WO1991010237A1 - Verfahren zur herstellung von antistatisch bzw. elektrisch leitfähig ausgerüsteten polymeren zusammensetzungen - Google Patents

Verfahren zur herstellung von antistatisch bzw. elektrisch leitfähig ausgerüsteten polymeren zusammensetzungen Download PDF

Info

Publication number
WO1991010237A1
WO1991010237A1 PCT/EP1990/002311 EP9002311W WO9110237A1 WO 1991010237 A1 WO1991010237 A1 WO 1991010237A1 EP 9002311 W EP9002311 W EP 9002311W WO 9110237 A1 WO9110237 A1 WO 9110237A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
substance
finely divided
polymer
substances
Prior art date
Application number
PCT/EP1990/002311
Other languages
English (en)
French (fr)
Inventor
Bernhard Wessling
Holger Merkle
Susanne BLÄTTNER
Original Assignee
Zipperling Kessler & Co (Gmbh & Co)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zipperling Kessler & Co (Gmbh & Co) filed Critical Zipperling Kessler & Co (Gmbh & Co)
Priority to CA002048602A priority Critical patent/CA2048602C/en
Priority to DE59010761T priority patent/DE59010761D1/de
Priority to KR1019910701022A priority patent/KR100187568B1/ko
Priority to EP91901588A priority patent/EP0461232B1/de
Publication of WO1991010237A1 publication Critical patent/WO1991010237A1/de
Priority to FI914077A priority patent/FI114583B/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals

Definitions

  • plastics processing industry requires antistatic or electrically conductive modifications of conventional polymers for a wide variety of purposes (e.g. to discharge electrostatic charges, to shield electromagnetic fields or as electrodes).
  • the polymers used include thermoplastic polymers, but also thermosetting polymers and paints are given a conductive finish.
  • the equipment used is colored carbon black and so-called “conductive carbon black” (carbon blacks with a specific surface area of> 80 m 2 / g), carbon fibers, metal-coated glass balls, metal fibers and flakes; Mixtures of conventional with intrinsically conductive polymers are already known (EP-OS 168 620). Such mixtures are often also referred to as “compounds" or "polymer blends”.
  • the present invention relates to a method for optimizing antistatic or electrically conductive polymers, fine-particle conductive Substances, ie those with a particle size around 1 ⁇ m and below, are used.
  • Carbon blacks and dispersible intrinsically conductive polymers for example those described in EP-OS 329 768, have the advantage that the conductivity increases drastically even at a content of less than 20% by volume, in some cases even well below 10% by volume. This behavior is usually referred to as "percolation” and described with the percolation theory; recently there has also been an interpretation of this phenomenon as a "flocculation process" (cf. B. essling, Mol.Cryst.Liqu. Cryst. 160, 205 (1988) and Synth.Met. 27, A83 (1988)).
  • the invention is therefore based on the object of providing a method which, as an alternative and / or supplement to the “conductor track” and “dispersion concept”, opens up a further possibility for optimizing polymers modified to be antistatic or conductive.
  • the invention relates to a process for the preparation of antistatic or conductive polymeric compositions with increased conductivity from at least one non-conductive matrix polymer and at least two additives, which is characterized in that a combination of
  • C a finely divided non-conductive substance with an average particle size ⁇ 50 microns used.
  • the conductivity of the compound increases significantly if a finely divided (preferred average particle size ⁇ 1 ⁇ m) conductive substance A with another conductive substance B, which preferably consists of larger ones Particles of> 0.5 ⁇ m, e.g. around 10 ⁇ m (1-50 ⁇ m), and / or a non-conductive substance C, which has an average particle size ⁇ 10 ⁇ m.
  • a finely divided (preferred average particle size ⁇ 1 ⁇ m) conductive substance A with another conductive substance B which preferably consists of larger ones Particles of> 0.5 ⁇ m, e.g. around 10 ⁇ m (1-50 ⁇ m), and / or a non-conductive substance C, which has an average particle size ⁇ 10 ⁇ m.
  • a conductivity synergism occurs, i.e. with the same proportion by weight or volume of the finely divided conductive substance A alone or the coarser substance B alone, the conductivity is lower than when A and B are incorporated together in the same proportion by weight or volume. You can achieve a higher conductivity by combining A and B than with A or B alone with the same degree of filling.
  • Carbon black with a specific surface area of> 80 m 2 / g or powdery, preferably dispersible, intrinsically conductive polymers in complexed form, which preferably have a particle size of ⁇ 1 ⁇ m in the polymer matrix, are suitable as substance A. ⁇ 500 nm.
  • Suitable intrinsically conductive polymers are, for example, polyacetylene, polypyrrole, polyphenylenes, polythiophenes, polyphthalocyanines and other polymers with conjugated ⁇ -electron systems, which are made (complexed) with acids or by oxidation in a known manner. Complexed polyanilines are particularly preferred.
  • Graphites are suitable as substance B.
  • Intercalated graphite is particularly preferred (cf. Römpp, Chemie Lexikon, 8th edition, pp. 1540/41 (1981)), e.g. graphite loaded with copper (III) chloride or with nickel (III) chloride.
  • Electrode graphite or natural graphite can also be used.
  • Metal powder can also be used as substance B.
  • the particle size of substance B is preferably larger than that of substance A.
  • substance C Almost all pigments, fillers and other non-conductive, particulate, non-meltable under processing conditions or insoluble in the polymer matrix with an average particle size of approximately 50 ⁇ m downwards can be used as substance C.
  • the particle size of substance C is preferably larger than that of substance A. Restrictions with regard to The chemical composition of the particles has not yet been found. So you can use titanium dioxide, organic or inorganic pigments, fillers such as silicas, chalk, talc, etc., but also the neutral (compensated), non-conductive forms of the intrinsically conductive polymers.
  • All polymers are suitable as matrix polymers, be it thermoplastics, thermosets or lacquers.
  • the invention can also be used in polyblend, particularly successfully in those according to the teaching of EP-OS 168 620.
  • the volume ratio between the substances A and B or between A and C or between A and a combination of B and C can be varied within a wide range between approximately 20: 1 and 1:20 and requires optimization in individual cases.
  • the following guide values can be given as preferred for
  • the examples show a representative selection of successful experiments and corresponding comparative tests.
  • the incorporation of substances A and B and / or C can be carried out by conventional methods known per se; it is preferred to premix the substances A and B and / or C before incorporation into the matrix polymer.
  • PE is LUPOLEN® 2424H (BASF AG).
  • PETG is a copolyester from Eastman Kodak.
  • the lacquer (examples 27 to 32) is a solvent-containing PVC / VA copolymer lacquer.
  • the additives were incorporated into PE and PETG in an internal mixer after premixing substances A, B and, if necessary, C in a laboratory mixer.
  • the mixing batches were hot-pressed; the specific conductivity was determined on the compacts using four-point measurement technology.
  • the additives were incorporated into the coating system after premixing in a ball mill.
  • the liquid lacquer was spread on a support and dried.
  • Ketjenblack EC conductive carbon black, surface approx. 800 m 2 / g.
  • Graphite EP 1010 electrode graphite, particle size approx. 10 ⁇ m.
  • Polyaniline pTs polyaniline complexed with p-toluenesulfonic acid. maximum possible degree of filling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Antistatisch bzw. leitfähig ausgerüstete polymere Zusammensetzungen mit erhöhter Leitfähigkeit werden erhalten, indem man eine Kombination aus A. einem ersten feinteiligen leitfähigen Stoff, nämlich Leitruß mit einer BET-Oberfläche von mehr als 80 m2/g oder einem intrinsisch leitfähigen organischen Polymer in komplexierter Form, und B. einem zweiten feinteiligen leitfähigen Stoff, nämlich Graphit oder einem intrinsisch leitfähigen Polymer in komplexierter Form, das von dem als Stoff A verwendeten verschieden ist, oder einem Metallpulver und/oder C. einem feinteiligen nichtleitenden Stoff mit einer durchschnittlichen Teilchengröße < 50 νm in ein Matrixpolymer einarbeitet.

Description

Verfahren zur Herstellung von antistatisch bzw. elektrisch leitfähig ausgerüsteten polvmeren Zusammensetzungen
Die kunststoff erarbeitende Industrie benötigt zu den verschiedensten Zwecken (z.B. zur Ableitung elektrostati¬ scher Aufladungen, zur Abschirmung elektromagnetischer Felder oder als Elektroden) antistatische bzw. elektrisch leitfähige Modifizierungen konventioneller Polymere.
Als Polymere werden u.a. thermoplastische Polymere verwen¬ det, aber auch duroplastische Polymere und Lacke werden leitfähig ausgerüstet. Zur Ausrüstung verwendet man als leitfähige Stoffe Farbruße und sogenannten "Leitruß" (Ruße mit einer spezifischen Oberfläche von > 80 m2/g), Koh¬ lefasern, metallbeschichtete Glaskugeln, Metallfasern und -flakes; es sind auch bereits Mischungen von konventionel¬ len mit intrinsisch leitfähigen Polymeren bekannt (EP-OS 168 620). Solche Mischungen werden häufig auch als "Com- pounds" oder "Polymerblends" bezeichnet.
Die vorliegende Erfindung betrifft ein Verfahren zur Optimierung von antistatisch bzw. elektrisch leitfähig ausgerüsteten Polymeren, wobei feinteilige leitfähige Stoffe, d.h. solche mit einer Teilchengröße um 1 μm und darunter, Verwendung finden. Leitruße und dispergierbare intrinsisch leitfähige Polymere, z.B. die in der EP-OS 329 768 beschriebenen, haben den Vorteil, daß bereits bei einem Gehalt von weniger als 20 Vol.%, z.T. sogar deutlich unter 10 Vol.%, die Leitfähigkeit drastisch ansteigt. Dieses Verhalten wird gewöhnlich als "Perkolation" be¬ zeichnet und mit der Perkolationstheorie beschrieben; neuerdings gibt es auch eine Deutung dieses Phänomens als "Flokkulationsprozeß" (vgl. B. eßling, Mol.Cryst.Liqu. Cryst. 160, 205 (1988) und Synth.Met. 27, A83 (1988)).
Die Optimierung von leitfähig ausgerüsteten Polymeren hat fast immer zum Gegenstand, die Kosten sowie die mechani- sehen und die Verarbeitungseigenschaften unter Beibehal¬ tung der Leitfähigkeit durch Senkung des Anteils der leitfähigen Zusatzstoffe, also durch Parallel-Verschiebung der "Perkolations"-Kurve (der Auftragung der Leitfähigkeit gegen den Prozentgehalt an leitfähigen Stoffen) zu niedri- geren Gehalten zu verbessern. Hierzu werden in der Litera¬ tur verschiedene Vorschläge gemacht:
Nach der "Perkolationstheorie" empfiehlt es sich, hochstrukturierte leitfähige Stoffe in den Polymeren zu verteilen (vgl. E. Sichel (Hrsg.) "Carbon Black
Polymer Composites", New York, 1982); dies bewährt sich offenbar aber nur bei größeren Teilchen (z.B. bei Fasern) . Die Konzentration der leitfähigen Stoffe in soge- nannten "Leiterbahnen" (GB-OS 2214511 und EP-OS 181
587) hat sich in vielen Fällen bewährt. Die Verbesserung der Dispergierbarkeit der leitfähi¬ gen Stoffe (EP-OS 329 768) vermag die für den Anstieg der Leitfähigkeit notwendige kritische Konzentration zu niedrigeren Prozentwerten zu verschieben.
Allen Vorschlägen haften aber weiterhin Nachteile an. insbesondere der, daß Materialkostenvorteile oft durch erhöhten Produktionsaufwand aufgehoben werden oder daß die Anwendungsbereiche beschränkt sind. Zwei Beispiele sollen dies illustrieren:
- Das "Leiterbahnen"-Konzept (EP-OS 181 587) läßt sich nicht anwenden, wenn - aus welchen Gründen auch immer - reine einphasige Polymere leitfähig eingestellt werden sollen.
Polymerblends mit intrinsisch leitfähigen Polymeren zeigten bisher häufig den Nachteil unbefriedigender mechanischer Eigenschaften, wenn man steife und/oder wärmeformbeständige Einstellungen benötigt.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zu schaffen, das als Alternative und/oder Ergänzung zum "Leiterbahnen-" und zum "Dispersionskonzept" eine weitere Möglichkeit zur Optimierung von antistatisch oder leitfähig modifizierten Polymeren eröffnet.
Gegenstand der Erfindung ist ein Verfahren zu Herstellung von antistatisch bzw. leitfähig ausgerüsteten polymeren Zusammensetzungen mit erhöhter Leitfähigkeit aus minde- stens einem nichtleitenden Matrixpolymer und mindestens zwei Zusatzstoffen, welches dadurch gekennzeichnet ist, daß man als Zusatzstoffe eine Kombination aus
A. einem ersten feinteiligen leitfähigen Stoff, nämlich Leitruß mit einer BET-Oberfläche von mehr als 80 m2/g oder einem intrinsisch leitfähigen organischen
Polymer in komplexierter Form, und
B. einem zweiten feinteiligen leitfähigen Stoff, nämlich Graphit oder einem intrinsisch leitfähigen Polymer in komplexierter Form, das von dem als Stoff A verwendeten verschieden ist, und/oder
C. einem feinteiligen nichtleitenden Stoff mit einer durchschnittlichen Teilchengröße < 50 μm verwendet .
Überraschend wurde festgestellt, daß bei einem gegebenen Anteil an Zusatzstoffen in der Polymermatrix die Leit- fähigkeit des Co pound deutlich ansteigt, wenn man einen feinteiligen (bevorzugte durchschnittliche Teilchengröße < 1 μm) leitfähigen Stoff A mit einem anderen leitfähigen Stoff B, der vorzugsweise aus größeren Teilchen von > 0,5 μm, z.B. um 10 μm (1 - 50 μm) besteht, und/oder einem nichtleitfähigen Stoff C, der eine durchschnittliche Teil¬ chengröße < 10 μm aufweist, kombiniert.
Es tritt überraschend ein Leitfähigkeits-Synergismus auf, d.h. es ergibt sich bei gleichem Gewichts- bzw. Volumenan- teil des feinteiligen leitfähigen Stoffes A allein oder des gröberen Stoffes B allein eine geringere Leitfähigkeit als bei Einarbeitung von A und B zusammen im gleichen Gewichts- bzw. Volumenanteil. Man erreicht also eine höhere Leitfähigkeit durch die Kombination von A und B als mit A oder B allein bei gleichem Füllgrad.
Ebenso überraschend ist der Effekt, daß bei einem bestimm¬ ten Gehalt an Stoff A durch Zugabe von Stoff C die Leitfä¬ higkeit steigt, obwohl Stoff C nichtleitend ist. Der Effekt ist in manchen Fällen so ausgeprägt, daß bei einer Konzentration des Stoffes A unterhalb der kritischen Schwelle des LeitfähigkeitsSprunges (unterhalb des Perko- lationspunktes) praktisch noch keine Leitfähigkeit meßbar ist, durch Zugabe des nichtleitenden Stoffes C aber der Leitfähigkeitssprung auftritt. Bei Verwendung der Stoffe B plus C in Kombination mit Stoff A addieren sich die genannten Effekte. In beiden Fällen ergibt sich überraschend auch oft eine Verbesserung der mechanischen Eigenschaften. Dies ist vor allem in Konzentrationsbereichen, die eine besonders hohe Leitfähigkeit ergeben, und bei Verwendung von intrinsisch leitfähigen Polymeren als Stoff A in Kombination mit einem geeigneten Stoff C in steifen bzw. wärmeformbeständigen Polymeren spürbar.
Als Stoff A kommen Ruße ("Leitruß") mit einer spezifischen Oberfläche von > 80 m2/g oder pulverförmige, vorzugsweise dispergierbare intrinsisch leitfähige Polymere in komple¬ xierter Form infrage, die in der Polymermatrix eine Teil¬ chengröße von < 1 μm, bevorzugt < 500 nm aufweisen. Geeignete intrinsisch leitfähige Polymere sind z.B. Polyacetylen, Polypyrrol, Polyphenylene, Polythiophene Polyphthalocyanine und andere Polymere mit konjugierten π-Elektronensystemen, welche in bekannter Weise mit Säuren oder durch Oxydation leitfähig gemacht (komplexiert) sind. Besonders bevorzugt sind komplexierte Polyaniline.
Als Stoff B sind Graphite geeignet. Besonders bevorzugt ist interkalierter Graphit (vergl. Römpp, Chemie Lexikon, 8. Aufl., S. 1540/41 (1981)), z.B. mit Kupfer(III)-Chlorid oder mit Nickel(III)-chlorid beladener Graphit. Ferner kann Elektrodengraphit oder Naturgraphit eingesetzt werden. Als Stoff B sind weiterhin auch Metallpulver brauchbar. Vorzugsweise ist die Teilchengröße des Stoffes B jeweils größer als die des Stoffes A.
Als Stoff C kann man nahezu alle Pigmente, Füllstoffe und anderen nichtleitenden, teilchenförmigen, unter Verar¬ beitungsbedingungen nicht schmelzbaren oder in der Poly¬ mermatrix unlöslichen Stoffe mit einer durchschnittlichen Teilchengröße von etwa 50 μm abwärts verwenden. Vorzugs¬ weise ist die Teilchengröße des Stoffes C jeweils größer als die des Stoffes A. Einschränkungen bezüglich der chemischen Zusammensetzung der Teilchen sind bisher nicht gefunden worden. So kann man Titandioxid, organische oder anorganische Pigmente, Füllstoffe wie Kieselsäuren, Kreide, Talkum u.a., aber auch die neutralen (kompensier- ten) , nichtleitenden Formen der intrinsisch leitfähigen Polymeren einsetzen.
Als Matrixpolymere eignen sich alle Polymere, seien es Thermoplaste, Duromere oder Lacke. Die Erfindung kann auch in Poly erblends Anwendung finden, besonders erfolgreich in solchen entsprechend der Lehre der EP-OS 168 620.
Das Volumen-Verhältnis zwischen den Stoffen A und B oder zwischen A und C bzw. zwischen A und einer Kombination von B und C kann in weiten Bereichen zwischen etwa 20:1 und 1:20 variiert werden und bedarf im Einzelfall der Opti¬ mierung. Als bevorzugt lassen sich folgende Richtwerte angeben für
- die Kombination A mit B 2:1 bis 1:5
- die Kombination A mit C 2:1 bis 10:1
Die Beispiele zeigen eine repräsentative Auswahl erfolg¬ reicher Experimente sowie entsprechende Vergleichsver- suche. Die Einarbeitung der Stoffe A und B und/oder C kann nach konventionellen, an sich bekannten Verfahren erfol¬ gen; bevorzugt ist es, die Stoffe A und B und/oder C vor Einarbeitung in das Matrixpolymer vorzumischen.
Eine Erklärung für die erfindungsgemäß erzielten über¬ raschenden Effekte läßt sich noch nicht geben. Im Lichte der "Perkolationstheorie" sind sie gänzlich unverständ¬ lich, ja geradezu unzulässig. Im Zusammenhang mit den neueren Vorstellungen (B. Weßling, a.a.O.) vom Leitfä- higkeitssprung als Phasenübergang zwischen dispergiertem und flokkuliertem Zustand sind die Effekte ebenfalls nicht verständlich, aber immerhin unter Einschluß weiterer. bisher unbewiesener Annahmen zulässig.
In den folgenden Beispielen wurden die erwähnten Stoffe A, B und C in konventionelle PolymerSysteme eingearbeitet. Bei PE handelt es sich um LUPOLEN® 2424H (BASF AG) . PETG ist ein Copolyester der Fa. Eastman Kodak. Der Lack (Bei¬ spiele 27 bis 32) ist ein lösungsmittelhaltiger PVC/VA- Copolymer-Lack.
Die Einarbeitung der Zusatzstoffe in PE und PETG erfolgte in einem Innenmischer nach Vormischung der Stoffe A, B und ggfs. C in einem Labormischer. Die Mischansätze wurden heiß verpreßt; die spezifische Leitfähigkeit wurde an den Preßlingen mittels Vierpunktmeßtechnik bestimmt.
Die Einarbeitung der Zusatzstoffe in das Lacksystem erfolgte nach Vormischung in einer Kugelmühle. Der flüssi¬ ge Lack wurde auf einen Träger aufgestrichen und getrock¬ net.
Alle Prozentangaben sind in Gewichtsprozent.
In der Tabelle bedeuten:
Ketjenblack EC = Leitruß, Oberfläche ca. 800 m2/g.
Graphit EP 1010 = Elektrodengraphit, Teilchen¬ größe ca. 10 μm.
Polyanilin-pTs = mit p-Toluolsulfonsäure komplexiertes Polyanilin.
Figure imgf000010_0001
maximal möglicher Füllgrad

Claims

Patentansprüche
1. Verfahren zu Herstellung von antistatisch bzw. leitfähig ausgerüsteten polymeren Zusammensetzungen mit erhöhter Leitfähigkeit aus mindestens einem nichtleitenden Matrixpolymer und mindestens zwei Zusatzstoffen, dadurch gekennzeichnet, daß man als
Zusatzstoffe eine Kombination aus
A. einem ersten feinteiligen leitfähigen Stoff, nämlich Leitruß mit einer BET-Oberfläche von mehr als 80 m2/g oder einem intrinsisch leitfähigen organischen Polymer in komplexierter Form, und
B. einem zweiten feinteiligen leitfähigen Stoff, nämlich Graphit oder einem intrinsisch leitfähigen Polymer in komplexierter Form, das von dem als Stoff A verwendeten verschieden ist, oder einem Metall- pulver und/oder
C. einem feinteiligen nichtleitenden Stoff mit einer durchschnittlichen Teilchengröße < 50 μm verwendet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Stoff A interkalierten Graphit verwendet.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man als Stoff A mit Kupfer- oder Nickelchlorid interkalierten Graphit verwendet.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeich¬ net, daß man als Stoff A oder Stoff B komplexiertes Polyanilin einsetzt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeich¬ net, daß man als Stoff C anorganische oder orga¬ nische, elektrisch nicht leitende Füllstoffe oder Pigmente verwendet.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man als anorganisches Pigment Titandioxid verwen¬ det.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man als organisches Pigment Pigment Yellow 13 verwende .
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeich¬ net, daß man die Stoffe A mit B und/oder C im Ge¬ wichts-Verhältnis 20:1 bis 1:20 verwendet.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man die Stoffe A und B im Gewichts-Verhältnis 2:1 bis 1:5 verwendet.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man die Stoffe A und C im Gewichts-Verhältnis 2:1 bis 10:1 verwendet.
11. Verfahren gemäß den vorangehenden Ansprüchen, dadurch gekennzeichnet, daß man die Zusatzstoffe A und B oder A und C oder A, B und C vor der Einarbeitung in das
Matrixpolymer vormischt.
PCT/EP1990/002311 1989-12-30 1990-12-22 Verfahren zur herstellung von antistatisch bzw. elektrisch leitfähig ausgerüsteten polymeren zusammensetzungen WO1991010237A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002048602A CA2048602C (en) 1989-12-30 1990-12-22 Process for making antistatic or electrically conductive polymer compositions
DE59010761T DE59010761D1 (de) 1989-12-30 1990-12-22 Antistatisch bzw. elektrisch leitfähig ausgerüstete polymere zusammensetzungen
KR1019910701022A KR100187568B1 (ko) 1989-12-30 1990-12-22 정전방지성 또는 전기전도성을 띤 중합체 조성물의 제조방법
EP91901588A EP0461232B1 (de) 1989-12-30 1990-12-22 Antistatisch bzw. elektrisch leitfähig ausgerüstete polymere zusammensetzungen
FI914077A FI114583B (fi) 1989-12-30 1991-08-29 Hienojakoisen johtamattoman aineen käyttö antistaattisten tai sähköä johtavien polymeerikoostumusten johtavuuden lisäämiseksi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3943420.6 1989-12-30
DE3943420A DE3943420A1 (de) 1989-12-30 1989-12-30 Verfahren zur herstellung von antistatisch bzw. elektrisch leitfaehig ausgeruesteten polymeren zusammensetzungen

Publications (1)

Publication Number Publication Date
WO1991010237A1 true WO1991010237A1 (de) 1991-07-11

Family

ID=6396666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/002311 WO1991010237A1 (de) 1989-12-30 1990-12-22 Verfahren zur herstellung von antistatisch bzw. elektrisch leitfähig ausgerüsteten polymeren zusammensetzungen

Country Status (10)

Country Link
EP (1) EP0461232B1 (de)
JP (1) JP3056247B2 (de)
KR (1) KR100187568B1 (de)
AT (1) ATE158438T1 (de)
CA (1) CA2048602C (de)
DE (2) DE3943420A1 (de)
DK (1) DK0461232T3 (de)
ES (1) ES2108041T3 (de)
FI (1) FI114583B (de)
WO (1) WO1991010237A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643991A (en) * 1995-05-12 1997-07-01 Eastman Chemical Company Copolyester compositions containing carbon black
WO1997042030A1 (en) * 1996-05-03 1997-11-13 Eastman Chemical Company Multi-layered packaging materials for electrostatic applications
WO1998055672A1 (en) * 1997-06-04 1998-12-10 Sterling Chemicals International, Inc. Antistatic fibers and methods for making the same
US5916485A (en) * 1991-12-11 1999-06-29 Atotech Deutschland Gmbh Method of manufacturing highly conducting composites containing only small proportions of electron conductors
US6730401B2 (en) 2001-03-16 2004-05-04 Eastman Chemical Company Multilayered packaging materials for electrostatic applications
US8980415B2 (en) 2010-12-03 2015-03-17 Benoit Ambroise Antistatic films and methods to manufacture the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721324B1 (fr) * 1994-06-16 1996-08-23 Tiag Ind Matériau polymère antistatique.
US20080015284A1 (en) * 2003-07-29 2008-01-17 The University Of Akron Electrically-Conducting Polymers, a Method for Preparing Electrically-Conducting Polymers, and a Method for Controlling Electrical Conductivity of Polymers
DE202019001135U1 (de) 2019-03-08 2019-04-11 Emano Kunststofftechnik Gmbh Polymer-Verbundwerkstoff für Lagerbehälter für Gase und Flüssigkeiten aus Kunststoff

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109824A1 (de) * 1982-11-17 1984-05-30 Kabushiki Kaisha Meidensha Elektrisch leitfähiger zusammengesetzter Kunststoff

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329264A1 (de) * 1983-08-12 1985-02-21 Friedrich-Ulf 8899 Rettenbach Deisenroth Mikrowellenabsorbierendes material
DE3422316C2 (de) * 1984-06-15 1986-11-20 Zipperling Kessler & Co (Gmbh & Co), 2070 Ahrensburg Verfahren zur Herstellung von verformbaren Polymerblends aus elektrisch leitfähigen organischen Polymeren und/oder organischen Leitern, Vorrichtung zur Durchführung des Verfahrens sowie Verwendung der Polymerblends
DE3440617C1 (de) * 1984-11-07 1986-06-26 Zipperling Kessler & Co (Gmbh & Co), 2070 Ahrensburg Antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends,Verfahren zu deren Herstellung und deren Verwendung
DE3610388A1 (de) * 1986-03-27 1987-10-01 Bernhard Dr Wessling Stabile elektroden auf basis makromolekularer werkstoffe und verfahren zu ihrer verwendung
DE3729566A1 (de) * 1987-09-04 1989-03-16 Zipperling Kessler & Co Intrinsisch leitfaehiges polymer in form eines dispergierbaren feststoffes, dessen herstellung und dessen verwendung
GB2214511A (en) * 1988-01-29 1989-09-06 Zipperling Kessler & Co A method of preparing compositions with optimized conductivity behaviour
DE3824516A1 (de) * 1988-07-20 1990-01-25 Bayer Ag, 5090 Leverkusen Leitfaehige polymermischungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0109824A1 (de) * 1982-11-17 1984-05-30 Kabushiki Kaisha Meidensha Elektrisch leitfähiger zusammengesetzter Kunststoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 13, Nr. 275, 23. Juni 1989; & JP,A,1 069 662 (KOMATSU LTD), 15. März 1989 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916485A (en) * 1991-12-11 1999-06-29 Atotech Deutschland Gmbh Method of manufacturing highly conducting composites containing only small proportions of electron conductors
US5643991A (en) * 1995-05-12 1997-07-01 Eastman Chemical Company Copolyester compositions containing carbon black
WO1997042030A1 (en) * 1996-05-03 1997-11-13 Eastman Chemical Company Multi-layered packaging materials for electrostatic applications
US5914191A (en) * 1996-05-03 1999-06-22 Eastman Chemical Company Multilayered packaging materials for electrostatic applications
WO1998055672A1 (en) * 1997-06-04 1998-12-10 Sterling Chemicals International, Inc. Antistatic fibers and methods for making the same
US6730401B2 (en) 2001-03-16 2004-05-04 Eastman Chemical Company Multilayered packaging materials for electrostatic applications
US8980415B2 (en) 2010-12-03 2015-03-17 Benoit Ambroise Antistatic films and methods to manufacture the same

Also Published As

Publication number Publication date
KR100187568B1 (ko) 1999-06-15
DK0461232T3 (da) 1997-09-17
FI114583B (fi) 2004-11-15
EP0461232B1 (de) 1997-09-17
CA2048602C (en) 1999-09-07
DE59010761D1 (de) 1997-10-23
EP0461232A1 (de) 1991-12-18
DE3943420A1 (de) 1991-07-04
CA2048602A1 (en) 1991-07-01
ATE158438T1 (de) 1997-10-15
KR920701988A (ko) 1992-08-12
JPH04505941A (ja) 1992-10-15
FI914077A0 (fi) 1991-08-29
JP3056247B2 (ja) 2000-06-26
ES2108041T3 (es) 1997-12-16

Similar Documents

Publication Publication Date Title
US5476612A (en) Process for making antistatic or electrically conductive polymer compositions
DE102017200447B4 (de) Leitfähiges polymerkomposit, verfahren zum dreidimensionalen drucken und filament aus einem leitfähigen polymerkomposit
DE2752540C2 (de) Druckempfindliches elektrisches Widerstandselement und Verfahren zu dessen Herstellung
DE2757870C2 (de)
DE69218274T2 (de) Elektrisch leitfähige Mischungen eigenleitfähiger sowie thermoplastischer Polymere und Herstellungsverfahren
DE69911359T2 (de) Pigment-Mischung
EP0960912B1 (de) Pigmentmischung
DE2520636A1 (de) Beschichtete teilchen und daraus hergestellte leitfaehige massen
WO1994027297A1 (de) Dispergierbares intrinsisch leitfähiges polymer und verfahren zu dessen herstellung
DE3543301A1 (de) Elektrisch leitende feste kunststoffe
DE102018009794A1 (de) Beschichtungszusammensetzung für Bodenbeläge
EP2652045A1 (de) Pigmentgranulate
EP0461232B1 (de) Antistatisch bzw. elektrisch leitfähig ausgerüstete polymere zusammensetzungen
DE3916921C1 (de)
DE4237990A1 (de) Leitfähiges Pigment
EP3066157B1 (de) Elektrisch leitfähiges pigment
DE4212950B4 (de) Leitfähiges Pigment, Verfahren zur Herstellung und Verwendung
WO1992009992A1 (de) Zusammensetzung aus elektrisch isolierenden polymeren und elektrisch leitfähigen füllstoffen
EP1776412A1 (de) Härtungsbeschleuniger
DE2022848C3 (de) Herstellung von elektrisch leitfähigen bzw. antistatischen Kunststoffen
DE10296747B4 (de) Verfahren zur Herstellung eines Polyanilinsalzes, gelöst in organischen Lösungsmitteln
DE1810829A1 (de) Gegenstaende aus leitenden Thermoplasten
DE2042111B2 (de) Elektronisches festkoerperschaltelement
DE3929056A1 (de) Elektrisch leitfaehiges zinksulfid-pulver und verfahren zu seiner herstellung sowie dessen verwendung
DE69319073T2 (de) Formverbindung zur Entladung statischer Elektrizität

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA FI JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991901588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 914077

Country of ref document: FI

Ref document number: 1019910701022

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2048602

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1991901588

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991901588

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 914077

Country of ref document: FI