WO1991012573A1 - Frequenzgangkompensierte schaltung - Google Patents

Frequenzgangkompensierte schaltung Download PDF

Info

Publication number
WO1991012573A1
WO1991012573A1 PCT/EP1990/002221 EP9002221W WO9112573A1 WO 1991012573 A1 WO1991012573 A1 WO 1991012573A1 EP 9002221 W EP9002221 W EP 9002221W WO 9112573 A1 WO9112573 A1 WO 9112573A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency response
circuit
value
capacitor
operational amplifier
Prior art date
Application number
PCT/EP1990/002221
Other languages
English (en)
French (fr)
Inventor
Rudolf Koblitz
Steffen Lehr
Original Assignee
Deutsche Thomson-Brandt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Thomson-Brandt Gmbh filed Critical Deutsche Thomson-Brandt Gmbh
Priority to AT91901543T priority Critical patent/ATE96922T1/de
Publication of WO1991012573A1 publication Critical patent/WO1991012573A1/de
Priority to HK124894A priority patent/HK124894A/xx
Priority to KR1019920701920A priority patent/KR0156232B1/ko

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • H03F3/343DC amplifiers in which all stages are DC-coupled with semiconductor devices only
    • H03F3/347DC amplifiers in which all stages are DC-coupled with semiconductor devices only in integrated circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters

Definitions

  • the invention relates to a frequency response-compensated circuit in control loops.
  • phase response changes accordingly with increasing frequency. From a certain frequency, e.g. 10 MHz, the phase shift is greater than 180 °. However, because the gain is still greater than 1, there are uncontrolled vibrations.
  • a capacitor for frequency response compensation is inserted at a suitable point in the operational amplifier.
  • the phase shift remains at - 90 ° within a certain frequency range, while the gain decreases with greater steepness.
  • the gain is already less than 1 and there are no more disturbing vibrations.
  • the invention has for its object to generate accurate currents by a control circuit and to reduce the required capacitance of the frequency response compensation capacitor in the control circuit.
  • FIG. 7 representation of a control loop according to the invention
  • Fig. 8 circuit diagram of a temperature compensated
  • Fig. 1 the wiring of a negative feedback operational amplifier is shown. The gain results in
  • V out . V in * R 1 / R 0 .
  • C is the capacitor for frequency response compensation.
  • R 30 and R 31 have the same resistance value. Because the non-inverting input of the operational amplifier OP 30 connected to it is high-impedance in comparison, half the supply voltage V CC is generated via R 30 and R 31 .
  • R 32 is a reference resistor with a resistance value of 50 kOhm, for example.
  • Transistor T 30 forms a current mirror. The connection point of R 32 , collector of transistor T 30 is connected to the inverting input of operational amplifier OP 30 .
  • the capacitor C 30 on the operational amplifier 0P__ is used for
  • Fig. 4 shows another circuit that is intended to generate accurate currents.
  • R 42 is a corresponding reference resistor and T 40 is a current mirror.
  • the current I 43 results in
  • V BE (V CC - 2 * V BE ) / R 42 . Because the base-emitter voltage V BE is temperature-dependent, the current I 40 is also temperature-dependent. In the range of 0 ... 100 ° C, V BE changes by about 200 mV. On the other hand, the circuit complexity compared to Fig. 3 is significantly lower. In particular, the relatively large chip area for the capacitor C 30 is saved.
  • FIG. 5 now shows a circuit which produces precise currents, but in which the chip area for a frequency response compensation capacitor is significantly reduced.
  • R 51 and R 54 have the same value and are reference resistors.
  • T 50 is a current mirror.
  • I 53 is the reference current.
  • exactly the same reference currents, for example I 59 are formed on further transistors, for example T 59 , whose base connections are connected to the base of T 53 .
  • the resistors R 51 , R 53 , R 55 correspond to the resistors R 40 , R 43 , R 44 from FIG.
  • C 30 can be reduced by a factor of 10 and, for example, have a value of 5 pF instead of 50 pF.
  • FIGS. 6 and 7. shows a known control loop.
  • the setpoint 69 is fed to a subtraction point 60.
  • the actual value 63 is subtracted from the target value 69.
  • the result is fed to the controlled system 62 via an error amplifier 61, which supplies the actual value as an output signal.
  • FIG. 7 shows a control loop according to the invention.
  • the setpoint 79 is fed to a subtraction point 70.
  • the actual value 73 is subtracted from the target value 79.
  • the result is fed to an addition point 75 via an error amplifier 71 and a multiplier 74.
  • a presetting control value 76 is added there and the sum of the controlled system 72 supplied, which returns the actual value as the output signal.
  • the frequency response compensation in the error amplifier 71 can advantageously be reduced by a factor of 1 / k .
  • the circuit according to FIG. 8 delivers a current of 80 ⁇ A at the outputs 80_1 ⁇ I, 80U_2 ⁇ I and 80U_3 ⁇ I, a current of 50 ⁇ A at the output 50U ⁇ I and a current of 30 ⁇ A at the output 30U ⁇ I.
  • a reference resistor is connected between the VCC ⁇ I and IREF ⁇ I connections. If this resistor is not integrated, the temperature compensation for the V BE fluctuations must be increased somewhat.
  • the transmission value k then also becomes somewhat larger.
  • Q 12 corresponds to T 51
  • R 6 corresponds to R 52 / R 8 / R 9 corresponds to R 51 / Q 16 corresponds to T 50
  • Q 14 corresponds to T 52
  • R 7 corresponds to R 53
  • the reference resistance corresponds to R 54
  • Q 18 corresponds to T 53
  • R 12 corresponds to R 55
  • Q 2 4 and R 18 correspond to T 59 and R 56 .
  • the base connections of Q 4 and Q 7 correspond to the inputs of OP 30 , the collector connections of Q 10 and Q 11 to the output of OP 30 and the capacitor C 1 to the capacitor C 30 .
  • Connection GND ⁇ I is the ground connection.
  • a reference voltage of 1.2 V is connected to connection VBG ⁇ I and the above-mentioned outputs are switched with connection OFF ⁇ I.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

In integrierten Schaltungen, die einen Verstärker für analoge Signale enthalten, z.B. in Regelkreisen, treten bei höheren Frequenzen Phasenverschiebungen auf. Um dadurch bedingte unkontrollierte Schwingungen zu unterbinden, wird mit Hilfe eines Frequenzgang-Kompensations-Kondensators der Phasen- und Amplitudengang geändert. Der Wert dieses Kondensators ist der Verstärkung proportional. Integrierte Kondensatoren benötigen aber eine grosse Chip-Fläche. Durch die Hinzufügung eines ungeregelten Steuerwertes (76), der annähernd dem Sollwert (79) entspricht, kommt der Fehlerverstärker (71) des Regelkreises mit einer geringeren Verstärkung aus. Die Gegenkopplung kann dadurch geringer ausfallen und entsprechend verkleinert sich der benötigte Wert des Frequenzgang-Kompensations-Kondensators und die dafür benötigte Chip-Fläche. Für integrierte analoge Verstärker.

Description

Frequenzgangkompensierte Schaltung
Die Erfindung betrifft eine frequenzgangkompensierte Schaltung in Regelschleifen.
Die Gleichspannungsverstärkung eines Operationsverstärkers, der gemäß Fig3. 1 beschaltet ist, ergibt sich zur Vout, = Vin
* R1 / R0. Intern besteht ein solcher integrierter Operationsverstärker hauptsächlich aus Transistoren und Widerständen. Zwischen den Verbindungsleitungen und Basis, Kollektor, Emitter der Transistoren und dem Substrat (= Masse) bestehen kapazitive Kopplungen, sogenannte parasitäre Kapazitäten.
Diese parasitären Kapazitäten bewirken in Richtung höherer Frequenzen eine zunehmende Gegenkopplung, so daß die Verstärkung gegenüber der Gleichspannungsverstärkung immer mehr abnimmt. Entsprechend ändert sich mit zunehmender Frequenz auch der Phasengang. Ab einer bestimmten Frequenz, z.B. 10 MHz, ist die Phasenverschiebung größer als 180°. Weil die Verstärkung aber immer noch größer als 1 ist, kommt es dann zu unkontrollierten Schwingungen.
Um diese Schwingungen zu verhindern, fügt man an geeigneter Stelle im Operationsverstärker einen Kondensator zur Frequenzgangkompensation ein. Dadurch bleibt die Phasenverschiebung innerhalb eines bestimmten Frequenzbereiches bei - 90°, während die Verstärkung mit größerer Steilheit abnimmt. Wenn die Phasenverschiebung bei höheren Frequenzen schließlich - 180° erreicht, ist die Verstärkung bereits kleiner als 1 und es treten keine störenden Schwingungen mehr auf.
Je größer die Verstärkung ist, desto stärker muß der Frequenzgang kompensiert werden. In integrierten Schaltungen benötigt ein Kondensator (zur Frequenzgangkompensation) aber eine relativ große Chipfläche, z.B. 0,001 mm2/pF. Für einen Kondensator von 1000 pF wäre demnach eine Fläche von 1 mm2 notwendig.
Der Erfindung liegt die Aufgabe zugrunde, durch eine Regelschaltung genaue Ströme zu erzeugen und die erforderliche Kapazität des Frequenzgang-Kompensations-Kondensators in der RegelSchaltung zu verkleinern.
Diese Aufgabe wird durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
Anhand der Zeichnungen wird im folgenden ein Ausführungsbeispiel der Erfindung erläutert. Es zeigt:
Fig. 1 Beschaltung eines Operationsverstärkers
(bekannt)
Fig. 2 Beschaltung eines Operationsverstärkers mit
reduzierter Gegenkopplung (bekannt)
Fig. 3 Schaltung zur Erzeugung eines genauen Stromes mit einem Operationsverstärker in der Regelschleife (bekannt) Fig. 4 Schaltung zur Erzeugung eines näherungsweise genauen Stromes (bekannt)
Fig. 5 erfindungsgemäße Schaltung zur Erzeugung eines genauen Stromes
Fig. 6 Darstellung eines Regelkreises (bekannt)
Fig. 7 Darstellung eines erfindungsgmäßen Regelkreises
Fig. 8 Schaltbild einer temperaturkompensierten
Stromversorgung.
In Fig. 1 ist die Beschaltung eines gegengekoppelten Operationsverstärkers dargestellt. Die Verstärung ergibt sich zu
Vout. = Vin * R1 / R0.
In Fig. 2 ist die Beschaltung eines gegengekoppelten Operationsverstärkers mit reduzierter Gegenkopplung dargestellt. C ist jeweils der Kondensator für die Frequenzgangkompensation.
In Fig. 3 haben R30 und R31 den gleichen Widerstandswert. Weil der daran angeschlossene, nicht invertierende Eingang des Operationsverstärkers OP30 im Vergleich dazu hochohmig ist, entsteht über R30 und R31 jeweils die halbe Versorgungsspannung VCC. R32 ist ein Referenzwiderstand mit einem Widerstandswert von z.B. 50 kOhm. Transistor T30 bildet einen Stromspiegel. Der Verbindungspunkt von R32, Kollektor von Transistor T30 ist an den invertierenden Eingang von Operationsverstärker OP30 angeschlossen. Dadurch fließt in den Kollektor von T32 ein Referenzistrom I30 = (VCC / 2) / R32. An Kollektor von Transistor T33 bildet sich der gleiche Strom I31 = I30- Durch die Stromspiegelfunktion von T30 und den Widerstand R35 bildet sich durch R35 ein Strom I30 =
(R35 / R32) * (VCC / 2).
Der Kondensator C30 am Operationsverstärker 0P__ dient zur
Frequenzgangkompensation der Regelung des Referenzstromes I30. C30 muß einen relativ großen Wert haben und benötigt darum viel Chip-Fläche. Die Ströme I30, I31, I32 sind abhängig von der VersorgungsSpannung VCC. Weil VCC sehr genau sein kann, sind auch die Ströme I30 bis I32 entsprechend genau.
Fig. 4 zeigt eine weitere Schaltung, die genaue Ströme erzeugen soll. R42 ist ein entsprechender Referenzwiderstand und T40 ein Stromspiegel. Der Strom I43 ergibt sich zu
I43 = (VCC - 2 * VBE) / R42. Weil die Basis-Emitter-Spannung VBE temperaturabhängig ist, ist der Strom I40 ebenfalls temperaturabhängig. Im Bereich von 0 .... 100° C ändert sich VBE um etwa 200 mV. Andererseits ist aber der Schaltungsaufwand gegenüber Fig. 3 deutlich geringer. Insbesondere wird die relativ große Chip-Fläche für den Kondensator C30 eingespart.
Fig. 5 zeigt nun eine Schaltung, die genaue Ströme erzeugt, bei der aber die Chipfläche für einen Frequenzgangkompensati- ons-Kondensator deutlich reduziert ist. An die Anschlußpunkte A und B wird die in Fig. 3 links von A und B liegende Schaltung, bestehend aus den Widerständen R30 und R31, dem Operationsverstärker OP30 und dem Kondensator C30, angeschlossen. R51 und R54 haben den gleichen Wert und sind Referenzwiderstände. T50 ist ein Stromspiegel. I53 ist der Referenzstrom. An weiteren Transistoren, z.B. T59, deren Basisan- Schlüsse an die Basis von T53 angeschlossen sind, bilden sich weitere, exakt gleiche Referenzströme, z.B. I59. In Fig. 5 entsprechen die Widerstände R51, R53, R55 den Widerständen R40, R43, R44 aus Fig. 4 und die Transistoren T50, T52' T53 den Transistoren T40, T42, T43 aus Fig. 4. Dadurch wird der Referenzstrom I53 praktisch entsprechend dem Referenzstrom I43 vorgeregelt. Die Feinregelung übernimmt der an den Anschlußpunkten A und B angeschlossene Operationsverstärker OP30. OP30 muß nur noch die durch VBE bedingten temperaturabhängigen Schwankungen nachregeln. Entsprechend kann der Regelbereich von OP30 und damit die Gegenkopplung (wie für Fig. 2 beschrieben) verringert werden. Dies geschieht
dadurch, daß der Ausgang von OP30 nicht direkt an den Emitter von T52 angeschlossen wird, sondern über den Emitterfol- ger T51 und einen Widerstand R52. Der Widerstand R52 hat z.B. den Wert R52 = 10 * R53. Entsprechend kann C30 um den Faktor 10 verkleinert werden und z.B. statt 50 pF einen Wert von 5 pF haben.
Drei Transistoren und drei Widerstände benötigen z.B. eine Chip-Fläche, die der Fläche für einen 2 pF-Kondensator entsprechen würde. Man erkennt, daß durch die Reduktion von 50 pF auf 5 pF trotz der gegenüber Fig. 3 erhöhten Anzahl von Bauelementen eine deutliche Reduktion der benötigten Chip-Fläche für die gesamte Regelschaltung erfolgt, obwohl die Genauigkeit des Referenzstroms I53 dem von I30 entspricht.
In Fig. 6 und Fig. 7 ist das Prinzip der Erfindung nochmals verdeutlicht. Fig. 6 zeigt einen bekannten Regelkreis. Der Sollwert 69 wird einem Subtraktionspunkt 60 zugeführt. Vom Sollwert 69 wird der Istwert 63 abgezogen. Das Ergebnis wird über einen Fehlerverstärker 61 der Regelstrecke 62 zugeführt, die als AusgangsSignal den Istwert liefert.
Fig. 7 zeigt einen Regelkreis gemäß der Erfindung. Der Sollwert 79 wird einem Subtraktionspunkt 70 zugeführt. Vom Sollwert 79 wird der Istwert 73 abgezogen. Das Ergebnis wird über einen Fehlerverstärker 71 und einen Multiplizierer 74 einem Additionspunkt 75 zugeführt. Dort wird ein Voreinstell- ungs-Steuerwert 76 addiert und die Summe der Regelstrecke 72 zugeführt, die als Ausgangssignal wieder den Istwert liefert. Durch die Addition des Voreinstellungssteuerwertes 76 kann die Fehlerverstärkung 71 reduziert werden. Dies geschieht durch Multiplikation mit einem Übertragungswert k, k < 1, z.B. k = 0,1 ... 0,5 , im Multiplizierer 74. Durch die Reduktion der Fehlerverstärkung kann vorteilhaft die Frequenzgangkompensation im Fehlerverstärker 71 um den Faktor 1 / k verringert werden.
Die Schaltung nach Fig. 8 liefert an den Ausgängen 80_1\I, 80U_2\I und 80U_3\I jeweils einen Strom von 80 μA, am Ausgang 50U\I einen Strom von 50 μA und am Ausgang 30U\I einen Strom von 30 μA.
Zwischen den Anschlüssen VCC\I und IREF\I wird ein Referenzwiderstand angeschlossen. Wenn dieser Widerstand nicht mitintegriert ist, muß die Temperaturkompensation für die VBE- Schwankungen etwas verstärkt werden. Der Übertragungswert k wird dann auch entsprechend etwas größer. Q12 entspricht T51, R6 entspricht R52/ R8/R9 entsprechen R51 / Q16 entspricht T50, Q14 entspricht T52, R7 entspricht R53, der Referenzwiderstand entspricht R54, Q18 entspricht T53, R12 entspricht R55, Q2 4 und R18 entsprechen T59 und R56.
Die Basisanschlüsse von Q4 und Q7 entsprechen den Eingängen von OP30, die Kollektoranschlüsse von Q10 und Q11 dem Ausgang von OP30 und der Kondensator C1 dem Kondensator C30.
Anschluß GND\I ist der Masseanschluß. An Anschluß VBG\I wird eine Referenzspannung von 1,2 V angeschlossen und mit Anschluß OFF\I werden die obengenannten Ausgänge geschaltet.
Q12, Q14, Q16, R6, R8 und R9 sind gegenüber einer Schaltung entsprechend Fig. 3 zusätzlich vorhanden. Insgesamt wird aber durch die Verkleinerung von C1 eine deutlich größere Chip-Fläche eingespart, wie oben beschrieben.

Claims

P a t e n t a n s p r ü c h e
1. Frequenzgangkompensierte Schaltung mit einem der Schaltung zugeführten Sollwert (69, 79) und mit einem in der Schaltung erzeugten Istwert (63, 73), in der mindestens ein Kondensator (C, C30, C1) für eine Phasengang-Änderung enthalten ist, um durch die Phasengang-Änderung sicherzustellen, daß eine gegengekoppelte Verstärkung (Fig. 1, Fig. 2, OP30 und T32, 61, 71) innerhalb der Schaltung kleiner als eins ist, wenn der entsprechende Phasengang den Betrag von 180° erreicht, dadurch gekennzeichnet, daß der in der Schaltung enthaltenen gegengekoppelten Verstärkung (OP30 und T32, 71) zusätzlich ein ungeregelter Steuerwert (76) zugeführt wird, der näherungsweise dem Sollwert (79) entspricht.
2. Frequenzgangkompensierte Schaltung nach Anspruch 1,
dadurch gekennzeichnet, daß der ungeregelte Steuerwert (76) abgeleitet ist von mindestens einer Versorgungsspannung (VCC, VCC\I) der Schaltung, von mindestens einem Referenzwiderstand (R51, R54, R8, R9 ) und von mindestens einer Basis-Emitter-Spannung (VBE).
3. Frequenzgangkompensierte Schaltung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die gegengekoppelte Verstärkung (OP30 und T37, 71) einen Operationsverstärker (OP30) zur Fehlersignal-Verstärkung enthält.
4. Frequenzgangkompensierte Schaltung nach Anspruch 3,
dadurch gekennzeichnet, daß der Operationsverstärker (OP30) den Kondensator (C30, C1) zur Phasengang-Änderung enthält.
PCT/EP1990/002221 1990-02-10 1990-12-18 Frequenzgangkompensierte schaltung WO1991012573A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT91901543T ATE96922T1 (de) 1990-02-10 1990-12-18 Frequenzgangkompensierte schaltung.
HK124894A HK124894A (en) 1990-02-10 1994-11-10 Frequency response-compensated circuit
KR1019920701920A KR0156232B1 (ko) 1990-02-10 1995-12-05 주파수 보상회로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4004135A DE4004135A1 (de) 1990-02-10 1990-02-10 Frequenzgangkompensierte schaltung
DEP4004135.2 1990-02-10

Publications (1)

Publication Number Publication Date
WO1991012573A1 true WO1991012573A1 (de) 1991-08-22

Family

ID=6399897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/002221 WO1991012573A1 (de) 1990-02-10 1990-12-18 Frequenzgangkompensierte schaltung

Country Status (13)

Country Link
US (1) US5396193A (de)
EP (1) EP0514381B1 (de)
JP (1) JPH05504218A (de)
KR (1) KR0156232B1 (de)
CN (1) CN1049511C (de)
AU (1) AU6979991A (de)
DE (2) DE4004135A1 (de)
ES (1) ES2046885T3 (de)
HK (1) HK124894A (de)
MY (1) MY105487A (de)
TR (1) TR25569A (de)
WO (1) WO1991012573A1 (de)
ZA (1) ZA91804B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699023A1 (fr) * 1992-12-09 1994-06-10 Texas Instruments France Circuit à retard commandé.
GB2371697A (en) * 2001-01-24 2002-07-31 Mitel Semiconductor Ltd Scaled current sinks for a cross-coupled low-intermodulation RF amplifier

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU665377B2 (en) * 1991-11-15 1996-01-04 Stephen Conway Beaufoy Beach swag
DE19742714B4 (de) * 1997-09-26 2006-02-23 Sennheiser Electronic Gmbh & Co. Kg Regelverstärker
DE10027733B4 (de) * 2000-06-03 2012-02-02 Elan Schaltelemente Gmbh & Co. Kg Überwachungsschaltung
JP6221023B1 (ja) * 2016-11-29 2017-10-25 双太 栗林 音響発生装置
CN107315439A (zh) * 2017-08-09 2017-11-03 常州同惠电子股份有限公司 高精度压控电流源电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582689A (en) * 1968-10-23 1971-06-01 Canadian Patents Dev Current conveyor with virtual input reference potential
US3984780A (en) * 1974-09-11 1976-10-05 Motorola, Inc. CMOS voltage controlled current source
US4028631A (en) * 1976-04-26 1977-06-07 Rca Corporation Current amplifiers
FR2476936A1 (fr) * 1980-02-25 1981-08-28 Philips Nv Circuit d'amplification

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432763A (en) * 1966-12-13 1969-03-11 Hewlett Packard Co Amplifier employing nonlinear dc negative feedback to stabilize its dc operating point
US3679986A (en) * 1970-09-04 1972-07-25 Ibm Non-linear feedback gain control and peak detector system
NL7614515A (nl) * 1976-12-29 1978-07-03 Philips Nv In versterking geregelde signaalversterker.
JPS53101252A (en) * 1977-02-16 1978-09-04 Sony Corp Feedback-type amplifier circuit
JPS5422512U (de) * 1977-07-15 1979-02-14
JPS5763922A (en) * 1980-10-07 1982-04-17 Hitachi Ltd Integrated filter circuit
NL8105536A (nl) * 1981-12-09 1983-07-01 Philips Nv Balanskompensatie bij enkelzijdig aangestuurde verschilversterkers.
NL8204024A (nl) * 1982-10-19 1984-05-16 Philips Nv Operationele versterker.
US4703285A (en) * 1986-04-23 1987-10-27 Tektronix, Inc. Wideband amplifier with active high-frequency compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582689A (en) * 1968-10-23 1971-06-01 Canadian Patents Dev Current conveyor with virtual input reference potential
US3984780A (en) * 1974-09-11 1976-10-05 Motorola, Inc. CMOS voltage controlled current source
US4028631A (en) * 1976-04-26 1977-06-07 Rca Corporation Current amplifiers
FR2476936A1 (fr) * 1980-02-25 1981-08-28 Philips Nv Circuit d'amplification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699023A1 (fr) * 1992-12-09 1994-06-10 Texas Instruments France Circuit à retard commandé.
EP0601935A1 (de) * 1992-12-09 1994-06-15 Texas Instruments France Gesteuerte Verzögerungsschaltung
GB2371697A (en) * 2001-01-24 2002-07-31 Mitel Semiconductor Ltd Scaled current sinks for a cross-coupled low-intermodulation RF amplifier
US6876843B2 (en) 2001-01-24 2005-04-05 Zarlink Semiconductor Limited Radio frequency amplifier with improved intermodulation performance

Also Published As

Publication number Publication date
CN1049511C (zh) 2000-02-16
EP0514381A1 (de) 1992-11-25
KR0156232B1 (ko) 1998-12-15
JPH05504218A (ja) 1993-07-01
DE59003378D1 (de) 1993-12-09
MY105487A (en) 1994-10-31
AU6979991A (en) 1991-09-03
ES2046885T3 (es) 1994-02-01
TR25569A (tr) 1993-07-01
HK124894A (en) 1994-11-18
EP0514381B1 (de) 1993-11-03
DE4004135A1 (de) 1991-08-14
US5396193A (en) 1995-03-07
ZA91804B (en) 1991-10-30
CN1063945A (zh) 1992-08-26
KR920704211A (ko) 1992-12-19

Similar Documents

Publication Publication Date Title
DE69210305T2 (de) Mehrstufiger Differenzverstärker
DE69118693T2 (de) Differenzverstärkeranordnung
DE3725339A1 (de) Automatische justierschaltung zum justieren der zeitkonstanten einer filterschaltung
EP0365085B1 (de) Schaltungsanordnung zum Einstellen der Amplitude eines Signals
DE19945709C2 (de) Schaltungsanordnung zur Regelung des Arbeitspunkts eines Leistungsverstärkers und deren Verwendung
DE1487396B2 (de) Spannungsteilerschaltung
WO1991012573A1 (de) Frequenzgangkompensierte schaltung
DE3877093T2 (de) Gesteuerter praezisionsstromgenerator.
DE3824556C2 (de) Symmetrische Eingangsschaltung für Hochfrequenzverstärker
EP0049793A2 (de) Elektronisches, berührungslos arbeitendes Schaltgerät
DE112006001593T5 (de) Temperaturkompensierter, mit MMICs integrierter Spannungsregler
WO1996003682A1 (de) Verfahren zur temperaturstabilisierung
DE3329665C2 (de)
DE19521663A1 (de) Integrierter Schaltkreis mit Spannungsregelschaltung
DE60133068T2 (de) Differentiell angeordnetes transistorpaar mit mitteln zur degeneration der transkonduktanz
EP0559928A1 (de) Schaltender Gleichspannungswandler
DE3228785C2 (de)
DE2911171C2 (de) Schaltung für die Ansteuerung eines Stromquelletransistors
DE3942936A1 (de) Breitbandverstaerkerstufe mit steuerbarer verstaerkung
DE3806982C2 (de)
DE3724980A1 (de) Spannungswiederholerschaltung fuer eine ohmsche komponente aufweisende last mit kompensation der oberwellenverzerrung
DE2711520C3 (de) Belastungsschaltung für eine Signalquelle
EP0062700A1 (de) Integrierbare Halbleiterschaltung mit einem gegengekoppelten, nichtinvertierenden Operationsverstärker
DE69011674T2 (de) Offset- und Anstiegsgeschwindigkeitsentzerrer und Steuerung für zwei Spannungs-Stromwandler unter Verwendung derselben Referenzspannung.
DE3224475A1 (de) Elektronischer verstaerker

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BB BG BR CA FI HU JP KP KR LK MC MG MW NO RO SD SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB GR IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1991901543

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991901543

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1991901543

Country of ref document: EP