WO1991000987A1 - Luftmessvorrichtung - Google Patents

Luftmessvorrichtung Download PDF

Info

Publication number
WO1991000987A1
WO1991000987A1 PCT/DE1990/000439 DE9000439W WO9100987A1 WO 1991000987 A1 WO1991000987 A1 WO 1991000987A1 DE 9000439 W DE9000439 W DE 9000439W WO 9100987 A1 WO9100987 A1 WO 9100987A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
channel
cross
flow
bypass
Prior art date
Application number
PCT/DE1990/000439
Other languages
English (en)
French (fr)
Inventor
Klaus-Jürgen PETERS
Walter Bosch
Hans-Peter Stiefel
Karl Gmelin
Kurt Frank
Thomas Schwegel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to BR909006853A priority Critical patent/BR9006853A/pt
Priority to DE59006972T priority patent/DE59006972D1/de
Priority to KR1019910700112A priority patent/KR0172129B1/ko
Priority to EP90908929A priority patent/EP0433411B1/de
Publication of WO1991000987A1 publication Critical patent/WO1991000987A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/44Venturi tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the invention relates to an air measuring device of the type defined in the preamble of claim 1.
  • Such air measuring devices are known for example from DE 32 00 507 AI, US Pat. No. 4,494,405, DE 29 14 275 C2, EP 0 087 621 Bl or EP 0 054 887 Bl.
  • the temperature-dependent measuring resistor used for example hot wire or hot film, changes its electrical resistance as a function of the change in the air flow in the bypass duct.
  • the output signal of the measuring resistor is therefore a measure of the air throughput in the main flow channel.
  • the signals picked up at the measuring resistor are sometimes very noisy, so that a complex one
  • the air measuring device with the characterizing features of claim 1, 3 or 4 has the advantage that the noise component superimposed on the actual measured value signal is significantly reduced and the measured value signal is largely unaffected by structural conditions in the air measuring device.
  • Fig. 1 each shows a longitudinal section of one and 2 air measuring device for an intake system
  • FIG. 3 is a top view of the air measuring device in FIG. 2. Description of the embodiments
  • 10 denotes a so-called throttle valve connector, in which a main flow channel 11 and a bypass channel 12 are formed.
  • the throttle valve connector 10 either forms part of the air intake pipe of an internal combustion engine or is connected to it on the input side. On the output side, the throttle valve connector 10 is fastened to a manifold intake manifold of the internal combustion engine.
  • a through hole 13 is made in the throttle valve connector 10, which is composed of two bores 131 and 132 lying one behind the other in the axial direction.
  • the bore 132 has a larger diameter than the bore 131 and is introduced eccentrically to the latter in the throttle valve connector 10, so that the axes of the two bores 131, 132 run parallel to one another about the eccentricity e.
  • a flow sleeve 14 is inserted coaxially to the bore 131, which is supported on the end face on a stop surface 15 in the transition between the bores 131, 132 and is held in the axial direction by a locking ring 16 which is in a locking groove 17 in the entrance area of the
  • Throttle valve connector 10 is inserted.
  • a filter or a flow straightener 18 and a spacer ring 19 are clamped between the securing groove 17 and the flow sleeve 14.
  • a throttle valve 20 is arranged, which is fixed on an actuating shaft 21.
  • the adjusting shaft 21 is pivotally mounted in bearings 22, 23 in the throttle valve connector 10.
  • venturi section 24 The inner wall of the flow sleeve 14 is venturi-shaped and forms a venturi-shaped flow section in the main flow channel 11, hereinafter referred to as venturi section 24.
  • This venturi section 24 has a smallest flow cross section 25 at the end facing the bore 131 and widens towards the inlet side of the throttle valve connector 10.
  • a temperature-dependent measuring resistor 26 is arranged, which can be designed as a hot wire or hot film.
  • the measuring resistor 26 is located " within a carrier body 27, which is clamped between the flow sleeve 14 and the throttle valve connector 10 and in each case lies in recesses 28, 29 therein.
  • An insert 30 is inserted in the carrier body 27, which has a central section 31, one on it has an upstream inlet section 32 and a downstream outlet section 33.
  • the inlet and outlet sections 32, 33 widen with a truncated cone with increasing distance from the central section 31 and end in an inlet opening 34 and outlet opening 35 which are congruent with the channel cross section of the bypass channel 12
  • the measuring resistor 26 is arranged in the middle in the middle section 31.
  • the channel section 121 of the bypass channel 12, which is located upstream of the support body 27, runs parallel to the main flow channel 11 and, like this, opens at the inlet of the flow sleeve 14.
  • the downstream of the support body 27 The channel section 122 of the bypass channel 12 extends at an acute angle dl to the channel section 121 and thus to the main flow channel 11, so that the air flow direction at the mouth 43 of the bypass channel 12 in the main flow channel 11 is at an acute angle with the Flow direction in the main flow channel 11 includes.
  • This oblique exit angle c can significantly reduce the noise component in the measurement signal taken from the measuring resistor. This is particularly evident in a comparison with a known air measuring device in which the duct section 122 opens into the main flow duct 11 at right angles to the latter.
  • An angle of inclination o of approximately 30 ° has proven to be advantageous.
  • the cross sections of the middle section 31, inlet opening 34 and outlet opening 35 of the insert 30 in the carrier body 27 are dimensioned as follows:
  • the ratio of the flow cross section of the central section 31 to the minimum cross section 25 of the venturi section 24 is 1: 8 to 1:25,
  • the ratio of the flow cross section of the central section 31 to the cross section of the inlet opening 34 is 1: 1 to 1: 2 at a cone angle of the inlet section 32 of 0 ° to 8 °,
  • the ratio of the flow cross section of the central section 31 to the cross section of the outlet opening 35 is 1: 1 to 1: 2 at a cone angle of the outlet section 33 from 0 ° to 30 °.
  • the air measuring device shown in FIGS. 2 and 3 is slightly modified compared to the one described above, but is basically consistent with its structure and mode of operation. The same components are therefore provided with the same reference numerals and, if they are modified, with a reference number increased by 200.
  • the flow sleeve 214 which is in turn inserted into the through-bore 13 with the mutually eccentric bores 131 and 132 of different diameters, has a collar 236 on the inlet side, in which an inlet opening 237 for the bypass channel 12 is introduced.
  • the flow sleeve 214 is supported with the collar 236 on the bore wall of the bore 132 and axially in turn on a stop surface 215 between the two bores 131, 132 and is again held in the axial direction by means of the locking ring 16.
  • the flow sleeve 214 with collar 236 and the bore wall of the bore 132 in turn delimit the bypass channel 12, which has an outlet opening 238, the axis of which is perpendicular to the axis of the
  • Throttle valve connector 210 runs, in the smallest flow cross section 25 of the venturi section 24 formed by the flow sleeve 214 or below it, is connected to the main flow channel 11.
  • the insert 30 is inserted directly in such a way that its axis is aligned with that of the inlet opening 237 and its one end face lies directly against the underside of the collar 236.
  • the insert 30 which in turn has a cylindrical middle section 31 and an inlet and outlet section 32, 33, each in the shape of a truncated cone, the measuring resistor 26 is inserted in the middle section 31.
  • the flow straightener 218 is limited exclusively to the bypass channel 12 and is inserted into the inlet opening 237 in the collar 236.
  • the outlet opening 38 of the bypass channel 12 to the main flow channel 11 is in the direction of
  • Main flow channel axis seen exactly above the pivot axis 21 of the throttle valve 20 and arranged at a distance from this.
  • the cross section of the exit opening 238 is chosen 0.3 times the throttle valve diameter.
  • the bypass channel 12 can also be provided with two outlet openings 239, 240.
  • the two outlet openings 239, 240 are diametrically opposite one another and each outlet opening 239, 240, seen in the flow direction in the main flow channel 11, lies exactly above the actuating shaft 21 of the throttle valve 20, that is to say in a region which is always at a constant distance from the throttle valve 20, regardless of its respective angular position .
  • the cross section of each outlet opening 239, 240 is then 0.15 times the throttle valve diameter.
  • the idle control takes place via a bypass 241 (FIG. 2), which leads around the throttle valve 20 and is controlled by a solenoid valve 242.
  • the outlet of the bypass 241, which is therefore in a different plane from the outlet opening 238 of the bypass channel 12, is arranged offset in the circumferential direction relative to the outlet opening 238.

Abstract

Bei einer Luftmeßvorrichtung, insbesondere zur Messung der von einer Brennkraftmaschine angesaugten Luftmasse, die einen eine Venturisektion (24) aufweisenden Hauptströmungskanal (11) und einen in einem Bypaßkanal (12) angeordneten temperaturabhängigen Meßwiderstand (26) aufweist, wobei der Bypaßkanal (12) in Strömungsrichtung oberhalb und unterhalb des kleinsten Strömungsquerschnitts (25) der Venturisektion (24) mündet, ist zur Reduzierung des Rauschanteils im Meßsignal (26) des Meßwiderstands im Bypaßkanal (12) ein Kanalbereich (30) mit einer Ein- und Auslaßöffnung (34, 35) ausgebildet, der in einem Mittelabschnitt (31) den Meßwiderstand (26) aufnimmt. Der Kanalbereich (30) ist so ausgebildet, daß der Strömungsquerschnitt des Mittelabschnitts (31) zu dem kleinsten Querschnitt (25) der Venturisektion (24) in einem Verhältnis von 1:8 bis 1:25 und zum Querschnitt der Ein- und Auslaßöffnung (34, 35) jeweils in einem Verhältnis von 1:1 bis 1:2 steht.

Description

Luftmeß orrichtung
Stand der Technik
Die Erfindung geht aus von einer Luftmeßvorrichtung der im Oberbegriff des Anspruchs 1 definierten Gattung.
Solche Luftmeßvorrichtungen sind beispielsweise aus der DE 32 00 507 AI, US-PS 4 494 405, DE 29 14 275 C2, EP 0 087 621 Bl oder EP 0 054 887 Bl bekannt. Der dabei verwendete temperaturabhängige Meßwiderstand, beispielsweise Hitzdraht oder Heißfilm, ändert seinen elektrischen Widerstand in Abhängigkeit von der Änderung der Luftströmung im Bypaßkanal. Das Ausgangssignal des Meßwiderstands ist damit ein Maß für den Luftdurchsatz im Hauptströmungskanal. Bei solchen Luftmeßvorrichtungen sind die an dem Meßwiderstand abgenommenen Signale teilweise stark verrauscht, so daß eine aufwendige
Signalverarbeitungselektronik erforderlich ist, um genügend genaue Meßwerte zu gewinnen. Vorteile der Erfindung
Die erfindungsgemäße Luftmeßvorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1, 3 oder 4 hat demgegenüber den Vorteil, daß die dem eigentlichen Meßwertsignal überlagerte Rauschkomponente wesentlich reduziert und das Meßwertsignal weitgehend unbeeinflußt von konstruktiven Gegebenheiten in der Luftmeßvorrichtung ist.
Bei einer Luftmeßvorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 wird insbesondere eine Funktionskennlinie oder ein Kennlinienverlauf mit genügend hoher Auflösung erhalten.
Bei einer Luftmeßvorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 4 wird insbesondere der Einfluß der unterschiedlichen Öffnungswinkel der Drosselklappe auf das Meßwertsignal eliminiert.
Eine Kombination der Merkmale der Ansprüche 1,3 und 4 läßt den angestrebten Erfolg deutlich verstärkt eintreten.
Zeichnung
Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 jeweils einen Längsschnitt einer und 2 Luftmeßvorrichtung für ein Ansaugsystem einer
Brennkraftmaschine gemäß zweier
Ausführungsbeispiele,
Fig. 3 eine Draufsicht der Luftmeßvorrichtung in Fig. 2. Beschreibung der Ausführungsbeispiele
In der in Fig. 1 im Längsschnitt zu sehenden Luftmeßvorrichtung ist mit 10 ein sog. Drosselklappenstutzen bezeichnet, in dem ein Hauptströmungskanal 11 und ein Bypaßkanal 12 ausgebildet ist. Der Drosselklappenstutzen 10 bildet entweder einen Teil des Luftansaugrohrs einer Brennkraftmaschine oder ist mit diesem eingangsseitig verbunden. Ausgangsseitig ist der Drosselklappenstutzen 10 an einem Sammelsaugrohr der Brennkraftmaschine befestigt.
Zur Ausbildung von Hauptströmungskanal 11 und Bypaßkanal 12 ist im Drosselklappenstutzen 10 eine Durchgangsbohrung 13 eingebracht, die sich aus zwei in Achsrichtung hintereinanderliegenden Bohrungen 131 und 132 zusammensetzt. Die Bohrung 132 hat einen größeren Durchmesser als die Bohrung 131 und ist exzentrisch zu dieser in den Drosselklappenstutzen 10 eingebracht, so daß die Achsen der beiden Bohrungen 131,132 um die Exzentrität e parallel zueinander verlaufen. In der Bohrung 132 ist eine Strömungshülse 14 koaxial zur Bohrung 131 eingesetzt, die sich stirnseitig an einer Anschlagfläche 15 im Übergang zwischen den Bohrungen 131,132 abstützt und in Axialrichtung durch einen Sicherungsring 16 gehalten ist, der in einer Sicherungsnut 17 im Eingangsbereich des
Drosselklappenstutzens 10 einliegt. Zwischen Sicherungsnut 17 und Strömungshülse 14 ist noch ein Filter oder ein Strömungsgleichrichter 18 und ein Distanzring 19 eingespannt. Die Bohrung 131 und die damit koaxial eingesetzte Strömungshülse 14, die im Durchmesser kleiner ist als der lichte Durchmesser der Bohrung 132, bilden zusammen den Hauptströmungskanal 11, während der Außenmantel der Strömungshülse 14 zusammen mit der Bohrungswand der Bohrung 132 den Bypaßkanal 12 begrenzt. In dem Hauptströmungskanal 11 ist im zylindrischen Bereich der Bohrung 131 eine Drosselklappe 20 angeordnet, die auf einer Stellwelle 21 befestigt ist. Die Stellwelle 21 ist in Lagerstellen 22,23 im Drosselklappenstutzen 10 schwenkbar gelagert. Die Innenwand der Strömungshülse 14 ist venturiförmig ausgebildet und bildet eine venturiförmige Strömungssektion im Hauptströmungskanal 11, im folgenden Venturisektion 24 genannt. Diese Venturisektion 24 hat einen kleinsten Strömungsquerschnitt 25 an dem der Bohrung 131 zugekehrten Ende und erweitert sich zu der Eingangsseite des Drosselklappenstutzens 10 hin.
Im Bypaßkanal 12 ist ein temperaturabhängiger Meßwiderstand 26 angeordnet, der als Hitzdraht oder Heißfilm ausgebildet sein kann. Der Meßwiderstand 26 befindet sich "innerhalb eines Trägerkörpers 27, der zwischen der Strömungshülse 14 und dem Drosselklappenstutzen 10 eingespannt ist und jeweils in Ausnehmungen 28,29 in diesen einliegt. Im Trägerkörper 27 ist ein Einsatz 30 eingesetzt, der einen Mittelabschnitt 31, einen sich daran stromaufwärts anschließenden Einlaßabschnitt 32 und einen stromabwärts sich anschließenden Auslaßabschnitt 33 aufweist. Einlaß- und Auslaßabschnitt 32,33 erweitern sich mit zunehmendem Abstand vom Mittelabschnitt 31 kegelstumpfför ig und enden in einer Einlaßöffnung 34 bzw. Auslaßöffnung 35, die kongruent mit dem Kanalquerschnitt des Bypaßkanals 12 sind. Der Meßwiderstand 26 ist mittig im Mittelabschnitt 31 angeordnet. Der stromaufwärts des Trägerkörpers 27 liegende Kanalabschnitt 121 des Bypaßkanals 12 läuft parallel zum Hauptströmungskanal 11 und mündet ebenso wie dieser am Eingang der Strömungshülse 14. Der stromabwärts des Träger¬ körpers 27 befindliche Kanalabschnitt 122 des Bypaßkanals 12 verläuft in einem spitzen Winkel dl zum Kanalabschnitt 121 und damit zum Hauptströmungskanal 11, so daß die Luftströmungsrichtung an der Mündung 43 des Bypaßkanals 12 im Hauptstrδmungskanal 11 einen spitzen Winkel mit der Strömungsrichtung im Hauptströmungskanal 11 einschließt. Durch diesen schrägen Austrittswinkel c kann die Rauschkomponente in dem vom Meßwiderstand abgenommenen Meßsignal deutlich reduziert werden. Dies zeigt sich insbesondere bei einem Vergleich mit einer bekannten Luftmeßvorrichtung, bei welcher der Kanalabschnitt 122 rechtwinklig zum Hauptströmungskanal 11 in letzterem mündet. Als vorteilhaft hat sich ein Neigungswinkel o von ca. 30° erwiesen.
Zur weiteren Reduzierung des Rauschanteils im Meßsignal des Meßwiderstands 26 und zur Erzielung eines Kennlinienverlaufs der Luftmeßvorrichtung mit ausreichender Auflösung sind die Querschnitte von Mittelabschnitt 31., Einlaßöffnung 34 und Auslaßöffnung 35 des Einsatzes 30 im Trägerkörper 27 wie folg bemessen:
- das Verhältnis von Strömungsquerschnitt des Mittelabschnitts 31 zu dem Minimumquerschnitt 25 der Venturisektion 24 beträgt 1:8 bis 1:25,
- das Verhältnis des Strömungsguerschnitts des Mittelabschnitts 31 zum Querschnitt der Einlaßöffnung 34 beträgt 1:1 bis 1:2 bei einem Kegelwinkel des Einlaßabschnitts 32 von 0° bis 8°,
- das Verhältnis des Ströraungsquerschnitts des Mittelabschnitts 31 zum Querschnitt der Auslaßöffnung 35 beträgt 1:1 bis 1:2 bei einem Kegelwinkel des Auslaßabschnitts 33 von 0° bis 30°.
Die in Fig. 2 und 3 dargestellte Luftmeßvorrichtung ist gegenüber der zuvor beschriebenen leicht modifiziert, stimmt aber im Aufbau und in ihrer Wirkungsweise grundsätzlich mit dieser ϋherein. Gleiche Bauteile sind daher mit gleichen Bezugszeichen und soweit sie modifiziert sind mit einer um 200 erhöhten Bezugszahl versehen. Die wiederum in die Durchgangsbohrung 13 mit den zueinander exzentrischen Bohrungen 131 und 132 unterschiedlichen Durchmessers eingesetzte Strömungshülse 214 weist eingangsseitig einen Kragen 236 auf, in dem eine Eintrittsöffnung 237 für den Bypaßkanal 12 eingebracht ist. Die Strömungshülse 214 stützt sich mit dem Kragen 236 an der Bohrungswand der Bohrung 132 und axial wiederum an einer Anschlagfläche 215 zwischen den beiden Bohrungen 131,132 ab und ist wiederum in Axialrichtung mittels des Sicherungsrings 16 gehalten. Die Strömungshülse 214 mit Kragen 236 und die Bohrungswand der Bohrung 132 begrenzen wiederum den Bypaßkanal 12, der über eine Austrittsöffnung 238, deren Achse rechtwinklig zur Achse des
Drosselklappenstutzens 210 verläuft, im kleinsten Strömungsquer schnitt 25 der von der Strömungshülse 214 gebildeten Venturi¬ sektion 24 oder unterhalb davon mit dem Hauptströmungskanal 11 in Verbindung steht. Im Bypaßkanal 12 ist der Einsatz 30 unmittelbar eingesetzt und zwar so, daß seine Achse mit der der Eintrittsδffnung 237 fluchtet und seine eine Stirnseite unmittelbar an der Unterseite des Kragens 236 anliegt. Im Einsatz 30, der wiederum einen zylindrischen Mittelabschnitt 31 und einen Einlaß- und Auslaßabschnitt 32,33, jeweils kegelstumpfförmig ausgebildet, aufweist, ist im Mittelabschnitt 31 der Meßwiderstand 26 eingesetzt. Der Strömungsgleichrichter 218 ist ausschließlich auf den Bypaßkanal 12 begrenzt und in die Eintrittsöffnung 237 im Kragen 236 eingesetzt.
Um den Einfluß der verschiedenen Öffnungswinkel der Drosselklappe 20 auf das Meßwertsignal auszuschließen, ist die Austrittsöff ung 38 des Bypaßkanals 12 zum Hauptströraungskanal 11 in Richtung der
Hauptströmungskanalachse gesehen exakt über der Schwenkachse 21 der Drosselklappe 20 und mit Abstand von dieser angeordnet. Der Querschnitt der Austrittsöffnung 238 ist dabei dem 0,3-fachen des Drosselklappendurchmessers gewählt.
Wie in Fig. 3 angedeutet ist, kann der Bypaßkanal 12 auch mit zwei Austritsöffnungen 239,240 versehen sein. In diesem Fall liegen beide Austrittsöffnungen 239,240 diametral einander gegenüber und jede Austrittsöffnung 239,240 liegt in Strömungsrichtung im Hauptströraungskanal 11 gesehen exakt über der Stellwelle 21 der Drosselklappe 20, also in einem Bereich, der immer einen konstanten Abstand zur Drosselklappe 20, unabhängig von ihrer jeweiligen Winkelstellung hat. Der Querschnitt jeder Austrittsöffnung 239,240 beträgt dann das 0,15-fache des Drosselklappendurchmessers.
Bei Brennkraftmaschinen mit adaptiver Leerlaufregelung erfolgt die Leerlaufregelung über einen Bypaß 241 (Fig. 2), der um die Drosselklappe 20 herumführt und von einem Magnetventil 242 gesteuert ist. Der Austritt des Bypasses 241, der damit in einer anderen Ebene liegt wie die Austrittsöffnung 238 des Bypaßkanals 12 ist in Umfangsrichtung relativ zu der Austrittsöffnung 238 versetzt angeordnet.

Claims

Ansprüche
Luftmeßvorrichtung, insbesondere zur Messung der von einer Brennkraftmaschine angesaugten Luftmasse, mit einem eine venturiförmige Strömungssektion (Venturisektion) aufweisenden Hauptströmungskanal, mit einem Bypaßkanal, der in dem Hauptströmungskanal in Strömungsrichtung oberhalb und im kleinsten Strömungsquer¬ schnitt (Minimumquerschnitt) der Venturisektion oder unter halb davon mündet, und mit einem im Bypaßkanal angeordneten temperaturabhängigen Meßwiderstand, dadurch gekennzeichnet, daß im Bypaßkanal (12) ein von einer Ein- und Auslaßδffnung (34,35) begrenzter Kanalbereich (30) mit einem den Meßwiderstand (26) aufnehmenden Mittelabschnitt (31) und einem daran stromauf ärts sich anschließenden Einlaßabschnitt (32) und einem daran stromabwärts sich anschließenden Auslaßabschnitt (33) ausgebildet ist, dessen Einlaß- und Auslaßöffnungen (34,35) kongruent mit dem Kanalquerschnitt des Bypaßkanals (12) sind, und daß der Kanalbereich (30) derart ausgebildet ist, daß der Strömungsquerschnitt des Mittelabschnitts (31) zu dem Minimumquerschnitt (25) der Venturisektion (24) in einem Verhältnis von 1:8 bis 1:25 und zum Querschnitt der Ein- und Auslaßöffnung (34,35) jeweils in einem Verhältnis von 1:1 bis 1:2 steht.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß Ein- und Auslaßabschnitt (32,33) des Kanalbereichs (30) kegelstumpfförmig ausgebildet sind und daß mit wachsendem Verhältnis des Strömungsquerschnitts des Mittelabschnitts (31) zum Querschnitt von Einlaßöffnung (34) bzw. Auslaßöffnung (35) der Kegelwinkel des Einlaßabschnitts (32) bis etwa 8° und" der des Auslaßabschnitts (35) bis etwa 30° ansteigt.
3. Luftmeßvorrichtung nach dem Oberbegriff des Anspruchs 1, insbesondere nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Bypaßkanal (12) im Bereich seiner im Minimumquerschnitt (25) der Venturisektion (24) oder unterhalb davon liegenden Mündung derart ausgebildet ist, daß die Luftströmungsrichtung an der Bypaßmündung einen spitzen Winkel ( ö ) vorzugsweise ca. 30°, zur Strömungsrichtung im Hauptströmungskanal (11) einschließt.
4. Vorrichtung nach dem Oberbegriff des Anspruchs 1, insbesondere nach einem der Ansprüche 1 - 3, mit einer im Hauptströmungskanal unterhalb der unteren Mündung des Bypaßkanals angeordneten Drosselklappe, die zur Drosselung der Luftströmung um eine quer zur Achse des Hauptströmungskanals ausgerichtete Schwenkachse drehbar ist, dadurch gekennzeichnet, daß die Bypaßmünd'ing (238) in Richtung der Hauptströmungskanalachse gesehen exakt über der Schwenkachse (21) der Drosselklappe (20) und mit Abstand von dieser liegt und daß der Mündungsquerschnitt der Bypaßmündung (238) größer ist als das 0,3-fache des Drosselklappendurchmessers.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Bypaßmündung auf zwei einander diametral gegenüberliegende Mündungsstellen (239,240) aufgeteilt ist.
PCT/DE1990/000439 1989-07-08 1990-06-08 Luftmessvorrichtung WO1991000987A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR909006853A BR9006853A (pt) 1989-07-08 1990-06-08 Dispositivo medidor de ar
DE59006972T DE59006972D1 (de) 1989-07-08 1990-06-08 Luftmessvorrichtung.
KR1019910700112A KR0172129B1 (ko) 1989-07-08 1990-06-08 공기 측정 장치
EP90908929A EP0433411B1 (de) 1989-07-08 1990-06-08 Luftmessvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3922489A DE3922489A1 (de) 1989-07-08 1989-07-08 Luftmessvorrichtung
DEP3922489.9 1989-07-08

Publications (1)

Publication Number Publication Date
WO1991000987A1 true WO1991000987A1 (de) 1991-01-24

Family

ID=6384558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1990/000439 WO1991000987A1 (de) 1989-07-08 1990-06-08 Luftmessvorrichtung

Country Status (9)

Country Link
US (1) US5167147A (de)
EP (1) EP0433411B1 (de)
JP (1) JP2983624B2 (de)
KR (1) KR0172129B1 (de)
AU (1) AU623788B2 (de)
BR (1) BR9006853A (de)
DE (2) DE3922489A1 (de)
ES (1) ES2060174T3 (de)
WO (1) WO1991000987A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458081A2 (de) * 1990-04-26 1991-11-27 Nippondenso Co., Ltd. Luftdurchflussmesser
US5301547A (en) * 1991-09-26 1994-04-12 Robert Bosch Gmbh Air flow rate meter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219454C2 (de) * 1992-06-13 1995-09-28 Bosch Gmbh Robert Massenflußsensor
DE4325902C2 (de) * 1993-08-02 1999-12-02 Bosch Gmbh Robert Verfahren zur Berechnung der Luftfüllung für eine Brennkraftmaschine mit variabler Gaswechselsteuerung
DE19637647A1 (de) * 1996-09-16 1998-03-19 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
DE19652753A1 (de) * 1996-12-18 1998-06-25 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
US6234897B1 (en) 1997-04-23 2001-05-22 Wms Gaming Inc. Gaming device with variable bonus payout feature
US5913239A (en) * 1997-06-17 1999-06-15 Cummins Engine Company, Inc. Mass flow measurement device
DE19735891A1 (de) * 1997-08-19 1999-02-25 Bosch Gmbh Robert Meßvorrichtung zum Messen der Masse eines in einer Leitung strömenden Mediums
JP3385307B2 (ja) * 1998-05-11 2003-03-10 三菱電機株式会社 流量センサ
US6474154B2 (en) 2001-01-05 2002-11-05 Ngk Spark Plug Co., Ltd. Flow measurement device for measuring flow rate and flow velocity
JP2005265819A (ja) * 2004-02-19 2005-09-29 Keyence Corp 分流式流量センサ装置
US7036366B2 (en) * 2004-05-25 2006-05-02 Delphi Technologies, Inc. Air flow measurement system having reduced sensitivity to flow field changes
US7938105B2 (en) * 2007-09-25 2011-05-10 Ford Global Technologies, Llc High flow (delta P) differential pressure EGR system with provision for both flow control and OBD monitor
DE102011115768B4 (de) 2011-10-12 2014-05-08 Hydrometer Gmbh Gaszähler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH268202A (de) * 1946-05-21 1950-05-15 Inc Charles Engelhard Einrichtung zum Messen der Durchflussmenge eines durch einen Kanal strömenden Mediums.
GB2065898A (en) * 1979-11-29 1981-07-01 Hitachi Ltd Air flow rate measuring device
EP0085987A1 (de) * 1982-02-10 1983-08-17 Hitachi, Ltd. Kraftstoffversorgungseinrichtung für Verbrennungskraftmaschine
EP0218216A1 (de) * 1985-10-04 1987-04-15 Hitachi, Ltd. Luftdurchflussmengenmesser
EP0232710A1 (de) * 1986-01-08 1987-08-19 Hitachi, Ltd. Durchflussmengenmesser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418568A (en) * 1981-09-10 1983-12-06 Eaton Corporation Hot film fluid flowmeter with auxiliary flow sensing
JPS60145438A (ja) * 1983-09-07 1985-07-31 Hitachi Ltd 内燃機関の燃料制御装置
JPH0684899B2 (ja) * 1987-02-27 1994-10-26 本田技研工業株式会社 空気流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH268202A (de) * 1946-05-21 1950-05-15 Inc Charles Engelhard Einrichtung zum Messen der Durchflussmenge eines durch einen Kanal strömenden Mediums.
GB2065898A (en) * 1979-11-29 1981-07-01 Hitachi Ltd Air flow rate measuring device
EP0085987A1 (de) * 1982-02-10 1983-08-17 Hitachi, Ltd. Kraftstoffversorgungseinrichtung für Verbrennungskraftmaschine
EP0218216A1 (de) * 1985-10-04 1987-04-15 Hitachi, Ltd. Luftdurchflussmengenmesser
EP0232710A1 (de) * 1986-01-08 1987-08-19 Hitachi, Ltd. Durchflussmengenmesser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458081A2 (de) * 1990-04-26 1991-11-27 Nippondenso Co., Ltd. Luftdurchflussmesser
EP0458081B1 (de) * 1990-04-26 1996-01-10 Nippondenso Co., Ltd. Luftdurchflussmesser
US5301547A (en) * 1991-09-26 1994-04-12 Robert Bosch Gmbh Air flow rate meter

Also Published As

Publication number Publication date
EP0433411A1 (de) 1991-06-26
BR9006853A (pt) 1991-08-06
EP0433411B1 (de) 1994-08-31
KR920701788A (ko) 1992-08-12
AU623788B2 (en) 1992-05-21
JPH04500729A (ja) 1992-02-06
AU5747190A (en) 1991-02-06
DE59006972D1 (de) 1994-10-06
JP2983624B2 (ja) 1999-11-29
US5167147A (en) 1992-12-01
ES2060174T3 (es) 1994-11-16
KR0172129B1 (ko) 1999-05-01
DE3922489A1 (de) 1991-01-17

Similar Documents

Publication Publication Date Title
EP0433411B1 (de) Luftmessvorrichtung
DE3633612C2 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE3044152C2 (de) Luftdurchsatzmesser
DE4108279C2 (de)
DE102004029476A1 (de) Strömungskonditionierungsvorrichtung
DE2527306C3 (de)
DE19942511A1 (de) Vorrichtung zur Messung wenigstens eines Parameters eines strömenden Mediums
DE2635069A1 (de) Stroemungsmessgeraet mit stroemungsmesser
DE4410049A1 (de) Luftmassenstrom-Sensor-Baugruppe und Sensorhalterung zur Befestigung desselben
EP1549915A1 (de) Vorrichtung zur bestimmung wenigstens eines parameters eines in einer leitung strömenden mediums
DE4032582C2 (de) Gasbrenner, insbesondere für Glasschmelzöfen
DE19820991C2 (de) Durchfluß-Meßvorrichtung
DE19948061A1 (de) Kraftstoffeinspritzventil im Zylinder
DE3922488C2 (de) Luftmeßvorrichtung
EP0367777A1 (de) Einspritzventil.
DE10343659A1 (de) Zielen von Strahlen auf einen bogenförmigen Sektor mit nichtabgewinkelten Öffnungen in einer Kraftstoffeinspritzdosierscheibe und Verfahren
DE2544791C2 (de)
DE60203475T2 (de) Drosselklappe und Drossel
EP1224437B1 (de) Schutzgitter für massendurchflusssensor in einem ansaugluftkanal
DE4027198C2 (de) Luftmengenmesser für Brennkraftmaschinen
DE3814613C2 (de) Vorrichtung zur Bildung und zum Dosieren eines Luft/Kraftstoff-Gemisches für einen Verbrennungsmotor
DE3320469C2 (de)
DE3934759C2 (de)
DE4112981A1 (de) Vorrichtung zur messung der masse eines stroemenden, gasfoermigen mediums
DE4215122C1 (de)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1990908929

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1990908929

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990908929

Country of ref document: EP