WO1990006312A1 - 2', 3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung - Google Patents

2', 3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO1990006312A1
WO1990006312A1 PCT/EP1989/001447 EP8901447W WO9006312A1 WO 1990006312 A1 WO1990006312 A1 WO 1990006312A1 EP 8901447 W EP8901447 W EP 8901447W WO 9006312 A1 WO9006312 A1 WO 9006312A1
Authority
WO
WIPO (PCT)
Prior art keywords
dideoxyribofuranoside
dideoxyribofuranosyl
purine
pyrimidine
amino
Prior art date
Application number
PCT/EP1989/001447
Other languages
English (en)
French (fr)
Inventor
Wolfgang Fischer
Erich Kaun
Uwe Genz
Original Assignee
Institut Für Molekularbiologie Und Analytik (Ima) Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883840160 external-priority patent/DE3840160A1/de
Priority claimed from DE19893918898 external-priority patent/DE3918898A1/de
Application filed by Institut Für Molekularbiologie Und Analytik (Ima) Gmbh filed Critical Institut Für Molekularbiologie Und Analytik (Ima) Gmbh
Publication of WO1990006312A1 publication Critical patent/WO1990006312A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/38Nucleosides
    • C12P19/40Nucleosides having a condensed ring system containing a six-membered ring having two nitrogen atoms in the same ring, e.g. purine nucleosides

Definitions

  • the invention relates to new 2 ', 3'-dideoxyribofuranosides, a process for the preparation of 2', 3'-dideoxyribofuranosides and the associated use of a special nucleoside deoxyribosyl transferase.
  • EP-A 206 497 discloses a process for the synthesis of therapeutically active 2 ', 3'-dideoxyribosides, in which a cytosine or purine base is catalysed by thymidine phosphorylase and purine nucleoside phosphorylase in the presence of 2 ', 3'-dideoxythymidine is converted to the corresponding 2', 3'-dideoxyriboside.
  • a suitable nucleoside deoxyribosyl transferase from Lactobacillus The large and heterogeneous bacterial family Lactobacillus is however not specified with regard to certain members.
  • From EP-A 286 425 6 substituted purine-containing 2 ', 3'-dideoxyribofuranosides are also known, which were synthesized using the method already described in EP-A 206 497. No details of other suitable enzymes are disclosed.
  • This object is achieved according to the invention by the representation of 2 ', 3'-dideoxyribofuranosides according to claim 1.
  • Advantageous embodiments result from claims 2 to 5.
  • the 2', 3'-dideoxyribosides according to the invention make the range of nucleosides available up to now very much advantageously expanded.
  • the invention also relates to the 2 ', 3'-dideoxyribosides according to the invention as pharmaceuticals. This primarily relates to their chemotherapeutic use as antiviral agents.
  • the object of the invention is to be able to implement a wide range of bases. Surprisingly, it was found that by using nucleoside deoxyribosyltransferase from Lactobacillus Ieichmannii previously unreachable substrates can be reacted and thus previously inaccessible 2 ', 3'-dideoxyribosides can be produced. The invention therefore also relates to a method according to claim 7.
  • the enzyme from L. Ieichmannii is superior compared to that from L. helveticus. It enables e.g. B. the synthesis of the compound 6-amino-9- (1-ß-D-2,3-dideoxyribofuranosyl) -2-hydroxypurine (2 ', 3'-dideoxy-iso-guanosine), which when using the enzyme cannot be reached from L. helveticus. Furthermore, the methylated isoguanine derivative 2-hydroxy-6-methylaminopurine can also act as an acceptor in the enzyme from L. Ieichmannii. In contrast to the enzyme from L. helveticus, even 6-amino-8-brorapurine (8-bromadenine) is a substrate, albeit a weak one.
  • nucleoside deoxyribosyltransferase from Lactobacillus Ieichmannii causes the production of additional, up to now not shown purine-substituted 2 ', 3'-dideoxyribosides with significant chemotherapeutic potential.
  • Lactobacillus Ieichmannii nucleoside deoxyribosyltransferase also proves to be particularly advantageous in terms of enzyme technology. In comparison to the enzyme from L. helveticus, nucleoside deoxyribosyltransferase results from L. Ieichmannii an approx. 50-fold higher specific activity with regard to 2,3-dideoxyribofuranosyl transfer.
  • nucleoside deoxyribosyltransferases from L. Ieichmannii is still characterized by an extraordinary. Stability, u. a. against elevated temperature and denaturing reagents. So z. B. the activity of the enzyme can be almost completely recovered after two hours of incubation in 2 M guanidine hydrochloride or after eight hours of incubation in 8 M urea at room temperature and subsequent dialysis. Furthermore, a 15 minute incubation of the enzyme at 65 ° C only resulted in a loss of activity of 3.5%. Brief heating to 100 ° C also resulted in little loss of activity.
  • nucleoside deoxyribosyltransferase from L. Ieichmannii causes an extraordinarily high long-term activity of the enzyme and makes it seem almost predestined for use in enzyme technology. This enables the dideoxyriboside synthesis to be carried out in a batch process. In the syntheses practiced here, the loss of activity of the enzyme after reaction for 48 hours in solution at 37 ° C. was consistently less than 8%. It is also advantageous that the enzyme can be easily recovered after synthesis and can thus be used several times.
  • the process is advantageously carried out in such a way that 2 ', 3'-dideoxyribosides are prepared by transferring a 2,3-dideoxyribofuranosyl residue from a suitable 2,3-dideoxyribofuranosyl donor to an acceptor base using the catalytic activity of those nucleoside deoxyribosyltransferase from L.
  • Ieichmannii which, in addition to purine-substituted bases, can also recognize pyrimidine-substituted bases or nucleosides.
  • nucleoside deoxyribosyltransferases exist in this organism, which can be separated from one another by anion exchange chromatography.
  • the cellular activity of one enzyme referred to here as nucleoside deoxyribosyltransferase I, is limited to the transfer of the purinhal deoxyribosyl residues deoxyribonucleosides on the 9-position of purine acceptor bases.
  • the other enzyme hereinafter referred to as nucleoside deoxyribosyltransferase II, is also able to catalyze deoxyribosyl transfer between purines, but also exclusively between pyrimidines and between purines and pyrimidines.
  • transferases but especially nucleoside deoxyribosyltransferase II, are characterized by a very broad spectrum of substrates with regard to the nucleobase components.
  • nucleoside deoxyribosyltransferase is otherwise very specific with regard to the sugar to be transferred (2-deoxyribofuranose), it has surprisingly been found that both L. Ieichmannii nucleoside deoxyribosyltransferases can efficiently catalyze an exchange of 2,3-dideoxyribosyl residues under suitable conditions. Although the rate (Vmax) of the 2,3-dideoxyribosyl transfer is about an order of magnitude lower than that of the natural 2-deoxyribosyx exchange, the enzymes can still be used to 2 ', 3'-dideoxyriboside in due to their high specific synthetic performance and long-term activity synthesize significant amounts.
  • nucleoside deoxyribosyltransferase II For the synthesis of 2 ', 3'-dideoxyribosides, however, the use of nucleoside deoxyribosyltransferase II is recommended due to the larger amount of enzyme in Lactobacillus Ieichmannii and the broader substrate spectrum compared to nucleoside deoxyribosyltransferase I.
  • nucleoside deoxyribosyltransferase II diease is also transferase II Given the possibility of using a pyrimidine-substituted 2 ', 3'-dideoxyriboside as didesoxyribosyl donor.
  • nucleoside deoxyribosyltransferas II from Lactobacillus Ieichmannii in addition to a large number of purine-substituted 2 ', 3'-dideoxyribosides, can also be used to synthesize such 2', 3'-dideoxyribosides, the heterocyclic backbone of purine (or pyrimidine)
  • Phase inversion preferably via a stationary phase
  • nucleoside components enables desalting at the same time.
  • the procedure can generally be used to isolate the here
  • the dideoxyribofuranosyl donor here 2 ', 3'-dideoxycytidine
  • the initial concentrations of 2 ', 3'-dideoxycytidine were 2 to 6 times higher than those of the respective acceptor bases, which varied between 0.7 and 12 mM depending on their solubility behavior.
  • the conversion rates that After analytical HPLC separation of the respective compounds by integrating the associated peaks, the individual reactions were between 28 and 97% with respect to the acceptor base.
  • the synthesis was carried out in a slightly acidic environment in a pH range of 6.0-6.5. The selected synthesis temperature of 37 ° C enables both a high synthesis performance and a very good long-term activity of the enzyme.
  • nucleoside deoxyribosyl transferase can be separated from the nucleosides and bases and thus used again for further syntheses. This is made possible in a very simple manner by ultrafiltration of the synthesis batch, followed by dialysis of the enzyme-containing retentate to completely remove residual amounts of nucleosides or bases. Between the syntheses, the enzyme can be stored in the freeze-dried state. Lyophilization itself does not result in a significant loss of activity of the enzyme.
  • the matrix-bound compounds are eluted by increasing the methanol concentration of the eluent mixture.
  • a linear gradient of increasing methanol concentration was used for elution. This was done in all cases first the elution of cytosine, while the synthesized 2 ', 3'-dideoxyriboside was the last of the four compounds to be washed completely homogeneously from the matrix. Only the order of the elution of the dideoxyribofuranosyl donor, 2 ', 3'-dideoxycytidine, and the remaining, unreacted acceptor base is variable. In most cases, the separation of 2 ', 3'-dideoxycytidine and acceptor base is so efficient that dideoxycytidine, which is the most expensive compound used, can be recovered completely homogeneously and desalted.
  • Nucleoside deoxyribosyltransferase (EC 2.4.2.6) was purified from Lactobacillus Ieichmannii cells grown in the MRS medium. After disruption of the cells using a glass bead homogenizer (disintegrator-S from IMA GmbH, Zeppelinheim, Germany), both nucleoside deoxyribosyltransferases can be isolated by a total of only three column chromatographies. The first step is to separate the two transferases and to remove most of the foreign protein by anion exchange chromatography, while the subsequent purification of nucleoside deoxyribosyltransferase I and II for homogeneity is achieved by affinity chromatography.
  • the crude extract freed from the cell debris and concentrated by oil filtration is placed on a column with DEAE-Sephacel (Sigma, Deisenhofen, Germany).
  • the chromatography conditions are chosen so that most of the foreign protein is already washed off the column with the start buffer (50 mM KH 2 PO 4 pH 6.5, 150 mM NaCl), while both transferases remain bound. Your subsequent elution is determined by a linear gradient of increasing salt concentration tration causes (150-450 mM).
  • nucleoside deoxyribosyltransferase I is eluted, followed by nucleoside deoxyribosyltransferase II.
  • this enzyme there is a purification factor of approximately 10 compared to the crude extract, while for nucleoside deoxyribosyltransferase I it is due to the lower protein concentration in the corresponding fractions is even much larger.
  • This enzyme exchange chromatography completely separates the two enzymes. After the fractions containing transferase have been combined, they are concentrated by ultrafiltration.
  • the purification of both transferases for homogeneity can then be achieved by affinity chromatography over N 6 - (6-aminohexyl) adenine-Sepharose.
  • the affinity matrix is produced by standard reaction of N 6 - (6-aminohexyl) adenine with cyanogen bromide-activated Sepharose 4B (Pharmacia LKB, Freiburg).
  • N 6 - (6-aminohexyl) adenine can be obtained from IMA GmbH (Zeppelinheim, Germany).
  • nucleoside deoxyribosyl transferase I or II The elution of the bound transferases in the presence of dissolved nucleobases proves to be inefficient, even after adding urea in a 2 molar concentration to the binding buffer there is no significant elution from nucleoside deoxyribosyl transferase I or II.
  • the reaction mixture for the synthesis of 6-dimethylaminopurine-2 ', 3'-dideoxyriboside contained: 210 mg of 2 ', 3'-dideoxycytidine (from Fluka, Neu -Ulm, FRG), 55 mg 6-dimethylaminopurine (Sigma, Deisenhofen, FRG) and 8.5 units of nucleoside deoxyribosyltransferase II from Lactobacillus Ieichmannii in 60 ml of 50 mM sodium citrate pH 6.2 (1 unit is defined as the amount of enzyme that starting from thymidine is able to catalyze the synthesis of 1 ⁇ mol of 2'-deoxyadenosine per minute at 37 ° C and pH 6.0).
  • nucleoside deoxyribosyl transferase II was isolated from the nucleobases or nucleosides of the synthesis mixture by means of ultrafiltration through a polyethersulfone membrane (cut-off limit 10 kilodaltons; type Novasette, Filtron, Karlstein, FRG) separated at a pressure of 2.5 bar.
  • 6-dimethylaminopurine-2 ', 3'-dideoxyriboside was then carried out by medium pressure liquid chromatography (MPLC system from IMA GmbH, Zeppelinheim, Germany) Reversed-phase material (octadecylsilane, grain size 25-40 ⁇ m, from IMA GmbH, Zeppelinheim, FRG), eluting with a pure methanol / water mixture (Fig. 1).
  • the broad substrate spectrum of the enzyme nucleoside deoxyribosyltransferase II from L. Ieichmannii with regard to the nucleobase content enables the synthesis of a wide range of 2 ', 3'-dideoxyribosides.
  • the heterocyclic backbone of the base portion can be purine (1), pyrazolo [3,4-d] pyrimidine (2) or triazolo [4,5-d] pyrimidine (3).
  • 2-acetylamino-6-hydroxypurine N 2 -acetylguanine; 6-amino-8-bromopurine (8-bromadenine); 6-amino-2-thiolpurine; 2-amino-6-hydroxy-8-bromopurine (8-bromoguanine); 2-amino-6-hydroxy-7-methylpurine (7-meth ⁇ lguanine); 6-amino-1-methylpurine (1-methyladenine); 2-amino-6-thiolpurine (6-thioguanine); 6-carboxymethylthiopurine; 6-cyanpurine; 2,6-dithiolpurine; 6-hydroxy-2-methylaminopurine (N 2 -methylguanine): 2-hydroxypurine; 2-hydroxy-6-thiolpurine (6-thioxanthine); 6-methyl-2-hydroxypurine; 6-methylthio-2-hydroxypurine; 2-thiolpurine; 6-trimethylamino-purine.
  • 5 amino-v-triazolo [4,5-d] pyrimidin-7-ol (8-azaguanine) and 7 amino-v-triazolo [4,5-dpyrimidine are from the substance class of triazolo [4,5-d] pyriraidins (8-azaadenine) well suited as acceptors for 2,3-dideoxyribofuranosyl transfer. Furthermore, the dideoxyribosyl transfer using nucleoside deoxyribosyl transferase from L. Ieichmannii can also be carried out on 5.7 diamino-v-triazolo [4,5-d] pyrimidine (8-aza-2,6-diaminopurine).
  • triazolo [4,5-d] pyrimidin-7-ol (8-azahypoxanthine) and triazolo [4,5-d] pyrimidin-5, 7-diol (8-azaxanthine) continue to function.
  • the purine, pyrazolo [3,4-d] pyrimidine and triazolo [4,5-d] pyrimidine-substituted bases listed below were converted by nucleoside deoxyribosyltransferase II from Lactobacilus Ieichmannii in the presence of a suitable dideoxyribosyl donor corresponding 2 ', 3'-dideoxyriboside in amounts of 50-100 mg and then purified to homogeneity by reversed-phase chromatography:
  • 2-amino-6-chloropurine (6-chloroguanine); 6- (6-aminohexylamino) purine (N 6 - (6-aminohexyl) adenine); 6-amino-2-hydroxypurine (isoguanine); 2-amino-6-methoxypurine (O 6 -methylguanine); 6-araino-2- methylpurine (2-methyladenine); 2-amino-6-methylthiopurine; 2-aminopurine; 4-aminopyrazolo [3,4-d] pyrimidine; 7-amino-v-triazolo [4,5-d] pyrimidine (8-azaadenine); 5-amino-v-triazolo [4,5-d] pyrimidin-7-ol (8-azaguanine); 6-benzoylaminopurine (N 6 -benzöyladenine); 6-carboethoxymethylthiopurine; 6- (4-carboxy-butyl) thiopur
  • Peak 1 cytosine
  • peak 2 2 ', 3' dideoxycytidine
  • peak 3 6-dimethylaminopurine
  • peak 4 6-dimethylaminopurine-2 ', 3'- dideoxyribofuranoside.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

Die Erfindung betrifft neue 2', 3'-Didesoxyribofuranoside mit purin-, pyrazolo[3,4-d]pyrimidin- und triazolo[4,5-d]pyrimidin-substituiertem Basenanteil sowie ein Verfahren zu ihrer Herstellung. Das Verfahren beruht auf der enzymatischen Übertragung eines 2,3-Didesoxyribofuranosylrestes von einem geeigneten 2',3'-Didesoxyribosid auf eine Akzeptorbase. Die Reaktionen werden bewirkt durch die katalytische Aktivität von Nukleosid-Desoxyribosyltransferase aus Lactobacillus leichmannii. Die darstellbaren 2',3'-Didesoxyribofuranoside besitzen vor allem als antivirale Agenzien ein signifikantes chemotherapeutisches Potential.

Description

2',3'-Didesoxyribofuranoside
============================
und ein Verfahren zu ihrer Herstellung
================================== =========
Die Erfindung betrifft neue 2',3'-Didesoxyribofuranoside, ein Verfahren zur Herstellung von 2',3'-Didesoxyribofuranoside und die damit verbundene Verwendung einer speziellen Nukleo- sid-Desoxyribosyltransferase.
Enzymatisehe Verfahren zur Synthese von 2',3'- -------------------------------------------------------------------------------------------------------------------- Didesoxyribofuranosiden
---------------------------------
Aus der EP-A 206 497 ist ein Verfahren zur Synthese von therapeutisch wirksamen 2',3'-Didesoxyribosiden bekannt, bei dem eine Cytosin- oder Purinbase unter Katalyse durch Thymi- din-Phosphorylase und Purin-Nukleosid-Phosphorylase in Gegen- wart von 2',3'-Didesoxythymidin zum entsprechenden 2',3'- Didesoxyribosid umgesetzt wird. In Verbindung mit pyrimidin- haltigen Basen wird auf die Möglichkeit zur Verwendung eine geeigneten Nukleosid-Desoxyribosyltransferase aus Lactobacillus hingewiesen. Die große und heterogene Bakterienfamilie Lactobacillus wird hinsichtlich bestimmter Mitglieder jedoc nicht näher spezifiziert. Aus der EP-A 286 425 sind ferner 6 substituierte purinhaltige 2',3'-Didesoxyribofuranoside bekannt, die unter Verwendung des bereits in der EP-A 206 497 beschriebenen Verfahrens synthetisiert wurden. Nähere Angabe über andere geeignete Enzyme werden nicht offenbart.
Weiterhin wurde vor kurzem auf die Möglichkeit zur Synthese von 2',3'-Didesoxyribosiden mittels Nukleosid-Desoxyribosyltransferase (EC 2.4.2.6) aus Lactobacillus helveticus hingewiesen (Carson, D.A. und Wasson, D.B. (1988) Biochem. Biophys. Res. Comraun. 1.55, 829-834). Nachteilig zeigt das Enzym aus L. helveticus ein begrenztes Substratspektrum. So kann im Falle der Akzeptorbasen 5-Araino-v-triazolo[4,5-d]pyrimi- din-7-ol (8-Azaguanin) und 7-Amino-v-triazolo[4,5-d]pyrimidin (8-Azaadenin) ein 2 ,3-Didesoxyribofuranosyltransfer nicht bewerkstelligt werden. Dies trifft auch auf Benzimidazol sowie die purinsubstituierten Basen 6-Amino-2-hydroxypurin (Isoguanin) und 6-Amino-8-brompurin ( 8-Bromadenin) zu.
Weiterhin nachteilig bei Synthesen von 2',3'-Didesoxyribosiden im präparativen Maßstab ist die geringe spezifische Syntheseleistung des Enzyms aus Lactobacillus helveticus, die bei Verwendung von 2',3'-Didesoxycytidin als 2,3-Didesoxyribofuranosyldonor bezogen auf die Bildung von 2',3'-Didesoxyadenosin 15 nmol/min/mg Transferase beträgt (bei 37 ºC).
2',3'-Didesoxyribofuranoside und ihre Synthese durch Nukleo- --------------------------------------------------------------------------------------------------------------------- sid-Desoxyribosyltransferase aus Lactobacillus Ieichmannii ----------------------------------------------------------------------------------------------------------------------
Es ist Aufgabe der vorliegenden Erfindung, neue 2',3'- Didesoxyriboside zur Verfügung zu stellen. Diese Aufgabe wird erfindungsgemäß gelöst durch die Darstellung von 2',3'-Didesoxyribofuranosiden gemäß Anspruch 1. Vorteilhafte Ausführungsformen ergeben sich aus den Ansprüchen 2 bis 5. Durch die erfindungsgemäßen 2',3'-Didesoxyriboside wird die Palette der bisher verfügbaren Nukleoside in sehr vorteilhafter Weise erweitert.
Die Erfindung betrifft auch die erfindungsgemäßen 2',3'- Didesoxyriboside als Pharmazeutika. Dies bezieht sich vor allem auf deren chemotherapeutische Anwendung als antiviral Agenzien. Besonders vielversprechend für therapeutische Zwecke ist die Kombination eines gegenüber Purin modifizierten (und zusätzlich substituierten) heterozyklischen Ringsys- tems mit einem 2,3-Didesoxyribofuranosylrest, der nach Einbau des Didesoxyribosids in Nukleinsäuren eine anschließende Kettenverlängerung unmöglich macht.
Bezüglich des Verfahrens zur Herstellung der 2',3' Didesoxyriboside liegt der Erfindung die Aufgabe zugrunde, ein breites Substratspektrum von Basen umsetzen zu können. Überraschenderweise wurde gefunden, daß durch die Verwendung von Nukleosid-Desoxyribosyltransferase aus Lactobacillus Ieichmannii bisher nicht umsetzbare Substrate zur Reaktiongebracht und somit vorher nicht zugängliche 2',3'-Didesoxyriboside hergestellt werden können. Gegenstand der Erfindung ist daher auch ein Verfahren gemäß Anspruch 7.
Gegenüber der bekannten Verwendung des Enzyms aus Lactobacillus helveticus ist im Falle der Akzeptorbasen 5-Amino-v- triazolo[4,5-dlpyrimidin-7-ol (8-Azaguanin) und 7-Amino-v- triazolo[4,5-d]pyrimidin (8-Azaadenin) ein 2,3-Didesoxyribo- furanosyltransfer durch Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii gut möglich. Bei diesem Enzym kann selbst im Falle der Akzeptorbase Benzimidazol eine, wenn auch schwache, Reaktion beobachtet werden. Ein enzymat ischer Transfer eines Didesoxyribofuranosylrestes auf eine Base mit einem heterozyklischen Grundgerüst, das nicht Purin oder Pyrimidin darstellt, konnte bisher auch anderweitig nicht demonstriert werden.
Auch hinsichtlich der purinsubstituierten Substrate ergibt sich eine Überlegenheit des Enzyms aus L. Ieichmannii, verglichen mit demjenigen aus L. helveticus. Es ermöglicht z. B. die Synthese der Verbindung 6-Amino-9-(1-ß-D-2,3-didesoxyri- bofuranosyl)-2-hydroxypurin (2',3'-Didesoxy-iso-guanosin), was bei Verwendung des Enzyms aus L. helveticus nicht erreichbar ist. Weiterhin kann bei dem Enzym aus L. Ieichmannii auch das methylierte Isoguanin-Derivat 2-Hydroxy-6-methylami- nopurin als Akzeptor fungieren. Selbst 6-Amino-8-brorapurin (8-Bromadenin) stellt hier im Gegensatz zu dem Enzym aus L. helveticus ein, wenn auch schwaches, Substrat dar.
Darüberhinaus bewirkt Nukleosid-Desoxyribosyltransferase aus Lactobacillus Ieichmannii die Herstellung zusätzlicher, bishe anderweitig nicht dargestellter purinsubstituierter 2',3'- Didesoxyriboside mit signifikantem chemotherapeutischem Potential.
Auch in enzymtechnologischer Hinsicht erweist sich Nukleosid- Desoxyribosyltransferase aus Lactobacillus Ieichmannii als besonders vorteilhaft. Im Vergleich zu dem Enzym aus L. helveticus ergibt sich bei Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii eine ca. 50-fach höhere spezifische Aktivität bezüglich des 2,3-Didesoxyribofuranosyltransfers.
Im Vergleich zu Nukleosid-Desoxyribosyltransferasen aus anderen Lactobacillus-Stämmen, z.B. derjenigen aus L. helveticus, zeichnet sich Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii weiterhin durch eine außergewöhnliche. Stabilität aus, u. a. gegenüber erhöhter Temperatur und denaturierenden Reagenzien. So kann z. B. die Aktivität des Enzyms nach zweistündiger Inkubation in 2 M Guanidinhydrochlorid oder nach achtstündiger Inkubation in 8 M Harnstoff bei Raumtemperatur und anschließender Dialyse nahezu vollständig zurückgewonnen werden. Weiterhin hatte eine 15minütige Inkubation des Enzyms bei 65 °C lediglich einen Aktivitätsverlust von 3.5 % zur Folge. Auch führte eine kurzzeitige Erhitzung auf 100 ºC nur zu geringen Aktivitätsverlusten.
Die hohe Stabilität von Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii bedingt eine außerordentlich hohe Langzeitaktivität des Enzyms und läßt es für eine enzymtechnologische Verwendung geradezu prädestiniert erscheinen. Ermöglicht wird so die Durchführung der Didesoxyribosidsynthe- sen im Batch-Verfahren. Bei den hier praktizierten Synthesen war der Aktivitätsverlust des Enzyms nach 48stündiger Reaktion in Lösung bei 37 °C durchweg geringer als 8 %. Vorteilhaft ist auch, daß sich das Enzym nach erfolgter Synthese einfach wiedergewinnen läßt und so mehrfach eingesetzt werden kann.
Das Verfahren wird vorteilhaft so ausgeführt, daß 2',3'- Didesoxyriboside durch Übertragung eines 2,3-Didesoxyribofuranosylrestes von einem geeigneten 2,3-Didesoxyribofuranosyldonor auf eine Akzeptorbase unter Ausnutzung der katalytischen Aktivität derjenigen Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii hergestellt werden, die neben purinsubstituierten auch pyrimidinsubstituierte Basen bzw. Nukleoside zu erkennen vermag.
Es wurde gefunden, daß in diesem Organismus zwei verschiedene Nukleosid-Desoxyribosyltransferasen existieren, die durch Anionenaustauschchromatographie voneinander getrennt werden können. Die zelluläre Aktivität des einen Enzyms, hier als Nukleosid-Desoxyribosyltransferase I bezeichnet, beschränkt sich auf die Übertragung der Desoxyribosylreste von purinhal tigen Desoxyribonukleosiden auf die 9-Position von PurinAkzeptorbasen. Das andere Enzym, im folgenden als NukleosidDesoxyribosyltransferase II bezeichnet, vermag ebenfalls den Desoxyribosyltransfer zwischen Purinen zu katalysieren, darüberhinaus aber auch ausschließlich zwischen Pyrimidinen sowie zwischen Purinen und Pyrimidinen. Beide Transferasen, vor allem aber Nukleosid-Desoxyribosyltransferase II, zeichnen sich durch ein sehr breites Substratspektrum hinsichtlich der Nukleobasenanteile aus.
Obwohl Nukleosid-Desoxyribosyltransferase bezüglich des zu transferierenden Zuckers (2-Desoxyribofuranose) ansonsten sehr spezifisch ist, wurde überraschenderweise gefunden, daß beide Nukleosid-Desoxyribosyltransferasen aus L. Ieichmannii unter geeigneten Bedingungen auch einen Austausch von 2,3- Didesoxyribosylresten effizient zu katalysieren vermögen . Zwar ist die Geschwindigkeit (Vmax) des 2,3-Didesoxyribosyltransfers um ca. eine Größenordnung geringer ist als die des natürlichen 2-Desoxyribosylaustauschs, dennoch lassen sich mit Hilfe der Enzyme aufgrund ihrer hohen spezifische Syntheseleistung und Langzeitaktivität 2',3'-Didesoxyriboside in signifikanten Mengen synthet isieren .
Für die Synthese von 2',3'-Didesoxyribosiden empfiehlt sich jedoch der Einsatz von Nukleosid-Desoxyribosyltransferase II aufgrund der größeren Enzymmenge in Lactobacillus Ieichmannii und des breiteren Substratspektrums im Vergleich zu Nukleo sid-Desoxyribosyltransferase I. Bei Verwendung von Nukleosid Desoxyribosyltransferase II ist auch die Möglichkeit gegeben, ein pyrimidinsubstituiertes 2',3'-Didesoxyribosid als Dideso- xyribosyldonor einzusetzen.
Als besonders günstig hat es sich erwiesen, das Verfahren so auszuführen, daß 2',3'-Didesoxyriboside durch Transfer eines 2,3-Didesoxyribofuranosylrestes von 2',3'-Didesoxycytidin auf eine gegebenenfalls substituierte Purin-, Pyrazolo[3,4-d]py- rimidin- oder Triazolo [4,5-d]pyriraidin-Base unter Katalyse von Nukleosid-Desoxyribosyltransferase II aus Lactobacillus Ieichmannii hergestellt werden.
Es wurde gefunden, daß mit Nukleosid-Desoxyribosyltransferas II aus Lactobacillus Ieichmannii neben einer Vielzahl von purinsubstituierten 2',3'-Didesoxyribosiden auch solch 2',3'-Didesoxyriboside synthetisiert werden können, deren heterozyklisches Grundgerüst sich von Purin (bzw. Pyrimidin)
unterscheidet. Hierbei handelt es sich um Derivate von Pyrazolo[3,4-d]pyrimidin und Triazolo [4,5-dlpyrimidin.
Obwohl prinzipiell der Einsatz verschiedener 2,3-Didesoxyribofuranosyldonoren (z. B. 2',3'-Didesoxyguanosin,
2',3'-Didesoxyadenosin, 2',3'-Didesoxyuridin) möglich ist,
empfiehlt sich die Verwendung von 2',3'-Didesoxycytidin bei
präparativen Synthesen. 2',3'-Didesoxycytidin stellt das zur
Zeit kommerziell günstigste Didesσxyribosid dar. Überdies ist
die Geschwindigkeit des 2,3-Didesoxyribofuranosyltransfer
ausgehend von 2',3'-Didesoxycytidin im Vergleich zu 2',3'
Didesoxythymidin und 2',3'-Didesoxyuridin signifikant erhöht.
Bei Verwendung von 2',3'-Didesoxycytidin ergeben sich auch
Vorteile mit Bezug auf die anschließende Aufreinigung der
synthetisierten 2',3'-Didesoxyriboside.
Vorteilhaft wird nach der enzymatischen Synthese eine
Aufreinigung der hergestellten 2',3'-Didesoxyriboside mittels
Reversed-phase-Chromatographie (Chromatographie mit
Phasenumkehr), vorzugsweise über eine stationäre Phase mit
Octadecylsilan, durchgeführt. Diese Chromatographie beinhaltet die Benutzung eines Laufmittels, das neben Wasser ledig
lich eine oder mehrere organische Komponenten (vorzugsweis
handelt es sich um ein reines Wasser/Methanol-Gemisch), aber
keine puffernden Substanzen oder Ionen enthält. Es wurde
gefunden, daß sich der Verzicht darauf nicht signifikant
negativ auf die Trennung auswirkt und neben der Aufreinigung
der Nukleosidkomponenten gleichzeitig ihr Entsalzen ermög- licht.
Das Verfahren kann generell zur Isolierung der hier
synthetisierten purin-, pyrazolo[3,4-d]pyrimidin- und triazo¬lo[4,5-d]pyrimidin-haltigen 2',3'-Didesoxyriboside angewendet
werden.
Allgemeine Darstellung des Syntheseverfahrens
--------------------------------------------------------------------------------
1. Durchführung der Synthesen der 2',3'-Didesoxyriboside
Zur Erhöhung der Reaktionsausbeute sollte der Didesoxyribo- furanosyldonor, hier 2',3'-Didesoxycytidin, im molaren Über schuß gegenüber der Akzeptorbase eingesetzt werden. Bei den durchgeführten präparativen Synthesen lagen die Ausgangskon- zentrationen des 2',3'-Didesoxycytidins 2- bis 6-fach höher als die der jeweiligen Akzeptorbasen, die in Abhängigkeit vo ihrem Löslichkeitsverhalten zwischen 0.7 und 12 mM variier- ten. Die Umsatzraten, die nach analytischer HPLC-Trennung der jeweiligen Verbindungen durch Integration der zugehörigen Peaks quantitativ bestimmt wurden, betrugen bei den einzelnen Reaktionen zwischen 28 und 97 % mit Bezug auf die Akzep torbase. Die Durchführung der Synthesen erfolgte jeweils in leicht saurem Milieu in einem pH-Bereich von 6.0-6.5. Die gewählte Synthesetemperatur von 37 °C ermöglicht sowohl eine hohe Syntheseleistung als auch eine sehr gute Langzeitaktivität des Enzyms.
2 . Rückgewinnung der eingesetzten Nukleosid-Desoxyribosyl- transferase
Nach erfolgter Synthese des jeweiligen 2',3'-Didesoxyribosid kann Nukleosid-Desoxyribosyltransferase von den Nukleosiden und Basen getrennt und somit für weitere Synthesen erneut verwendet werden. Ermöglicht wird dies auf sehr einfache Weise durch Ültraf iltration des Syntheseansatzes, gefolgt von einer Dialyse des enzymhaltigen Retentats zur vollständigen Entfernung von Restmengen an Nukleosiden bzw. Basen. Zwischen den Synthesen kann das Enzym in gefriergetrocknetem Zustand gelagert werden. Das Lyophilisieren selbst hat keinen signi- fikanten Aktivitätsverlust des Enzyms zur Folge.
3. Aufreinigung der synthetisierten 2',3'-Didesoxyribosid Das im Filtrat befindliche purinhaltige Didesoxyribosid wird jeweils durch Reversed-phase-Chromatographie über eine stationäre Phase mit Octadecylsilan bei Verwendung eines reinen Methanol/Wasser-Gemischs als Laufmittel aufgereinigt. Dies ermöglicht gleichzeitig ein Entsalzen der Nukleosid- Verbindungen, so daß ein zusätzlicher Reinigungsschritt nicht mehr vonnöten ist.
Die Elution der matrixgebundenen Verbindungen erfolgt durch eine Erhöhung der Methanolkonzentration des Laufmittelgemischs. Bei den durchgeführten präparativen Chromatographien wurde jeweils mit einem linearen Gradienten zunehmender Methanolkonzentration eluiert. Hierbei erfolgte in allen Fällen zuerst die Elution von Cytosin, während das synthetisierte 2',3'-Didesoxyribosid als letzte der vier Verbindungen vollständig homogen von der Matrix gewaschen wurde. Variabel ist lediglich die Reihenfolge der Elution des Didesoxyribofuranosyldonors, 2',3'-Didesoxycytidin, sowie der restlichen, nicht umgesetzten Akzeptorbase. In den meisten Fällen verläuft die Trennung von 2',3'-Didesoxycytidin und Akzeptorbase so effizient, daß Didesoxycytidin, durchweg die teuerste eingesetzte Verbindung, dabei vollständig homogen und entsalzt zurückgewonnen werden kann.
Enzymatische Synthese und Isolierung eines Didesoxyribosids -------------------------------------------------------------------------------------------------------------- am Beispiel von 6-Dimethylaminopurin-2',3'-didesoxyribosid -----------------------------------------------------------------------------------------
1. Herkunft der verwendeten Nukleosid-Desoxyribosyltransferase
Nukleosid-Desoxyribosyltransferase (EC 2.4.2.6) wurde aus Zellen von Lactobacillus Ieichmannii aufgereinigt, die im MRS-Medium gezüchtet worden waren. Nach Aufschluß der Zellen mittels Glasperlenhomogenisator (Desintegrator-S der Fa. IMA GmbH, Zeppelinheim, BRD) können beide Nukleosid-Desoxyribosyltransferasen durch insgesamt lediglich drei Säulenchromatographien isoliert werden. Dabei erfolgt zunächst die Trennung beider Transferasen sowie die Entfernung des größten Teils des Fremdproteins durch Anionenaustauschchromatogra- phie, während die anschließende Aufreinigung von Nukleosid- Desoxyribosyltransferase I und II zur Homogenität jeweils durch Affinitätschromatographie erreicht wird.
Anionenaustauschchromatographie:
Der von den Zelltrümmern befreite und durch ültrafiltration eingeengte Rohextrakt wird auf eine Säule mit DEAE-Sephacel (Fa. Sigma, Deisenhofen, BRD) gegeben. Die Chromatographiebedingungen werden so gewählt, daß der größte Teil des Fremdproteins bereits mit dem Startpuffer (50 mM KH2PO4 pH 6.5, 150 mM NaCl) von der Säule gewaschen wird, während beide Transferasen gebunden bleiben. Ihre anschließende Elution wird durch einen linearen Gradienten steigender Salzkonzen- tration bewirkt (150-450 mM). Dabei erfolgt zunächst die Elution von Nukleosid-Desoxyribosyltransferase I, gefolgt von Nukleosid-Desoxyribosyltransferase II. Bezüglich der spezifischen Aktivität dieses Enzyms ergibt sich gegenüber de Rohextrakt ein Aufreinigungsfaktor von ungefähr 10, während er für Nukleosid-Desoxyribosyltransferase I aufgrund der geringeren Proteinkonzentration in den entsprechenden Fraktionen sogar noch wesentlich größer ist. Durch diese Anionenaustauschchromatographie werden beide Enzyme voll- ständig getrennt. Nach Vereinigung der Transferase enthaltenden Fraktionen erfolgt deren Konzentrierung durch Ultrafiltration.
Affinitätschromatographie:
Die Aufreinigung beider Transferasen zur Homogenität kann anschließend durch Affinitätschromatographie über N6-(6- Aminohexyl) adenin-Sepharose erreicht werden. Die Affinitätsmatrix wird durch standardmäßige Reaktion von N6-(6- Aminohexyl) adenin mit Cyanbromid-aktivierter Sepharose 4B (Fa. Pharmacia LKB, Freiburg) hergestellt. N6-(6-Aminohexyl) adenin kann von der Fa. IMA GmbH (Zeppelinheim, BRD) bezogen werden.
Während verunreinigendes Protein aus den entsprechenden Frak- tionen der DEAE-Sephacel-Chromatographie nicht an N6-(6- Aminohexyl) adenin-Sepharose bindet, zeigen beide Transferasen sehr starke Wechselwirkung mit dieser Matrix. Ihre Elution kann nach Entfernung des Fremdproteins jeweils durch das denaturierende Reagenz Guanidinhydrochlorid bewirkt werden, wenn es dem Bindungspuffer (50 mM Natriumeitrat pH 6.5, 25 mM NaCl) in einer Konzentration von 1.5 M hinzugesetzt wird. Da Guanidinhydrochlorid muß anschließend durch Dialyse entfernt werden. Als nicht effizient erweist sich die Elution de gebundenen Transferasen in Gegenwart gelöster Nukleobasen, selbst nach Zusatz von Harnstoff in 2 molarer Konzentration zum Bindungspuffer erfolgt keine signifikante Elution vo Nukleosid-Desoxyribosyltransferase I oder II.
Als vorteilhaft erweisen sich die kurze Chromatographiedauer, die einfache Durchführung der Trennungen, die enorme Kapazität der Affinitätsmatrix sowie die hohe Wiedergewinnungsrate der Transferaseaktivität. 2. Durchführung der Reaktion
Der Reaktionsansatz zur Synthese von 6-Dimethylaminopurin- 2',3'-didesoxyribosid ( 6-Dimethylaminopurin-9-B-D-2',3'-didesoxyribofuranosid) enthielt: 210 mg 2',3'-Didesoxycytidin (Fa. Fluka, Neu-Ulm, BRD), 55 mg 6-Dimethylaminopurin (Fa.Sigma, Deisenhofen, BRD) und 8.5 Einheiten Nukleosid-Desoxyribosyltransferase II aus Lactobacillus Ieichmannii in 60 ml 50 mM Natriumeitrat pH 6.2 (1 Einheit ist definiert als diejenige Menge an Enzym, die ausgehend von Thymidin die Synthese von 1 μmol 2'-Desoxyadenosin pro Minute bei 37 °C und pH 6.0 zu katalysieren vermag).
3. Analyse des Reaktionsverlaufs
Aliquots wurden zu verschiedenen Zeiten aus dem Reaktionsansatz entfernt und hinsichtlich der Bildung von 6-Dimethylami- nopurin-2',3'-didesoxyribosid mittels Hochleistungsflüssigchromatographie untersucht. Die analytische Trennung der Nukleobasen bzw. Nukleoside des Reaktionsansatzes erfolgte dabei durch Reversed-phase-Chromatographie über eine Säule (4 x 250 mm) mit Octadecylsilan (Nucleosil 300-5 C18, Fa. Mache- rey u. Nagel, Düren, BRD) als stationärer Phase. Elutionsbe- dingungen: 0-10 min linearer Gradient von 2.5 % - 25 % Methanol in 50 mM KH2PO4, anschl. Waschen mit 25 % MeOH in 50 mM KH2PO4; Fließgeschwindigkeit 1 ml/min; UV-Detektion bei 260 nm. Der Reaktionsverlauf wurde durch Integration der jeweiligen Peaks quantitativ bestimmt, wobei ein gleicher Extinktionskoeffizient von Base und entsprechendem 2',3'-Didesoxyribosid vorausgesetzt wurde.
Nach 48stündiger Reaktion bei 37 °C ergab sich eine Ausbeute von 78 % mit Bezug auf die Umwandlung von 6-Dimethylamino- purin in das 2',3'-Didesoxyribosid.
4. Isolierung von 6-Dimethylaminopurin-2',3'-didesoxyribosid Anschließend wurde Nukleosid-Desoxyribosyltransferase II von den Nukleobasen bzw. Nukleosiden des Syntheseansatzes mittels Ultrafiltration über eine Polyethersulfon-Membran (Ausschlußgrenze 10 Kilodalton; Typ Novasette, Fa. Filtron, Karlstein, BRD) bei einem Druck von 2.5 bar abgetrennt.
Die Isolierung von 6-Dimethylaminopurin-2',3'-didesoxyribosid erfolgte daraufhin durch Mitteldruckflüssigehromatographie (MPLC-System der Fa. IMA GmbH, Zeppelinheim, BRD) über Reversed-phase-Material ( Octadecylsilan, Korngröße 25-40 μm, Fa. IMA GmbH, Zeppelinheim, BRD), wobei mit einem reinen Methanol/Wasser-Gemisch eluiert wurde (Abb. 1).
Die Zuordnung der Peaks zu den jeweiligen Verbindungen erfolgte wiederum durch HPLC. Bezüglich des Produkts 6-Dime- thylaminopurin-2',3'-didesoxyribosid ergab sich nach Lyophilisation eine Substanzmenge von 65.8 mg (Elementaranalyse: C12H17N5 für 6-Dimethylaminopurin-2',3'-didesoxyribosid; gefunden: C 53.32 %, H 6.40 %, N 25.89 %; erwartet ( + H2O): C 53.38 %, H 6.35 %, N 25.94 %).
Herstellung verschiedener basenmodifizierter 2',3'-Didesoxy--------------------------------------------------------------------------------------------------------------- riboside durch Nukleosid-Desoxyribosyltransferase
Das breite Substratspektrum des Enzyms Nukleosid-Desoxyribosyltransferase II aus L. Ieichmannii hinsichtlich des Nukleobasenanteils ermöglicht die Synthese einer breiten Palette von 2',3'-Didesoxyribosiden. Bei dem heterozyklischen Grundgerüst des Basenanteils kann es sich um Purin (1), Pyrazolo[3,4-d]pyrimidin (2) oder Triazolo[4,5-d]pyrimidin (3) handeln.
Figure imgf000013_0001
Purinsubstituierte 2',3'-Didesoxyriboside:
---------------------------------------------------------------------
Analytische Untersuchungen mittels Hochleistungsflüssigchromatographie demonstrierten, daß neben den Standardbasen 6- Aminopurin (Adenin) und 2-Amino-6-hydroxypurin (Guanin) folgende purinsubstituierte Basen weiterhin gute Substrate für den durch das Enzym bewirkten 2,3-Didesoxyribofuranosyl- transfer darstellen:
6-Amino-2-Chlorpurin (2-Chloradenin); 2-Amino-6-chlorpurin ( 6-Chlorguanin); 6-(6-Aminohexylaraino)purin (N6-(6-Aminohexyl)adenin); 6-Amino-2-hydroxγpurin (Isoguanin); 2-Amino-6- methoxypurin (Oe-Methylguanin); 6-Amino-2-methylpurin (2- Methyladenin); 2-Amino-6-methylthiopurin; 2-Aminopurin; 6- Benzoylaminopurin (N6-Benzoyladenin); 6-Benzylaminoρurin (N6- Benzyladenin); 6-Carboethoxymethylthiopurin; 6-(4-Carboxy- butyl)thiopurin; 6-Chlorpurin; 2,6-Diaminopurin; 2,6-Dihydroxypurin (Xanthin); 6-Dimethylaminopurin; 2-Hγdroxy-6-me- thylaminopurin; 6-Hydroxypurin (Hypoxanthin); 6-Hydroxy-2- thiolpurin (2-Thioxanthin); 6-Methoxypurin; 6-Methylamino- purin (6-Methyladenin); 6-Methylpurin; 6-Methylthiopurin; Purin; 6-Thiolpurin.
Signifikant schlechtere Substrate, deren präparative Synthese zum betreffenden Didesoxyribosid bei hinreichender Enzymmenge dennoch praktikabel ist, sind folgende Verbindungen:
2-Acetylamino-6-hydroxypurin (N2-Acetylguanin); 6-Amino-8- brompurin (8-Bromadenin); 6-Amino-2-thiolpurin; 2-Amino-6- hydroxy-8-brompurin (8-Bromguanin); 2-Amino-6-hydroxy-7- methylpurin (7-Methγlguanin); 6-Amino-1-methylpurin (1-Methyladenin); 2-Amino-6-thiolpurin (6-Thioguanin); 6-Carboxy- methylthiopurin; 6-Cyanpurin; 2,6-Dithiolpurin; 6-Hydroxy-2- methylaminopurin (N2-Methylguanin): 2-Hydroxypurin; 2-Hydroxy-6-thiolpurin (6-Thioxanthin); 6-Methyl-2-hydroxypurin; 6- Methγlthio-2-hydroxypurin; 2-Thiolpurin; 6-Trimethylamino- purin.
Folgende purinsubstituierte Basen sind hingegen keine Substrate für den durch Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii katalysierten 2,3-Didesoxyribofuranosyl- transfer:
2-Amino-6-hydroxy-9-methylpurin (9-Methylguanin); 2-Amino-3- methyl-6-hydroxypurin (3-Methylguanin); 6-Amino-3-methylpurin (3-Methyladenin); 2,6-Dihydrαxy-3-methylpurin (3-Methylxanthin). Pyrazolo[3,4-d]pyrimidin-substituierte 2',3'-Didesoxyribosid ------------------------------------------------------------------------
Nukleosid-Desoxyribosyltransferase aus L. Ieichmannii ermöglicht den 2,3-Didesoxyribofuranosyltransfer auf 4-Aminopyrazolo [3,4-d]pyrimidin. Weniger gut, aber immer noch prak tikabel ist die Verwendung von 4-Amino-6-hydroxypyrazolo[3,4 d]pyrimidin als Akzeptorbase, während im Falle von 4-Hydroxy- pyrazolo[3,4-d]pyrimidin (Allopurinol) und 4 Mercaptopyrazolo [3,4-d]pyrimidin zwar noch geringfügige Produktbildung nachgewiesen werden kann, eine Transferase-be- wirkte Synthese in präparativen Mengen aber nicht empfehlenswert erscheint.
Triazolo[4,5-dlpyrimidin-substituierte 2',3'-Didesoxyribosid ----------------------------------------------------------------------------------------------------------
Aus der Substanzklasse der Triazolo[4,5-d]pyriraidine sind 5 Amino-v-triazolo[4,5-d]pyrimidin-7-ol (8-Azaguanin) und 7 Amino-v-triazolo[4,5-djpyrimidin (8-Azaadenin) als Akzeptoren für den 2,3-Didesoxyribofuranosyltransfer gut geeignet. Wei- terhin kann der Didesoxyribosyltransfer mittels Nukleosid Desoxyribosyltransferase aus L. Ieichmannii auch auf 5,7 Diamino-v-triazolo[4,5-d]pyrimidin (8-Aza-2,6-diaminopurin bewerkstelligt werden. Als Substrate, wenn auch weniger effizient, fungieren weiterhin Triazolo[4,5-d]pyrimidin-7-ol (8- Azahypoxanthin) und Triazolo[4,5-d]pyrimidin-5, 7-diol (8- Azaxanthin).
Präparative Synthesen von 2',3'-Didesoxyribosiden
------------------------------------------------------------------------------------
Die im folgenden aufgeführten purin-, pyrazolo[3,4-d]pyrimi- din- und triazolo [4,5-d]pyrimidin-substituierten Basen wurde durch Nukleosid-Desoxyribosyltransferase II aus Lactobaci l lu s Ieichmannii in Gegenwart eines geeigneten Didesoxyribosyldonors zum entsprechenden 2',3'-Didesoxyribosid in 50-100 mg- Mengen umgesetzt und anschließend durch Reversed-phase Chromatographie zur Homogenität aufgereinigt:
2-Amino-6-chlorpurin (6-Chlorguanin); 6-(6-Aminohexylamino) purin (N6-(6-Aminohexyl)adenin); 6-Amino-2-hydroxypurin ( Isoguanin); 2-Amino-6-methoxypurin (O6-Methylguanin); 6-Araino-2- methylpurin (2-Methyladenin); 2-Amino-6-methylthiopurin; 2- Aminopurin; 4-Aminopyrazolo[3,4-d]pyrimidin; 7-Amino-v-tria- zolo[4,5-d]pyrimidin (8-Azaadenin); 5-Amino-v-triazolo[4,5- d]pyrimidin-7-ol (8-Azaguanin); 6-Benzoylaminopurin (N6-Ben- zöyladenin); 6-Carboethoxymethylthiopurin; 6-(4-Carboxy- butyl)thiopurin; 6-Chlorpurin; 2,6-Diaminopurin; 5,7-Diamino- v-triazolo[4,5-d]pyrimidin (8-Aza-2,6-diaminαpurin); 6-Di- methylaminopurin; 6-Hydroxy-2-thiolpurin (2-Thioxanthin); 6- Methoxypurin; 6-Methylaminopurin (6-Methyladenin); 6-Methyl- purin; 6-Methylthiopurin, Purin, 6-Thiolpurin.
Alle eingesetzten Basen sind kommerziell verfügbar und können von den Firmen Sigma (Deisenhofen, BRD) und IMA (Zeppelinheim, BRD) bezogen werden.
Legende zu Abb . 1:
Isolierung von 6-Dimethylaminopurin-2',3'-didesoxyribosi mittels MPLC über Octadecylsilan. Nach Aufgabe des Ansäterfolgte Waschen der Säule (3 x 30 cm) mit 250 ml 2.5 MeOH (in Wasser), dann linearer Gradient 2 x 500 ml 2.5 - 50 % MeOH, anschl. Elution mit 250 ml 50 % MeOH. Fließ- geschw.: 10 ml/min bei einem Druck von 8 bar. Der Chromato- graphieverlauf wurde bestimmt durch kontinuierliche Messun der Transmission bei 260 nm. Peak 1: Cytosin, Peak 2: 2',3' Didesoxycytidin, Peak 3: 6-Dimethylaminopurin, Peak 4: 6- Dimethylaminopurin-2',3'-didesoxyribofuranosid.

Claims

Patentansprüche ====================
1. 2',3'-Didesoxyribofuranoside, erhältlich durch Übertragung eines 2,3-Didesoxyribofuranosylrestes von einem 2',3'- Didesoxyribofuranosid auf eine Akzeptorfaase unter Katalyse durch Nukleosid-Desoxyribosyltransferase aus Lactobacillus, dadurch gekennzeichnet, daß sie durch Ausnutzung der katalytischen Aktivität der Transferase aus Lactobacillus Ieichmannii darstellbar sind.
2. 2',3'-Didesoxyribofuranoside nach Anspruch 1, dadurch gekennzeichnet, daß ein 2,3-Didesoxyribofuranosylrest glykosidisch mit einem gegebenenfalls substituierten Pyrazolo [3,4- d]pyrimidin oder Triazolo [4,5-d] pyrimidin verknüpft ist.
3. 2',3'-Didesoxyribofuranoside nach Anspruch 2, gekennzeichnet durch folgende Strukturen:
4-Amino-1-(1-ß-D-2,3-didesoxyribofura- nosyl)pyrazolo[3,4-d]pyrimidin
(kann auch als 4-Aminopyrazolo[3,4- d] pyrimidin-1-ß-D-2',3'-didesoxyribofuranosid bezeichnet werden)
Figure imgf000018_0001
5-Amino-3-(1-ß-D-2,3-didesoxyribofura- nosyl)-v-triazolo[4,5-d]pyrimidin-7-ol (kann auch als 5-Amino-v-triazolo[4,5- d]pyrimidin-7-ol-3-ß-D-2',3'-didesoxy- ribofuranosid oder 8-Azaguanin-9-ß-D- 2',3'-didesoxyribofuranosid bezeichnet werden)
7-Amino-3-(1-ß-D-2,3-didesoxyribofura- nosyl)-v-triazolo[4,5-d]pyrimidin
(kann auch als 7-Amino-v-triazolo [4,5- d]pyrimidin-3-ß-D-2',3'-didesoxyri- bofuranosid oder 8-Azaadenin-9-ß-D- 2',3'-didesoxyribofuranosid bezeichnet werden)
5,7-Diamino-3-(1-ß-D-2,3-didesoxyribo- furanosyl-v-triazolo (4,5-d]pyrimidin (kann auch als 5,7-Diamino-v- triazolo[4,5-d]pyrimidin-3-ß-D-2',3'- didesoxyribofuranosid oder 2,6-Diamino- purin-2',3'-didesoxyribofuranosid bezeichnet werden)
Figure imgf000019_0001
4. 2',3'-Didesoxyribofuranoside nach Anspruch 1, dadurch gekennzeichnet, daß ein 2,3-Didesoxyribofuranosylrest glykosidisch mit Purin oder einem substituierten Purin verknüpft ist.
5. 2',3'-Didesoxyribofuranoside nach Anspruch 4, gekennzeichnet durch folgende Strukturen
6-(6-Aminohexγlamino)-9-(1-ß-D-2,3- didesoxyribofuranosyl) purin
(kann auch als 6-(6-Aminohexylamino) purin-ß-D-2',3'-didesoxyribofuranosid oder N6-(6-Aminohexyl)-2',3'-didesoxya- denosin bezeichnet werden)
6-Amino-2-hγdroxy-9-(1-ß-D-2,3- didesoxyribofuranosyl)purin
(kann auch als 6-Amino-2-hydroxγpurin- 9-ß-D-2',3'-didesoxyribofuranosid oder 2',3'-Didesoxy-iso-guanosin bezeichnet werden)
Figure imgf000020_0001
2-Amino-6-methylthio-9-(1-ß-D-2,3- didesoxyribofuranosyl)purin
(kann auch als 2-Amino-6-methylthio- purin-9-ß-D-2',3'-didesoxyribofuranosid bezeichnet werden)
6-Benzoylamino-9-(1-ß-D-2,3-didesoxyri- bofuranosyl)purin
(kann auch als 6-Benzoylaminopurin-9-ß- D-2',3'-didesoxyribofuranosid oder 6- Benzoyl-2',3'-didesoxyadenosin bezeichnet werden)
6-Carboethoxymethylthio-9-(1-ß-D-2,3- didesoxyribofuranosyl)purin
(kann auch als 6-Carboethoxymethylthio- purin-9-ß-D-2',3'-didesoxyribofuranosid bezeichnet werden)
Figure imgf000021_0001
6-(4-Carboxybutyl)thio-9-(1-ß-D-2,3- didesoxyribofuranosyl)purin
(kann auch als 6-(4-Carboxybutyl)thiopurin-9-ß-D-2',3'-didesoxyribofuranosid bezeichnet werden)
9-(1-ß-D-2,3-Didesoxyribofuranosyl)purin
(kann auch als Purin-9-ß-D-2',3'-didesoxyribofuranosid bezeichnet werden)
6-Hydroxy-2-thiol-9-(1-ß-D-2,3-dideso- xyribofuranosyl)purin
(kann auch als 6-Hydroxy-2-thiolpurin- 9-ß-D-2',3'-didesoxyribofuranosid oder 2-Thio-2',3'-didesoxyxanthosin bezeichnet werden)
Figure imgf000022_0001
6-Thiol-9-(1-ß-D-2,3-didesoxyribofuranosyl)purin
(kann auch als 6-Thiolpurin-9-ß-D- 2',3'-didesoxyribofuranosid oder 6- Mercaptopurin-9-ß-D-2',3'-didesoxyribo- furanosid bezeichnet werden)
Figure imgf000023_0001
6. 2',3'-Didesoxyribofuranoside nach den Ansprüchen 1 bis 5 als Pharmazeutika.
7. Verfahren zur Herstellung von 2',3'- Didesoxyribofuranosiden durch Übertragung eines 2,3- Didesoxyribofuranosylrestes auf eine Akzeptorbase unter Katalyse durch Nukleosid-Desoxyribosyltransferase aus Lactobacillus, dadurch gekennzeichnet, daß Nukleosid- Desoxyribosyltransferase aus Lactobacillus Ieichmannii verwendet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß diejenige Nukleosid-Desoxyribosyltransferase verwendet wird, die bei anionenchroraatographischer Trennung der Nukleosid- Desoxyribosyltransferasen aus Lactobacillus Ieichmannii als zweite Transferase-Spezies anfällt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß 2',3'-Didesoxyribofuranoside durch Übertragung eines 2,3- Didesoxyribofuranosylrestes von 2',3'-Didesoxycytidin auf eine gegebenenfalls substituierte Purin-, Pyrazolo [3,4- d]pyrimidin- oder Triazolo[4,5-d]pyrimidin-Base hergestellt werden.
10. Verfahren nach den Ansprüchen 7 bis 9, dadurch gekennzeichnet, daß nach der enzymatischen Reaktion eine Reinigung der Produkte durch Reversed-phase-Chromatographie, vorzugsweise über Octadecylsilan, durchgeführt wird.
PCT/EP1989/001447 1988-11-29 1989-11-29 2', 3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung WO1990006312A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19883840160 DE3840160A1 (de) 1988-11-29 1988-11-29 2',3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung
DEP3840160.6 1988-11-29
DE19893918898 DE3918898A1 (de) 1989-06-09 1989-06-09 2',3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung
DEP3918898.1 1989-06-09

Publications (1)

Publication Number Publication Date
WO1990006312A1 true WO1990006312A1 (de) 1990-06-14

Family

ID=25874640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/001447 WO1990006312A1 (de) 1988-11-29 1989-11-29 2', 3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung

Country Status (2)

Country Link
AU (1) AU4817490A (de)
WO (1) WO1990006312A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643558A1 (fr) * 1989-02-27 1990-08-31 Sanyo Kokusaku Pulp Co 2(prime),3(prime)-didesoxy-nucleosides puriques, leurs procedes de preparation, et agents antiviraux et antiretroviraux, medicaments therapeutiques et prophylactiques et medicaments et reactifs experimentaux qui les contiennent
EP0409227A2 (de) * 1989-07-20 1991-01-23 MATTHES, Eckart, Dr. Pyrimidinnucleoside, ihre Herstellung und pharmazeutische Mittel
WO1993012130A1 (de) * 1991-12-09 1993-06-24 Boehringer Mannheim Gmbh 2'-desoxy-isoguanosine, isostere analoge und isoguanosinderivate sowie deren anwendung
EP0589335A1 (de) * 1992-09-24 1994-03-30 Hoechst Aktiengesellschaft N1-Substituierte 1H-1,2,3-Triazolo[4,5-d]pyrimidine, Verfahren zu ihrer Herstellung sowie ihre Verwendung als antivirale Mittel
EP0816508A1 (de) * 1989-09-12 1998-01-07 Roxana-Maria Havlina Herstellung von Oligo- oder Polynucleotiden, 2'-Desoxy- oder 2',3'-Didesoxyfuranosiden und Desamono-Verbindungen von Nucleosiden, Nucleotiden, Purin- und Pyrimidinbasen mit Hilfe multifunktioneller Enzyme
WO2009089702A1 (fr) * 2008-01-17 2009-07-23 Nanjing Changao Pharmaceutical Science & Technology Co., Limited 6-méthoxy-2',3'-didésoxyguanosine stable, son procédé de préparation et composition pharmaceutique la contenant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206497A2 (de) * 1985-05-15 1986-12-30 The Wellcome Foundation Limited Therapeutische Nucleoside und deren Herstellung
EP0286028A2 (de) * 1987-04-10 1988-10-12 Roche Diagnostics GmbH Desaza-purin-nucleosid-Derivate, Verfahren zu deren Herstellung sowie deren Verwendung bei der Nucleinsäure-Sequenzierung sowie als antivirale Mittel
EP0286425A2 (de) * 1987-04-09 1988-10-12 The Wellcome Foundation Limited Therapeutische Nukleoside

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206497A2 (de) * 1985-05-15 1986-12-30 The Wellcome Foundation Limited Therapeutische Nucleoside und deren Herstellung
EP0286425A2 (de) * 1987-04-09 1988-10-12 The Wellcome Foundation Limited Therapeutische Nukleoside
EP0286028A2 (de) * 1987-04-10 1988-10-12 Roche Diagnostics GmbH Desaza-purin-nucleosid-Derivate, Verfahren zu deren Herstellung sowie deren Verwendung bei der Nucleinsäure-Sequenzierung sowie als antivirale Mittel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biochemical and Biophysical Research Communications, Band 155, Nr. 2, 15. September 1988, Academic Press, Inc., (San Diego, US), D.A. CARSON et al.: "Synthesis of 2',3'-Dideoxynucleosides by Enzymatic Trans-Glycosylation", seiten 829-834 *
Chemical & Pharmaceutical Bulletin, Band 36, Nr. 10, Oktober 1988, Pharmaceutical Society of Japan, (Tokyo, JP), F. SEELA et al.: "8-Aza-7-Deaza-2',3'-Dideoxyadenosine: Synthesis and Conversion into Allopurinol 2',3'-Dideoxyribo-Furanoside", seiten 4153-4156 *
Helvetica Chimica Acta, Band 71, Fasciculus Quartus, 15. Juni 1988, Schweizerische Chemise Gesellschaft, (Basel, CH), F. SEELA et al.: "8-Aza-7-Deaza-2',3'-Dideoxyguanosine: Deoxygenation of its 2'-Deoxy-beta-D-Ribofuranoside", seiten 757-761 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643558A1 (fr) * 1989-02-27 1990-08-31 Sanyo Kokusaku Pulp Co 2(prime),3(prime)-didesoxy-nucleosides puriques, leurs procedes de preparation, et agents antiviraux et antiretroviraux, medicaments therapeutiques et prophylactiques et medicaments et reactifs experimentaux qui les contiennent
GB2228479B (en) * 1989-02-27 1993-10-20 Sanyo Kokusaku Pulp Co 2',3'-dideoxy purine nucleosides and process for the preparation thereof
EP0409227A2 (de) * 1989-07-20 1991-01-23 MATTHES, Eckart, Dr. Pyrimidinnucleoside, ihre Herstellung und pharmazeutische Mittel
EP0409227A3 (en) * 1989-07-20 1991-12-04 Akademie Der Wissenschaften Der Ddr Pyrimidine and purine nucleosides, their preparation and use as medicaments
EP0816508A1 (de) * 1989-09-12 1998-01-07 Roxana-Maria Havlina Herstellung von Oligo- oder Polynucleotiden, 2'-Desoxy- oder 2',3'-Didesoxyfuranosiden und Desamono-Verbindungen von Nucleosiden, Nucleotiden, Purin- und Pyrimidinbasen mit Hilfe multifunktioneller Enzyme
US6087132A (en) * 1989-09-12 2000-07-11 Vasiloiu; Roxana Multi-functional enzymes including derivable 2'3'-dideoxyribofuranoside triprosphates
US6147199A (en) * 1991-12-09 2000-11-14 Boehringer Mannheim 2-deoxy-isoguanosines isoteric analogues and isoguanosine containing oligonucleotides
WO1993012130A1 (de) * 1991-12-09 1993-06-24 Boehringer Mannheim Gmbh 2'-desoxy-isoguanosine, isostere analoge und isoguanosinderivate sowie deren anwendung
US6498241B1 (en) 1991-12-09 2002-12-24 Roche Diagnostics Gmbh 2-deoxy-isoguanosines isosteric analogues and isoguanosine derivatives as well as their synthesis
US5457091A (en) * 1992-09-24 1995-10-10 Hoechst Aktiengesellschaft N1-substituted 1H-1,2,3-triazolo[4,5,-D]pyrimidines, a process for their preparation and their use as antiviral agents
EP0589335A1 (de) * 1992-09-24 1994-03-30 Hoechst Aktiengesellschaft N1-Substituierte 1H-1,2,3-Triazolo[4,5-d]pyrimidine, Verfahren zu ihrer Herstellung sowie ihre Verwendung als antivirale Mittel
WO2009089702A1 (fr) * 2008-01-17 2009-07-23 Nanjing Changao Pharmaceutical Science & Technology Co., Limited 6-méthoxy-2',3'-didésoxyguanosine stable, son procédé de préparation et composition pharmaceutique la contenant
US8349811B2 (en) 2008-01-17 2013-01-08 Nanjing Changao Pharmaceutical Science & Technology Co., Limited Stable 6-methoxy-2′,3′-dideoxyguanosine, method for preparing the same and pharmaceutical composition containing the same

Also Published As

Publication number Publication date
AU4817490A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
Roberts et al. Agrocin 84 is a 6-N-phosphoramidate of an adenine nucleotide analogue
DE4004558C2 (de) 6-Mercaptopurin- und 2-Amino-6-mercaptopurin-9-ß-D-2',3'-didesoxyribofuranosid, diese enthaltende Mittel, Medikamente und Reagenzien sowie Verfahren zur Herstellung von 2',3'-Didesoxypurinnucleosiden
Cunningham Natural 3'-Deoxyribomononucleotides1
WO1990006312A1 (de) 2', 3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung
DE3840160A1 (de) 2',3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung
EP0872556A2 (de) Verfahren zur Herstellung von Moenomycin A
Kusmierek et al. Synthesis of N2, 3-ethenodeoxyguanosine, N2, 3-ethenodeoxyguanosine 5'-phosphate, and N2, 3-ethenodeoxyguanosine 5'-triphosphate. Stability of the glycosyl bond in the monomer and in poly (dG,. epsilon. dG-dC)
DE3918898A1 (de) 2',3'-didesoxyribofuranoside und ein verfahren zu ihrer herstellung
DE2945129C2 (de)
DE60022960T2 (de) Verfahren für die Aufreinigung von S-Adenosyl-L-methionin und für die Herstellung von pharmazeutisch annehmbaren Salzen davon
Fink et al. The identification of 2-dimethylamino-6-hydroxypurine and its ribonucleoside in urine of normal and leukemic subjects
EP0721372B1 (de) Nukleosidhaltiges sorbens für die affinitätschromatographie
DE60216616T2 (de) Enzymatisches verfahren zur herstellung von organofluorverbindungen
DE60315790T2 (de) Immobilisierte Biokatalysatoren für die Herstellung von natürlichen Nukleosiden und modifizierten Analogen durch enzymatische Transglykosylierungsreaktionen
Melby et al. Oligonucleotide syntheses on insoluble polymer supports. III. Fifteen di (deoxyribonucleoside) monophosphates and several trinucleoside diphosphates
Smith et al. Nucleosides and nucleotides of the cold acid-soluble portion of the blood of steers
DE4221595C1 (en) Purified sucrose synthase enzyme - useful for prodn. of nucleotide-activated sugars or oligosaccharide(s)
DE2337312B2 (de) Verfahren zur Isolierung und Reinigung von Dehydrogenasen
DE10241116A1 (de) Verfahren zur Gewinnung von Uridin aus Melasse
EP0767239B1 (de) Verfahren zur enzymatischen Synthese von Nukleotid-6-desoxy-D-xylo-4-hexulosen
DE3328938T1 (de) Mittel und Verfahren zur Herstellung von A↑5↑↑'↑p↑5↑↑'↑p↑n↑↑3↑↑'↑p (AppNp)
DE19810998C1 (de) Metallhaltige Ribonukleotidpolypeptide
DE10024308C1 (de) Verfahren zur Aufreinigung und Aufkonzentrierung des Cofaktors 3'Phosphoadenosin-5'-phosphosulfats(PAPS)
DE19618727C2 (de) Herstellung alkylierter Nucleosid-3'-Phosphate
DE1226588C2 (de) Verfahren zur anreicherung von 5'-inosinsaeure und 5'-guanylsaeure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE

COP Corrected version of pamphlet

Free format text: PAGE 23,AMENDED CLAIMS,REPLACED BY CORRECTED PAGE 23