WO1990012300A1 - Drucksensor - Google Patents
Drucksensor Download PDFInfo
- Publication number
- WO1990012300A1 WO1990012300A1 PCT/EP1990/000481 EP9000481W WO9012300A1 WO 1990012300 A1 WO1990012300 A1 WO 1990012300A1 EP 9000481 W EP9000481 W EP 9000481W WO 9012300 A1 WO9012300 A1 WO 9012300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- pressure sensor
- sensor according
- silicon carbide
- membrane consists
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0072—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
- G01L9/0075—Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/06—Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
- G01L19/0627—Protection against aggressive medium in general
Definitions
- the invention relates to a pressure sensor with a membrane, which is connected in the circumferential area to form a chamber with a base body and whose surface facing away from the base body is exposed to a medium whose pressure is to be measured.
- the membrane preferably consists of an inexpensive spring material which is suitable for economical mass production, such as ceramic, glass, quartz, single-crystal material or even base metal. It has proven particularly favorable to produce the membrane from an oxide ceramic, in particular from aluminum oxide ceramic.
- the membrane materials used have very different requirements in various respects, which relate in particular to the following aspects: 1. the desired spring properties, such as creep resistance, freedom from hysteresis, etc.;
- the object of the invention is to create a pressure sensor of the type specified at the outset, which can be manufactured in a cost-effective mass production with a membrane made from one of the conventional inexpensive spring materials, which can be selected with regard to the desired spring properties and the joining technology used.
- the membrane being highly resistant to the effects of the measuring medium, in particular to corrosion and abrasion.
- this is achieved in that a layer of silicon carbide is applied to the surface of the membrane facing away from the base body.
- the silicon carbide layer applied to the membrane according to the invention is very resistant to both corrosion and abrasion. It also acts as a corrosion sions- and as an abrasion protection layer, which prevents a chemically or mechanically aggressive medium from coming into contact with the actual material of the membrane.
- the membrane itself can therefore be produced from a conventional, inexpensive material which can be selected with regard to other requirements, such as spring properties and joining technology.
- a layer thickness of approximately 1 to 10 ⁇ m is sufficient for the corrosion and abrasion protection layer made of silicon carbide.
- Silicon carbide layers of this thickness can be formed quickly, cheaply and reproducibly by coating the surface of the membrane with silicon carbide by chemical vapor deposition. This process is generally known as CVD technology ("Chemical Vapor Deposition") and is particularly suitable for economical mass production. Since in the CVD technique for the deposition of silicon carbide, which has been known for some time, temperatures of about 1000 ° C. have to be used, this method is only suitable for coating membrane materials which can withstand this temperature, such as ceramics, quartz, monocrystalline materials and certain Metals.
- the PECVD technology (“Plasma Enhanced Chemical Vapor Deposition”), which has been available recently, enables the deposition of silicon carbide at substantially lower temperatures of about 100 to 200 ° C., so that even less heat-resistant materials are used with this method. like glass, can be coated.
- the membrane can only be coated after joining.
- silicon carbide is a semiconductor
- the silicon carbide layer applied to the membrane can be made electrically conductive by suitable doping. It can then also be used as an electrostatic shield.
- the pressure sensor 10 shown in the drawing has a membrane 11 in the form of a circular disc with plane-parallel surfaces, which is joined around the circumference with a circular base body 12 by a connecting means 13.
- the connecting means 13 holds the membrane 11 at a defined distance from the base body 12, so that a chamber 14 is formed between the mutually facing surfaces of the membrane 11 and the base body 12.
- the membrane 11 can consist of ceramic, glass, quartz, metal or a single-crystalline material, such as a silicon single crystal.
- the basic body .12 can likewise consist of one of these materials, although the materials from which the membrane 11 and the basic body 12 consist can be different from one another.
- Preferred materials for the membrane 11 and the base body 12 are oxide ceramics, in particular aluminum oxide ceramics.
- the connecting means 13 is selected such that it results in a firmly adhering and tight connection both with the material of the membrane 11 and with the material of the base body 12.
- the membrane 11 is elastic so that it can deform under a pressure acting on it.
- the basic body 12 can be solid and rigid, but it can also, if desired, be designed in the same way as the membrane 11 as a flat elastic disk.
- circular conductor layers 15 and 16 made of metal are applied within the chamber 14, which lie opposite one another at a distance.
- the two conductor layers 15 and 16 form the electrodes of a capacitor, the capacitance of which depends on the distance between the conductor layers. They are connected to an electronic circuit by connecting conductors, not shown, which generates an electrical measured value signal which depends on the capacitance between the two electrodes 15 and 16.
- the pressure sensor 10 is installed such that only the surface of the membrane 11 facing away from the base body 12 is exposed to a medium whose pressure is to be measured.
- the membrane 11 is deformed as a function of the pressure of the medium, as a result of which the distance between the conductor layers 15 and 16 and thus the capacitance of the pressure sensor 10 change.
- the measured value signal generated by the connected electronic circuit is thus a measure of the pressure of the medium.
- a thin layer 17 of silicon carbide SiC is applied to the surface of the membrane 11 facing away from the base body 12 and which is exposed to the medium whose pressure is to be measured.
- the thickness of the layer 17 is approximately 1 to 10 ⁇ m; for the sake of clarity, it is exaggeratedly large in the drawing.
- the silicon carbide layer 17 is corrosion-resistant to acids, alkalis and solvents as well as being mechanically hard and abrasion-resistant. It therefore acts as a corrosion and abrasion protection layer against chemically or mechanically aggressive media.
- the pressure sensor 10 can thus also be used to measure the pressure of media that are chemically or mechanically aggressive, even if the membrane 11 is made of a material that is not resistant to such media.
- a preferred method for applying the silicon carbide layer 17 is chemical vapor deposition, generally known as CVD technology ("Chemical Vapor Deposition").
- CVD technology Chemical Vapor Deposition
- thin layers of silicon carbide can be applied quickly, inexpensively and in a reproducible manner. Since a temperature of about 1000 ° C. must be used when depositing silicon carbide according to normal CVD technology, only membranes made of material that can withstand this temperature can be coated with it, such as ceramics, in particular oxide ceramics, quartz, single-crystalline material and be ⁇ also steel.
- the so-called PECVD technology (“Plasma Enhanced Chemical Vapor Deposition”) can be used to deposit silicon carbide layers at substantially lower temperatures of approximately 100 to 200 ° C. With the PECVD technology, the corrosion and abrasion protection layer 17 can therefore also be applied to membranes made of glass or other heat-sensitive materials.
- the silicon carbide layer 17 can be doped so that it is electrically conductive. It can then also serve as an electrostatic shield.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE9090904828T DE59002092D1 (de) | 1989-04-13 | 1990-03-24 | Drucksensor. |
CA002028836A CA2028836C (en) | 1989-04-13 | 1990-03-24 | Pressure sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3912217.4 | 1989-04-13 | ||
DE3912217A DE3912217A1 (de) | 1989-04-13 | 1989-04-13 | Drucksensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990012300A1 true WO1990012300A1 (de) | 1990-10-18 |
Family
ID=6378642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1990/000481 WO1990012300A1 (de) | 1989-04-13 | 1990-03-24 | Drucksensor |
Country Status (9)
Country | Link |
---|---|
US (1) | US5076147A (de) |
EP (1) | EP0424483B1 (de) |
JP (1) | JP2675190B2 (de) |
CA (1) | CA2028836C (de) |
DE (2) | DE3912217A1 (de) |
DK (1) | DK0424483T3 (de) |
ES (1) | ES2042290T3 (de) |
IE (1) | IE901049L (de) |
WO (1) | WO1990012300A1 (de) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4028366A1 (de) * | 1990-09-07 | 1992-03-12 | Daimler Benz Ag | Detektor zur messung eines magnetfeldes und messeinrichtung unter verwendung dieses detektors |
DE9013464U1 (de) * | 1990-09-25 | 1991-01-31 | Arnheiter, Bernd, Dipl.-Phys., 4040 Neuss | Temperatursensor |
DE4136995C2 (de) * | 1991-11-11 | 1996-08-08 | Sensycon Ind Sensorsyst | Kapazitiver Drucksensor |
DE4207951C2 (de) * | 1992-03-10 | 1995-08-31 | Mannesmann Ag | Kapazitiver Druck- oder Differenzdrucksensor in Glas-Silizium-Technik |
DE4231120C2 (de) * | 1992-09-17 | 2002-01-24 | Mannesmann Vdo Ag | Drucksensor |
US5461922A (en) * | 1993-07-27 | 1995-10-31 | Lucas-Novasensor | Pressure sensor isolated within housing having integral diaphragm and method of making same |
US5889211A (en) * | 1995-04-03 | 1999-03-30 | Motorola, Inc. | Media compatible microsensor structure and methods of manufacturing and using the same |
DE19700773A1 (de) * | 1997-01-13 | 1998-07-16 | Bosch Gmbh Robert | Membran für einen Drucksensor |
US5744214A (en) * | 1997-01-30 | 1998-04-28 | International Business Machines Corporation | Corrosion resistant molybdenum mask |
JP3404563B2 (ja) * | 1997-10-09 | 2003-05-12 | 理化工業株式会社 | 圧力センサ |
US6076409A (en) * | 1997-12-22 | 2000-06-20 | Rosemount Aerospace, Inc. | Media compatible packages for pressure sensing devices |
US6311561B1 (en) | 1997-12-22 | 2001-11-06 | Rosemount Aerospace Inc. | Media compatible pressure sensor |
US6578427B1 (en) * | 1999-06-15 | 2003-06-17 | Envec Mess- Und Regeltechnik Gmbh + Co. | Capacitive ceramic relative-pressure sensor |
JP2001324398A (ja) * | 2000-03-07 | 2001-11-22 | Anelva Corp | 耐蝕型真空センサ |
DE10031129A1 (de) * | 2000-06-30 | 2002-01-17 | Grieshaber Vega Kg | Überlastfester Drucksensor |
DE10031135A1 (de) | 2000-06-30 | 2002-01-17 | Grieshaber Vega Kg | Druckmeßvorrichtung |
US7152478B2 (en) * | 2000-07-20 | 2006-12-26 | Entegris, Inc. | Sensor usable in ultra pure and highly corrosive environments |
US6612175B1 (en) | 2000-07-20 | 2003-09-02 | Nt International, Inc. | Sensor usable in ultra pure and highly corrosive environments |
DE10114665A1 (de) * | 2001-03-23 | 2002-09-26 | Bernhard Trier | Drucksensor mit Membran |
DE10114666A1 (de) * | 2001-03-23 | 2002-09-26 | Bernhard Trier | Differenzdrucksensor |
DE10133745A1 (de) | 2001-07-11 | 2003-01-23 | Endress & Hauser Gmbh & Co Kg | Drucksensor und Verfahren zu dessen Betrieb |
US6593209B2 (en) * | 2001-11-15 | 2003-07-15 | Kulite Semiconductor Products, Inc. | Closing of micropipes in silicon carbide (SiC) using oxidized polysilicon techniques |
JP2003315193A (ja) * | 2002-04-24 | 2003-11-06 | Denso Corp | 圧力センサ |
DE10227479A1 (de) * | 2002-06-19 | 2004-01-08 | Endress + Hauser Gmbh + Co. Kg | Druckmeßgerät |
DE10308820B4 (de) * | 2003-02-27 | 2006-10-12 | Ifm Electronic Gmbh | Sensor, Meßzelle zur Verwendung in einem Sensor und Verfahren zur Herstellung einer Meßzelle |
US7100453B2 (en) * | 2003-12-30 | 2006-09-05 | Honeywell International Inc. | Modified dual diaphragm pressure sensor |
US6945118B2 (en) * | 2004-01-13 | 2005-09-20 | Honeywell International Inc. | Ceramic on metal pressure transducer |
JP2006322783A (ja) * | 2005-05-18 | 2006-11-30 | Dainippon Screen Mfg Co Ltd | 圧力センサおよび基板処理装置 |
DE102006056172A1 (de) | 2006-11-27 | 2008-05-29 | Endress + Hauser Gmbh + Co. Kg | Elastischer Keramikkörper und Drucksensor mit einem elastischen Keramikkörper |
DE102007008506B4 (de) * | 2007-02-21 | 2010-08-19 | Continental Automotive Gmbh | Verfahren zum Schutz eines elektronischen Sensorelements und elektronisches Sensorelement |
US20090013759A1 (en) * | 2007-07-13 | 2009-01-15 | General Electric Company | Wobbe index sensor system |
DE102010063723A1 (de) | 2010-12-21 | 2012-06-21 | Endress + Hauser Gmbh + Co. Kg | Keramischer Drucksensor mit Überlastschutz |
DE102013101936A1 (de) * | 2013-02-27 | 2014-08-28 | Endress + Hauser Gmbh + Co. Kg | Drucksensor |
DE102013226775A1 (de) | 2013-12-19 | 2015-06-25 | Vega Grieshaber Kg | Messzelle |
WO2016026541A1 (de) * | 2014-08-20 | 2016-02-25 | Endress+Hauser Gmbh+Co. Kg | Druckmesszelle |
US10739218B2 (en) * | 2016-04-11 | 2020-08-11 | The Alfred E. Mann Foundation For Scientific Research | Pressure sensors with tensioned membranes |
US11940336B2 (en) * | 2021-03-26 | 2024-03-26 | Sporian Microsystems, Inc. | Driven-shield capacitive pressure sensor |
DE102021118954A1 (de) | 2021-07-22 | 2023-01-26 | Endress+Hauser SE+Co. KG | Druckmesseinrichtung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753196A (en) * | 1971-10-05 | 1973-08-14 | Kulite Semiconductor Products | Transducers employing integral protective coatings and supports |
US4737756A (en) * | 1987-01-08 | 1988-04-12 | Imo Delaval Incorporated | Electrostatically bonded pressure transducers for corrosive fluids |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1563894A (en) * | 1976-03-12 | 1980-04-02 | Kavlico Corp | Capacitive pressure transducer and method for making same |
JPS53142888A (en) * | 1977-05-18 | 1978-12-12 | Matsushita Electric Ind Co Ltd | Pressure converter of semiconductor |
DE2938205A1 (de) * | 1979-09-21 | 1981-04-09 | Robert Bosch Gmbh, 7000 Stuttgart | Kapazitiver druckgeber und auswerteeinrichtung hierfuer |
US4320664A (en) * | 1980-02-25 | 1982-03-23 | Texas Instruments Incorporated | Thermally compensated silicon pressure sensor |
US4382247A (en) * | 1980-03-06 | 1983-05-03 | Robert Bosch Gmbh | Pressure sensor |
DE3008572C2 (de) * | 1980-03-06 | 1982-05-27 | Robert Bosch Gmbh, 7000 Stuttgart | Druckmeßdose |
DE3118366A1 (de) * | 1981-05-08 | 1982-11-25 | Siemens AG, 1000 Berlin und 8000 München | Drucksensor |
JPS61428A (ja) * | 1984-06-13 | 1986-01-06 | Toshiba Corp | 空気清浄方式 |
US4858557A (en) * | 1984-07-19 | 1989-08-22 | L.P.E. Spa | Epitaxial reactors |
US4725345A (en) * | 1985-04-22 | 1988-02-16 | Kabushiki Kaisha Kenwood | Method for forming a hard carbon thin film on article and applications thereof |
JPS633468A (ja) * | 1986-06-24 | 1988-01-08 | Nec Corp | 半導体圧力センサ |
JPH0750789B2 (ja) * | 1986-07-18 | 1995-05-31 | 日産自動車株式会社 | 半導体圧力変換装置の製造方法 |
US4773269A (en) * | 1986-07-28 | 1988-09-27 | Rosemount Inc. | Media isolated differential pressure sensors |
JPS63117906A (ja) * | 1986-11-07 | 1988-05-21 | Shin Etsu Chem Co Ltd | 多結晶シリコン製造装置用部材 |
JPS63225591A (ja) * | 1987-03-12 | 1988-09-20 | 住友金属工業株式会社 | 炭化珪素被覆黒鉛材料の製造方法 |
US4798089A (en) * | 1987-03-12 | 1989-01-17 | Rosemount Inc. | Isolator apparatus |
US4932265A (en) * | 1987-12-11 | 1990-06-12 | The Babcock & Wilcox Company | Pressure transducer using thick film resistor |
US4905575A (en) * | 1988-10-20 | 1990-03-06 | Rosemount Inc. | Solid state differential pressure sensor with overpressure stop and free edge construction |
-
1989
- 1989-04-13 DE DE3912217A patent/DE3912217A1/de active Granted
-
1990
- 1990-03-21 IE IE901049A patent/IE901049L/xx unknown
- 1990-03-24 WO PCT/EP1990/000481 patent/WO1990012300A1/de active IP Right Grant
- 1990-03-24 DK DK90904828.2T patent/DK0424483T3/da active
- 1990-03-24 ES ES199090904828T patent/ES2042290T3/es not_active Expired - Lifetime
- 1990-03-24 JP JP2504922A patent/JP2675190B2/ja not_active Expired - Lifetime
- 1990-03-24 EP EP90904828A patent/EP0424483B1/de not_active Expired - Lifetime
- 1990-03-24 DE DE9090904828T patent/DE59002092D1/de not_active Expired - Fee Related
- 1990-03-24 CA CA002028836A patent/CA2028836C/en not_active Expired - Fee Related
- 1990-03-26 US US07/499,615 patent/US5076147A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753196A (en) * | 1971-10-05 | 1973-08-14 | Kulite Semiconductor Products | Transducers employing integral protective coatings and supports |
US4737756A (en) * | 1987-01-08 | 1988-04-12 | Imo Delaval Incorporated | Electrostatically bonded pressure transducers for corrosive fluids |
Also Published As
Publication number | Publication date |
---|---|
IE901049L (en) | 1990-10-13 |
DE59002092D1 (de) | 1993-09-02 |
ES2042290T3 (es) | 1993-12-01 |
EP0424483B1 (de) | 1993-07-28 |
DK0424483T3 (da) | 1993-10-11 |
US5076147A (en) | 1991-12-31 |
DE3912217C2 (de) | 1993-06-17 |
JP2675190B2 (ja) | 1997-11-12 |
CA2028836C (en) | 2000-07-04 |
EP0424483A1 (de) | 1991-05-02 |
JPH03501062A (ja) | 1991-03-07 |
CA2028836A1 (en) | 1990-10-14 |
DE3912217A1 (de) | 1990-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0424483B1 (de) | Drucksensor | |
DE3910646C2 (de) | ||
DE60130471T2 (de) | Sensor für ultrareine und stark korrosive umgebungen | |
DE3403042A1 (de) | Duennfilm-dehnungsmessstreifen-system und verfahren zu seiner herstellung | |
EP1979730B1 (de) | Vakuummesszelle mit membran | |
DE4415984A1 (de) | Halbleitersensor mit Schutzschicht | |
DE2507731A1 (de) | Messwiderstand fuer widerstandsthermometer und verfahren zu seiner herstellung | |
WO2008058406A1 (de) | Vakuummembranmesszelle und verfahren zur herstellung einer derartigen messzelle | |
WO2009079803A1 (de) | Anordnung für eine membrandruckmesszelle | |
DE102007026243A1 (de) | Kapazitiver Drucksensor | |
DE3840703C2 (de) | ||
DE102007026445A1 (de) | Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements | |
DE102009003178A1 (de) | Keramisches Bauteil mit mindestens einer elektrischen Durchführung, Verfahren zu dessen Herstellung und Drucksensor mit einem solchen Bauteil | |
EP1144968A1 (de) | Platintemperatursensor und herstellungsverfahren für denselben | |
DE102007030910A1 (de) | Drucksensor | |
DE102014103142A1 (de) | Druckmessaufnehmer | |
EP3194906B1 (de) | Medienbeständige multilagenbeschichtung für ein messgerät der prozesstechnik | |
EP0150878B1 (de) | Verfahren zur Herstellung eines Dünnfilmmessstreifensystems | |
EP3057707B1 (de) | Messanordnung mit einem trägerelement und einem sensor | |
EP0787220B1 (de) | Dichtungselement, insbesondere für absperr- und regelorgane und verfahren zu seiner herstellung | |
EP0548470B2 (de) | Drucksensor mit einer Membran aus Halbleitermaterial | |
DE102014108351A1 (de) | Messanordnung mit einem Trägerelement und einem mikromechanischen Sensor | |
DE102019133820A1 (de) | Druckmesseinrichtung | |
DE102013114741A1 (de) | Drucksensor | |
DE102011084612A1 (de) | Keramische Druckmesszelle mit kapazitivem Wandler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2028836 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1990904828 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1990904828 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1990904828 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: CA Ref document number: 2028836 Kind code of ref document: A Format of ref document f/p: F |