WO1990012300A1 - Drucksensor - Google Patents

Drucksensor Download PDF

Info

Publication number
WO1990012300A1
WO1990012300A1 PCT/EP1990/000481 EP9000481W WO9012300A1 WO 1990012300 A1 WO1990012300 A1 WO 1990012300A1 EP 9000481 W EP9000481 W EP 9000481W WO 9012300 A1 WO9012300 A1 WO 9012300A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
pressure sensor
sensor according
silicon carbide
membrane consists
Prior art date
Application number
PCT/EP1990/000481
Other languages
English (en)
French (fr)
Inventor
Frank Hegner
Manfred Frank
Original Assignee
Endress U. Hauser Gmbh U. Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress U. Hauser Gmbh U. Co. filed Critical Endress U. Hauser Gmbh U. Co.
Priority to DE9090904828T priority Critical patent/DE59002092D1/de
Priority to CA002028836A priority patent/CA2028836C/en
Publication of WO1990012300A1 publication Critical patent/WO1990012300A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general

Definitions

  • the invention relates to a pressure sensor with a membrane, which is connected in the circumferential area to form a chamber with a base body and whose surface facing away from the base body is exposed to a medium whose pressure is to be measured.
  • the membrane preferably consists of an inexpensive spring material which is suitable for economical mass production, such as ceramic, glass, quartz, single-crystal material or even base metal. It has proven particularly favorable to produce the membrane from an oxide ceramic, in particular from aluminum oxide ceramic.
  • the membrane materials used have very different requirements in various respects, which relate in particular to the following aspects: 1. the desired spring properties, such as creep resistance, freedom from hysteresis, etc.;
  • the object of the invention is to create a pressure sensor of the type specified at the outset, which can be manufactured in a cost-effective mass production with a membrane made from one of the conventional inexpensive spring materials, which can be selected with regard to the desired spring properties and the joining technology used.
  • the membrane being highly resistant to the effects of the measuring medium, in particular to corrosion and abrasion.
  • this is achieved in that a layer of silicon carbide is applied to the surface of the membrane facing away from the base body.
  • the silicon carbide layer applied to the membrane according to the invention is very resistant to both corrosion and abrasion. It also acts as a corrosion sions- and as an abrasion protection layer, which prevents a chemically or mechanically aggressive medium from coming into contact with the actual material of the membrane.
  • the membrane itself can therefore be produced from a conventional, inexpensive material which can be selected with regard to other requirements, such as spring properties and joining technology.
  • a layer thickness of approximately 1 to 10 ⁇ m is sufficient for the corrosion and abrasion protection layer made of silicon carbide.
  • Silicon carbide layers of this thickness can be formed quickly, cheaply and reproducibly by coating the surface of the membrane with silicon carbide by chemical vapor deposition. This process is generally known as CVD technology ("Chemical Vapor Deposition") and is particularly suitable for economical mass production. Since in the CVD technique for the deposition of silicon carbide, which has been known for some time, temperatures of about 1000 ° C. have to be used, this method is only suitable for coating membrane materials which can withstand this temperature, such as ceramics, quartz, monocrystalline materials and certain Metals.
  • the PECVD technology (“Plasma Enhanced Chemical Vapor Deposition”), which has been available recently, enables the deposition of silicon carbide at substantially lower temperatures of about 100 to 200 ° C., so that even less heat-resistant materials are used with this method. like glass, can be coated.
  • the membrane can only be coated after joining.
  • silicon carbide is a semiconductor
  • the silicon carbide layer applied to the membrane can be made electrically conductive by suitable doping. It can then also be used as an electrostatic shield.
  • the pressure sensor 10 shown in the drawing has a membrane 11 in the form of a circular disc with plane-parallel surfaces, which is joined around the circumference with a circular base body 12 by a connecting means 13.
  • the connecting means 13 holds the membrane 11 at a defined distance from the base body 12, so that a chamber 14 is formed between the mutually facing surfaces of the membrane 11 and the base body 12.
  • the membrane 11 can consist of ceramic, glass, quartz, metal or a single-crystalline material, such as a silicon single crystal.
  • the basic body .12 can likewise consist of one of these materials, although the materials from which the membrane 11 and the basic body 12 consist can be different from one another.
  • Preferred materials for the membrane 11 and the base body 12 are oxide ceramics, in particular aluminum oxide ceramics.
  • the connecting means 13 is selected such that it results in a firmly adhering and tight connection both with the material of the membrane 11 and with the material of the base body 12.
  • the membrane 11 is elastic so that it can deform under a pressure acting on it.
  • the basic body 12 can be solid and rigid, but it can also, if desired, be designed in the same way as the membrane 11 as a flat elastic disk.
  • circular conductor layers 15 and 16 made of metal are applied within the chamber 14, which lie opposite one another at a distance.
  • the two conductor layers 15 and 16 form the electrodes of a capacitor, the capacitance of which depends on the distance between the conductor layers. They are connected to an electronic circuit by connecting conductors, not shown, which generates an electrical measured value signal which depends on the capacitance between the two electrodes 15 and 16.
  • the pressure sensor 10 is installed such that only the surface of the membrane 11 facing away from the base body 12 is exposed to a medium whose pressure is to be measured.
  • the membrane 11 is deformed as a function of the pressure of the medium, as a result of which the distance between the conductor layers 15 and 16 and thus the capacitance of the pressure sensor 10 change.
  • the measured value signal generated by the connected electronic circuit is thus a measure of the pressure of the medium.
  • a thin layer 17 of silicon carbide SiC is applied to the surface of the membrane 11 facing away from the base body 12 and which is exposed to the medium whose pressure is to be measured.
  • the thickness of the layer 17 is approximately 1 to 10 ⁇ m; for the sake of clarity, it is exaggeratedly large in the drawing.
  • the silicon carbide layer 17 is corrosion-resistant to acids, alkalis and solvents as well as being mechanically hard and abrasion-resistant. It therefore acts as a corrosion and abrasion protection layer against chemically or mechanically aggressive media.
  • the pressure sensor 10 can thus also be used to measure the pressure of media that are chemically or mechanically aggressive, even if the membrane 11 is made of a material that is not resistant to such media.
  • a preferred method for applying the silicon carbide layer 17 is chemical vapor deposition, generally known as CVD technology ("Chemical Vapor Deposition").
  • CVD technology Chemical Vapor Deposition
  • thin layers of silicon carbide can be applied quickly, inexpensively and in a reproducible manner. Since a temperature of about 1000 ° C. must be used when depositing silicon carbide according to normal CVD technology, only membranes made of material that can withstand this temperature can be coated with it, such as ceramics, in particular oxide ceramics, quartz, single-crystalline material and be ⁇ also steel.
  • the so-called PECVD technology (“Plasma Enhanced Chemical Vapor Deposition”) can be used to deposit silicon carbide layers at substantially lower temperatures of approximately 100 to 200 ° C. With the PECVD technology, the corrosion and abrasion protection layer 17 can therefore also be applied to membranes made of glass or other heat-sensitive materials.
  • the silicon carbide layer 17 can be doped so that it is electrically conductive. It can then also serve as an electrostatic shield.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Der Drucksensor (10) besteht aus einem Grundkörper (12) und einer Membran (11), die im Umfangsbereich unter Bildung einer Kammer (14) miteinander verbunden sind. Die vom Grundkörper abgewandte Fläche der Membran ist einem Medium ausgesetzt, dessen Druck gemessen werden soll. Zum Schutz der Membran gegen Korrosion oder Abrasion ist auf die dem Medium ausgesetzte Fläche der Membran eine Schicht (17) aus Siliciumkarbid aufgebracht, vorzugsweise durch chemische Gasphasenabscheidung.

Description

- . -
Drucksensor
Die Erfindung betrifft einen Drucksensor mit einer Membran, die im Umfangsbereich unter Bildung einer Kammer mit einem Grundkδrper verbunden ist und deren dem Grundkδrper abge¬ wandte Fläche einem Medium ausgesetzt ist, dessen Druck ge¬ messen werden soll.
Bei Drucksensoren dieser Art besteht die Membran vorzugswei¬ se aus einem preiswerten Federmaterial, das sich für eine wirtschaftliche Massenfertigung eignet, wie Keramik, Glas, Quarz, einkristallinem Material oder auch aus unedlen Metal¬ len. Als besonders günstig hat es sich erwiesen, die Membran aus einer Oxidkeramik, insbesondere aus Aluminiumoxidkeramik, herzustellen. An die verwendeten Membranmaterialien werden in verschiedener Hinsicht sehr unterschiedliche Anforderun¬ gen gestellt, die insbesondere die folgenden Gesichtspunkte betreffen: 1. die gewünschten Federeigenschaften, wie Kriechfestigkeit, Freiheit von Hysterese usw. ;
2. die für das Verbinden der Membran mit dem Grundkδrper an¬ gewendete Fügetechnik, wie Löten, Schweißen, Verschmelzen durch Glassfritte oder dgl.;
3. die Widerstandsfähigkeit gegenüber Einwirkungen des Me¬ diums, dessen Druck gemessen werden soll, insbesondere Korrosions- und Abrasionsfestigkeit.
Es gibt praktisch kein Membranmaterial, mit dem alle diese Anforderungen zugleich erfüllt werden können. Je nach den auf den verschiedenen Anwendungsgebieten vorherrschenden An¬ forderungen müssen daher Drucksensoren mit unterschiedlichen Membranmaterialien bereitgestellt werden, was die Fertigung und Lagerhaltung verteuert. Dabei müssen hinsichtlich der übrigen Anforderungen meist Kompromisse in Kauf genommen werden.
Aufgabe der Erfindung ist die Schaffung eines Drucksensors der eingangs angegebenen Art, der mit einer Membran aus einem der herkömmlichen preiswerten Federmaterialien, das im Hinblick auf die gewünschten Federeigenschaften und die an¬ gewendete Füge echnik ausgewählt werden kann, in wirtschaft¬ licher Massenfertigung herstellbar ist, wobei die Membran eine hohe Widerstandsfähigkeit gegenüber Einwirkungen des Meßmediums, insbesondere gegen Korrosion und Abrasion auf¬ weist.
Nach der Erfindung wird dies dadurch erreicht, daß auf die dem Grundkδrper abgewandte Fläche der Membran eine Schicht aus Siliciumkarbid aufgebracht ist.
Die nach der Erfindung auf die Membran aufgebrachte Sili- ciumkarbidschicht ist sowohl gegen Korrosion als auch gegen Abrasion sehr beständig. Sie wirkt somit zugleich als Korro- sions- und als Abrasionsschutzschicht, die verhindert, daß ein chemisch oder mechanisch aggressives Medium mit dem eigentlichen Material der Membran in Berührung kommt. Die Membran selbst kann daher aus einem herkömmlichen preiswer¬ ten Material hergestellt werden, das im Hinblick auf andere Anforderungen, wie Federeigenschaften und Fügetechnik, aus¬ gewählt werden kann.
Für die Korrosions- und Abrasionsschutzschicht aus Silicium- karbid genügt eine Schichtdicke von etwa 1 bis 10 ym. Sili- ciumkarbidschichten dieser Dicke können schnell, preiswert und gut reproduzierbar dadurch gebildet werden, daß die Oberfläche der Membran durch chemische Gasphasenabscheidung mit Siliciumkarbid beschichtet wird. Dieses Verfahren ist als CVD-Technik ("Chemical Vapor Deposition") allgemein be¬ kannt und eignet sich besonders gut für eine wirtschaftliche Massenfertigung. Da bei der seit längerem bekannten CVD- Technik zur Abscheidung von Siliciumkarbid Temperaturen von etwa 1000°C angewendet werden müssen, eignet sich dieses Verfahren nur zum Beschichten von Membranmaterialien, die diese Temperatur aushalten können, wie Keramik, Quarz, ein¬ kristalline Materialien und gewisse Metalle. Die seit neue¬ rer Zeit verfügbare PECVD-Technik ("Plasma Enhanced Chemical Vapor Deposition") ermöglicht die Abscheidung von Silicium¬ karbid bei wesentlich niedrigeren Temperaturen von etwa 100 bis 200°C, so daß mit diesem Verfahren auch weniger hitze¬ feste Materialien, wie Glas, beschichtet werden können. Bei der Anwendung der PECVD-Technik kann die Beschichtung der Membran erst nach dem Fügen vorgenommen werden.
In jedem Fall ergibt die chemische Gasphasenabscheidung auf allen Membranmaterialien sehr gut haftende Siliciumkarbid- schichten hoher Elastizität und geringer Biegesteifigkeit, die keine oder allenfalls nur sehr geringe Eigenspannungen aufweisen. Die Rückwirkungen der Siliciumkarbidschicht auf die Membran sind daher vernachlässigbar. Ein wesentlicher Vorteil des Aufbringens der Siliciumkarbid- schicht durch chemische Gasphasenabscheidung besteht darin, daß sowohl bei glatten als auch bei sehr "rauhen Oberflächen eine sehr dichte Beschichtung erzielt wird, so daß die Sili- ciumkarbidschicht frei von Mikrorissen und Fehlstellen ist. Auf diese Weise können daher auch die rauhen Oberflächen von Keramikmembranen beschichtet werden, ohne daß diese vorher poliert werden müssen.
Da Siliciumkarbid ein Halbleiter ist, kann die auf die Mem¬ bran aufgebrachte Siliciumkarbidschicht durch geeignete Do¬ tierung elektrisch leitend gemacht werden. Sie kann dann zusätzlich als elektrostatische Abschirmung verwendet werden.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfin¬ dung sind in den ünteransprüchen gekennzeichnet.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung. Die einzige Figur der Zeichnung zeigt einen Schnitt durch einen nach der Erfindung ausgebildeten Druck¬ sensor.
Der in der Zeichnung dargestellte Drucksensor 10 hat eine Membran 11 in Form einer kreisrunden Scheibe mit planparal¬ lelen Flächen, die rings um den Umfang mit einem kreisrunden Grundkδrper 12 durch ein Verbindungsmittel 13 zusammengefügt ist. Das Verbindungsmittel 13 hält die Membran 11 in einem definierten Abstand vom Grundkδrper 12, so daß zwischen den einander zugewandten Flächen der Membran 11 und des Grund- kδrpers 12 eine Kammer 14 gebildet ist. Die Membran 11 kann aus Keramik, Glas, Quarz, Metall oder einem einkristallinen Material, wie einem Silicium-Einkristall, bestehen. Der Grundkorper .12 kann ebenfalls aus einem dieser Materialien bestehen, wobei jedoch die Materialien, aus denen die Mem¬ bran 11 und der Grundkδrper 12 bestehen, voneinander ver¬ schieden sein können. Bevorzugte Materialien für die Membran 11 und den Grundkörper 12 sind Oxidkeramiken, insbesondere Aluminiumoxidkeramik. Das Verbindungsmittel 13 ist so ge¬ wählt, daß es sowohl mit dem Material der Membran 11 als auch mit dem Material des Grundkorpers 12 eine festhaftende und dichte Verbindung ergibt. Die Membran 11 ist elastisch, so daß sie sich unter einem darauf einwirkenden Druck ver- formen kann. Der Grundkδrper 12 kann massiv und starr sein, er kann aber auch, falls erwünscht, in gleicher Weise wie die Membran 11 als flache elastische Scheibe ausgebildet sein.
Auf die einander zugewandten Flächen der Membran 11 und des Grundkorpers 12 sind innerhalb der Kammer 14 kreisförmige Leiterschichten 15 bzw. 16 aus Metall aufgebracht, die sich im Abstand gegenüberliegen. Die beiden Leiterschichten 15 und 16 bilden die Elektroden eines Kondensators, dessen Ka¬ pazität von dem Abstand zwischen den Leiterschichten ab¬ hängt. Sie sind durch nicht dargestellte Verbindungsleiter mit einer elektronischen Schaltung verbunden, die ein elek¬ trisches Meßwertsignal erzeugt, das von der Kapazität zwi¬ schen den beiden Elektroden 15 und 16 abhängt.
Im Betrieb ist der Drucksensor 10 so eingebaut, daß nur die dem Grundkδrper 12 abgewandte Fläche der Membran 11 einem Medium ausgesetzt ist, dessen Druck gemessen werden soll. Die Membran 11 wird in Abhängigkeit von dem Druck des Me¬ diums verformt, wodurch sich der Abstand zwischen den Lei¬ terschichten 15 und 16 und damit die Kapazität des Drucksen¬ sors 10 ändert. Somit ist das von der angeschlossenen elek¬ tronischen Schaltung erzeugte Meßwertsignal ein Maß für den Druck des Mediums.
Auf die dem Grundkδrper 12 abgewandte Fläche der Membran 11, die dem Medium ausgesetzt ist, dessen Druck gemessen werden soll, ist eine dünne Schicht 17 aus Siliciumkarbid SiC auf¬ gebracht. Die Dicke der Schicht 17 beträgt etwa 1 bis 10 ym; sie ist der Deutlichkeit wegen in der Zeichnung übertrieben groß dargestellt. Die Siliciumkarbidschicht 17 ist korrosionsfest gegen Säu¬ ren, Laugen und Lösungsmittel sowie mechanisch hart und ab¬ riebfest. Sie wirkt daher als Korrosions- und Abrasions¬ schutzschicht gegenüber chemisch oder mechanisch aggressiven Medien. Der Drucksensor 10 kann somit auch zum Messen des Drucks von Medien verwendet werden, die chemisch oder mecha¬ nisch aggressiv sind, selbst wenn die Membran 11 aus einem Material besteht, das gegenüber solchen Medien nicht bestän¬ dig ist.
Ein bevorzugtes Verfahren für das Aufbringen der Silicium¬ karbidschicht 17 ist die chemische Gasphasenabscheidung, all¬ gemein bekannt als CVD-Technik ("Chemical Vapor Deposition") . Mit diesem Verfahren können dünne Siliciumkarbidschichten schnell, preiswert und gut reproduzierbar aufgebracht werden. Da beim Abscheiden von Siliciumkarbid nach der normalen CVD- Technik eine Temperatur von etwa 1000°C angewendet werden muß, können damit nur Membranen aus Material beschichtet werden, das diese Temperatur aushält, wie Keramik, insbeson¬ dere Oxidkeramik, Quarz, einkristallinem Material sowie be¬ dingt auch Stahl. Mit der sogenannten PECVD-Technik ("Plasma Enhanced Chemical Vapor Deposition") können dagegen Silicium¬ karbidschichten bei wesentlich niedrigeren Temperaturen von etwa 100 bis 200°C abgeschieden werden. Mit der PECVD-Tech¬ nik kann daher die Korrosions- und Abrasionsschutzschicht 17 auch auf Membranen aus Glas oder anderen hitzeempfindlichen Materialien aufgebracht werden.
Sowohl mit der CVD-Technik als auch mit der PECVD-Technik werden sehr festhaftende und dichte Siliciumkarbidschichten ohne Mikrorisse und Fehlstellen sowohl auf glatten als auch auf sehr rauhen Oberflächen erhalten. Da Keramikoberflächen, wenn sie nicht poliert sind, sehr rauh sind, eignen sich diese Verfahren hervorragend für das Aufbringen der Sili¬ ciumkarbidschicht 17 auf eine Membran 11 aus Keramik, ohne daß es erforderlich ist, die zu beschichtende Fläche zuvor in einem besonderen Arbeitsgang zu polieren. Die auf die Membran 11 aufgebrachte Siliciumkarbidschicht 17 zeichnet sich durch eine hohe Elastizität und eine geringe Biegesteifigkeit aus, und sie ist praktisch frei von Eigen¬ spannungen. Ihre Rückwirkung auf die Membran 11 ist daher vernachlässigbar, so daß die Eigenschaften des Drucksensors 10 durch die Siliciumkarbidschicht 17 nicht beeinträchtigt werden.
Falls erwünscht, kann die Siliciumkarbidschicht 17 so do¬ tiert sein, daß sie elektrisch leitfähig ist. Sie kann dann zusätzlich als elektrostatische Abschirmung dienen.

Claims

P a t e n t a n s p r ü c h e
1. Drucksensor (10) mit einer Membran (11), die im Umfangsbereich unter Bildung einer Kammer (14) mit einem Grundkörper (12) verbunden ist und deren dem Grundkörper abgewandte Fläche einem Medium ausgesetzt ist, dessen Druck gemessen werden soll, dadurch gekennzeichnet, dass auf die dem Grundkörper abgewandte Fläche der Membran (11) eine Schicht (17) aus Siliciumkarbid aufgebracht ist.
2. Drucksensor nach Anspruch 1, dadurch gekennzeichnet, daεs die Siliciumkarbidschicht (17) durch chemische Gasphasenabscheidung aufgebracht ist.
3. Drucksensor nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die Siliciumkarbidschicht (17) eine Dicke von etwa 1 μra bis 10 μ hat.
4. Drucksensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Siliciumkarbidschicht (17) durch Dotierung elektrisch leitfähig gemacht ist. - -
5. Drucksensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membran aus Keramik besteht.
6. Drucksensor nach Anspruch 5, dadurch gekennzeichnet, daß die Membran aus Oxidkeramik besteht.
7. Drucksensor nach Anspruch 6, dadurch gekennzeichnet, daß die Membran aus Aluminiumoxidkeramik besteht.
8. Drucksensor nach einem der -Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membran aus Glas besteht.
9. Drucksensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membran aus Quarz besteht.
10. Drucksensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membran aus einem einkristallinen Material besteht.
11. Drucksensor nach Anspruch 10, dadurch gekennzeichnet, daß die Membran aus einem Siliciu -Einkristall besteht.
12. Drucksensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Membran aus Metall besteht.
PCT/EP1990/000481 1989-04-13 1990-03-24 Drucksensor WO1990012300A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE9090904828T DE59002092D1 (de) 1989-04-13 1990-03-24 Drucksensor.
CA002028836A CA2028836C (en) 1989-04-13 1990-03-24 Pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3912217.4 1989-04-13
DE3912217A DE3912217A1 (de) 1989-04-13 1989-04-13 Drucksensor

Publications (1)

Publication Number Publication Date
WO1990012300A1 true WO1990012300A1 (de) 1990-10-18

Family

ID=6378642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/000481 WO1990012300A1 (de) 1989-04-13 1990-03-24 Drucksensor

Country Status (9)

Country Link
US (1) US5076147A (de)
EP (1) EP0424483B1 (de)
JP (1) JP2675190B2 (de)
CA (1) CA2028836C (de)
DE (2) DE3912217A1 (de)
DK (1) DK0424483T3 (de)
ES (1) ES2042290T3 (de)
IE (1) IE901049L (de)
WO (1) WO1990012300A1 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028366A1 (de) * 1990-09-07 1992-03-12 Daimler Benz Ag Detektor zur messung eines magnetfeldes und messeinrichtung unter verwendung dieses detektors
DE9013464U1 (de) * 1990-09-25 1991-01-31 Arnheiter, Bernd, Dipl.-Phys., 4040 Neuss Temperatursensor
DE4136995C2 (de) * 1991-11-11 1996-08-08 Sensycon Ind Sensorsyst Kapazitiver Drucksensor
DE4207951C2 (de) * 1992-03-10 1995-08-31 Mannesmann Ag Kapazitiver Druck- oder Differenzdrucksensor in Glas-Silizium-Technik
DE4231120C2 (de) * 1992-09-17 2002-01-24 Mannesmann Vdo Ag Drucksensor
US5461922A (en) * 1993-07-27 1995-10-31 Lucas-Novasensor Pressure sensor isolated within housing having integral diaphragm and method of making same
US5889211A (en) * 1995-04-03 1999-03-30 Motorola, Inc. Media compatible microsensor structure and methods of manufacturing and using the same
DE19700773A1 (de) * 1997-01-13 1998-07-16 Bosch Gmbh Robert Membran für einen Drucksensor
US5744214A (en) * 1997-01-30 1998-04-28 International Business Machines Corporation Corrosion resistant molybdenum mask
JP3404563B2 (ja) * 1997-10-09 2003-05-12 理化工業株式会社 圧力センサ
US6076409A (en) * 1997-12-22 2000-06-20 Rosemount Aerospace, Inc. Media compatible packages for pressure sensing devices
US6311561B1 (en) 1997-12-22 2001-11-06 Rosemount Aerospace Inc. Media compatible pressure sensor
US6578427B1 (en) * 1999-06-15 2003-06-17 Envec Mess- Und Regeltechnik Gmbh + Co. Capacitive ceramic relative-pressure sensor
JP2001324398A (ja) * 2000-03-07 2001-11-22 Anelva Corp 耐蝕型真空センサ
DE10031129A1 (de) * 2000-06-30 2002-01-17 Grieshaber Vega Kg Überlastfester Drucksensor
DE10031135A1 (de) 2000-06-30 2002-01-17 Grieshaber Vega Kg Druckmeßvorrichtung
US7152478B2 (en) * 2000-07-20 2006-12-26 Entegris, Inc. Sensor usable in ultra pure and highly corrosive environments
US6612175B1 (en) 2000-07-20 2003-09-02 Nt International, Inc. Sensor usable in ultra pure and highly corrosive environments
DE10114665A1 (de) * 2001-03-23 2002-09-26 Bernhard Trier Drucksensor mit Membran
DE10114666A1 (de) * 2001-03-23 2002-09-26 Bernhard Trier Differenzdrucksensor
DE10133745A1 (de) 2001-07-11 2003-01-23 Endress & Hauser Gmbh & Co Kg Drucksensor und Verfahren zu dessen Betrieb
US6593209B2 (en) * 2001-11-15 2003-07-15 Kulite Semiconductor Products, Inc. Closing of micropipes in silicon carbide (SiC) using oxidized polysilicon techniques
JP2003315193A (ja) * 2002-04-24 2003-11-06 Denso Corp 圧力センサ
DE10227479A1 (de) * 2002-06-19 2004-01-08 Endress + Hauser Gmbh + Co. Kg Druckmeßgerät
DE10308820B4 (de) * 2003-02-27 2006-10-12 Ifm Electronic Gmbh Sensor, Meßzelle zur Verwendung in einem Sensor und Verfahren zur Herstellung einer Meßzelle
US7100453B2 (en) * 2003-12-30 2006-09-05 Honeywell International Inc. Modified dual diaphragm pressure sensor
US6945118B2 (en) * 2004-01-13 2005-09-20 Honeywell International Inc. Ceramic on metal pressure transducer
JP2006322783A (ja) * 2005-05-18 2006-11-30 Dainippon Screen Mfg Co Ltd 圧力センサおよび基板処理装置
DE102006056172A1 (de) 2006-11-27 2008-05-29 Endress + Hauser Gmbh + Co. Kg Elastischer Keramikkörper und Drucksensor mit einem elastischen Keramikkörper
DE102007008506B4 (de) * 2007-02-21 2010-08-19 Continental Automotive Gmbh Verfahren zum Schutz eines elektronischen Sensorelements und elektronisches Sensorelement
US20090013759A1 (en) * 2007-07-13 2009-01-15 General Electric Company Wobbe index sensor system
DE102010063723A1 (de) 2010-12-21 2012-06-21 Endress + Hauser Gmbh + Co. Kg Keramischer Drucksensor mit Überlastschutz
DE102013101936A1 (de) * 2013-02-27 2014-08-28 Endress + Hauser Gmbh + Co. Kg Drucksensor
DE102013226775A1 (de) 2013-12-19 2015-06-25 Vega Grieshaber Kg Messzelle
WO2016026541A1 (de) * 2014-08-20 2016-02-25 Endress+Hauser Gmbh+Co. Kg Druckmesszelle
US10739218B2 (en) * 2016-04-11 2020-08-11 The Alfred E. Mann Foundation For Scientific Research Pressure sensors with tensioned membranes
US11940336B2 (en) * 2021-03-26 2024-03-26 Sporian Microsystems, Inc. Driven-shield capacitive pressure sensor
DE102021118954A1 (de) 2021-07-22 2023-01-26 Endress+Hauser SE+Co. KG Druckmesseinrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753196A (en) * 1971-10-05 1973-08-14 Kulite Semiconductor Products Transducers employing integral protective coatings and supports
US4737756A (en) * 1987-01-08 1988-04-12 Imo Delaval Incorporated Electrostatically bonded pressure transducers for corrosive fluids

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1563894A (en) * 1976-03-12 1980-04-02 Kavlico Corp Capacitive pressure transducer and method for making same
JPS53142888A (en) * 1977-05-18 1978-12-12 Matsushita Electric Ind Co Ltd Pressure converter of semiconductor
DE2938205A1 (de) * 1979-09-21 1981-04-09 Robert Bosch Gmbh, 7000 Stuttgart Kapazitiver druckgeber und auswerteeinrichtung hierfuer
US4320664A (en) * 1980-02-25 1982-03-23 Texas Instruments Incorporated Thermally compensated silicon pressure sensor
US4382247A (en) * 1980-03-06 1983-05-03 Robert Bosch Gmbh Pressure sensor
DE3008572C2 (de) * 1980-03-06 1982-05-27 Robert Bosch Gmbh, 7000 Stuttgart Druckmeßdose
DE3118366A1 (de) * 1981-05-08 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Drucksensor
JPS61428A (ja) * 1984-06-13 1986-01-06 Toshiba Corp 空気清浄方式
US4858557A (en) * 1984-07-19 1989-08-22 L.P.E. Spa Epitaxial reactors
US4725345A (en) * 1985-04-22 1988-02-16 Kabushiki Kaisha Kenwood Method for forming a hard carbon thin film on article and applications thereof
JPS633468A (ja) * 1986-06-24 1988-01-08 Nec Corp 半導体圧力センサ
JPH0750789B2 (ja) * 1986-07-18 1995-05-31 日産自動車株式会社 半導体圧力変換装置の製造方法
US4773269A (en) * 1986-07-28 1988-09-27 Rosemount Inc. Media isolated differential pressure sensors
JPS63117906A (ja) * 1986-11-07 1988-05-21 Shin Etsu Chem Co Ltd 多結晶シリコン製造装置用部材
JPS63225591A (ja) * 1987-03-12 1988-09-20 住友金属工業株式会社 炭化珪素被覆黒鉛材料の製造方法
US4798089A (en) * 1987-03-12 1989-01-17 Rosemount Inc. Isolator apparatus
US4932265A (en) * 1987-12-11 1990-06-12 The Babcock & Wilcox Company Pressure transducer using thick film resistor
US4905575A (en) * 1988-10-20 1990-03-06 Rosemount Inc. Solid state differential pressure sensor with overpressure stop and free edge construction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753196A (en) * 1971-10-05 1973-08-14 Kulite Semiconductor Products Transducers employing integral protective coatings and supports
US4737756A (en) * 1987-01-08 1988-04-12 Imo Delaval Incorporated Electrostatically bonded pressure transducers for corrosive fluids

Also Published As

Publication number Publication date
IE901049L (en) 1990-10-13
DE59002092D1 (de) 1993-09-02
ES2042290T3 (es) 1993-12-01
EP0424483B1 (de) 1993-07-28
DK0424483T3 (da) 1993-10-11
US5076147A (en) 1991-12-31
DE3912217C2 (de) 1993-06-17
JP2675190B2 (ja) 1997-11-12
CA2028836C (en) 2000-07-04
EP0424483A1 (de) 1991-05-02
JPH03501062A (ja) 1991-03-07
CA2028836A1 (en) 1990-10-14
DE3912217A1 (de) 1990-10-18

Similar Documents

Publication Publication Date Title
EP0424483B1 (de) Drucksensor
DE3910646C2 (de)
DE60130471T2 (de) Sensor für ultrareine und stark korrosive umgebungen
DE3403042A1 (de) Duennfilm-dehnungsmessstreifen-system und verfahren zu seiner herstellung
EP1979730B1 (de) Vakuummesszelle mit membran
DE4415984A1 (de) Halbleitersensor mit Schutzschicht
DE2507731A1 (de) Messwiderstand fuer widerstandsthermometer und verfahren zu seiner herstellung
WO2008058406A1 (de) Vakuummembranmesszelle und verfahren zur herstellung einer derartigen messzelle
WO2009079803A1 (de) Anordnung für eine membrandruckmesszelle
DE102007026243A1 (de) Kapazitiver Drucksensor
DE3840703C2 (de)
DE102007026445A1 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
DE102009003178A1 (de) Keramisches Bauteil mit mindestens einer elektrischen Durchführung, Verfahren zu dessen Herstellung und Drucksensor mit einem solchen Bauteil
EP1144968A1 (de) Platintemperatursensor und herstellungsverfahren für denselben
DE102007030910A1 (de) Drucksensor
DE102014103142A1 (de) Druckmessaufnehmer
EP3194906B1 (de) Medienbeständige multilagenbeschichtung für ein messgerät der prozesstechnik
EP0150878B1 (de) Verfahren zur Herstellung eines Dünnfilmmessstreifensystems
EP3057707B1 (de) Messanordnung mit einem trägerelement und einem sensor
EP0787220B1 (de) Dichtungselement, insbesondere für absperr- und regelorgane und verfahren zu seiner herstellung
EP0548470B2 (de) Drucksensor mit einer Membran aus Halbleitermaterial
DE102014108351A1 (de) Messanordnung mit einem Trägerelement und einem mikromechanischen Sensor
DE102019133820A1 (de) Druckmesseinrichtung
DE102013114741A1 (de) Drucksensor
DE102011084612A1 (de) Keramische Druckmesszelle mit kapazitivem Wandler

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 2028836

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1990904828

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990904828

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990904828

Country of ref document: EP

ENP Entry into the national phase

Ref country code: CA

Ref document number: 2028836

Kind code of ref document: A

Format of ref document f/p: F