WO1992003239A1 - Lagerwerkstoff und verfahren zu dessen herstellung - Google Patents

Lagerwerkstoff und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO1992003239A1
WO1992003239A1 PCT/DE1991/000664 DE9100664W WO9203239A1 WO 1992003239 A1 WO1992003239 A1 WO 1992003239A1 DE 9100664 W DE9100664 W DE 9100664W WO 9203239 A1 WO9203239 A1 WO 9203239A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing material
alloy
melt
weight
substrate
Prior art date
Application number
PCT/DE1991/000664
Other languages
English (en)
French (fr)
Inventor
Robert Mergen
Erich Hodes
Original Assignee
Glyco Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glyco Ag filed Critical Glyco Ag
Priority to BR919106632A priority Critical patent/BR9106632A/pt
Priority to DE59108523T priority patent/DE59108523D1/de
Priority to EP91914474A priority patent/EP0497944B1/de
Publication of WO1992003239A1 publication Critical patent/WO1992003239A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal

Definitions

  • materials for plain bearings should have a combination of numerous strong properties, such as adaptation to the geometry of the friction partner, resistance to lubricants, corrosion resistance, wear resistance, favorable coefficient of friction, increased flow resistance, high alternating load resistance, good heat resistance, safe emergency running properties, good binding to a carrier, in particular to steel support shells, and the reproducibility of these properties even in series production and the simplest possible manufacture. So far, it has always been necessary to make compromises with this multitude of requirements and accept disadvantages either with regard to certain mechanical properties or with regard to the sliding properties.
  • a known process principle for the production of bearing materials is that of the layer composites, in which the sum of the individual material layers should result in the totality of the desired material properties.
  • these composites consist of a steel support shell, a bearing metal layer and a sliding layer, with additional thin layers with specific properties, such as diffusion barrier layers or bond improvement layers, often being added.
  • the production of such layer composites is relatively complex in terms of process technology.
  • DE-OS 2241628 describes a similar method for spraying molten metal droplets onto the bearing material of a composite for plain bearings.
  • the disadvantages set out above for composites apply, since the monotectic system only serves as a sliding layer.
  • the bearing materials obtained in this way by no means have the desired combination of properties.
  • the object on which the invention is based was therefore to obtain bearing materials with improved mechanical properties that can be produced in the simplest possible process without sacrificing the sliding properties.
  • the bearing material according to the invention is characterized in that it consists of a matrix made of a metal alloy, which forms a monotectic system with Pb-based materials, and therein dispersed, essentially spherical soft phases made of a Pb-based material that the concentration of the soft phases in the matrix increases towards a surface of the bearing material.
  • the concentration of the soft phases in the matrix preferably increases continuously towards the surface of the bearing materials.
  • This bearing material which can either be self-supporting in the form of a solid material or a composite material as a layer on a substrate, thus has both the bearing metal layer with an excellent combination of properties and the sliding layer with excellent sliding properties, both layers according to the invention can be produced in one operation.
  • the process according to the invention for the production of these bearing materials is characterized in that a melt containing alloy components, which form a monotectic system with Pb-based materials, as well as alloy components which form a Pb-based material pours onto a substrate and adjusts the material thickness, the cooling conditions and the composition of the melt in such a way that the Pb-based material separates from the rest of the melt in the liquid state under gravity and in a dispersive manner in the lower region of the material concentrated.
  • the method according to the invention makes targeted use of this gravitational segregation effect of monotectic systems in order to produce the bearing metal layer and the sliding layer in one operation.
  • monotectic systems these are those which tend to separate in the liquid state.
  • the bearing metal layer and the sliding layer can be obtained in a single operation and this can be done by direct pouring onto a conventional carrier, such as a steel carrier, the entire composite material can be obtained in a single casting process.
  • a conventional carrier such as a steel carrier
  • the manufacturing process is therefore very simplified compared to known processes. At the same time, you get an optimal combination of properties in the bearing material.
  • the area closest to the substrate consists essentially of the matrix material with only small, small-scale deposits of the Pb base material, so that this area essentially has the properties of the matrix alloy.
  • a suitable combination of the alloying elements can essentially provide an optimal combination of the mechanical and other properties for the matrix material that you want to have with a bearing metal layer.
  • the Pb-based material collects in the liquid state under gravity due to its higher specific weight in the lower region of the cast melt, smaller Pb-based material particles flow together to form larger spherical particles and because this lower region serves as a sliding layer in the finished bearing material, this sliding layer essentially consists of spherical soft phases embedded in the matrix alloy, which give this sliding layer excellent sliding properties.
  • the sinking rate of the droplets of the Pb base material separated in the liquid state depends, as mentioned, on the one hand on the difference in density compared to the surrounding medium, on the viscosity of the surrounding medium and the droplet size.
  • the viscosity in turn depends on the temperature. Since, as also mentioned above, the sinking droplets grow on the sinking section by growing together with other droplets, the increasing the sinking section, i. H. with increasing material thickness, the capture cross section of the droplets and their coarsening. Material thickness, cooling conditions and composition of the melt, which in turn is responsible for the difference in density, must therefore be coordinated in individual cases by series tests in order to achieve optimum properties for the material thickness required by the user.
  • the matrix alloy expediently contains A) Al, Cr, Ni, Fe, Mn, Si or Cu and additionally B) at least one of the elements from the group Be, Mg, Ti, V, Cr, Mn, Zr, b, Mo, Si, As, Zn, Cu, Ni, Fe, Al and Li as well as C) at least one of the elements from the group Na, Ca, Co, N, B, Sr, Cd, In, Ag, Sn, Sb, Te , Bi, Pb, Tl and W, the elements B) and C) each being different from the element A) used as the base metal.
  • the preferred base metal of the matrix alloy is aluminum, so that the preferred bearing materials according to the invention contain aluminum and lead as basic components.
  • All elements B) are preferred together in an amount of 0.5 to 15, preferably in an amount of 2 to 10% by weight and elements C) together in an amount of 0.5 to 10, preferably in an amount of Contain 2 to 6 wt .-%, these weight percentages are each based on the weight of the matrix alloy alone without the soft phases contained.
  • Each of the elements B) and C) is in the matrix alloy in an amount of 0.5 to 6 wt .-%, preferably in an amount of 2 to 4 wt .-%, based on the weight of the matrix Alloy alone without the soft phases contained.
  • the soft phases are either elemental lead or an alloy with lead as the base metal, i. H. as the main component.
  • the soft phases are expediently present in an amount of 2 to 40, preferably 4 to 30,% by weight, based on the total weight of the bearing material.
  • the soft phases can contain Bi, Sn and / or In as further main components, preferably in an amount based on the weight of the soft phases of up to 50% by weight, particularly from 0.5 to 30% by weight .
  • the soft phases consist of an alloy based on lead, they advantageously also contain at least one of the elements Ag, As, Cd, Sb, K, Li, Na, Bi, Ca, Ce, Se and Te as alloying elements.
  • the elements from this group, based on the weight of the Pb base material are preferably present together in an amount of up to 14% by weight, in particular 0.1 to 7% by weight, each of these elements based on the weight of the Pb base material is contained in an amount of 0.5 to 5% by weight, preferably 0.3 to 4% by weight.
  • the thickness of the area poor in soft phases and the area rich in soft phases can be adjusted very differently depending on the coordination of the procedural measures. As It has been found to be useful for plain bearings, however, that in the bearing material according to the invention the area which contains a maximum of 10% by weight, based on the weight of this area in a certain area, which contains soft phases, accounts for 5 to 50% of the thickness of the entire bearing material .
  • solid particles are, for example, hard materials such as metal oxides, metal nitrides, metal carbides, metal oxycarbides, Metal oxynitrides or silicates.
  • these embedded solid particles can also be fibers made of inorganic materials, for example.
  • the embedded soft phases have an essentially spherical appearance, which can be seen under the microscope in the case of thin sections of the materials according to the invention. This only says something about the overall shape of the soft phases, although there may also be distortions of this spherical shape or serrations or fraying of the surface.
  • the size of the soft phases is expediently adjusted by coordinating the production conditions, in particular by controlling the rate of descent and the soft phase growth, so that the diameter of the soft phases is a maximum of 250 x 10 ⁇ 6 m, preferably a maximum of 100 x 10 " 6 m and the majority of the soft phases have a diameter of less than 5 x 10 "6 m. In the case of deformed spherical soft phases, this means the largest diameter of the respective soft phase.
  • the extent of the increase in gravity desired according to the invention ie the separation of the Pb base material, the concentration of the Pb base material in the lower region and the soft phase growth can be controlled by regulating the rate of cooling, preferably with the aid of cooling aids and / or Control with the help of pouring speed.
  • the Soft phase distribution can be controlled by adjusting the viscosity, which in turn takes place with the aid of adjusting the composition of the melt.
  • the melt can either be poured onto a substrate with which the melt is to be firmly bonded and thus result in a composite material, or the melt can be poured onto a substrate which is subsequently separated off and a Solid material leaves.
  • the bond strength on the substrate can be changed in a targeted manner.
  • a metallic support or support material usually steel, is expediently used as the substrate, optionally with an intermediate layer which improves the bond.
  • the storage unit according to the invention can also be poured on as a direct coating on a semi-finished or finished machine part.
  • the substrate advantageously consists of an iron alloy, usually labeled with the collective term “steels”, such as a steel strip or a layered composite material.
  • a copper-lead alloy such as that of 9 to 25% by weight of Pb, 1 to 11% by weight of Sn, a maximum of 0.7% by weight of Fe, can be used as the intermediate layer which improves the bond, for example on steel.
  • Ni and / or Mn and the rest copper a copper-aluminum alloy, for example from 5 to 8% by weight Al and the rest copper, an aluminum-tin alloy, for example from 0.5 to 1.5% by weight % Cu, 5 to 25% by weight Sn, 0.5 to 1.5% by weight Ni and the remainder AI, an aluminum-zinc alloy, for example composed of 4 to 6% by weight Zn, 3.5 to 3% by weight of Si, a maximum of 2% by weight of Cu, a maximum of 1.5% by weight of Mg and the remainder of AI, or metallic Al, Ni, Co, Cr, Fe, Cu, Mn, Ti or Be or a binary or use ternary alloy thereof.
  • the substrate such as a steel strip
  • the substrate can be coated on one side or on all sides, for example galvanically, by means of a thermal one, before casting with the melt according to the invention
  • Spraying process by means of pouring, immersion and sintering processes or by means of physical coating processes.
  • Appropriate mechanical, chemical or physical cleaning or other pretreatment is expediently carried out before the application of the intermediate layer and in particular before the melt according to the invention is poured on.
  • the casting of the bearing material can easily be done in a casting mold.
  • the melt can, according to the invention, also be poured onto a substrate, such as a steel strip, from above.
  • the substrate is to remain connected to the bearing material according to the invention as a carrier or support material or as a machine part, which is usually the case, it is favorable for the desired increase in gravity to wet the substrate with the melt from below.
  • a moving strip of carrier material can be poured with the melt used according to the invention from below.
  • the substrate strip can be pulled through the melt, for example with the aid of a roller which dips into the melt and presses the substrate strip into the melt.
  • Another conceivable method is to pass the substrate strip between two rollers and bring it into contact with the melt in front of the roller gap, so that the melt solidifies on the underside of the carrier strip before it leaves the roller gap.
  • the free and / or forced convection currents on the melt surface produce a surface which is curved toward the substrate and which is touched by the moving substrate and thereby wetted.
  • the procedure is such that the convection flows in the melt are generated by thermal gradients and / or by the action of an induction field and controlled by regulating the induction field.
  • the melt used according to the invention can also be fed to the carrier material to be negated via a stepper. If the substrate is to remain bonded to the bearing material according to the invention, it is expedient to adjust the composition of the matrix alloy such that the layer of the carrier material that comes into contact with the melt has favorable effects on the bond strength of the layer composite material produced after solidification, preferably by means of ohmic Connection.
  • the thickness of the bond layer formed during cohesive bond formation is expediently kept small, preferably by short dwell times at higher temperatures.
  • the thickness of the intermetallic bond layer which forms between the substrate and the material according to the invention is advantageously kept low by increasing the formation energy of this layer, which is possible by coordinating the alloy components. Furthermore, the phases forming the bonding layer are expediently kept low in hardness, which can also be achieved by coordinating the alloy components.
  • the resulting composite material had an alloy layer that was almost lead-free in the area close to the substrate and consisted essentially entirely of the matrix ateriai, while in the area on the surface facing away from the substrate there was a high concentration of disperse, essentially spherical eic T-haseno articles .
  • Example 2
  • Example 1 The procedure of Example 1 was repeated with an aluminum alloy with 13 wt% Pb, 2.6 wt% Ni and 4.3 wt% Fe. By increasing the layer thickness, the cooling conditions in this experiment were such that the soft phase droplets could coarsen considerably and that (Ni, Fe) aluminides appeared. Again, the area adjacent to the substrate was largely free of soft phases, while the area adjacent to the free surface of the alloy, i. H. the lower area during casting was heavily filled with soft phases.
  • the largely soft-phase-free matrix material had a hardness of 100 to 180 HV 0.01.
  • the soft phase area had a hardness of 55 to 95 HV 0.01.
  • Example 2 In accordance with the procedure of Example 1, an aluminum alloy with 12.6% by weight of Pb, 2.9% by weight of Fe, 2.9% by weight of Ni and 1% by weight of Co was cast onto a substrate. In the solidified product there was again a strong concentration of the soft phases in the area of the free surface, i.e. H. the sliding surface. An intermetallic intermediate layer was found in the bonding zone between the area largely free of soft phases and the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

Ein Lagerwerkstoff besteht aus einer Matrix aus einer Metall-Legierung, die mit Pb-Basis-Werkstoffen ein monotektisches System bildet, und darin derart dispergierten, im wesentlichen kugelförmigen Weichphasen aus einem Pb-Basis-Werkstoff, daß die Konzentration der Weichphasen in der Matrix zu einer Oberfläche des Lagerwerkstoffes hin zunimmt. Er wird in der Weise hergestellt, daß man eine Schmelze, die im Gemisch Legierungsbestandteile, welche mit Pb-Basis-Werkstoffen ein monotektisches System bilden, sowie Legierungsbestandteile, die einen Pb-Basis-Werkstoff bilden, enthält, derart auf ein Substrat gießt und dabei die Werkstoffdicke, die Abkühlbedingungen und die Zusammensetzung der Schmelze derart einstellt, daß sich der Pb-Basis-Werkstoff in flüssigem Zustand unter der Schwerkraft von dem Rest der Schmelze abtrennt und im unteren Bereich des Werkstoffes in disperser Weise konzentriert.

Description

Lagerwerkstoff und Verfahren zu dessen Herstellung
Werkstoffe für Gleitlager sollen idealerweise eine Kombination zahlreicher stark ausgeprägter Eigenschaften besitzen, wie Anpassung an die Geometrie des Reibpartners, Beständigkeit gegenüber Schmierstoffen, Korrosionsbeständigkeit, Verschleißfe¬ stigkeit, günstige Reibzahl, erhöhten Fließwiderstand, hohe Wechsellastfestigkeit, gute Warmfestigkeit, sichere Notlauf- eigenschaften, gute Bindung an einen Träger, insbesondere an Stahlstützschalen, und Reproduzierbarkeit dieser Eigenschaften auch bei der Serienherstellung sowie möglichst einfache Her¬ stellbarkeit. Bislang mußte man bei dieser Vielzahl von Anforde¬ rungen stets Kompromisse eingehen und entweder bezüglich bestimmter mechanischer Eigenschaften oder bezüglich der Gleiteigenschaften Nachteile hinnehmen.
Ein bekanntes Verfahrensprinzip für die Herstellung von Lager¬ werkstoffen ist jenes der Schichtverbunde, bei denen die Summe der einzelnen Werkstoffschichten die Gesamtheit der erwünschten Werkstoffeigenschaften ergeben soll. Allgemein bestehen diese Verb nde aus einer Stahlstützschale, einer Lagermetallschicht und einer Gleitschicht, wobei oftmals noch zusätzliche Dünn¬ schichten mit spezifischen Eigenschaften, wie Diffusionssperr¬ schichten oder Bindungsverbesserungsschichten, hinzutreten. Die Herstellung solcher Schichtverbunde ist verfahrenstechnisch relativ aufwendig.
Es ist auch bereits bekannt, monotektische Systeme, wie solche auf der Basis von Aluminium und Blei, als Lagerwerkstoff zu verwenden, die in flüssigem Zustand seigern. Eine solche Steigerung wurde bisher als unerwünscht angesehen, weswegen bestimmte Verfahren entwickelt wurden, die den Einphasenzustand beim Gießen der Legierung einfrieren sollen und allenfalls in der Aluminiummatrix gleichmäßig verteilte extrem feine Bleiaus¬ scheidungen ergeben. Hierzu wird auf die DE-AS 2 263 268 hinαewiesen. Weiterhin ist es aus der DE-PS 2 130 421 bekannt, bestimmte monotektische Systeme, wie solche auf der Basis von Aluminum und Blei, mit Hilfe eines Gasstrahles auf einer ünterlageschicht aufzusprühen, wobei wiederum eine Entmischung eintritt, aufgrund derer das Blei als äußerst feine Teilchen in der gesamten Aluminiummatrix vorliegt. Ein ähnliches Verfahren zum Aufsprühen von geschmolzenen Metalltröpfchen auf dem Lagermaterial eines Verbundstoffes für Gleitlager beschreibt die DE-OS 2241628. In beiden Fällen gelten die oben für Verbünde dargelegten Nach¬ teile, da das monotektische System lediglich als Gleitschicht dient. Außerdem besitzen die so erhaltenen Lagerwerkstoffe keineswegs die erwünschte Eigenschaftskombination.
Die der Erfindung zugrundeliegende Aufgabe bestand somit darin, in einem möglichst einfachen Verfahren herstellbare Lagerwerk¬ stoffe mit verbesserten mechanischen Eigenschaften ohne Einbuße der Gleiteigenschaften zu bekommen.
Der erfindungsgemäße Lagerwerkstoff ist zur Lösung dieser Aufgabe dadurch gekennzeichnet, daß er aus einer Matrix aus einer Metall-Legierung, die mit Pb-Basis-Werkstoffen ein monotektisches System bildet, und darin derart disperten, im wesentlichen kugelförmigen Weichphasen aus einem Pb-Basis- Werkstoff, daß die Konzentration der Weichphasen in der Matrix zu einer Oberfläche des Lagerwerkstoffes hin zunimmt, besteht. Vorzugsweise nimmt die Konzentration der Weichphasen in der Matrix zu der Oberfläche des Lagerwerkstoffe hin stufenlos zu.
Dieser Lagerwerkstoff, der entweder in der Form eines Massiv¬ werkstoffes selbttragend oder als Schicht auf einem Substrat ein Verbundwerkstoff sein kann, besitzt somit in sich sowohl die Lagermetallschicht mit einer hervorragenden Eigenschaftskom¬ bination als auch die Gleitschicht mit hervorragenden Gleit¬ eigenschaften, wobei beide Schichten erfindungsgemäß in einem Arbeitsgang herstellbar sind. Das erfindungsgemäße Verfahren zur Herstellung dieser Lagerwerk¬ stoffe ist dadurch gekennzeichnet, daß man eine Schmelze, die im Gemisch Legierungsbestandteile, welche mit Pb-Basis-Werkstoffen ein monotektisches System bilden, sowie Legierungsbestandteile, die einen Pb-Basis-Werkstoff bilden, enthält, derart auf ein Substrat gießt und dabei die Werkstoffdicke, die Abkühlbedingun¬ gen und die Zusammensetzung der Schmelze derart einstellt, daß sich der Pb-Basis-Werkstoff in flüssigem Zustand unter der Schwerkraft von dem Rest der Schmelze abtrennt und im unteren Bereich des Werkstoffes in disperser Weise konzentriert.
Während bisher bei der Herstellung von Lagerwerkstoffen der Schwereseigerungseffekt als nachteilig angesehen wurde und man einen möglichst homogenen Zustand im festen Werkstoff anstrebte, nutzt das erfindungsgemäße Verfahren gezielt diesen Schweresei¬ gerungseffekt monotektischer Systeme aus, um in einem Arbeits¬ gang die Lagermetallschicht und die Gleitschicht herzustellen. Wenn hier von monotektischen Systemen die Rede ist, so sind dies solche, die die Neigung besitzen, sich im flüssigen Zustand zu trennen.
Dadurch, daß die Lagermetallschicht und die Gleitschicht in einem einzigem Arbeitsgang gewonnen werden und dies durch direktes Aufgießen auf einen üblichen Träger, wie einen Stahl¬ träger, geschehen kann, kann der gesamte Verbundwerkstoff in einem einzigen Gießvorgang gewonnen werden. Das Herstellungsver¬ fahren ist daher gegenüber bekannten Verfahren sehr vereinfacht. Gleichzeitig bekommt man in dem Lagerwerkstoff eine optimale Ξigenschaftskombinatio .
Der dem Substrat am nächsten liegende Bereich besteht im wesentlichen aus dem Matrixmaterial mit nur geringen kleinteili- gen Abscheidungen des Pb-Basis-Werkstoffes, so daß dieser 3ereich im wesentlichen die Eigenschaften der Matrixlegierung besitzt. Durch entsprechende Kombination der Legierungselemente kann für das Matrixmaterial im wesentlichen eine optimale Kombination der mechanischen und sonstigen Eigenschaften eingestellt werden, die man bei einer Lagermetallschicht haben möchte. Da sich andererseits der Pb-Basis-Werkstoff bei der Trennung im flüssigen Zustand unter der Schwerkraft aufgrund seines höheren spezifischen Gewichtes im unteren Bereich der gegossenen Schmelze ansammelt und dabei kleinere Pb-Basis- Werkstoffteilchen zu größeren kugelförmigen Teilchen zusammen¬ fließen und da dieser untere Bereich im fertigen Lagerwerkstoff als Gleitschicht dient, besteht diese Gleitschicht im wesentli¬ chen aus in die Matrixlegierung eingelagerten kugelförmigen Weichphasen, die dieser Gleitschicht hervorragende Gleiteigen¬ schaften verleihen.
Die Absinkgeschwindigkeit der im flüssigen Zustand abgeschiede¬ nen Tröpfchen des Pb-Basis-Werkstoffes hängt, wie erwähnt, einerseits von dem Dichteunterschied gegenüber dem umgehenden Medium, von der Viskosität des umgebenden Mediums und der Tropfchengröße ab. Die Viskosität hängt ihrerseits von der Temperatur ab. Da, wie oben ebenfalls erwähnt, die absinkenden Tröpfchen auf der Absinkstrecke durch Zusammenwachsen mit anderen Tröpfchen anwachsen, nimmt mit zunehmender Absink¬ strecke, d. h. mit zunehmender Werkstoffdicke, der Einfangquer¬ schnitt der Tröpfchen und deren Vergröberung zu. Werkstoffdicke, Abkühlbedingungen und Zusammensetzung der Schmelze, die ihrer¬ seits für den Dichteunterschied verantwortlich ist, sind somit im Einzelfall durch Reihenversuche aufeinander abzustimmen, um jeweils für die vom Anwender verlangte Werkstoffdicke optimale Eigenschaften zu erzielen.
Zweckmäßig enthält die Matrix-Legierung als Basismetall A) AI, Cr, Ni, Fe, Mn, Si oder Cu und zusätzlich B) wenigstens eines der Elemente aus der Gruppe Be, Mg, Ti, V, Cr, Mn, Zr, b, Mo, Si, As, Zn, Cu, Ni, Fe, AI und Li sowie C) wenigstens eines der Elemente aus der Gruppe Na, Ca, Co, N, B, Sr, Cd, In, Ag, Sn, Sb, Te, Bi, Pb, Tl und W, wobei die Elemente B) und C) jeweils verschieden von dem als Basismetall verwendeten Element A) sind. Das bevorzugte Basismetall der Matrix-Legierung ist Aluminium, so daß die bevorzugten Lagerwerkstoffe nach der Erfindung als Grundbestandteile Aluminium und Blei enthalten. - Q -
Bevorzugt sind alle Elemente B) zusammen in einer Menge von 0,5 bis 15, vorzugsweise in einer Menge von 2 bis 10 Gew.-% und die Elemente C) zusammen in einer Menge von 0,5 bis 10, vorzugsweise in einer Menge von 2 bis 6 Gew.-% enthalten, wobei diese Gewichtsprozente jeweils auf das Gewicht der Matrix-Legierung allein ohne die enthaltenen Weichphasen bezogen sind. Jedes einzelne der Elemente B) und C) ist in der Matrix-Legierung in einer Menge von 0,5 bis 6 Gew.-%, vorzugsweise in einer Menge von 2 bis 4 Gew.-%, wie bezogen auf das Gewicht der Matrix- Legierung allein ohne die enthaltenen Weichphasen, enthalten.
Wenn bezüglich der Weichphasen davon die Rede ist, daß sie aus einem Pb-Basis-Werkstoff bestehen sollen, so meint dies, daß die Weichphasen entweder elementares Blei oder eine Legierung mit Blei als Basismetall, d. h. als Hauptkomponente, sein können. Zweckmäßig liegen die Weichphasen, bezogen auf das Gesamtgewicht des Lagerwerkstoffes, in einer Menge von 2 bis 40, vorzugsweise 4 bis 30 Gew.-% vor.
Zusätzlich zu dem Basismetallblei können die Weichphasen als weitere Hauptkomponenten Bi, Sn und/oder In enthalten, und zwar vorzugsweise in einer auf das Gewicht der Weichphasen bezogenen Menge von bis 50 Gew.-%, besonders von 0,5 bis 30 Gew.-%.
Wenn die Weichphasen aus einer Legierung auf Bleibasis bestehen, enthalten sie günstigerweise zusätzlich als Legierungselemente wenigstens eines der Elemente Ag, As, Cd, Sb, K, Li, Na, Bi, Ca, Ce, Se und Te. Die Elemente aus dieser Gruppe sind, bezogen auf das Gewicht des Pb-Basis-Werkstoffes, vorzugsweise zusammen in einer Menge von bis 14 Gew.-%, besonders 0,1 bis 7 Gew.% enthalten, wobei jedes einzelne dieser Elemente, bezogen auf das Gewicht des Pb-Basis-Werkstoffes, in einer Menge von 0,5 bis 5 Gew.-%, vorzugsweise 0,3 bis 4 Gew.-% enthalten ist.
Die Dicke des an Weichphasen armen Bereiches und des an Weich-p- hasen reichen Bereiches kann sehr unterschiedlich je nach der Absti munσ der Verfahrensmaßnahmen einσestelit werden. Als zweckmäßig für Gleitlager hat es sich aber erwiesen, daß in dem erfindungsgemäßen Lagerwerkstoff der Bereich, der maximal 10 Gew.-%, bezogen auf das Gewicht dieses Bereiches in einer bestimmten Flächenausdehnung, der Weichphasen enthält, 5 bis 50 % der Dicke des gesamten Lagerwerkstoffes ausmacht.
Für bestimmte Anwendungsfälle kann es zweckmäßig sein, in den Lagerwerkstoff zusätzlich Feststoffpartikel einzuarbeiten, die mit der Schmelze des erfindungsgemäßen Lagerwerkstoffes höch¬ stens oberflächlich, vorzugsweise aber überhaupt nicht reagie¬ ren. Solche Feststoffpartikel sind beispielsweise Hartstoffe, wie Metalloxide, Metallnitride, Metallcarbide, Metalloxycarbide, Metalloxynitride oder Silicate. Diese eingelagerten Feststoff¬ partikel können aber auch beispielsweise Fasern aus anorgani¬ schen Materialien sein.
Wie erwähnt, haben die eingelagerten Weichphasen im wesentlichen kugelförmiges Aussehen, was sich bei Dünnschliffen der erfin¬ dungsgemäßen Werkstoffe unter dem Mikroskop zeigt. Dies besagt nur etwas über die Gesamtform der Weichphasen, wobei aber auch Verzerrungen dieser Kugelform oder Auszackungen oder Ausfransun¬ gen der Oberfläche vorhanden sein können. Zweckmäßig wird die Größe der Weichphasen durch die Abstimmung der Herstellungs¬ bedingungen, insbesondere durch Steuerung der AbSinkgeschwindig¬ keit und des Weichphasenwachstums, so eingestellt, daß der Durchmesser der Weichphasen maximal 250 x 10~6 m, vorzugsweise maximal 100 x 10"6 m beträgt und der überwiegende Teil der Weichphasen einen Durchmesser unter 5 x 10"6 m hat. Im Falle deformierter kugelförmiger Weichphasen ist damit der größte Durchmesser der jeweiligen Weichphase gemeint.
Verfahrenstechnisch läßt sich das Ausmaß der erfindungsgemäß erwünschten Schwereseigerung, d. h. der Abtrennung des Pb-Basis- Werkstoffes, der Konzentrierung des Pb-Basis-Werkstoffes im unteren Bereich und des Weichphasenwachstums durch Regelung der Abkühlungsgeschwindigkeit, vorzugsweise mit Hilfe von Abkühlhil¬ fen und/oder mit Hilfe der Gießαeschwindiσkeit steuern. Die Weichphasenverteilung läßt sich durch Einstellung der Viskosität steuern, was seinerseits mit Hilfe der Einstellung αer Zusammen¬ setzung der Schmelze erfolgt.
Wie bereits eingang ausgeführt wurde, kann die Schmelze nach dem erfindungsgemäßen Verfahren entweder auf ein Substrat gegossen werden, mit dem sich die Schmelze fest verbinden soll und so einen Verbundwerkstoff ergibt, oder die Schmelze kann auf ein Substrat gegossen werden, das anschließend abgetrennt wird und einen Massivwerkstoff hinterläßt. Durch Auswahl des Substrates und der Zusammensetzung der Schmelze kann die Bindungsfestigkeit an dem Substrat gezielt geändert werden. Im Falle einer bleiben¬ den Bindung an das Substrat verwendet man als Substrat zweckmä¬ ßig einen metallischen Träger- oder Stützwerkstoff, üblicherwei¬ se Stahl, gegebenenfalls mit einer die Bindung verbessernden Zwischenschicht. Der erfindungsgemäße Lagerwerkstcff kann aber auch als Direktbeschichtung auf einen halbfertigen oder fertigen Maschinenteil aufgegossen werden.
Günstigerweise besteht das Substrat aus einer üblicherweise mit dem Sammelbegriff "Stähle" gekennzeichneten Eisenlegierung, wie einem Stahlband, oder einem Schichtverbundwerkstoff. Als die Bindung verbessernde Zwischenschicht etwa auf Stahl kann man beispielsweise eine Kupfer-Blei-Legierung, wie eine solche aus 9 bis 25 Gew.-% Pb, 1 bis 11 Gew.-% Sn, maximal 0,7 Gew.-% Fe, Ni und/oder Mn und Rest Kupfer, eine Kupfer-Alu ium-Legierung, beispielsweise aus 5 bis 8 Gew.-% AI und Rest Kupfer, eine Aluminium-Zinn-Legierung, beispielsweise aus 0,5 bis 1,5 Gew.-% Cu, 5 bis 25 Gew.-% Sn, 0,5 bis 1,5 Gew.-% Ni und Rest AI, eine Aluminium-Zink-Legierung, beispielsweise aus 4 bis 6 Gew.-% Zn, 3,5 bis 3 Gew.-% Si, maximal 2 Gew.-% Cu, maximal 1,5 Gew.-% Mg und Rest AI, oder metallisches AI, Ni, Co, Cr, Fe, Cu, Mn, Ti oder Be oder eine binäre oder ternäre Legierung hiervon ver¬ wenden. Bei der Aufbringung dieser Zwischenschicht kann man das Substrat, wie beispielsweise ein Stahlband, vor dem Begießen mit der erfindungsgemäßen Schmelze einseitig oder allseitig über¬ ziehen, wie beispielsweise galvanisch, mitteis eines thermischen Spritzverfahrens, mittels Begieß-, Eintauch- und Sinterverfahren oder mittels physikalischer Beschichtungsverfahren. Zweckmäßig erfolgt vor der Aufbringung der Zwischenschicht und insbesondere vor dem Aufgießen der erfindungsgemäßen Schmelze eine geeignete mechanische, chemische oder physikalische Reinigung oder anderweitige Vorbehandlung.
Insbesondere im Laboratoriumsversuch kann das Gießen des Lagerwerkstoffes einfach in einer Gießform erfolgen. Wenn ein Massivwerkstoff unter Abtrennung des Substrates hergestellt werden soll, kann die Schmelze erfindungsgemäß auch von oben auf ein Substrat, wie ein Stahlband, aufgegossen werden. Wenn aber das Substrat als Träger- oder Stützwerkstoff oder als Maschinen¬ teil mit dem erfindungsgemäßen Lagerwerkstoff verbunden bleiben soll, was meistens der Fall ist, ist es für die erwünschte Schwereseigerung günstig, das Substrat von unten mit der Schmelze zu benetzen. Hierzu kann beispielsweise ein sich bewegendes Trägermaterialband von unten mit der erfindungsgemäß verwendeten Schmelze begossen werden. Stattdessen kann das Substratband, etwa mit Hilfe einer in die Schmelze eintauchenden Walze, die das Substratband in die Schmelze drückt, durch die Schmelze gezogen werden. Eine andere denkbare Methode besteht darin, das Substratband zwischen zwei Walzen hindurchzuführen und vor dem Walzenspalt mit der Schmelze in Berührung zu bringen, so daß die Schmelze vor dem Verlassen des Walzenspaltes an der Unterseite des Trägerbandes erstarrt.
Besonders zweckmäßig erscheint derzeit allerdings ein Verfahren, bei dem durch die freie und/oder erzwungene Konvektionsströmun- gen an der Schmelzenoberfläche eine zum Substrat hin gekrümmte Oberfläche erzeugt, welche von dem bewegten Substrat berührt und dabei benetzt wird. Vorzugsweise geht man dabei so vor, daß man die Konvektionsströmungen in der Schmelze durch thermische Gradienten und/oder durch die Wirkung eines Induktionsfeldes erzeugt und durch Regelung des Induktionsfeldes steuert.
Man kann die erfindungsgemäß verwendete Schmelze dem zu negie¬ renden Träσerwerkstoff auch über e n Steiσersvstem zuführen. Wenn das Substrat mit dem erfindungsgemäßen Lagerwekstoff verbunden bleiben soll, ist es zweckmäßig, die Zusammensetzung αer Matrix-Legierung so einzustellen, daß die mit der Schmelze Berührung kommende Schicht des Trägerwerkstoffes günstige Auswirkungen auf die Bindungsfestigkeit des nach der Erstarrung erstellten Schichtverbundwerkstoffes hat, vorzugsweise durch ohäsive Verbindung. Dabei wird die bei kohäsiver Verbundbildung entstehende Bindungsschicht zweckmäßig in ihrer Dicke gering gehalten, und zwar vorzugsweise durch kurze Verweilzeiten bei höheren Temperaturen.
Die beim Gießen zwischen dem Substrat und dem erfindungsgemäßen Werkstoff sich bildende intermetallische Bindungsschicht wird zweckmäßig in ihrer Dicke durch Erhöhung der Bildungsenergie dieser Schicht gering gehalten, was durch Abstimmung der Legierungskomponenten möglich ist. Weiterhin werden die die Bin¬ dungsschicht bildenden Phasen zweckmäßig in ihrer Härte gering gehalten, was ebenfalls durch Abstimmung der Legierungskom¬ ponenten erzielbar ist.
Baispiel 1
Eine Alummiumlegierung mit 20 Gew.-* ?b, 2 Gew.-% Ca und 2 Gew.-* Ni wurde in einem Tiegel erschmolzen. Diese Legierung wurde von unten mit der Bleibronzeschicht eines Stahl/Bleibron¬ ze-Substratstreifens in Berührung gebracht und bis zur voll¬ ständigen Erstarrung der Schmelze in Berührung gehalten.
er entstehende Verbundwerkstoff besaß eine Legierungsschicht, die in dem substratnahen Bereich fast bleifrei war und im wesentlichen vollständig aus dem Matrix ateriai bestand, während sich in dem Bereich an der vom Substrat abgewandten Oberfläche e ne hohe Konzentration disperser, im wesentlichen kugelförmiger eic T-hasenoartikel fand. Bβispiβl 2
Das Verfahren des Beispiels 1 wurde mit einer Aluminiumlegierung mit 13 Gew.-% Pb, 2,6 Gew.-% Ni und 4,3 Gew.-% Fe wiederholt. Durch Erhöhung der Schichtdicke waren die Abkühlbedingungen in diesem Versuch derart, daß die Weichphasentröpfchen sich stark vergröbern konnten und daß (Ni, Fe)-Aluminide auftraten. Wiederum war der dem Substrat benachbarte Bereich weitgehend weichphasenfrei, während der Bereich, der an die freie Ober¬ fläche der Legierung angrenzte, d. h. der beim Gießen untere Bereich, mit Weichphasen stark angefüllt war.
Der weitgehend weichphasenfreie Matrixwerkstoff hatte eine Härte von 100 bis 180 HV 0,01. Der Weichphasenbereich hatte eine Härte von 55 bis 95 HV 0,01.
Beispiel 3
Entsprechend dem Verfahren des Beispiels 1 wurde eine Alumini¬ umlegierung mit 12,6 Gew.-% Pb, 2,9 Gew.-% Fe, 2,9 Gew.-% Ni und 1 Gew.-% Co auf ein Substrat gegossen. In dem erstarrten Produkt fand sich wiederum eine starke Konzentrierung der Weichphasen im Bereich der freien Oberfläche, d. h. der Gleitfläche. In der Bindungszone zwischen dem von Weichphasen weitgehend freien Bereich und dem Substrat fand sich eine intermetallische Zwischenschicht.

Claims

P a t e n t a n s p r ü c h e
1. Lagerwerkstoff, dadurch gekennzeichnet, daß er aus einer Matrix aus einer Metall-Legierung, die mit Pb-Basis-Werk¬ stoffen ein monotektisches System bildet, und darin derart dispergierten, im wesentlichen kugelförmigen Weichphasen aus einem Pb-Basis-Wersktoff, daß die Konzentration der Weich-p- hasen in der Matrix zu einer Oberfläche des Lagerwerkstoffes hin zunimmt, besteht.
2. Lagerwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Konzentration der Weichphasen in der Matrix zu der Oberfläche des Lagerwerkstoffes hin stufenlos zunimmt.
3. Lagerwerkstoff nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß die Matrix-Legierung als Basis-Metall A) AI, Cr, Ni, Fe, Mn, Si oder Cu und zusätzlich B) zusammen 0,5 bis 15 Gw.-% von jeweils 0,5 bis 6 Gew.-% wenigstens eines der von A) verschiedenen Elemente Be, Mg, Ti, V, Cr, Mn, Zr, Nb, Mo, Si, As, Zn, Cu, Ni, Fe, AI und Li und C) zusammen 0,5 bis 10 Gew.-% von jeweils 0,5 bis 6 Gew.-% wenigstens eines der von A) verschiedenen Elemente Na, Ca, Co, N, B, Sr, Cd, In, Ag, Sn, Sb, Te, Bi, Tl und W enthält, wobei die Gewichtsprozente jeweils auf das Gewicht der Matrix-Legie¬ rung allein bezogen sind.
4. Lagerwerkstoff nach Anspruch 3, dadurch gekennzeichnet, daß die Matrix-Legierung als Basismetall A) Aluminium enthält.
5. Lagerwerkstoff nach Anspruch 3 oder 4, dadurch gekenn¬ zeichnet, daß die Matrix-Legierung von jedem der Elemente B) und C) 2 bis 4 Gew.-%, bezogen auf das Gewicht der Matrix- Legierung allein, enthält.
6. Lagerwerkstoff nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Matrix-Legierung von den Elementen B) zusammen 2 bis 10 und von den Elementen C) zusammen 2 bis 6 Gew.-%, bezogen auf das Gewicht der Matrix-Legierung allein, enthält.
7. Lagerwerkstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß er die Weichphasen in einer Menge von 2 bis 40, vorzugsweise 4 bis 30 Gew.-%, bezogen auf das Gewicht des gesamten Lagerwerkstoffes, enthält.
8. Lagerwerkstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Weichphasen zusätzlich zu dem Basismetall Pb bis 50 Gew.-%, vorzugsweise 0,5 bis 30 Gew.-% Bi, Sn und/oder In, bezogen auf das Gewicht der Weichphasen allein, enthalten.
9. Lagerwerkstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Weichphasen als zusätzliche Legie¬ rungselemente zusammen bis 14 Gew.-%, vorzugsweise 01 bis 7 Gew.-% von jeweils 0,5 bis 5 Gew.-%, vorzugsweise 0,3 bis 4 Gew.-%, bezogen auf das Gewicht der Weichphasen allein, wenigstens eines der Elemente Ag, As, Cd, Sb, K, Li, Na, Bi, Ca, Ce, Se und Te enthalten.
10. Lagerwerkstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sein Bereich, der maximal 10 Gew.-%, bezogen auf das Gewicht dieses Bereiches in einer bestimmten Flächenausdehnung, der Weichphasen enthält, 5 bis 50 % der Dicke des gesamten Lagerwerkstoffes ausmacht.
11. Lagerwerkstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß er zusätzlich Feststoffpartikel, vorzugsweise Hartstoffpartikel oder anorganische Fasern, enthält, die mit seiner Schmelze höchstens oberflächlich reagieren.
12. Lagerwerkstoff nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Weichphasen einen Durchmesser von maximal 250 x 10"6 m, vorzugsweise maximal 100 x 10~6 m, haben und der überwiegende Teil der Weichphasen einen Durchmesser unter 5 x 10 "6 m hat.
13. Verfahren zur Herstellung eines Lagerwerkstoffes nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß man eine Schmelze, die im Gemisch Legierungsbestandteile, welche mit Pb-Basis-Werkstoffen ein monotektisches System bilden, sowie Legierungsbestandteile, die einen Pb-Basis-Werkstoff bilden, enthält, derart auf ein Substrat gießt und dabei die Werkstoffdicke, die Abkühlbedingungen und die Zusammen¬ setzung der Schmelze derart einstellt, daß sich der Pb- Basis-Werkstoff in flüssigem Zustand unter der Schwerkraft von dem Rest der Schmelze abtrennt und im unteren Bereich des Werkstoffes in disperser Weise konzentriert.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß man die Entmischung, die Konzentrierung und das Phasenwachstum des Pb-Basis-Werkstoffes durch Regelung der Abkühlgeschwin¬ digkeit und/oder der Viskosität der Schmelze steuert.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß man als Substrat einen metallischen Träger- oder Stütz¬ werkstoff oder ein halbfertiges oder fertiges Maschinenteil verwendet.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man als Substrat ein Stahlband verwendet.
17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß man als Substrat ein solches aus Stahl mit einer Zwischenschicht aus einer Kupfer-Blei- Legierung, einer Kupfer-Aluminium-Legierung, einer Aluminium-Zinn-Legierung, einerAluminium-Zink-Legierung oder aus einem Metall aus der Gruppe AI, Ni, Co, Cr, Fe,
Mn, Ti und Be oder aus einer binären oder ternären Legierung hiervon verwendet.
18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzexchnet, daß man das Substrat von unten mit der Schmelze benetzt.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man durch die freie und/oder erzwungene Konvektionsströmungen an der Schmelzenoberfläche ein zum Substrat hin gekrümmte Oberfläche erzeugt, welche von dem bewegten Substrat benetzt wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß man die Konvektionsströmungen in der Schmelze durch thermische Gradienten und/oder durch die Wirkung eines Induktionsfeldes erzeugt und durch Regelung des Induktionsfeldes steuert.
PCT/DE1991/000664 1990-08-25 1991-08-19 Lagerwerkstoff und verfahren zu dessen herstellung WO1992003239A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR919106632A BR9106632A (pt) 1990-08-25 1991-08-19 Material de mancal e processo para sua producao
DE59108523T DE59108523D1 (de) 1990-08-25 1991-08-19 Lagerwerkstoff und Verfahren zu dessen Herstellung
EP91914474A EP0497944B1 (de) 1990-08-25 1991-08-19 Lagerwerkstoff und Verfahren zu dessen Herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4026907.8 1990-08-25
DE4026907A DE4026907A1 (de) 1990-08-25 1990-08-25 Lagerwerkstoff und verfahren zu dessen herstellung

Publications (1)

Publication Number Publication Date
WO1992003239A1 true WO1992003239A1 (de) 1992-03-05

Family

ID=6412906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000664 WO1992003239A1 (de) 1990-08-25 1991-08-19 Lagerwerkstoff und verfahren zu dessen herstellung

Country Status (6)

Country Link
EP (1) EP0497944B1 (de)
JP (1) JPH05502063A (de)
AT (1) ATE148379T1 (de)
BR (1) BR9106632A (de)
DE (2) DE4026907A1 (de)
WO (1) WO1992003239A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4323448C5 (de) * 1992-07-16 2004-07-01 Daido Metal Co. Ltd., Nagoya Aluminiumlegierung für mehrschichtige Gleitlager

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9103481D0 (en) * 1991-02-20 1991-04-10 T & N Technology Ltd Bearings
JP2002060870A (ja) * 2000-08-24 2002-02-28 Taiho Kogyo Co Ltd 微細鉛組織を有するCu−Pb系銅合金及び内燃機関用すべり軸受
JP4573484B2 (ja) * 2001-09-27 2010-11-04 太平洋セメント株式会社 金属−セラミックス複合材料およびその製造方法
AT414128B (de) * 2004-08-03 2006-09-15 Miba Gleitlager Gmbh Aluminiumlegierung für tribologisch beanspruchte flächen
DE102015112550B3 (de) * 2015-07-30 2016-12-08 Zollern Bhw Gleitlager Gmbh & Co. Kg Verfahren zur Herstellung einer monotektischen Legierung
JP6503393B2 (ja) * 2017-03-08 2019-04-17 大同メタル工業株式会社 摺動材料及びその製造方法、並びに摺動部材及び軸受装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1572131A (de) * 1965-09-20 1969-06-27
GB1259180A (de) * 1969-12-18 1972-01-05
US4909301A (en) * 1988-10-14 1990-03-20 Sundstrand Corporation Method of making a bearing
FR2639361A1 (fr) * 1988-11-19 1990-05-25 Glyco Metall Werke Procede et dispositif pour la fabrication d'un materiau en couches pour elements de glissement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1359486A (en) * 1970-06-20 1974-07-10 Vandervell Products Ltd Methods and apparatus for producing composite metal material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1572131A (de) * 1965-09-20 1969-06-27
GB1259180A (de) * 1969-12-18 1972-01-05
US4909301A (en) * 1988-10-14 1990-03-20 Sundstrand Corporation Method of making a bearing
FR2639361A1 (fr) * 1988-11-19 1990-05-25 Glyco Metall Werke Procede et dispositif pour la fabrication d'un materiau en couches pour elements de glissement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4323448C5 (de) * 1992-07-16 2004-07-01 Daido Metal Co. Ltd., Nagoya Aluminiumlegierung für mehrschichtige Gleitlager

Also Published As

Publication number Publication date
JPH05502063A (ja) 1993-04-15
EP0497944A1 (de) 1992-08-12
EP0497944B1 (de) 1997-01-29
DE59108523D1 (de) 1997-03-13
ATE148379T1 (de) 1997-02-15
BR9106632A (pt) 1993-06-01
DE4026907A1 (de) 1992-02-27

Similar Documents

Publication Publication Date Title
DE2115358C2 (de) Verfahren zur Herstellung von Schichten aus in einer Metallmatrix dispergiertem fein-dispersem Füllstoff
DE69725170T2 (de) Mehrschichtige metallverbundwerkstoffe hergestellt durch stranggiessen von metallverbundsträngen
EP0270670B1 (de) Lagermetallschicht und verfahren zu deren herstellung
DE1775322C2 (de) Mehrschichtiges Lagermaterial, dessen Vormaterial und Verfahren zur Herstellung des Vormaterials
DE2704376C3 (de) Verfahren zur schmelzmetallurgischen Herstellung graphithaltiger Kupferlegierungen
DE1521369C3 (de) Pulverförmige, selbstfließende Flammspritzmasse
WO1989010433A1 (fr) Materiau stratifie ou piece stratifiee comprenant une couche fonctionnelle, notamment une couche de glissement, appliquee sur une couche de support
EP3328574B1 (de) Verfahren zur herstellung einer monotektischen legierung
CA1170482A (en) Sliding material and method of producing same
DE3415050A1 (de) Verfahren zur herstellung einer stranggiesskokille mit verschleissfester schicht
WO2019144173A1 (de) Mehrschichtgleitlagerelement enthaltend eine schicht aus einer kupferlegierung, die zinn, zink und schwefel enthält
EP3334596B1 (de) Mehrschichtgleitlagerelement und dessen herstellungsverfahren
DE60133466T2 (de) Metallischer einsatzkörper, verfahren zur herstellung desselben und metallisches gussteil
EP0497944B1 (de) Lagerwerkstoff und Verfahren zu dessen Herstellung
DE3221884C2 (de) Verschleißbeständiges Bauteil zur Verwendung in Brennkraftmaschinen
DE3938234A1 (de) Verfahren und vorrichtung zur herstellung eines schichtwerkstoffes fuer gleitelemente
WO1995005490A1 (de) Schmelzebehandlungsmittel, seine herstellung und verwendung
DE2339747C3 (de) Verfahren zur Herstellung einer Flüssig-Fest-Legierungsphase außerhalb der Gießform für Gießprozesse
EP2083958B1 (de) Verfahren zur herstellung zweier miteinander verbundener schichten und nach dem verfahren herstellbares funktionsbauteil
AT506450B1 (de) Verfahren zum herstellen eines gleitlagers
WO1989002365A1 (en) Amorphous laminated material for sliding elements
DE19800433C2 (de) Stranggießverfahren zum Vergießen einer Aluminium-Gleitlagerlegierung
DE3346206A1 (de) Rotations-atomisier-vorrichtung und verfahren zur herstellung von metallteilchen
DE2331498A1 (de) Verbesserungen von aluminiumlagerlegierungen (sprueh-guss-lager-band)
EP0947260A1 (de) Gleitlager aus monotektischen Legierungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991914474

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991914474

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991914474

Country of ref document: EP