の よ う に同一金属が複数の価 数で各々 金属化合物を存在させう る金属の こ とであ る。
更に、 具体的には、 例えば銅では、 CuCL, CuBr, Cul, Cu20, Cu2C03 といっ た銅の原子価が 1 の化合物 と CuCl2, CuF2 , Cu(C103)2 , CuS04 , CuO といっ た銅の原子価 2 価の化合物が存在する。 こ のよ う な複数の原子価で各々 その金属の化合物が存在 し う る金属の こ とをい う。
こ の よ う に定義される金属 と しては、 具体的には、 元 素記号、 Ag, Au, Ce, Co, Cr, Cs, Cu, Eu, Fe, Ge, Hg, In, Mn, Mo, Nb, Ni, Np, Pa, Pb, Po, Pr, Rb, Re, Sb, Se, Sm, Sn, Ta, Te, Th, Tl, U, V, W, Yb及び Zrで示される金属であ り、 こ れ ら金属ま た はこれら金属の化合物の 1 種以上を反応に供する。
こ れ ら金属の化合物を具体的に例示すれば、
Ag化合物 と しては Ag2F2 , AgF, AgF2 , AgCl, AgC103, AgC104 , AgBr, AgBr03 , Agl, Agl03 , Agl04 , Ag20, AgO, Ag2S , Ag2S03 , Ag2S04 , Ag2S203 , Ag2Se,
Ag2Te , AgN3 , AgN02 , AgN03 , AgCNO, Ag[PF6 ], Ag2HP04, Ag2P04, Ag4P207, AgPO s , Ag3As03, Ag3As04, Ag[SbF6], Ag2C2, Ag2C03, AgCN, AgNCO, AgSCN, Ag [BF4 ] , Ag(CH3C00) , Ag2(C204) , Ag2Cr04 , Ag2Cr07
[Ag(NH3)2]2S04 , K[Ag(CN)2], K[Ag(SCN)2], Ag(CH3), Ag(C6H5)等の無機及び有機銀化合物である。
Au化合物と しては AuCl, AuCl3 , AuBr, AuBr3 , Aul, Au 13 , Au 203 , Au(OH) 3 , , Au2S , Au 2S3 , Au 2P s , AuCN, Au(CN)3 · 3H20 , H[AuCl43 , Na[AuCl4] ,
K[AuCl4], NH4 [AuCl4], K[AuBr4], K[Aul4], K[Au(0H)4], H[Au(N0)4, K[Au(CN)2], K[Au(CN)4], Au(CH)3 { P (CeH5) 3 } Au(CH3)3 , AuBr(CH3)2 等の無機及び有機金化合物であ る
Ce化合物と しては CeF3 , CeF4 , CeCl3 , CeBr3 , Cel3, Ce(C104)3, Ce203, Ce02, Ce(0H)3, Ce(0H)4, Ce2S3, Ce2(S04 ) 3 , Ce2CS04)3, Ce2 (S04)2, Ce2Se3 , Ce2Te3 , Ce(N03)3 , Ce(N03)4 , CeP04 , CeC2
Ce2(C03)3 , CeB6 , CeH3 , Ce (NH4 ) (SO 4 ) 2
Ce(NH4) 2(N03)5, Ce(NH4)2(N03)6, Ce(CH3C00)3,
Ce2(C 204 ) 3, [Ce(C5H702 ) 3 ], [Ce(C5H702 ) 4 等の無機及 び有機セ リ ウム化合物である。
Co化合物と しては CoF2 , CoF3 , CoCl2 , Co(C104)2, CoBr2, Col 2, CoO, C02 O 3 , C03 O4 , Co(OH) 2, CoS, Co2S3, C0S2 , C0SO4 , Co(S0)4 , CoSe, CoSe04 , Co(N03)2, Co2P, Co3(P04)2, CoAsS, Co3(As04)2, CoC03, Co(CN)2, Co(SCN)2 , CoSi2 , C02S1O4 , CoCr04 , AI2C0O4 , CoFe204 , Co(CH2C00)2 , Co(CH3C00)3 , Co(C204) , Co(NH4 ) 2(S04)2 , CoK2(S04)2 , [Co(NH3)6]Cl2
Co(CsH702)2, Cs[CoCl4], Co[Hg(SCN)4], [ Co (NH3 ) e ] C i 3 , [CoCi(NH3)5]Cl2 , [Co(NH3)5(H20)]Cl2 , [Co(N02) (NH3)S]C12, cis- [CoCL2(NH3)4]Cl, t rans -CoC 12 (NH 3 ) 4 ] C 1 cis- [Co(N02)2(NH3)4] CI , trans- [Co(N02) 2 (NH3) 4 ] Cl, [CoC03(NH3)4] CI , mer-[Co(N02)3(NH3)3] , trans- NH4[Co(N02)4[Co(NH3)2] , Na3 [Co(N02)6] ,
K3 [Co(N02)6], [Co(C2H8N2)3]Cl3, [ CoCl 2 (C 2H 802 ) 2 ] C 1 , Na8[Co(C03)3] , K3[Co(C 204 ) 3 , [Co(C5H 702 ) 3 ],
K3 [CoF6] , K3[Co(CN)6] , K[Co(Ci oHI 2N208] ,
CoCl {P(CeH5)3} 3 , CoCl2 {P(C6H6)3} 2, CoH(C0)4, Co(C8H5)(C03) , Co(C0)3(N0) , Co(CO) 2 (CBHB) ,
Co2(C0)s, Co2(C0)e(C2H2), CO3(C0)9(CH), CO4(C0)12, Co(C6HB)2 , [Co(C6H6)2] + Br3 , Co(C5H)(C4H4),
Co(C8H12)(CBH6) , Co(CH3)2 {P(C6H5)3} (CSH5) 等の 無機及び有機コバル ト化合物である。
Cr化合物と しては CrF2 , CrF3 , CrCl2 , CrCl3 , Cr(Cl4)8, CrBr3, Cr 12 , Cr", Crl 202, CrO, Cr 203, Cr03 , Cr(0H)2 , Cr(0H)3 , CrS , Cr2S3 , CrS04, Cr2(S04)3, CrN, Cr(N03)3 , CrP, CrPO Cr3C2,
Cr3Si2 , CrB , CrB2 , Cr(CH3C00)2 , Cr(CH3C00)3 , Cr2(C204)3, CrK(S04)2, CsCr(S04)2, Cr(NH4 ) (S04 ) 2 , [Cr(H20)6]Cl3 , [Cr(C5H702)3] , K 3 [ Cr ( C 204 ) 3 ] ,
[Cr(NH3)e]Cl3, [CrCl (NH3 ) 5 ] CI 2, [ Cr (NH 3 ) 5 (H 20 ) ] C 13 , [Cr(C2H8N2)3]Cl3 , CrCl2(C2H8N2)2]Cl,
CrCl2(C2H8N2)2]Cl, K3 [Cr(NCS)6], NH4 [Cr (NCS) 4 (NH3 ) 23 K3 [Cr(CN)6] , Cr(C0)6 , Cr(C0)5 {P(CeH5)3,
Cr(C0)3(C6H6), CrH(C0)3(C5H5), Cr 2 (CO) 6 (C5H5) 2,
Cr(C6H6)2 , Cr(C5H5)2 , Cr(C3H5)3 , Cr(CH3)4
等の無機及び有機ク ロム化合物である。
Cs化合物と しては CsF, CsCl, CsClOs , CsC104 , CsBr , CsBr3 , Csl , Cs" , Cs20 , Cs20, Cs 202 , Cs02, CS 2O 3 , CsOH, Cs2S, Cs2S2, Cs2S3,Cs2S04
CsHS04, CsN3, CsNOs, CszCOs, CsHC03, CsCN, CsSCN, CsBF4 , CsH , Cs[BH4] , Cs(CH3C00) , Cs2(C204) , Cs[ICl2] , CsElBr2] , Cr[BrCl2〗 , AlCs(S04)2
CsTi(S04)4, CrCs(S04)2, Cs 2 [ CoC 14 ]等の無機及び有機 セ シウ ム化合物である。
Cu化合物と しては CuF2 , CuCl, CuCl2 , Cu(C103)2, Cu(C104)2 , CuBr, CuBr2 , Cul, Cu20, CuO, Cu(0H)2. Cu2S, CuS, CuSO Cu2Se, CuSe, CuSeO" Cu3N, CuN3, Cu(Ns) 2 , Cu(N03)2 , Cu3P, Cu3 (P04)2 , Cu3As,
Cu3 (As04)2, CU 2C 2, CuC03, Cu2 (C0s) (OH) 2, CuCN,
Cu(CN2)2, CuSCN, CuFe20" CuSiF6, Cu[BF4]2,
Cu(CH3C00)2 , Cu(C204) , [Cu(C5H702)2],
[Cu(NH2CH2C00)2], [Cu(NH3)4]S04 , [Cu(C2H8N2) ] S04 , K3[Cu(CN)4], LiCu(CH3)2 , Cu(CeH5), Cu(C≡ CC6H5), Cu(C5H5) {P(C2H5)3} 等の無機及び有機銅化合物である。
Eu化合物と しては EuF2 , EuFs, EuCl2 , EuCl3 , 一
Eu(C104) 3 , EuBr 2 , EuBr 3, Eul 2, Eu , EuO, Eu 203 , EuS04 , Eu2(S04)3 , Eu(N03)3 , Eu(CH3C00)3
[Eu(C5H 702 ) 3 ] , [Ei C, ,H, e02)3等の無機及び有機ユウ 口 ピウム化合物である。
Fe化合物 と しては FeF2 , FeF3 , FeCl2 , FeCl3 , Fe(C104)2 , Fe(C104)3 , FeBr2 , FeBr3 , Fel2 ,
FeO , Fe203 , Fe304 , Fe3(0H)2 , FeO(OH), FeS,
Fe2S3, FeS2, FeSO Fe2 (S04) 3, FeSe, Fe2N, Fe(N03) 2 , Fe(N03)3 , Fe2P , Fe3P, Fe3(P04)2 , FeP04 , FeAs, FeAs2 , FeAs04 , Fe3C, FeC03 , Fe(SCN)2 , Fe(SCN)3, FeSi , Fe(CH3C00)2 , Fe(C204) , Fe(C204)3 , FeMg04, FeMn04 , CoFe204, Fe2Ni04, Fe2Zn04 , ZnFe 204, CdFe 204, Fe(NH4)2(S06)2, FeK(S04)2, Fe (C 6 H 5 ) (CH 3 COC 5 H 4 ) ,
Fe(CBH5)(C5H4CH0), Fe(C5H5)(CH2 = CHC5H4) 等の無機及び有 機鉄化合物である。
Ge化合物 と しては GeF2 , GeF4 , GeCl2 , GeCl4 , GeBr3 , GeBr4 , Gel2 , Gel 4 , GeCl 20 , GeO, Ge02 , GeS, GeS2 , GeSe2 , GeH4 , K2[GeF6], Κ2 [Ge (C 204 ) 3 ], [Ge(C5H702)3]C104, Ge(CH3)4, Ge(C2H5)" Ge(C6H5)4 等の無機及び有機ゲルマニウム化合物である。
Hg化合物 と しては Hg2F2, HgF2 , Hg2Cl2 , HgCl3 , Hg(C104)2, Hg2Br2, HgBr2, Hg2I2, Hgl2, Hg4C103,
HgO, Hg2S, HgS, Hg2S04, HgS04, HgSe, HgTe, Hg3N2, Hg2(N3)2, Hg2(N03)2, Hg(N03)2, HgClNH2, Hg3P0
Hg3(P04)2, Hg(CN)2, Hg(CN)2 · HgO, Hg(CN0)2 , HgC03, Hg2(SCN)2, Hg(SCN)2, HgCrO Hg 2 (CH 3 COO) 2 , Hg(CH3COO)2, KHgls, [HgCl2(NH3)2], K2 [Hg(CN)4] , K2[Hg(SCN)4], CoHg(SCN) Hg(CH3)2, Hg(CH2Br)2 , Hg(C3H5)2 , Hg(C6H5)2 , Hg(CCl2Br)(CeH5) ,
Hg(C≡ C6H5)]2 , HgCKCsHs) , HgBr(C6H5), HgI(CH3), HgKCH"), Hg(CH3C00)(C6H5), Hg(CH3C00) (CH2C6H5) 等の無機及び有機水銀化合物である。
In化合物と しては InF3, InCl, InCl3, In(C104)3, InBr, InBr3 , ΙηΙ, Ιπ" , In20, ΙηΟ, ln 203 , In(OH) 3, InS3, In2(S04)3, In2Se3 , In2Te3 , In(N03)3, InP, InAs, InSb, In2 g04 , In(NH4)(S04 ) 2 , (NH4)3[InF6] , (NH4)2 [InCl5(H20)] , In(C5H5) , In(CH3)3 , In (C5H5)3, In(C6H5)3 等の無機及び有機イ ンジウム化合物である。
Mn化合物と しては MnF2 , MnF3 , MnCl 2, Mn(C104) 2, MnBr2 , nl 2 , MnO , Mn203 , n02 , Mn304 , Μη20-, MnO(OH), Mn(0H)2, MnS, MnS2 , MnSO 3 , MnSO 4 , Mn 2 (SO 4 ) 3 , MnSe, MnTe, n(N03)2, MnP, Mn(PH202)2, Mn(H2P04)2, MnHPO" Mn3(P04)2, MnP04, Mn2P 207, nAs, Mn3C, nC03, MnSi, MnSi03, Fe2 n04, Mn(CH3C00)2, Mn(C 204 ), Mn(NH4)2(S04)2 , KMn(S04) 2, K2 [MnF6], [Mn(C5H 702 ) 2 ], [Mn(C5H703), K4 [Mn(CN)6] · 3H20, K3 [Mn(CN)6],
Mn2(C0) i o, MnBr(C0)5, Mn(CH3)(C0)5, Mn(C0CH3)(C0)5, MnH(C0)5 , Mn(C0)4(C3H5) , n(C0)3 (C5H5) , Mn(N2) (C0)2(C5H5),Mn(C5H5)2 等の無機及び有機マ ンガン化合 物である。 - -
Mo化合物 と しては MoF3, MoF5, MoFe, M0CI2, M0CI3, MoCl 4 , oCl 5 , MoBr 2 , MoBr3, MoBr Mol2, oCl 30, M02CI 5 O 3 , M0CI4O, MoCl 20z, 0O2, M0O 3 , MoO(OH)3, M0S2, 0S 3 , M0S 4 , MoSe2, MoTe2, Mo2C, MoC, MoSi 2, o2B, oB, MoB2, Mo2(CH3C00)4 等の無機及び有機モ リ ブデン化合物である。
Nb化合物 と しては NbF5, NbCl5, NbCUO, NbBr5, NbU, NbO, Nb02, NbOs, NbN, NbC, NbB2, NbH, Nb(HC204)5, 2 [NbF7] , K2[NbF7] , K2 [NbF50] , Na[Nb(C0)6], Nb(C0)4(C5H5), NbCl2(CH3)3, NbC 12 (C 5 H 5 ) 2等の無機及 び有機ニオブ化合物である。
Ni化合物 と しては NiF2, N1CI2, Ni(C104)2, NiBr2, Nil2, NiO, Ni(0H)2, NiS, NiS4, NiSO NiSe, NiSe04, Ni(N03)2, Ni2P, Ni2(P04)2, NiAs, NiC03, Ni(C03)2(0H)6, Ni(CN)2, Ni(SCN)2, NiB, Ni[BF4]2, Ni (CH3C00)2, NiC20" NH4N1CI3, K2Ni(S04)2, (NH4 ) 2N i (SO 4 ) 2
NiFe 204 , K2 [NiF4] , K2[NiF6] , [Ni (NH3 ) e ] CI 2,
[Ni(C2H8N2)3]Cl2 , K2[Ni(CN)4] , [Ni (C3H702) 2 ] ,
[Ni(C5H702)2(H20)2] , [Ni(C2Hs)2 , (C'。H8N2), Ni { (P(C6H5)3 } 4 , [Ni(C2H4) { (P(C6H5)3 } 2],
NiCl2 { (P(CeH5)3 } ,NiCl2 { (PC6H5)3} ,Ni(C0)4
Ni(C0)2 { (P(C6H5)3 } 2, NiCKCeHs) { P(C6i )3} 2 , Ni(C0)4 , Ni2(G0)2(C5H5)2 , Ni(C4H9NC)2 ,
Ni (C4H9NC)4, Ni (C3H5)2, [ { NiBr(C3H5)2 ], Ni(C5H5)2, Ni(C3H5)(C5H5),Ni2(C2H2)(C5H5)2, NiCl(C5H5) { (P(CeH5)3} 等の無機及び有機ニッ ケル化合物である
Np化合物と しては NPF3, NpF4, NpCls, NpCl4 , NpBr3 Npl3, Np02, Nps08, NpH2, NpH3 等のネ ッ プニゥム化合 物である。
Pa化合物 と しては PaF" PaF5, PaCし, PaCls, PaBr5, Pal4, Pals, Pa02, Pa 205 等のプロ トア ク チニウム化合 物である。
Pb化合物と しては PbF2 , PbF4 , PbCU , PbCK , P C104)2, PbBr2, Pbl2, PbO, Pb 304, Pb 203, Pb02, Pb 302 (OH)2 , PbCU · PbO , PbS , PbS03 , PbS04, Pb(HS04)2 , Pb(S04)2 , Pb20(S04) , PbSe , PbSeO PbTe, Pb(N3)2, Pb(N03)2, Pb(PH202)2, PbPH03, PbHPO, 等の無機及び有機鉛化合物である。
Po化合物と しては PoCl2, P0CI4, PoBr2, ΡΟΙ4, ΡΟ02, Po(S04)2, 等のポロニウム化合物である。
Pr化合物 と しては PrF3, PrCls, PrBr3, Prl3, Pr 203 , Pr02, Pr2S3, Pr2(S04)3, Pr(N03)3, PrC2, Pr2(C03)3, Pr(CH3C00)3, Pr2(C204)3, [Pr(C5H702)3], NHPr(S04)2 等のプラセォジゥムの無機及び有機化合物である。
Rb化合物と しては RbF, RbCl, RbC103, RbC104, RbBr, RbBr3, Rbl, Rbl3, RbI03, Rb20, Rb202, Rb02, Rb203, Rb 203 , RbOH, Rb2S, RbSO" R漏 3, Rb2C03, Rb[BF4], RbH, RbCHsCQO, Rb[ICl2], AlRb (S04 ) 2等の無機及び有機 ル ビジウム化合物である。
Re化合物と しては ReF4, ReF6, ReF7, ReCl3, ReCl4, eCl 5 , ReBr3, ReCl40, ReC103, Re02, Re03, Re 207 , ReS2, Re2S7, K2 [ReCl 6 ], K2 [ReCl 50], Re2 (CO) , 0, ReCKCO )5, Re2(CH)(C0)5, ReH(C0)5, Re (CO) 3 (C 5 H 5 ) , Re(N2)(C0)(C5H5), ReH(C5H5)2, Na [ReH s ]等の無機及び 有機 レニウ ム化合物であ る。
Sb化合物と しては SbF3, SbF5, SbCl3, SbC , SbBr3, Sbl3, SblO, Sb203, Sb20s, Sb02(Sb204), Sb202S04, Sb2S3, Sb2S5, Sb2 (S04) 3 , Sb2Se3, Sb2Te3, SbH3, (NH4)2 [SbF5] , H[SbF6] , K[SbF6] , Ag[SbF6],
K2 [Sb2(C4H 206 ) 2 ] · 3H20, GaSb, Sb (CH3 ) 3, Sb (C 2H s ) 3, Sb(C6H6)3 等のア ンチモ ン化合物である。
Se化合物と しては SeF4, SeF6, Se2Cl2, SeCl4, Se2Br2, SeBr4, Sel 4 , SeOF2, SeOCl 2 , SeOBr2, Se02,Se03, SeS, SeS2, SeS03, Se4N4, H2Se, H2Se03, H2Se04等のセ レ ン 化合物である。
Sm化合物と しては SmF2, SmF3, SffiCl 2, SmCl 3,
SmBr2, SmBr3, Sml2, Sml 3, Sm03, Sm2S3, Sm2 (S04 ) 3 , Sm(N03)3, Sm(CH3C00)3 [Sm(C5H7C2) 3 . [Sm(C5H5)3] 等のサマ リ ゥム化合物であ る。
Sii化合物 と しては SnF2, SnF4, SnCl 2, SnCl4, SnBr2, SnBr Snl 2 , Snl 4 , SnO, Sn(OH) 2 , Sn02, SnS, SnS2, SnS04, Sn(S04)2, SnSe, SnTe, Sn(N03)4, Sn(H2P04)2, SnHPO" SnH Sn(CH3C00)2, Sn(C 204 ), Na[Sn2F5], Na2[SnF6] , K2 [SnF6] , K2[SnCl6] , (NH4 ) 2 [ SnC 16 ] , K2 [SnBr6], Sn(CH3)4, Sn(C2H5)2, SnC 1 (n-C 4 H 9 ) 3 , [Sn(C2H5)3]2 , Sn(C6H5 ) 4 , [Sn(CH3)3]20 ,
[Sn(n-C4H3)3] 20, Sn(n-C4H3)4, SnH(n-C4 Hs ) 3等の無機 及び有機スズ化合物である。
Ta化合物 と しては TaF5, TaCl2, TaCl5, TaBr4, TaBr5, Tal4, Ta02, Ta205 ,TaS2, TaN, Ta3N5, TaC, TaB2
K2[TaF7], Na3 [TaF8], Na(Ta(C0)6], Ta(C0)4 (C5H5), TaCl2(CH3)3, TaCl2(C5H5)2, TaH3(C5H5)2 等のタ ンタル 化合物である。
Te化合物と しては TeF4, TeF6, TeCl2, TeCl4, TeBr2, TeBr4, Tel4, Te02, Te03, H2Te, H2Te03, HeTeOe 等の テルル化合物である。
Th化合物 と しては ThF4, ThCl4, Th(C104)4, ThBr4 , Thし, Th02, ThS2, Th(S04)2, Th3N" Th(N03)
Th3(P04)4, ThC2, ThB4, ThB6, Th(CH3C00)4, Th(C204)2, K2 [ThF6], K4 [Th(C 204 ) 4 ], [Th(C 5 H702 ) 4 , Th(C5H)4等の ト リ ウム化合物である。
Ti化合物 と しては TiF3, TiF4, TiCl2, TiCl3, TiBr2, TiBr3, TiBr4, Ti 12, Ti I4, TiO, Ti 203 , Ti02, H2Ti03, H4T1 O4, T1CI2O, TiS2, Ti2(S04)3, Ti(S04)2, TiOS04, TiSe2, TiN, Ti(N03)4, TiC, TiSi 2, TiB, TiB2, TiH2, Na2 [TiF6],
K2[TiF6], (NH4)2 [TiFe], CsTi(S04)2, K2 [Ti 0 (C2H4 ) 2 ], [TiO(C5H702 ) 2 ] , [Ti(C5H5)2]2 , Ti (CO) 2 (C 5H5 ) 2 ,
TiCl(C5H5)2 , Ti(CH3)2(C5H5)2 , TiCl3(C5H5) ,
TiCl3(CH3) , Ti(CH2C6H5)4 等のチタ ン化合物である。
Tl化合物と しては TiF , TIFs , T1C1 , T1C13, T1C14, - -
TlBr, TlBrs, T1I,T1I3, T120,T103, T10H, T12S,T12S3, Tし SO" T12(S04)3, Tl2Se, T1N3, T1N03, T1(N03)3, T"P0" TI2CO3, T1CN, T1SCN , T1(CH3C00), T12 (C 204 ), A1T1(S04)2, K3 [T1C16], Τ1(0εΗ 702 ), T1(C6H6), T1(CHS)3 等のタ リ ウム化合物である。
U 化合物 と しては、 UF3, UF4, UF6, UC13, UCI4, UCls, UC16, UBr3, UBr4, UI4, U02, U 308 , U03, UO" U02C12, U02Br2 , UO2 I 2 , U02(C104)2 , U02S04 , U02(N03)2 , (U02)HP04, U 2 S 3 , US2, U02S, U(S04)2, UC, UC2, UB2, UH3 , U0(CH3C00) , U02(C204) , K2 [UF6] , K[UF6],
(NH4)2U 207 , K4 [U(C 204 ) 4 ], [U(C5H 702 ) 4 ], [U02(C5H 702 ) 2 ] U(C50S)4, U(C 808 )4等のウ ラ ン化合物である。
V 化合物 と しては VF3, VF" VF5, VCI 2, VCls, VCI4, VBr2, VBr3, VI2, VI3, V0,V203, V02, 0205, VF20, VF30, VC10, VCI 2O, VC O, VCIO2, VBrO, VBr20, VBr30, VS, V2S3, V2SB, VSO 4 , V2(S04)3, VOSO4, VN, VC, V2Si, VSi2, V(CH3C00)3, KV(S04)2, K3[V(C204)3] ,(NH4)2 [V0(C204)2] , [V(C5H702)2] , [V0(C5H702)2],
Na[V(CO)63 , V(C0)6 , V(C0)4(C505) , V(C505)2 , VC1(C 605 ) 2, V(CH3)(C 605 ) 2, VC12(C 505 ) 2 , V(C 606 ) 2 等の バナジウ ム化合物である。
W 化合物 と しては WF6, WCI 2, WCI4, WC15, WC16, WBr5, WBr6 , WI 2 , WI4 , W02 , W03 , WF4 O , WCI4O,
WBr40 , WC1202 , WS2 , WS3 , W2C , WC , WSi2 , W2B, WB, WB2, W2B5, K3 [W2C19] , K3 [W2(CN)8] , K4 [W(CN)8] , W(C0)6 , W2(C0)6(C505)2,
W(CH3)(C0)3(C 505 ), WC"(C5H5)2, WH2(C5H5)2
W(CH3 ) 6, Nai oWi 204 1 , K1o [W 1 204 2 H2], (NH4) j。 [W 1 2042 H2〗, Ke [H2WI 204 o] , Na3 [PW 1 204 O] , H3 [PW1 20"],
H4 [SiWi 204 O], K4 [SiW 1 204。], 等のタ ングステ ン化合物 である。
Yb化合物と しては YbF2, YbF3, YbCl2, YbCl3 · 6H20, YbBr2, YbBr3, Y l2, Ybl3, Yb03, Yb2(S04)3, Yb(N03)3 Yb(CH3C00)3, Yb2(C 204 ) 3 等のイ ッ テル ビウム化合物で ある。
Zr化合物 と しては ZrF3, ZrF4, ZrCls, ZrCl3, ZrCl4, ZrBr3, ZrBr4, Zrl3, Zrl4, Zr02, ZrCl20 , ZrS2
Zr(S04)2, ZrN, ΖΓ(Ν03)4, ZrO(N03)2, ZrC, ZrSi2
ZrSiO ZrB2, ZrH2, K2 [ZrF6], Na2 [ZrF6], (NH4) 3 [ZrFT ] , Zr(CH3C00)4, [Zr(C5H702)4], ZrCl 2 (C5H5 ) 2, (CsZrHCl) (C5H5)2, Zr(CH3)2(C5H5)2, ZrBr 3 (C 5 H5 ) 2, Zr(CH2C6H5)4 等のジルコニウム化合物である。
これら金属の化合物は結晶水を含有していて も、 又、 無結晶水物であって も差し支えない。
金属化合物と して 2 種類以上の原子価状態を存在させ う る金属又はこれら金属化合物の使用量は、 特に限定さ れる こ とはないが、 実施し易い使用量と しては例えばバ ツ チ反応では金属重量換算でベンゼン 1 0 0 g当 り好ま し く は 0. 0 0 1 〜 2 0 g , 更に好ま し く は 0. 0 1 g〜 2 g の範囲である。 更に、 触媒成分と して反応系に鉄族金属、 鉄族金属化 合物、 アルカ リ 金属及びアルカ リ 金属化合物の群か ら選 択される、 少な く と も 1 種を添加する こ とが好ま しい。 これによ り フ エ ノ ールの収率、 選択率が向上する。
こ こ でアルカ リ 金属 とは、 元素記号で Li, Na, K, Rb, Cs で表される金属であ り、 アルカ リ 金属化合物 とは、 こ れ らアルカ リ 金属の化合物の こ とを示す。 アルカ リ 金属化 合物を具体的に例示すれば次の とお り であ る。
Li化合物 と しては LiF, LiCl, LiBr, Li I, LiCL03, LiCIO" LiBrOa, Li I03, Li 20, Li 202 , LiOH, Li 2S, LiSH, Li2S0" LiHSO Li3N, LiN3, LiN02, LiN03, LiNH2, Li3P04, LiH2P04, Li3As04, Li 2C2, Li2C03, LiHC03, LiSCN, Li(CH3), Li(CH=CH2), Li(i-C3H7), Li(n-C4H9),
Li(s-C4H9), Li(t-C4H9), Li(C6H5), Li (BF4), Li 2B407, Li [BH4] , Li [AIH4] , LiH , LiCH3C00 , Li2(C 204 ), Li [Cu(CH3)2]等の リ チウ ム化合物、
Na化合物 と しては NaF,NaHF2, NaCl, NaCIO, NaC102, NaCI03, NaC104, NaBr, NaBr03, Nal, NaI03, NaI04, Na3H2 IOe, Na20, Na20, Na 202 , Na 202 · 8H20, Na02, NaOH, Na2S, NaHS, Na2S4, Na2S03, NaHS 03, Na2S04, NaHSO" Na2S 203, Na2S 204 , Na2S 305 , Na2S 306 , Na2S 307 , Na2S308, NaS03F, Na2Se, Na2Se03, Na2Se04, Na2Te, Na2Te03, Na2Te04, Na2H4TeOe, NaN3, Na2N202, NaN02, NaN03, NaNH2, NaPH202, NaPH03, NaHPH03, Na3P04, Na2HP04, Na4P206, Na2H2P206, Na4P207, Na2H2P207, cyclo - Na3P303, Na3P3010, NaAs02, Na2HAs03, Na3As04, NaHAsO" NaH2As04, NaSb02, Na3SbS4 · 9H20, BiNa03, Na2C2, Na2C03, NaHC03, Na2CS3, NaCN, NaOCN, NaSCN, NaC5H5, Na(C6H5)2C0 ,NaC1 0H18, Na2Si03, Na4SiO" Na2Ge03, Na2Ge03, Na2B407, Na2B407, NaB02, NaB02, NaBOs, NaA102, NaH, MgNa2(S04)2, NH4NaHP04, KNaC03 Al a(S04)2, NaV03, Na3V04, Na3V04, Na4 V207, Na2 Cr04 Na2Cr207, Na2Cr08, Na2Mo04, Na2W04, NaMnO" NaRe04: NaFe02 , NaRu04 , Na2U04 , Na2U207 , Na2 [Sn(0H6], Na[Sb(0H)6] , Na[Xe06] , Na[BH4] , Na [B ( C 6 H 5 ) 4 ], Na[BF4] , a3 [A1F6], Na2[SiF6], Na [ Sn2F 5 ] , a [SnF6 ] , NaPFe, Na2 [TiF6], Na2[ZrF6], Na3 [TaF8 ], Na3 [FeF6 ], Na2 [0.sCl6], Na3 [RhCl6], Na2[IrCl6], Na2 [PdCl4], Na2[PtCl4] , Na2 [PtCl6] , Na2[PtBr6] , Na2 [PTIs], Na[AuCl4], Na[V(C0)6], Na[Nb(C0)6], Na[Ta(C0)6], Na[Fe(C0)4 ] , Na [Fe(C 204 ) 3 ] , Na3 [Co (CO 3 ) s ] ,
Na2[Pt(0H)6], Na2Ca(Cl oHi 2N208), Na3 [Co(N02)6], Na3 [Ph(N02)e] , Na4[Fe(CN)6] , Na3 [Fe(CN)6] ,
NH2[ Fe(CN)5(N0)] , Na2 [Fe (CN) 5 (NH3 ) ] , Na2 [Mo 207 ], Na2 [ o30i o ], Na6 [M07 O 24 J , Na4 [Mo 8026 ] , Na 3 [PMo i 204。 ] Na4 [SiMo120"], ai 0 [W, 2042H2 ] , NaCH3C00, NaC 204 , NaHC 204 , Na[AlH2(OC2H4OCH3)2,Na2[ReH3]等のナ ト リ ウ ム化合物、
K 化合物と しては KF, KHF2. KC1, KCL03, KC104, KBr, ΚΒΓ03, KI, ΚΙ 3, KI03, KH(I03), KI04, K[BrF4 ] , [BrF6 ] , K[IC12], K[IC14], K[IBr2], K20, K 202 , K 203 , K02, KOH,
K 2 S, K 2 S, K 2 S 2 , K 2 S 3 » K 2 S 4 » K 2 S 5 » K H S, K 2 S 03, K H S 03,
K2S04 , KHS04 , 3K2S203 , K2 S 2 O 5 , K 2 S 2 O 6 , K2S207 2 S 2 O 8 , KzSsOe, K2 S4 O 6 , KzSsOe, KSOsF, K2Se, K2Se03 K2Se04, K2Te, K2Te03, K2TeO" K 3, KN02, KN03, KNH2 KPH2O2 , K2PH03 , KHPH03 , K3PO 4 , K2HP04 , KH2P04 K4 P 2 O 7 , K6(P03)6> K2P0sF, KAsOz, K3As03, K3As04, K2HASO4 KH2As04 , K3 AS S 3 , K3ASS4 , KSb03 , K[Sb(0H)6], K3SbS" K2C2, 2 CO 3 , KHCO3, 2C 206 , K2CS3, KCN, OCN, KSCN, KSeCN, KC(CeH5)3, KC2(CeH5), K2Si03, K2Si 409, K2 [sn(0H)6], K2SnS3, K2B407, K2B508, KB02, K[BH4], KAIO2, KH, KVO 3 , K2Cr04, K2Cr207, K3 Cr 08, K 2MoO 4 , K2W04, K2 n04, KMn04, KTc04, KRe04, K2Ru04 , KRu04 , K20s04, K[0s(N)03], K2 UO 4 , KCH3COO, K2 C 2 O 4 , KHC 2 O 4 , KMgC , KMgCKS04), K2Mg(S04)2, K2 g2(S04)3, KNaC03, KMgH(S03)2, K2Co(S04)2, K2Ni(S04)4, K2Zn(S04)2, KA1(S04)2, KA1(S04)2, KGa(S04)2, KV(S04)2, KCr(S04)2, K n(S04)2, KFe(S04)2, KRh(S04)2, K2 [BeF4], K[BF4], K2 [SiF6], K2 [GeF6], K2 [SnFel, [PFe], K[AsF6], [SbF6], K2[TiF6], K2[ZrF6], K2 [NbF7], K2 [NbF50], K2[TaF7], K3 [MoF8], K2 [MoF8], K2 [MnF6], K3[FeF6], K3[CoF6], K2 [NiF4], K2 [NiF6], K2[ThF6〗, K2[UF6], K[UF6], K3 [TICK], K2 [SnCl6], K2 [PbCls], K2 [SeCl6], K2 [TeClel, K3 [ oCle], K3 [W2C19], K3 [ReCle], K2 [ReC O], K2 [RuCl 6] K2 [OsCl6] , K3 [OsCle] , K2 [OSCI 4O2 ] , K2[RhCl6], K3[Ir C"], K2[IrC"], K2[PdCl4],K2[PdCl6],K2[PtCし K2 [PtCl6], K[AuCl4], K2 [SnBr6], K2 [PdBr4], K2 [PtBr4], K2[PtBr6], K[AuB4r], K2[PtI6], K[AuI4], K2[CdI4], KHgI3, K3 [Cr(CN)6] , K4 [Mo(CN)8] , K4[W(CN)8],
K3 [W(CN)8], K4 [Mn(CN)6], K3 [Mn (CN) 6 ] , K4 [Fe (CN) 6 ], K3 [Fe(CN)6] , K2 [Fe(CN)5(N0)] , KFe[Fe(CN)6] , K4 [ u(CNe)], K4[0s(CN)6], K3 [Co(CN)6], K3 [Rh(CN)6], K3 [Ir(CN)6], K2 [Ni(CN)4], K2[Pd(CN)4], K2 [Pt(CN)4], K2 [Ag(CN)4], K[Au(CN)2], K[Au(CN)4], K[Zn(CN)J, K2 [Cd(CN)4], K[Hg(CN)4], K3 [Cr (NCS) 6 ], K4 [Fe(NCS)6], K3 [Fe(NCS6)],K2 [Pt(SCN)4], K[Ag(SCN)2], K[Hg(SCN)4], K3 ECo(N02)6] , K2 [Pt(OH)6], K[Au(OH)4], K3 [A1(C0)3], K2[Ge(C204)3] , K2 [TiO(C204)2] , K3[V(C204)3] , K3 [Cr(C204)3] , K3[Fe(C204)3] , K3 [Co(C203)] , K3 [Ir(C204)3] , K4 [Th(C204)4] , K4 [Th(C204) 4 ] , K4[U(C204)4] , K2[ReH9] , K [Co (C , oHj 2N208 ) ] ,
K2[Sb2 'C4H 206 ) 2 ], K6 [W, 204 OH2], K】 o [W, 2042 H2], K4[SiW 1204。]等の力 リ ゥム化合物
-
R b化合物 と しては、 前述のル ビジウム化合物。
C s化合物 と しては、 前述のセ シウ ム化合物。
上記鉄族金属化合物又はアル力 リ 金属化合物を使用す る際に、 これ ら化合物が結晶水を含有 していて も、 無結 晶水物であ って も何れで も使用する こ とが出来る。
又、 こ れ らの金属ま たは金属化合物を使用する際に、 こ れ ら金属 も し く は金属化合物をシ リ カ、 アル ミ ナ、 活 性炭、 ゼォラ イ ト等に担持させて使用 して も何ら差 し支 えない。
鉄族金属、 鉄族金属化合物、 アルカ リ 金属又はアル力 リ 金属化合物の使用量は と く に限定されないが、 例えば バ ッ チ式反応では金属重量換算で好ま し く はベ ンゼ ン 1 0 0 g当 り 0. 0 0 l 〜 2 0 g、 更に好ま し く は 0. 0 1 〜 2 g の範囲である。
本発明方法において使用 される酸化剤 とは、 酸素分子 酸素原子、 酸素イ オ ン等を反応状態において反応系内に 供給する こ との出来る物質である。
具体的には酸素分子、 空気、 希釈空気、 過酸化水素、 更に通常使用 される有機過酸化物及び無機過酸化物が例 示され、 こ れ らの 1 種以上を使用する。
本発明方法においては、 反応系内は酸性状態であ る こ とが好ま しい。 こ の酸性状態は、 一般的には反応系内に 酸性物質、 た とえばブ レ ン ステ ツ ド酸、 ルイ ス酸等を添 加する こ とによ り達成さ れる。 ブ レ ンステ ツ ド酸と して は例えば塩酸、 硫酸、 硝酸、 リ ン酸、 ホウ酸等の鉱酸類 酢酸、 蟻酸、 安息香酸、 ト リ ク ロ 口酢酸、 シユ ウ酸等の カルボン酸類、 スルホ ン酸類、 ヘテロ ポ リ 酸類、 ゼオラ イ ト類、 混合酸化物類等が挙げられる。 又ルイ ス酸と し ては、 塩化アル ミ ニウム、 塩化第二鉄、 ゼォラ イ ト類、 混合金属酸化物類等が例示される。 これ ら酸性物質のみ に限定される ものではない。
本発明方法を実施する にあた り、 反応系内に触媒及び 反応試剤に対して不活性な、 溶媒も し く は気体等を添加 して、 希釈 した状態で行う こ と も可能である。 具体的に は、 メ タ ン、 ェタ ン、 プロパン、 ブタ ン、 へキサン、 シ ク ロへキサ ン等の脂肪族飽和炭化水素類、 窒素、 ァルゴ ン、 ヘ リ ウム等の不活性気体等が例示される。
反応温度は、 特に限定されないが、 好ま し く は 0 〜 4 0 0 °C、 更に好ま し く は 1 0 〜 3 0 0 °Cの範囲である c 反応温度が極端に低すぎる と、 ォ レ フ ィ ン類及び Z又は 芳香族化合物 (反応試剤) の転化率が低い、 言い換えれ ば極端に反応速度が低下し、 反応生成物の生産性が低下 する。 一方、 反応温度が 4 0 0 C以上で実施すれば、 好 ま しからざる副反応等が進行し副生成物の増大や、 原料 であるォ レ フ ィ ン類及び 又は芳香族化合物、 更に生成 物である カルボニル化合物及び Z又は芳香族ヒ ドロキシ 化合物の安定性に も好ま し く な く 、 反応選択率の低下を もた ら し経済的ではない。
反応は減圧、 加圧および常圧のいずれの状態で実施す る こ と も可能である。 反応効率 (単位体積あた り の反応 効率) の観点か ら余 り に低い圧力で実施する こ と は好ま し く ない。 又、 反応装置等の設備的な経済性の観点か ら 余 り に高い圧力で実施する こ と も好ま し く ない。 通常好 ま しい実施圧力範囲は 0. 0 5 〜 3 0 0 気圧であ り 、 さ ら に好ま し く は 0. 5 〜 2 0 0 気圧である。
又、 反応は液相、 気一液相または気相反応の何れの状 態で実施する こ とが可能である。 更に、 触媒は均一、 不 均一のいずれの形態でも使用する こ とが可能である。 こ れ らの触媒は、 溶液状態、 二層分離状態、 二液混層状態、 スラ リ ー状態、 固定床、 移動床、 流動床等の何れの方式 で用いる こ と も可能である。
本発明は通常のバッ チ反応、 一部の原料も し く は触媒 等を連続的に供給する よ う なセ ミ バ ッ チ反応又は流通連 続反応等の何れの反応方法において も実施可能である。 又、 反応原料、 酸化性物質、 触媒等の各成分の添加順序 及び添加方式等、 特に制限される こ と はない。
更に、 ォ レ フ ィ ン類を逐次、 その消費等に応 じて数段 階にわた って添加する等のセ ミ バ ッ チ反応形式を行う こ と も可能であ り、 これによ り、 フ X ノ ール等の芳香族 ヒ ドロキシ化合物の収率の向上がもた ら さ れる こ と も ある。 反応時間 (流通反応においては滞留時間 も し く は触媒 接触時間) は特に限定されないが、 通常 0. 1 秒〜 3 0 時 間、 好ま し く は 0. 5 秒〜 1 5 時間である。
反応後、 反応生成物を必要であるな らば、 前記触媒等 か ら濾別、 抽出、 留去等の方法によ って分離回収する こ とができ る。
目的生成物である芳香族ヒ ドロキシ化合物およびカル ボニル化合物は上記分離回収物か ら溶媒抽出、 蒸留、 ァ ルカ リ 処理、 酸処理等の逐次的な処理方法等、 あるいは これ らを適宜に組み合わせた操作等の通常の分離、 精製 法によ って分離、 精製し取得する こ とができ る。 又、 未 反応原料 (芳香族化合物、 ォ レ フ ィ ン化合物および酸化 性物質) は回収して、 再び反応系へ リ サイ ク ルして使用 する こ と もでき る。
バ ッ チ式反応の場合、 反応後に反応生成物を分離して 回収された触媒はそのま ま、 またはその一部も し く は全 部を再生した後、 繰り返して触媒と して反応に再度、 使 用する こ とができ る。
固定床または流動床流通連続反応法で実施する場合に は、 反応に供する こ とによ って、 一部または総てが失活 も し く は活性低下した触媒は、 反応を中断後再生 して反 応に再度使用する こ と もでき る し、 又、 連続的 も し く は 断続的に触媒の一部を抜出 し、 再生後、 再び反応器ヘ リ サイ ク ル して、 再使用する こ と もでき る。 さ らに、 新た な触媒を連続的または断続的に反応器へ洪耠する こ と も でき る。 移動床式流通連続反応、 も し く は均一触媒流通 連鐃反応方式で実施する際には、 バッチ式反応と同様に 触媒を分離、 再生して再使用する こ とができ る。
〔実施例〕
以下、 本発明方法を実施例によ り さ らに具体的に説明 - -
する。
なお、 各実施例及び表中に記載した生成物の ヒ ドロキ シ化合物の収率は仕込みの芳香族化合物を基準と し、 力 ルポニル化合物の収率は仕込みォ レ フ ィ ンを基準と して 算 し 7こ o
実施例 1
5 O m l のハステロ ィ C製オー ト ク レープ中にベ ンゼ ン 4. 0 g, 0. 1 N塩酸 1 5 g, 塩化ノ、。ラ ジウ ム 0. 0 5 g、 銅粉末 0. 0 5 g を仕込んだ後、 こ のオー ト ク レ ープ内を 酸素ガスで置換 し、 更に酸素 1 5 k g / c m 2 およ びェ チ レ ン 1 5 k g Z c m 2 をそれぞれ圧入 した。 反応温度 を 5 0 °C と し撹拌 しなが ら 3. 0 時間反応を行っ た後、 冷却 し反応液をベンゼンによ り 抽出 した。 抽出物をガス ク ロ マ ト グラ フ法によ り分析 した結果、 抽出物中にフ エ ノ ー ル、 p —べン ゾキノ ン及びァセ ト アルデヒ ドの収率が、 5. 6 % , 1. 2 %及び 9. 4 %で生成した。
比較例 1
エチ レ ンを仕込まない以外は総て実施例 1 と全 く 同一 の条件で反応を行い、 同一の方法で反応液を分析 した。 こ の結果、 フ エ ノ ールの収率は 0. 2 %、 p —べ ン ゾキノ ンの収率は 0. 1 %であ っ た。
こ れによ り、 反応系にォ レ フ ィ ンを添加する こ とで、 フ ェ ノ ー ルの収率が格段に向上する こ とが分かる。
実施例 2
銅粉末を塩化第二銅二水和物 0. 0 5 g に代えた以外は 総て実施例 1 と同一の条件で反応及び分析を行っ た。 こ の結果、 フ ヱ ノ ールの収率は 1. 1 %及びァセ トアルデ ヒ ドの収率は 1 8. 3 %であ っ た。 さ らに少量の ρ —ベンゾ キノ ンが確認された。
実施例 3
塩化第一銅 0. 0 5 g を更に添加 した以外は総て実施例 2 と全 く 同一の条件、 方法で反応及び分析を行っ た。 こ の結果フ エ ノ ールの収率は 2. 3 %、 ァセ ト アルデヒ ドの 収率は 1 3. 6 %であ っ た。 さ らに少量の p —べン ゾキノ ンの生成も確認された。
実施例 4
実施例 2 における塩化第二銅二水和物を塩化第一銅 0. 0 5 %に代えた以外は総て実施例 2 と全 く 同一の条件 及び方法で、 反応及び分析を行った。 結果はフ ニ ノ ール 収率 1. 8 %、 ァセ ト アルデヒ ド収率 1 0. 8 %であ り、 さ らに少量の p —べン ゾキノ ンの生成が確認された。
実施例 5
実施例 1 において実施した方法で、 反応液の組成をべ ンゼン 4. 0 g , 0. 1 N硫酸 2 0 g、 硫酸パラ ジウム 0.25 g、 硫酸銅 (五水和物) 0. 2 6 g及び銅粉末 0. 0 7 g と し、 さ らに酸素圧 S k g Z c m 2 を及びエチ レ ン 5 k g / c m 2 仕込み、 その他は総て実施例 1 と同様に反応を 行っ た結果、 フ ヱ ノ ール収率 2. 0 %及びァセ ト アルデヒ ド収率 9. 2 %を得た。 p —べンゾキノ ンの生成は殆ど確 認されなかっ た。 実施例 6
実施例 1 において実施 した方法で、 反応液の組成をべ ン ゼ ン 4. 0 g, 酢酸 6 g、 酢酸ノ、' ラ ジ ウ ム 0. 0 5 g 、 酢 酸銅 0. 0 4 g及び水 0. 9 g と し、 さ らに酸素圧 1 5 k g / c m 2 、 エチ レ ン圧 1 S k g Z c m 2 仕込み、 反応温 度 1 8 0 で、 反応時間 1 時間 と し、 その他は実施例 1 と 同一の条件で反応及び分析を行っ た結果、 フ エ ノ ール収 率 6. 4 %およびァセ ト アルデヒ ド収率 1 3. 3 %を得た。 さ らに酢酸フ エニル収率は 0. 7 %であ っ た。
実施例 7
実施例 1 において、 触媒を硝酸バタ ジゥム 0. 0 5 g , 硝酸第二銅 (三水和物) 0. 0 5 g と し、 0. 1 N塩酸を 0. 1 N硝酸に代えた以外は総て実施例 1 と同一の条件お よび方法で反応および分析を行っ た。 結果はフ ニ ノ ール 収率 5. 3 %、 ァセ ト アルデヒ ド収率 7. 1 %であ り、 さ ら に p —べ ン ゾキノ ンの収率は 2. 1 %であっ た。
実施例 8 〜 1 0
反応温度をそれぞれ 8 0 、 1 0 0 及び 1 5 0 と した 以外は総て実施例 1 と同一の条件およ び方法で反応およ び分析を行っ た。 結果は表 1 に示 したよ う に反応温度の 上昇と と も に、 それぞれの生成物の収率は向上 した。 〔表 1 〕 反応温度 収 率 (% )
(。C ) フ ェ ノ ー ル ァセ ト ァ P-ベ ン ゾ
ルデ ヒ ド キ ノ ン 実施例 8 80 7. 4 18.5 2.8 実施例 9 100 9. 1 21.3 3.2 実施例 10 150 11. 9 22.6 4.9 実施例 1 1 〜 1 5
実施例 1 におけるエチ レ ンのかわ り にそれぞれ、 プロ ピ レ ン 4. 3 g、 ブテ ン一 1 4. 2 g、 シ ク ロ ペ ン テ ン 4. 0 g、 シク ロへキセ ン 4. 0 gおよびスチ レ ン 4, 0 g と し て仕込んだ以外は総て実施例 1 と全 く 同一の条件および 方法で反応および分析を行った。 結果は表 2 に掲げたよ う にそれぞれ、 良い収率でフ エ ノ ールおよびカルボニル 化合物が生成した。
〔表 2 〕 収 率 ( )
ォ レ フ ィ ン フ エノ ーノレ カ ルボ ル ρ -ベ ン ゾ 化合物 キ ノ ン 実施例 11 プ ロ ピ レ ン 5.5 10.3 1.1 実施例 12 ブテ ン — 1 5.3 8.8 0.9 実施例 13 シ ク ϋペ ン テ ン 4.9 7.7 1.0 実施例 14 シ ク ϋへ キ セ ン 4.8 7.2 0.8 実施例 15 スチ レ ン 4.6 5.3 0.7 - -
但 し 、 生成 したカ ルボニル化合物はア セ ト ン (実施 例 1 1 ) 、 メ チルェチルケ ト ン (実施例 1 2 ) 、 シ ク ロ ペン タ ノ ン (実施例 1 3 ) 、 シ ク ロへキサノ ン (実施例 1 4 ) 、 ァセ ト フ ヱ ノ ン (実施例 1 5 ) であ る。
実施例 1 6〜 2 0
実施例 1 においてベ ン ゼ ン の代わ り にそれぞれ、 ト ル ェ ン、 フ エ ノ ー ル、 ナ フ タ レ ン、 一ナ フ ト ー ゾレ、 ァ ニ ツ ール、 及び p —キ シ レ ン各々 4 g と した以外は総て実 施例 1 と全 く 同一の条件および方法で反応およ び分析を 行っ た。 結果は表 3 に示 したよ う にそれぞれ良い収率で 生成物が得られた。
〔表 3 〕 収率 (% ) 芳香族化合物 ヒ ド o ジ ヒ ド CH3CH0 キシ ロキ シ
化 物 化 物
実施例 16 ト ゾレエ ン 6.5 1.6 9.8 実施例 17 フ エ ノ ー ル (原料) 7.1 10.9 実施例 18 ナ フ タ レ ン 5.0 0.7 8.6 実施例 19 ナ フ ト ー ル (原料) 6.0 7. 1 実施例 20 ァニソ ー ル 5.2 1.4 9. 1 実施例 21 p -キシ レ ン 7.0 tr&nce 9.5 実施例 2 2
実施例 1 において仕込みの酸素を酸素 9 %、 窒素 9 1 %の混合ガス 1 0 O k g Z c m 2 と した以外は総て実施 例 1 と同一条件で実施した結果、 フ ヱ ノ ール、 p —ベ ン ゾキノ ン及びァセ トアルデヒ ドの収率はそれぞれ、 3. 9 % , 0. 7 %及び 5. 6 %であ っ た。
実施例 2 3
実施例 2 2 において、 反応時間を 1 時間 と した以外は 総て、 実施例 2 2 と同一の条件で反応を実施 した。 この 結果、 フ エ ノ ール、 p —べンゾキノ ン及びァセ トアルデ ヒ ドの収率はそれぞれ、 2. 4 % , 0, 3 %及び 4. 1 %であ つ T: 0
実施例 2 4〜 2 5
実施例 2 3 において塩化パラ ジウムの代わ り に、 それ ぞれ塩化ルテニウム、 塩化ロ ジウムを各々 0. 2 8 mmo 1仕 込んだ以外は総て実施例 2 3 と同一の条件で反応を実施 した。 結果を表 4 に示した。
〔表 4 〕 フ エ ノ - -ル p-ベ ンゾ ァセ 卜 キノ ン アルデ ヒ ド 化合物
% % %
実施例 24 RhC" 1.9 0.2 3.2
実施例 25 RhCl3 1.3 0.1 2.2 実施例 2 6〜 2 9
実施例 2 3 において使用 した銅粉末の代わ り に CoCl2 CrCls , SnCl2及び MnCl2 をそれぞれ 0· 7 8 7 mmol使用 し た以外は総て実施例 2 3 と同一の条件で反応を実施した, 結果は表 5 に示したよ う に銅以外の金属に も触媒作用が 一
確認された。
〔表 5 〕 金 厲 フ エ ノ 一ル P -ベン ゾ ァセ
キ ノ ン アルデ ヒ 化合物
実施例 26 CoCl 2 0.9 0 1.2 実施例 27 CrCl3 0.3 0 0.2 実施例 28 SnCl 2 0.6 0 0.8 実施例 29 MnCl2 1.2 0.1 2.2 実施例 3 0〜 3 3
触媒と して H Y型ゼォラ イ ト に通常の含浸法によ り塩 化パラ ジウ ム 1 重量%およ び塩化第二銅 4 重量 担持さ せ 1 5 0。C、 1 2 時間加熱処理した も のを 7 m l バイ レ ッ ク ス製の反応管に充填し、 各々 1 5 0, 1 7 5 , 2 0 0 , 2 5 0 °Cに加熱し、 こ れにベ ンゼ ン 3. 0 g /H r、 プ ロ ピ レ ン 2. 5 m l /m i n . 、 N 2 / 02 = 9 1 / 9 v o l 比ガス 5 0 m l Zm i n . の仕込み速度で連続的 に反応管に導入 し、 反応を 2 時間行っ た。 反応ガスは ド ラ イ アイ ス一メ タ ノ ー ル冷媒で冷却、 液化 し分析 した。 反応回収液中の生成物収率を表 6 に示 した。 〔袠 6 〕 反応温度 収率 (% )
( °C ) フ エ ノ ール アセ ト ン 実施例 30 150 0.7 4* 9
実施例 31 175 1.2 5.3
実施例 32 200 2.0 7.8
寒施例 33 5 q 9 2 実施例 3 4 〜 3 7
触媒を N a Y型ゼォラ イ ト に実施例 2 2〜 2 5 と同一 量の塩化パラ ジゥム及び塩化第二銅を同様な方法で担持 させた ものを触媒と して用いた以外は総て実施例 2 2〜
2 5 と同一の条件および方法で反応を行った。 結果は表
7 に掲げた。
〔表 7 〕 反応温度 収 率 (% )
( °C ) フ エ ノ ール アセ ト ン 実施例 34 150 0.5 3.2 実施例 35 175 0.9 4.7 実施例 36 200 1.3 5.6 実施例 37 250 2.1 1.5 実施例 3 8
実施例 1 において更に塩化第一鉄 4 水和物 0. 0 1 g、 塩化第二鉄 0. 0 1 g及び'塩化 リ チウム 0. 0 5 g を加え、 —
反応温度を 1 0 0 °C と した以外は総て実施例 1 と同一条 件で反応を実施した。 こ の結果フ ヱ ノ ール及びァセ ト ァ ルデ ヒ ドの収率が、 7. 8 %及び 2 5. 8 %で生成 した。 P 一べン ゾキノ ンの生成は確認されなかっ た。
実施例 3 9
実施例 3 8 において実施 した方法で、 塩化第二鉄六水 和物のみ仕込まなかっ た以外は総て実施例 1 と同一の条 件及び方法で反応及び分析を行っ た。 こ の結果、 フ エ ノ ール収率 7. 4 %、 ァセ ト アルデヒ ド収率 1 9. 4 %であ つ た。 p —べ ン ゾキ ノ ン の生成は確認さ れなか っ た。
実施例 4 0
塩化第一鉄四水和物を仕込まなかっ た以外は総て実施 例 3 8 と全 く 同一の条件、 方法で反応及び分析を行っ た こ の結果フ ヱ ノ ールの収率は 7. 5 % , ァセ ト ア ルデ ヒ ド の収率は 1 9. 5 %であ っ た。 p —べ ン ゾキ ノ ン の生成は 確認されなかっ た。
実施例 4 1
塩化 リ チウ ムを仕込まなかった以外はすべて実施例 3 8 と全 く 同一の条件、 方法で反応及び分析を行っ た。 こ の結果フ エ ノ ールの収率は 7. 0 % , ァセ ト アルデ ヒ ドの 収率 1 6. 6 %であ り、 p —べン ゾキノ ン の生成は確認さ れなかっ た。
実施例 4 2
実施例 3 8 において実施した方法で、 エチ レ ン の代わ り にプロ ピ レ ン 8 k g / c m 2 を仕込んだ以外は総て実 施例 1 と同一の条件及び方法で反応及び分析を行っ た結 果、 フ エ ノ ール収率 6. 6 %、 アセ ト ン収率は 2 2. 4 %で あっ た。 p —ベン ゾキノ ンの生成は確認されなかっ た。 実施例 4 3
実施例 4 2 を実施した後、 更にプロ ピ レ ン 8 k g Z c m 2 を再度仕込み、 反応温度を 1 0 0 °C と し、 実施例 4 2 と同様に して更に、 3 時間反応を続けた。 この結果、 フ エ ノ ール収率 1 0. 1 %及びアセ ト ン収率 3 0. 4 %を得 た。 p —べン ゾキノ ンの生成は確認されなかっ た。
実施例 4 4
実施例 4 3 を実施した後、 更にプロ ピ レ ン 8 k g Z c m 2 を再度仕込み、 その後、 実施例 4 3 と同様に反応 及び分析を実施した。 こ の結果、 フ ノ ール収率 1 3. 6 %、 アセ ト ン収率 3 7. 9 %であ っ た。 p —べン ゾキノ ン の生成は確認されなかっ た。
実施例 4 5
実施例 4 2 において実施した方法で、 塩化 リ チウムの み仕込まなかっ た以外は総て実施例 4 2 と同一の条件、 方法で反応及び分析を行った。 結果はフ エ ノ ール収率 6. 2 %、 アセ ト ン収率 2 0. 3 %であ り、 p —べン ゾキノ ンの生成しなかっ た。
実施例 4 6
実施例 3 8 におけるエチ レ ンの代わ り に、 ブテン一 1 を 4. 2 g仕込み、 その他は総て実施例 3 8 と同一の条件、 方法で実施した。 こ の結果、 フ ヱ ノ ール 6. 0 %、 メ チル - -
ェチルケ ト ン 2 0. 2 %の収率であ っ た。 p —ベ ン ゾキノ ンの生成は確認されなかっ た。
実施例 4 7
実施例 3 8 において実施 した方法で、 エチ レ ンの代わ り に シ ク ロへキセ ン 4. 0 g を仕込み、 その他は総て実施 例 3 8 と同一の条件で実施 した。 こ の結果、 フ エ ノ ー ル 収率は 5. 8 %であ り、 シ ク ロへキサノ ン収率は 8. 7 %で め つ こ。 ―ベ ン ゾキノ ンの生成は認め られなかっ た。
実施例 4 8 5 2
実施例 3 8 においてベ ンゼンの代わ り にそれぞれ、 ト ルェ ン 、 ナ フ 夕 レ ン、 ァ ニ ソ ー ル、 p — キ シ レ ン 、 及 び
ー メ チル ナ フ タ レ ン、 各々 4 g と した以外は総て実施 例 3 8 と全 く 同一の条件およ び方法で反応およ び分析を i J*つ 7 0 結果は表 8 に示 したよ う にそれぞれ良い収率で 生成物が得られた。
〔表 8 〕 収率 (% ) 芳香族化合物 ヒ ドロキシ化物 CH 3 CH0 実施例 48 ト ノレエ ン 8. 2 24. 9 実施例 49 ナ フ タ レ ン 6. 1 22. 7 実施例 50 ァ ニ ソ 一 ル 7. 2 24. 2 実施例 51 P — キシ レ ン 9. 2 25. 6 実施例 52 a 一メチルナフタレン 8. 9 26. 3 実施例 5 3 実施例 3 8 において酸素の代わ り に、 酸素 9 %、 窒素 9 1 %の混合ガス 1 0 O k g Z c m 2 を仕込んだ以外は 総て実施例 3 8 と同一の条件で反応を実施した。 こ の結 果、 フ エ ノ ール 7. 2 %、 ァセ トアルデヒ ド 2 0· 2 %の収 率であ っ た。 また p —べンゾキノ ンの生成は確認されな かった。
実施例 5 4
実施例 5 3 において、 反応時間を 1 時間と した以外は 総て実施例 5 3 と同一の条件で反応を実施した。 こ の結 果、 フ エ ノ ール及びァセ トアルデヒ ドの収率はそれぞれ 5. 4 %及び 1 7. 7 %であ っ た。 p —べンゾキノ ンの生成 は確認されなかっ た。
実施例 5 5
実施例 5 4 において 0. 1 N塩酸を 0. 1 N硫酸に代えた 以外は総て実施例 5 4 と同一の条件で反応を実施した。 こ の結果フ エ ノ ール及びァセ トアルデヒ ドの収率はそれ ぞれ 4. 8 %及び 1 8. 3 %であ っ た。 p —べン ゾキノ ンの 生成は確認されなかった。
実施例 5 6 〜 5 7
実施例 5 4 において、 塩化 リ チウムの代わ り にそれぞ れ塩化ナ ト リ ウム、 塩化セシウム 0. 0 5 gを添加 した以 外は総て実施例 5 4 と同一の条件で実施した。 結果を表 9 に掲げた。 各反応において p —べン ゾキノ ンは生成し なかった。 〔表 9 〕
金属化合物 フ エ ノ ール ァセ ト アルデ ヒ ド
% % 実施例 56 Na C l 5. 9 20. 8
実施例 57 C s C l 4. 7 1 6. 5 実施例 5 8
実施例 5 5 において更に硫酸銅を 0. 0 5 g添加 した以 外は総て実施例 5 5 と同一の条件で反応を実施 した。 こ の結果フ エ ノ ール及びァセ ト アルデ ヒ ドの収率はそれぞ れ 5· 1 %及び 1 8. 5 %であ っ た。 p —ベ ン ゾキノ ンの生 成はなかっ た。
実施例 5 9
反応温度を 1 5 0 て と した以外は総て実施例 5 8 と同 一の条件で反応を実施 した。 こ の結果フ エ ノ ール、 ァセ ト アルデ ヒ ド及び p —べ ン ゾキノ ンの収率はそれぞれ 7. 3 % , 2 1. 8 %及び 0. 2 %であっ た。
実施例 6 0
実施例 5 9 において、 反応温度を 1 8 0 °C、 硫酸を 0. 1 N酢酸に代えた以外は総て実施例 5 9 と同一の条件 で実施 した。 こ の結果、 フ エ ノ ール及びァセ ト アルデ ヒ ドの収率はそれぞれ 7. 0 %及び 1 9. 1 であ つ 。 p — ベン ゾキノ ンは生成しなかっ た。
実施例 6 1 〜 6 4
触媒と して H Y型ゼォ ラ イ ト に通常の含浸法によ り 塩 化パラ ジウム 1 重量%、 塩化第二銅 4 重量 96 y 塩化第一 鉄四水和物 0. 5 重量%、 塩化第二鉄六水和物 0. 5 重量% 及び塩化 リ チウム 1 重量%を担持させ 1 5 0 で、 1 2 時 間加熱処理を した ものを 7 m 1 パイ レ ツ ク ス製の反応管 に充塡 し、 各々 1 5 0、 1 7 5、 2 0 0、 2 5 0 °Cに加 熱し、 こ れにベ ンゼン 3. O g Z H r 、 水 3. 9 g / H r、 プロ ピ レ ン 2. 5 m I Zm i n . 、 N 2 / 0 2 = 9 1 / 9 V 0 1 比ガス 5 0 m 1 Zm i n の仕込み速度で連続的に 反応管に導入 し、 反応を 2 時間行っ た。 反応ガスは ドラ ィ アイス一メ タ ノ ール冷媒で冷却、 液化して分析した。 反応回収液中の生成物収率を表 1 0 に示した。
〔表 1 0 〕 反応温度 収 率 (% )
C ) フ エ ノ ―ル アセ ト ン 実施例 61 150 1. 3 8.6 実施例 62 175 1. 9 9.2 実施例 63 200 2. 7 11.9 実施例 64 250 4. 6 6.1 実施例 6 5〜 6 8
触媒を N a Y型ゼオラ イ ト に実施例 6 1 〜 6 4 と同一 量の塩化パラ ジウム、 塩化第二銅、 塩化第一鉄四水和物 塩化第二鉄四水和物及び塩化 リ チウムを同様な方法で担 持させた ものを触媒と して用いた以外は総て実施例 2 2 〜 2 5 と同一の条件および方法で反応を行っ た。 結果は 表 1 1 に掲げた。 1
反応,温度 収 率 (% )
( C ) フ エ ノ ーノレ ァセ 卜 ノ 実施例 65 1 50 1 . 1 6. 7 実施例 66 1 75 1 . 6 8. 4 実施例 67 200 2. 3 9. 8 実施例 68 250 3. 1 4. 2
〔発明の効果〕
( 1 ) 芳香族 ヒ ドロキ シ化合物およ びカ ルボニル化合物 が併産でき る。
( 2 ) 芳香族化合物を直接酸化して、 芳香族 ヒ ドロキシ 化合物を効率良 く 製造 し、 ォ レ フ ィ ン類の添加に よ っ て こ れら芳香族 ヒ ドロキ シ化合物の収率を増大させる こ と ができ る。
( 3 ) ア ルデ ヒ ド、 ケ ト ン等のカ ルボニル化合物を高選 択率かつ効率良 く 製造する こ とができ る。
( 4 ) 従来の方法に比較 して 、 フ ヱ ノ ールを低温、 低圧 の温和な条件で直接酸化によ り製造でき る。
( 5 ) 工業的に重要なフ ェ ノ ー ル、 ァセ ト ア ルデ ヒ ド も し く はアセ ト ンを安全上、 プロ セス上、 経済上著 し く 有 利に生産する こ とができ
か く て本発明方法によ つて 、 工業的に著 し く 優れたフ ェ ノ ールな どの芳香族 ヒ ド、 πキシ化合物お よ びァセ ト ン ァ セ ト ア ルデ ヒ ド等の力 ルボニル化合物の新規な併産方 法を提供する こ とができ 〔産業上の利用可能性〕
本発明方法によれば、 芳香族ヒ ドロキシ化合物および カルボニル化合物を併産でき、 芳香族化合物の直接酸化 によ り芳香族ヒ ドロ化合物を温和な条件下で製造でき、 また、 ォ レ フ ィ ン類を添加する こ とによ り芳香族ヒ ドロ キシ化合物の収率を増大させる こ とができ る。 従っ て本 発明によ り工業的に重要な材料である フ ヱ ノ ール、 ァセ ト ヒルデヒ ド、 アセ ト ンな どを安全上、 プロセス上又経 済上著し く 有利に同時に生産する こ とができ る。

Claims

〔請 求 の 範 囲〕
1 . 少な く と も 1 種の白金族金属又は白金族金属化合物 及び金属化合物 と して 2 種類以上の原子価状態を存在さ せう る少な く と も 1 種の金属又はこれ らの金属の化合物 か らな る触媒の存在下に、 ォ レ フ ィ ン類及び芳香族化合 物を酸化剤 と反応させる こ とを特徴とする、 カ ルボニル 化合物 と芳香族 ヒ ドロキシ化合物の併産法。
2 . 反応系に鉄族金属、 鉄族金属化合物、 アルカ リ 金属 及びアル力 リ 金属化合物の群か ら選ばれる少な く と も 1 種を存在させる請求項 1 の方法。
3 . 反応系内に水を存在させる こ とを請求項 1 に記載の 方法。
4 . 反応を水を含む液相状態で行う こ とを請求項 1 に記 載の方法。
5 . 上記芳香族化合物が 6 員環炭化水素化合物、 炭素 6 員環縮合化合物又はへテロ芳香族化合物であ る請求項 1 の方法。
6 . 上記ォ レ フ ィ ンが少 く と も 1 個の炭素一炭素二重結 合を有する脂肪族、 脂環式又は芳香族ォ レ フ イ ン類であ る請求項 1 の方法。
7 . 白金族金属がパラ ジウム又はテルニゥムであ る請求 項 1 に記載の方法。
8 . 金属化合物 と して 2 種類以上の原子価を有する こ と の出来る金属が鉄、 ニ ッ ケル、 コバル ト、 銅、 銀又は金 である請求項 1 に記載の方法。
9 . ォ レ フ ィ ン類及びベンゼンを触媒と しての銅イ オ ン 及びパラ ジウ ムの存在下に、 酸化剤を用いて液相反応さ せて、 アルデヒ ドとケ ト ンを少な く と も 1 種及びフ エ ノ 一ルを併産する こ とを特徴とする製造方法。
1 0. ォ レ フ ィ ン類及びベンゼンを触媒と しての銅イ オ ン 及びパラ ジウ ムの存在下に、 酸化剤を用いる液栢反応で あ って、 反応中に鉄イオ ン及び リ チウムイオ ンか らなる 群の少な く と も 1 種を存在させる こ とを特徵とする アル デヒ ドとケ ト ンを少な く と も 1 種及びフ エ ノ ールを併產 する方法。
1 1 . 酸化剤が反応系内で酸素分子、 酸素原子、 酸素ィ ォ ン も し く は酸素ラ ジカルを供給でき る物質である請求項 1 に記載の方法。
12. 酸化剤が酸素分子も し く は不活性物質で希釈された 酸素分子である請求項 1 1 に記載の方法。
1 3. 反応系内を酸性状態とする請求項 1 に記載の方法。
1 4. 断続的にォ レ フ ィ ン類を追加挿入する請求項 1 に記 載の方法。
PCT/JP1991/001754 1990-12-26 1991-12-25 Process for producing simultaneously aromatic hydroxy and carbonyl compounds WO1992012114A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP92901915A EP0519084B1 (en) 1990-12-26 1991-12-25 Process for producing simultaneously an aromatic hydroxy compound and a carbonyl compound
DE69122859T DE69122859T2 (de) 1990-12-26 1991-12-25 Verfahren zur gleichzeitigen herstellung einer aromatischen hydroxyverbindung und einer carbonylverbindung
KR92702023A KR950008274B1 (en) 1990-12-26 1992-08-24 Process for producing simultaneously aromatic hydroxy and carbonyl compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2/406712 1990-12-26
JP40671290 1990-12-26
JP4655891 1991-03-12
JP3/46558 1991-03-12

Publications (1)

Publication Number Publication Date
WO1992012114A1 true WO1992012114A1 (en) 1992-07-23

Family

ID=26386650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001754 WO1992012114A1 (en) 1990-12-26 1991-12-25 Process for producing simultaneously aromatic hydroxy and carbonyl compounds

Country Status (5)

Country Link
EP (1) EP0519084B1 (ja)
JP (1) JP2962497B2 (ja)
KR (1) KR950008274B1 (ja)
DE (1) DE69122859T2 (ja)
WO (1) WO1992012114A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653403A (zh) * 2022-03-18 2022-06-24 大连理工大学 一种用于苯酚加氢制环己酮的双功能催化剂的制备方法及应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278937B2 (ja) * 2007-10-12 2013-09-04 学校法人慶應義塾 光学活性第2級アルコールの製造方法
JP5258356B2 (ja) * 2008-04-04 2013-08-07 国立大学法人 東京大学 ベンゼンの直接酸化によるフェノールの製造方法
JP2010144240A (ja) * 2008-12-22 2010-07-01 Sumitomo Chemical Co Ltd 白金族金属イオンの回収方法
EP3763697A4 (en) * 2018-03-09 2021-12-01 Daikin Industries, Ltd. PROCESS FOR THE PREPARATION OF A CARBONYL COMPOUND
CN112481653B (zh) * 2020-10-29 2022-04-01 浙江大学衢州研究院 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142518A (ja) * 1974-05-07 1975-11-17
JPS5687527A (en) * 1979-12-19 1981-07-16 Ube Ind Ltd Preparation of phenol
JPS61236738A (ja) * 1985-04-12 1986-10-22 Mitsui Toatsu Chem Inc フエノ−ル類の製法
JPS6267038A (ja) * 1985-09-20 1987-03-26 Mitsui Toatsu Chem Inc フエノ−ル類の製造方法
JPS62292738A (ja) * 1986-06-11 1987-12-19 Idemitsu Petrochem Co Ltd フエノ−ルの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439812A (en) * 1944-11-30 1948-04-20 Socony Vacuum Oil Co Inc Method for making phenol
GB1138361A (en) * 1965-04-09 1969-01-01 Ici Ltd Production of glycols, olefin oxides, alcohols and ketones
FR2310987A1 (fr) * 1975-05-16 1976-12-10 Anvar Procede d'oxydation directe d'olefines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50142518A (ja) * 1974-05-07 1975-11-17
JPS5687527A (en) * 1979-12-19 1981-07-16 Ube Ind Ltd Preparation of phenol
JPS61236738A (ja) * 1985-04-12 1986-10-22 Mitsui Toatsu Chem Inc フエノ−ル類の製法
JPS6267038A (ja) * 1985-09-20 1987-03-26 Mitsui Toatsu Chem Inc フエノ−ル類の製造方法
JPS62292738A (ja) * 1986-06-11 1987-12-19 Idemitsu Petrochem Co Ltd フエノ−ルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0519084A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653403A (zh) * 2022-03-18 2022-06-24 大连理工大学 一种用于苯酚加氢制环己酮的双功能催化剂的制备方法及应用
CN114653403B (zh) * 2022-03-18 2023-02-03 大连理工大学 一种用于苯酚加氢制环己酮的双功能催化剂的制备方法及应用

Also Published As

Publication number Publication date
JP2962497B2 (ja) 1999-10-12
EP0519084A4 (en) 1993-03-24
DE69122859T2 (de) 1997-03-13
JPH0585973A (ja) 1993-04-06
EP0519084A1 (en) 1992-12-23
KR950008274B1 (en) 1995-07-27
DE69122859D1 (de) 1996-11-28
EP0519084B1 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
Neumann et al. Alkene oxidation catalyzed by a ruthenium-substituted heteropolyanion, SiRu (L) W11O39: the mechanism of the periodate-mediated oxidative cleavage
Bystroem et al. Palladium-catalyzed allylic oxidation of cyclohexenes using molecular oxygen as oxidant
US3972920A (en) Process for producing unsaturated aldehydes, unsaturated fatty acids or conjugated dienes
EP0053023B1 (en) Hydroxylation of olefins
JPH05506853A (ja) オレフィンをカルボニル生成物に酸化するための触媒系
US8193387B2 (en) Process for producing an unsaturated carboxylic acid from an alkane
JPS6214535B2 (ja)
CA2337870A1 (en) Wells-dawson type heteropolyacids, their preparation and use as oxidation catalysts
JP2574948B2 (ja) メタクリル酸の製造方法
US6080893A (en) Process for the manufacture of acrolein from propylene by a redox reaction and use of a solid mixed oxide composition as redox system in the said reaction
WO1992012114A1 (en) Process for producing simultaneously aromatic hydroxy and carbonyl compounds
US4390739A (en) Hydroxylation of olefins
US5105053A (en) High surface area oxide compositions with a pyrochlore structure, methods for their preparation, and conversion processes utilizing same
Duarte et al. Homogeneous catalytic oxidation of olefins with hydrogen peroxide in the presence of a manganese-substituted polyoxomolybdate
US3845120A (en) Production of acrylic acid by oxidation of acrolein
JP4222721B2 (ja) メタクリル酸の製造方法
ES2255758T3 (es) Procedimiento para la produccion de acido acetico.
EP0077202B1 (en) Process for hydroxylating olefins using osmium-halogen compound catalysts
JPS5933236A (ja) オスミウム含有触媒および有機ハロゲン化炭化水素助触媒存在下でのオレフインのヒドロキシル化法
US11648536B2 (en) Catalyst for oxidative dehydrogenation of butene and method for producing the same
JPS6366149A (ja) トリメリツト酸の製造方法
KR20160073300A (ko) 부타디엔 제조방법
EP0237108B1 (en) Process for the preparation of carbonyl compounds
JPH0710782A (ja) イソブチレンおよびメタクロレインの製造方法
US3894091A (en) Process for production of acrolein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992901915

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992901915

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992901915

Country of ref document: EP