WO1991016756A1 - Convertisseur de courant continu a limitation de courant - Google Patents

Convertisseur de courant continu a limitation de courant Download PDF

Info

Publication number
WO1991016756A1
WO1991016756A1 PCT/EP1991/000724 EP9100724W WO9116756A1 WO 1991016756 A1 WO1991016756 A1 WO 1991016756A1 EP 9100724 W EP9100724 W EP 9100724W WO 9116756 A1 WO9116756 A1 WO 9116756A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
current
capacitor
field effect
converter according
Prior art date
Application number
PCT/EP1991/000724
Other languages
German (de)
English (en)
Inventor
Bogdan Brakus
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP91907862A priority Critical patent/EP0526498B1/fr
Priority to US07/941,448 priority patent/US5317499A/en
Priority to RU92016319A priority patent/RU2107380C1/ru
Priority to BR919106378A priority patent/BR9106378A/pt
Priority to DE59104337T priority patent/DE59104337D1/de
Publication of WO1991016756A1 publication Critical patent/WO1991016756A1/fr
Priority to FI924815A priority patent/FI924815A/fi

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current

Definitions

  • the input voltage U- is at capacitor 1 and the output voltage U A at capacitor 13.
  • the drain-source path of the Field effect transistor 6 and the measuring resistor 3 formed series circuit.
  • Parallel to the series circuit comprising the measuring resistor 3 and the source-drain path of the field-effect transistor 6 is the Z-diode 5 which serves to limit the voltage.
  • the rectifier diode 10 In one following the rectifier diode 10
  • the freewheeling diode 11 is arranged in the transverse branch.
  • the choke 12 is located in a longitudinal branch between the freewheeling diode 11 and the capacitor 13.
  • the control electrode of the field effect transistor 6 is connected to the control device 8, which contains a driver, a clock generator and a pulse width modulator.
  • the control arrangement 8 is controlled both by the comparator 4 and by the voltage regulator 14.
  • the comparator 4 is connected with its negative input via the target voltage source 2 to one and with its positive input directly to the other connection of the measuring resistor 3.
  • the voltage regulator 14 serves to regulate the output voltage and is therefore connected with its actual value input to the output of the converter.
  • Fig. 2 shows the typical operating states:
  • the invention relates to a DC converter as specified in Oberbegri ff of claim 1.
  • a power switching transistor is controlled by a clock generator with switch-on pulses of constant operating frequency.
  • the duty cycle which is called the quotient of the switch-on time of the power switching transistor, is changed in relation to the period.
  • the current in the power circuit is limited to protect the components. This is achieved by reducing the switch-on time.
  • the switching transistor is blocked by means of a current measuring circuit as soon as the instantaneous value of the current flowing through the switching transistor, measured with the aid of a current transformer, exceeds a predetermined limit value.
  • a further current measuring circuit which is connected to the burden of the current transformer via a diode is used in the known converter when the minimum switch-on time of the switching transistor would have to be fallen short of and the voltage across the load of the current transformer has therefore increased by more than the threshold voltage of the diode. It repeats - if necessary repeatedly - switching pauses lasting "several periods, so that the current in the power circuit does not rise above a predetermined limit. In this way, a further current limitation can be achieved.
  • the additional circuit ensures that the output choke remains in the magnetic equilibrium and the limiting effect is maintained even in the short circuit, but is associated with a rather large outlay.
  • the object of the invention is to design a clocked converter of the type mentioned at the outset such that a current measuring resistor which is as low as possible is sufficient for effective current limitation as a current sensor and a peak value of the current is formed and stored in a low-loss manner. In particular, a low temperature dependency should result with little effort.
  • the converter is designed to solve this task in the manner specified in the characterizing part of patent claim 1.
  • the further electronic switch is also blocked during the entire blocking phase of the electronic switch in the main circuit. It can also be conductive during the entire switch-on phase of the electronic switch located in the main circuit. Since the peak value to be stored only arises at the end of the conductive phase, the further electronic switch can optionally be controlled such that it is only conductively controlled in a partial time range of the switch-on phase of the switching transistor in the main circuit, such that both electronic switches change simultaneously from conductive to the blocked state. In this way, inrush current peaks when the capacitor is switched on can be reduced or voltage peaks which occur due to inrush current peaks of the main circuit at the measuring resistor can be masked out.
  • a clocked converter which, in addition to an electronic switch in the main circuit, has a further electronic switch which is arranged between a measuring resistor in the main circuit and an RC parallel circuit is not.
  • the additional electronic switch is switched on and off with a delay with respect to the first-mentioned electronic switch.
  • the voltage across the capacitor follows the Voltage at the measuring resistor.
  • the capacitor is already discharged.
  • the converter according to the invention advantageously does without such a control circuit.
  • FIG. 2 shows a pulse diagram for the converter according to FIG. 1,
  • FIG. 3 shows a converter with suppression of switch-on pulses with the aid of a comparator
  • FIG. 4 shows a pulse diagram for the converter according to FIG. 3
  • FIG. 5 shows a converter with suppression of switch-on pulses with the aid of a differential amplifier
  • Fig. 6 a converter with a voltage-controlled oscillator
  • FIG. 7 shows a pulse diagram for the converter according to FIG. 6th
  • FIG. 3 shows a clocked converter according to the invention.
  • the input voltage U £ is on the capacitor 1 and the output voltage U 1 on the capacitor 13.
  • the rectifier diode 10 is located between the secondary winding 92 of the transformer 9 and the capacitor 13.
  • the freewheeling diode 11 is arranged in a transverse branch following the rectifier diode 10.
  • the choke 12 is located in a longitudinal branch between the freewheeling diode 11 and the capacitor 13.
  • An evaluation arrangement is connected to the measuring resistor 3 and consists of the field effect transistor 15, the capacitor 16 and the resistor 17 forming a discharge circuit.
  • the field-effect transistor 15 has its source electrode directly connected to the source electrode of the field-effect transistor 6 and its control electrode directly to the control electrode of the field-effect transistor 6. Both field effect transistors are N-channel MOS transistors.
  • the capacitor 16 and the target voltage source 2 are connected to one another with one pole.
  • the comparator 4 is connected with its inverting input to the target voltage source 2 and with its non-inverting input via the triangular voltage source 20 to the capacitor 16.
  • the source electrodes of the two field effect transistors 6 and 15 are directly connected to one another and to the measuring resistor 3.
  • the control device 8 serves to regulate the output voltage U.
  • the control loop runs from the output of the inverter via the Voltage regulator 14, pulse width modulator 83, logic circuit 82 and driver 81 to the connection point of the control electrodes of the two field effect transistors 6 and 15.
  • the logic circuit 82 and the pulse width modulator 83 are controlled jointly by the clock generator 84.
  • the logic circuit 82 is also connected with a lock input to the output of the comparator 4, which compares the setpoint voltage U s of the setpoint voltage generator with a total voltage that consists of the voltage U across the capacitor 16 and the delta voltage of the Delta voltage generator 20 is made. If necessary, the delta voltage transmitter 20 can be in the setpoint branch instead of in the actual value branch. With an appropriate choice of the working range, the delta voltage sensor 20 can be replaced by a short circuit.
  • the capacitance C1 of the capacitor 16 becomes low-resistance, i.e. quickly and accurately charged to the maximum value of the voltage across the measuring resistor 3.
  • the comparatively slow inverse diode 15a of the MOS transistor 15 which is inevitably contained in the field effect transistor 15 and is therefore shown in broken lines is practically ineffective since its threshold voltage in the forward direction is not reached.
  • the field effect transistor 15 very quickly becomes high-resistance and prevents a backward discharge.
  • the capacitor 16 can be discharged more or less slowly with the desired time constant via the resistor 17. Since the residual resistance Rn oN of the electric transistor 15 is very small compared to the resistance value of the discharge resistor 17, the voltage across the capacitor 16 corresponds very well to the maximum value of the measured current.
  • the pulse diagram according to Fig. 4 shows this fact.
  • the output voltage U G of the driver 81 consists of switch-on pulses which are supplied to the gate-source paths of the field-effect transistors 6 and 15 and which in the inputs Change state and at time t2 to the off state.
  • the voltage U i drops across the measuring resistor 3 and corresponds to the current il flowing in the main circuit of the converter.
  • the voltage U cl results at the capacitor 16.
  • the output voltage U KA of the comparator 4 is a sequence of rectangular pulses.
  • the rising edge at time t3 represents the start of a blocking signal
  • the falling edge at time t4 represents the start of an enable signal.
  • the voltage across capacitor 16 is evaluated according to FIG. 3 with the aid of a comparator.
  • the triangular voltage source 20 supplies an external synchronous triangular signal which is superimposed on the voltage U p .
  • Such a superimposition of an external synchronous triangular signal which is known per se from DE-PS 26 13 896, is advantageous in the evaluation with the comparator 4.
  • a defined switching criterion is obtained, on the other hand, the stability in the subharmonic range is increased.
  • This triangular signal is not shown in the pulse diagram according to FIG. 4 for the sake of clarity.
  • 4 b and 4 c show the basic signal curve for current limitation after use and in the event of a short circuit.
  • the number of missed pulses in case c depends on the minimum pulse width and the forward voltage of the freewheeling diode 11.
  • an operational amplifier 40 is provided instead of the comparator 4 in FIG. 3.
  • the output of the operational amplifier 40 and the output of the voltage regulator 14 are each connected to the input of the pulse via a diode 18 and 19, respectively.
  • Width modulator 83 out, so that there is a so-called release control.
  • the driver 81 is connected directly to the pulse width modulator 83.
  • the increased control deviation controls the pulse width modulator 83 and sets the operating point.
  • the increased control deviation can block the pulse width modulator 83 for several periods, if necessary, and thereby fully maintain the limiting effect.
  • the converter works similarly as shown in Fig. 4 c.
  • FIG. 6 Another embodiment is shown in FIG. 6. It is particularly advantageous for high frequency converters.
  • the operational amplifier 4 amplifies the control deviation U S ⁇ U C1 and cl controls the voltage-controlled oscillator to lower frequencies, as shown in FIG. 7.
  • the duty cycle of the current pulse remains constant. Through constant frequency reduction, however, the desired state of equilibrium is achieved even in the event of a short circuit in the output terminals of the converter.
  • the inverters shown in Figures 1, 3, 5 and 6 can be used in a very wide frequency range, since the field effect transistor is a small MOS transistor with switching times of about 5-20 ns and very low parasitic capacitances, e.g. can have about 5 pF.
  • the switching frequency can be about 1-2 MHz.
  • the converter can be designed as a flow converter or as a blocking converter with a constant clock frequency or as a converter with frequency modulation.
  • a current control with superimposed voltage control in which the output signal of a voltage regulator is used as the setpoint of the current, is easily possible with the aid of the measurement signal at the current measuring resistor 3, since the signal at the low-resistance measuring resistor 3 is also available in those essential for the control Periods are practically not falsified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)

Abstract

Un convertisseur de courant continu comprend un commutateur électronique commandé par conductivité par des impulsions de branchement, la limitation du courant étant assurée par la suppression d'impulsions de branchement. Afin de pouvoir utiliser uniquement un capteur de courant simple à réaliser, à pertes réduites, un commutateur supplémentaire en phase avec le premier commutateur électronique, de préférence un transistor à effet de champ inversement exploité, capte une tension continue correspondant à la valeur maximale du courant. Ce convertisseur est particulièrement utile dans des applications où il faut prendre en considération des courts-circuits de basse impédance à la sortie du convertisseur.
PCT/EP1991/000724 1990-04-16 1991-04-16 Convertisseur de courant continu a limitation de courant WO1991016756A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP91907862A EP0526498B1 (fr) 1990-04-26 1991-04-16 Convertisseur de courant continu a limitation de courant
US07/941,448 US5317499A (en) 1990-04-16 1991-04-16 Direct-current converter with current limiting
RU92016319A RU2107380C1 (ru) 1990-04-26 1991-04-16 Преобразователь постоянного тока с ограничением тока
BR919106378A BR9106378A (pt) 1990-04-26 1991-04-16 Inversor de corrente continua com limitacao de corrente
DE59104337T DE59104337D1 (de) 1990-04-26 1991-04-16 Gleichstromumrichter mit strombegrenzung.
FI924815A FI924815A (fi) 1990-04-26 1992-10-23 Omriktare med stroembegraensning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP90107934 1990-04-26
EP90107934.3 1990-04-26

Publications (1)

Publication Number Publication Date
WO1991016756A1 true WO1991016756A1 (fr) 1991-10-31

Family

ID=8203915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/000724 WO1991016756A1 (fr) 1990-04-16 1991-04-16 Convertisseur de courant continu a limitation de courant

Country Status (11)

Country Link
US (1) US5317499A (fr)
EP (1) EP0526498B1 (fr)
JP (1) JP2718416B2 (fr)
AR (1) AR244030A1 (fr)
AT (1) ATE117474T1 (fr)
BR (1) BR9106378A (fr)
CA (1) CA2081335C (fr)
DE (1) DE59104337D1 (fr)
FI (1) FI924815A (fr)
RU (1) RU2107380C1 (fr)
WO (1) WO1991016756A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0554882A1 (fr) * 1992-02-07 1993-08-11 Power Integrations, Inc. Circuit de charge linéaire pour régler l'alimentation en courant commuté sous des conditions de charges minimales
EP0576702A1 (fr) * 1992-06-30 1994-01-05 Siemens Aktiengesellschaft Convertisseur à découpage avec limitation de courant
EP0584622A1 (fr) * 1992-08-28 1994-03-02 Siemens Aktiengesellschaft Convertisseur du flux avec un circuit de décharge de type RCD
WO1994009557A1 (fr) * 1992-10-15 1994-04-28 Ant Nachrichtentechnik Gmbh Agencement de commutation a convertisseur continu-continu
EP0617509A2 (fr) * 1993-03-22 1994-09-28 Siemens Nixdorf Informationssysteme AG Alimentation en tension aux terminaison de guide d'ondes
US5357415A (en) * 1992-08-05 1994-10-18 Siemens Aktiengesellschaft Switching regulator having at least one regulated output voltage
US5408402A (en) * 1991-02-15 1995-04-18 Siemens Aktiengesellschaft Clock-controlled frequency converter having current limitation
EP0693819A1 (fr) * 1994-07-18 1996-01-24 Siemens Aktiengesellschaft Convertisseur continu-continu avec limitation de courant
AT414065B (de) * 2002-01-28 2006-08-15 Felix Dipl Ing Dr Himmelstoss Hochdynamisches und robustes regelverfahren für leistungselektronische konverter insbesondere von dc/dc konvertern
US7825645B2 (en) * 2004-08-06 2010-11-02 Stmicroelectronics Sa Switched-mode power supply regulation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457620A (en) * 1993-07-30 1995-10-10 At&T Ipm Corp. Current estimating circuit for switch mode power supply
US5523940A (en) * 1994-05-20 1996-06-04 Micro Linear Corporation Feedback control circuit for a synchronous rectifier having zero quiescent current
DE4437459C1 (de) * 1994-10-19 1995-11-23 Siemens Ag Schaltnetzteil
SE510597C2 (sv) * 1997-03-24 1999-06-07 Asea Brown Boveri Anläggning för överföring av elektrisk effekt
US6137280A (en) * 1999-01-22 2000-10-24 Science Applications International Corporation Universal power manager with variable buck/boost converter
US7738266B2 (en) 2006-05-26 2010-06-15 Cambridge Semiconductor Limited Forward power converter controllers
GB2450004B (en) * 2006-05-26 2010-02-10 Cambridge Semiconductor Ltd Forward power converters and controllers
GB0610422D0 (en) * 2006-05-26 2006-07-05 Cambridge Semiconductor Ltd Forward power converters
DE102006057523B4 (de) * 2006-12-06 2008-08-07 Siemens Ag Regelverfahren für eine Volumenstromregelung
DE102007051979A1 (de) * 2007-10-31 2009-05-07 Leuze Electronic Gmbh & Co Kg Sensor
US9632523B2 (en) * 2013-10-11 2017-04-25 Marvell World Trade Ltd. Peak detector for amplifier
CN105763030B (zh) * 2014-12-17 2018-07-13 万国半导体(开曼)股份有限公司 在电压转换器启动阶段抑制电流过大的电路及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613896A1 (de) * 1976-03-31 1977-10-13 Siemens Ag Durchfluss-gleichstromumrichter mit momentwertstrombegrenzung
DE2838009B1 (de) * 1978-08-31 1980-01-24 Siemens Ag Strombegrenzungsschaltung fuer einen Gleichstromumrichter
US4772995A (en) * 1987-01-08 1988-09-20 Veeco Instruments Inc. Switching supply with pulse width and rate modulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943909B2 (ja) * 1979-10-24 1984-10-25 富士通株式会社 電圧垂下制御回路
JPS5843016A (ja) * 1981-09-08 1983-03-12 Fujitsu Ltd 定電流回路
DD228687A1 (de) * 1984-11-13 1985-10-16 Berlin Treptow Veb K Steuerschaltung fuer ruhende umformer
JPH06106020B2 (ja) * 1988-11-14 1994-12-21 サンケン電気株式会社 スイッチングレギユレータ
EP0404996B1 (fr) * 1989-06-30 1994-06-01 Siemens Aktiengesellschaft Convertisseur avec formation de la valeur du courant effectif

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613896A1 (de) * 1976-03-31 1977-10-13 Siemens Ag Durchfluss-gleichstromumrichter mit momentwertstrombegrenzung
DE2838009B1 (de) * 1978-08-31 1980-01-24 Siemens Ag Strombegrenzungsschaltung fuer einen Gleichstromumrichter
US4772995A (en) * 1987-01-08 1988-09-20 Veeco Instruments Inc. Switching supply with pulse width and rate modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Datenbuch SIPMOS-Kleinsignaltransistoren, Leistungstransistoren" 1985, Siemens AG, München siehe Seite 24, letzter Absatz; Figur 7b (in der Anmeldung erwähnt) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408402A (en) * 1991-02-15 1995-04-18 Siemens Aktiengesellschaft Clock-controlled frequency converter having current limitation
EP0554882A1 (fr) * 1992-02-07 1993-08-11 Power Integrations, Inc. Circuit de charge linéaire pour régler l'alimentation en courant commuté sous des conditions de charges minimales
US5285367A (en) * 1992-02-07 1994-02-08 Power Integrations, Inc. Linear load circuit to control switching power supplies under minimum load conditions
EP0576702A1 (fr) * 1992-06-30 1994-01-05 Siemens Aktiengesellschaft Convertisseur à découpage avec limitation de courant
US5357415A (en) * 1992-08-05 1994-10-18 Siemens Aktiengesellschaft Switching regulator having at least one regulated output voltage
EP0584622A1 (fr) * 1992-08-28 1994-03-02 Siemens Aktiengesellschaft Convertisseur du flux avec un circuit de décharge de type RCD
WO1994009557A1 (fr) * 1992-10-15 1994-04-28 Ant Nachrichtentechnik Gmbh Agencement de commutation a convertisseur continu-continu
EP0617509A2 (fr) * 1993-03-22 1994-09-28 Siemens Nixdorf Informationssysteme AG Alimentation en tension aux terminaison de guide d'ondes
EP0617509A3 (fr) * 1993-03-22 1997-07-16 Siemens Nixdorf Inf Syst Alimentation en tension aux terminaison de guide d'ondes.
EP0693819A1 (fr) * 1994-07-18 1996-01-24 Siemens Aktiengesellschaft Convertisseur continu-continu avec limitation de courant
AT414065B (de) * 2002-01-28 2006-08-15 Felix Dipl Ing Dr Himmelstoss Hochdynamisches und robustes regelverfahren für leistungselektronische konverter insbesondere von dc/dc konvertern
US7825645B2 (en) * 2004-08-06 2010-11-02 Stmicroelectronics Sa Switched-mode power supply regulation

Also Published As

Publication number Publication date
JPH05505091A (ja) 1993-07-29
CA2081335C (fr) 1999-01-05
EP0526498B1 (fr) 1995-01-18
FI924815A0 (fi) 1992-10-23
DE59104337D1 (de) 1995-03-02
US5317499A (en) 1994-05-31
AR244030A1 (es) 1993-09-30
CA2081335A1 (fr) 1991-10-27
FI924815A (fi) 1992-10-23
RU2107380C1 (ru) 1998-03-20
BR9106378A (pt) 1993-04-27
ATE117474T1 (de) 1995-02-15
JP2718416B2 (ja) 1998-02-25
EP0526498A1 (fr) 1993-02-10

Similar Documents

Publication Publication Date Title
WO1991016756A1 (fr) Convertisseur de courant continu a limitation de courant
DD201727A5 (de) Anordnung zur erzeugung magnetischer gleichfelder wechselnder polaritaet fuer die magnetisch-induktive durchflussmessung
EP0176800A1 (fr) Procédé et dispositif pour contrôler l'état d'un thyristor blocable
EP0404996B1 (fr) Convertisseur avec formation de la valeur du courant effectif
EP0693819B1 (fr) Convertisseur continu-continu avec limitation de courant
DE2320128B2 (de) Zerhacker
DE4413546A1 (de) Gleichstrom-Steuerschaltung
EP0287166B1 (fr) Circuit de limitation des pointes de courant pour un transistor de commutation
DE2644715C2 (de) Einrichtung zur Befreiung elektrischer oder elektronischer Einwegschalter von hoher Verlustleistungsbeanspruchung während des Einschaltens - bei welchem ein, zuvor in einem anderen Schaltungspfad fließender, von Null verschiedener Strom auf den betreffenden Einwegschalter überwechselt - und von überhöhter Sperrspannungsbeanspruchung zum Ende des Ausschaltens
DE4421249A1 (de) Schaltstromversorgungsgerät mit Snubber-Schaltung
DE2461583C2 (de) Schaltung zur Reduzierung der Einschaltverluste eines Leistungstransistors
DE102016210798B3 (de) Leistungshalbleiterschaltung
EP1071210A2 (fr) Montage de circuit
DE4313882C1 (de) Halbleiterrelais zum Schalten einer Wechselstromlast
DE10143016B4 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
DE3240352A1 (de) Elektronische schaltvorrichtung
DE3539647C2 (de) Schaltungsanordnung für einen pulsgesteuerten Wechselstromsteller
DE3021890C2 (fr)
EP0155932B1 (fr) Arrangement de circuit
EP0177779B1 (fr) Montage avec un circuit d'alimentation pour alimenter une résistance de charge
DE3226998C2 (de) Schaltungsanordnung zur galvanisch getrennten Ansteuerung wenigstens eines Leistungstransistors
DE4014888A1 (de) Gleichstromumrichter mit strombegrenzung
DE19546132A1 (de) Schaltungsanordnung zur Einschaltstrombegrenzung und zum Überspannungsschutz bei Spannungszwischenkreisumrichtern
EP2458737A1 (fr) Commutation de remplacement de diodes et circuit convertisseur ascendant, circuit convertisseur descendant et commutation de redresseur de ponts le comprenant
DE3411712A1 (de) Schaltung zur erzeugung von sehr kurzen leistungsimpulsen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA FI JP SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991907862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2081335

Country of ref document: CA

Ref document number: 924815

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1991907862

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991907862

Country of ref document: EP