WO1989012244A2 - Dispositif de transfert de rayonnement du laser sur une fibre optique - Google Patents

Dispositif de transfert de rayonnement du laser sur une fibre optique Download PDF

Info

Publication number
WO1989012244A2
WO1989012244A2 PCT/FR1989/000261 FR8900261W WO8912244A2 WO 1989012244 A2 WO1989012244 A2 WO 1989012244A2 FR 8900261 W FR8900261 W FR 8900261W WO 8912244 A2 WO8912244 A2 WO 8912244A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
radiation
dye
laser
optical fiber
Prior art date
Application number
PCT/FR1989/000261
Other languages
English (en)
Other versions
WO1989012244A3 (fr
Inventor
Eric Durand
François Lacoste
Philippe Pereyron
Original Assignee
Technomed International S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technomed International S.A. filed Critical Technomed International S.A.
Publication of WO1989012244A2 publication Critical patent/WO1989012244A2/fr
Publication of WO1989012244A3 publication Critical patent/WO1989012244A3/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4226Positioning means for moving the elements into alignment, e.g. alignment screws, deformation of the mount
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • A61B18/245Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter for removing obstructions in blood vessels or calculi
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/022Constructional details of liquid lasers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4234Passive alignment along the optical axis and active alignment perpendicular to the optical axis

Definitions

  • Device for transferring an optical ray or beam emitted by a laser onto an optical fiber and apparatus for generating shock waves for destroying targets, in particular tissues, lithiasis or concretions, provided with such a device.
  • the invention essentially relates to a device for transferring an optical ray or beam emitted by a laser onto an optical fiber and an apparatus for generating shock waves for the st ruct ion of cells, in particular from st, l it h ia s or concretions, provided with such a device.
  • lithotripsy various devices are now available for the destruction of tissues, lithiasis or concretions, intended to be removed from inside the human body.
  • a high frequency shock wave generator comprising a truncated ellipsoidal reflector (80), generating shock waves at the first focus of the ellipsoid which are focused on the second focus of the ellipsoid where the target to be destroyed is located.
  • This device is used in the medical field, in particular for destroying tissue, and can also be used to destroy lithiasis or concretions.
  • devices are also known for generating shock waves for destroying targets, in particular lithiasis or concretions, from laser radiation.
  • document WO-A-86/06269 describes the use of a laser for the destruction of lithiasis or concretions as well as other materials to be removed from the human body.
  • the laser radiation is transmitted to the concretion to be destroyed via an optical fiber.
  • the laser used delivers pulses having a wavelength, energy, intensity and duration of pulses capable of causing the destruction of the concretions, without the energy sufficient to cause damage to other nearby tissue.
  • This document also corresponds to FR-A-2 580 922.
  • the laser is preferably of the pulsed dye type, the pulses of which have durations of at least 10 nanometers, (preferably between 0.05 and 5 microseconds), and the energy of the pulse does not exceed 0.200 joules.
  • the fiber is flexible and has a core diameter which does not exceed 1000 micrometers and which is preferably between 60 and 600 micrometers, and more precisely 200 micrometers.
  • the laser pulses are applied in a short burst, preferably having a frequency higher than 10 Hertz, and the remaining fragments are crushed by single pulses.
  • the wavelength used is preferably between 350 and 550 nanometers in the case of urinary calculi. Particularly preferred wavelengths are 251.504 to 450 nanometers (see page 2, lines 1 to 20 of FR-A-2 580 922).
  • a device for transferring (16, 18) the radiation (20) emitted by the laser (22) comprises means for focusing the ray or optical beam (20) at a focal point, by means of a lens (18) focusing, constituting focusing means, and a device (16) for mounting the optical fiber (12) so that it receives optical radiation.
  • the fiber (12) naturally passes through a uteroscope (14) to be brought close to the fiber to be destroyed, such as a lithiasis or concretion (10) (see page 3, lines 6 to 28).
  • the present invention therefore aims to solve the new technical problem consisting in the supply of a solution making it possible to achieve reproducible, reliable positioning of the optical fibers in order to ensure the transfer of a radiation or optical beam on optical fibers, in the best conditions.
  • Another object of the present invention is to solve the new technical problem consisting in providing a solution making it possible to carry out a transfer of a radiation or optical beam on optical fibers, making it possible to use standard optical fibers.
  • the present invention also aims to solve the new technical problem consisting in the supply of a solution making it possible to transfer an optical radiation or beam on optical fibers in a very precise manner by a very precise positioning of the end of the optical fiber at a point of transfer of the radiation or optical beam, called focal point.
  • the object of the present invention is to solve the new technical problem consisting in providing a solution making it possible to transfer an optical radiation or beam onto an optical fiber allowing movement in the plane perpendicular to the optical axis so as to bring the end of the optical fiber at a specific point of transfer, within wide limits of initial positioning of the end of the optical fiber.
  • the present invention provides a device for transferring a radiation or optical beam traversing a path defining an optical axis, in particular coming from a laser, on an optical fiber, so as to convey this radiation or optical beam at a place of use, comprising means for focusing the radiation or optical beam at a focal point situated on the optical axis, and means for positioning the free end of the fiber intended to receive the radiation or optical beam, substantially at the focal point, characterized in that the positioning means comprise means for moving the end of the optical fiber, intended to receive the radiation or optical beam in a plane substantially perpendicular to the optical axis.
  • the aforementioned displacement means comprise a set of two crossed plates, preferably of micrometric type, moving respectively in two perpendicular directions.
  • the aforementioned positioning means comprise a support member for the optical fiber coming to be introduced into a reception member for the support member, which is integral in displacement with the aforementioned displacement means .
  • the aforementioned support member comprises a substantially cylindrical sleeve provided with a central through hole having an axial narrowing of appropriate diameter to allow the optical fiber to pass substantially without play, this narrowing being preferably substantially close to one end of the sleeve intended to be located on the receiving side of the radiation or optical beam.
  • a wedge element is temporarily arranged in the central orifice of the above-mentioned substantially cylindrical sleeve to serve as a stop for the insertion of the end of the optical fiber, way to lead to precise positioning of the end of the optical fiber in the sleeve.
  • the optical fiber is secured to the support member by any suitable means, for example by bonding with any suitable bonding means.
  • the aforementioned focusing means comprise a focusing lens.
  • the aforementioned focusing means are mounted on a system of optical objectives comprising said focusing lens, making it possible to translate the position of the focal point on the optical axis.
  • this objective system comprises an external member for controlling displacement by translation, preferably without rotation, of an internal member supporting the above-mentioned focusing means.
  • the present invention also relates to an apparatus for generating shock waves for the destruction of targets, in particular tissues, lithiasis or concretions, comprising a device for generating an optical beam or radiation, preferably of the type laser, characterized in that it comprises a device for transferring a radiation or optical beam as defined above.
  • the device for generating the aforementioned radiation or optical beam comprises at least one dye laser, preferably of the pulsed type.
  • this shock wave generation apparatus it is characterized in that it comprises a fixed reservoir of dye connected in closed circuit with the dye laser.
  • the shock wave generation apparatus comprises means for withdrawing the dye for withdrawing the dye from the closed circuit in a drain tank, preferably mobile, and means for reintroducing the dye into the closed drained circuit, preferably also using a mobile tank introduced in place of the mobile drain tank.
  • this shock wave generation apparatus is characterized in that it comprises an internal loop for reprocessing the dye, advantageously via a filter, in particular with carbon active.
  • shock wave generating apparatus it is characterized in that it comprises means for controlling the emission power of the laser by output at the detected intensity of the radiation or optical beam emitted by the laser.
  • optical fibers can be used
  • FIG. 2 schematically shows the closed circuit of the dye of the dye laser shown in Figure 1; and FIG. 3 represents in axial section in a plane passing through the optical axis the device for transferring the radiation or optical beam coming here from the laser, on the optical fiber.
  • FIG. 1 With reference, first of all to FIG. 1, there is shown an apparatus for generating shock waves, represented by the general reference number 1.
  • the apparatus includes a device (10) for generating an optical beam or optical radiation (12).
  • this optical radiation is emitted by a laser which is advantageously of the dye type, preferably emitting pulses.
  • a laser which is advantageously of the dye type, preferably emitting pulses.
  • Such pulsed dye lasers are known, in particular from the documents cited in the introductory part of the description, and are therefore commercially available.
  • These dye lasers usually include a dye cell (14) filled with dye, circulating in a closed circuit (18) shown in detail in Figure 2 and leading to an inlet (16) and an outlet (17) of dye by report to the cell (14).
  • This laser also comprises, conventionally, a flash enclosure (20), emitting flashes by means of a rectilinear lamp (22) with flash.
  • a cooling circuit (24) can be provided to cool the rectilinear lamp (22).
  • a pulsed dye type laser giving relatively long pulse durations, of a duration of at least 100 nanoseconds preferably between 0.05 and 5 microseconds.
  • the pulse wavelength is preferably between 350 and 550 nanometers, and the energy of the pulse does not exceed 0.5 Joules and preferably is included between 0.05 and 0.5 Joules.
  • the laser pulses are applied in short burst, preferably having a frequency between 1 and 20 Hertz.
  • the preferred dye according to the invention is coumarin.
  • a total reflection cavity mirror (26) for the purpose of transmitting all of the optical radiation or of the optical beam (12) at the output of the device (10).
  • a removable shutter (28) can be provided making it possible to interrupt the optical radiation at will, as well as a second so-called cavity mirror (30) with partial reflection, for example on the order of 30 to 35%, as is also known in lasers.
  • a separating device (32) can be interposed at least temporarily, making it possible to separate part of the radiation or optical beam (12) into a fraction (12a) which is then used to calculate the intensity of the radiation or optical beam (12 ) emitted by the laser (10), as will be explained later.
  • the transfer device according to the invention referenced (40) of the fraction (12b) of optical radiation C12) not separated by the separation device (32) on an optical fiber (42) whose opposite part (42b) can advantageously be incorporated into a uteroscope, so as to be disposed near the target to be destroyed referenced (44), for example constituted by a tissue, a lithiasis or a concretion, for example a renal lithiasis.
  • the cavity mirror (26) is completely reflective for the emission wavelength of the dye laser but partially transmits the HeNe beam. This radiation makes it possible to carry out the adjustments of the transfer device (40), as explained below.
  • This closed circuit (18) comprises a line (18a) leading to the outlet (17) of the dye cell (14) of the dye laser (10), as well as to a dye reservoir (60), fixed, internal to the device and therefore integrated into it.
  • a line (18b) connects the fixed reservoir (60) to the inlet (16) of the dye cell (14) by means of recirculation means (62) such as a pump, possibly via 'a cooling device (64), for example with coils, and also optionally by means of a purification device (66) comprising for example a filter (68) arranged vertically, eliminating impurities as well as bubbles of air possibly contained in the circuit.
  • It may for example be a melamine type filter (68), so as to introduce a dye into the dye cell (14) of extreme purity, not containing air bubbles (or microbubbles) .
  • the porosity of this filter is therefore provided to also eliminate microbubbles.
  • means of drawing off are provided.
  • a filter preferably using activated carbon with the presence of a valve (94)
  • FIG. 3 there is shown in detail a device for transferring the radiation or optical beam (12) on the optical fiber (42).
  • This transfer device (40) comprises means (100) for focusing in radiation or optical beam (12), (here 12b), at a focal point (102) located on the optical axis (104) which is advantageously defined materially. by the radiation (52) of the auxiliary laser (50).
  • This transfer device also includes means (106) for positioning the free end (42a) of the optical fiber (42), intended to receive the radiation or optical beam (12b) substantially at the focal point (102).
  • These positioning means (106) comprise means (108) for moving the end (42a) of the optical fiber (42) in a plane substantially perpendicular to the optical axis.
  • these displacement means (108) comprise a set of two crossed plates, preferably of the micrometric type, respectively referenced (110, 112), mounted one on the other substantially perpendicular to one another. .
  • This set of two crossed plates (110, 112) is itself mounted movable relative to a fixed support frame (114) integral with the frame of the shock wave generating apparatus, each of these two plates (110, 112 ) comprises an axial orifice (116, 118), for the passage of the optical beam (12b) and naturally of the optical axis (104) materialized by the radiation (52).
  • the plate (112) mounted on the frame (114) is mounted movable horizontally, perpendicular to the optical axis (104) while the plate (110) is mounted on the plate (112) so as to be vertically movable , perpendicular to the optical axis (104) and the horizontal direction of movement of the stage (112), in order to allow movement in the whole plane perpendicular to the optical axis (104), and this in an extremely precise manner thanks to the micrometric screws such as the screw (120).
  • On the second plate (110) is secured a member (122) for receiving a support member (124) proper of the optical fiber (42).
  • the receiving member (122) therefore comprises a housing (126), for example substantially cylindrical, for receiving the support member (124) comprising a flared disc-shaped front part (128) serving for the precise positioning of the support member (124) in the receiving member (122).
  • the support member (124) is provided at its front part with a substantially cylindrical sleeve (130) integral with the cylindrical disc, provided with a central orifice (132) through having an axial narrowing (134) of suitable diameter to allow the optical fiber (42) to pass, substantially without play.
  • this narrowing (134) is close to the free end (130a) of the sleeve (130), intended to be located on the receiving side of the optical radiation, as is clearly understandable from the consideration of FIG. 3.
  • the central orifice (132) is coaxial with a orifice (136), central, passing through the organ support (124), to allow free passage to the optical fiber (42).
  • a nozzle (140) comprising an axial orifice (142) passing through and being inserted into a corresponding housing ( 144) constituting a widening of the through orifice (136).
  • the optical fiber (42) can be secured in the endpiece (140) by any securing means, such as by bonding, once the optical fiber is correctly positioned in the support member (124).
  • the optical fiber (42) which is preferably a standard type optical fiber, for example with a diameter of 200 microns
  • the optical fiber is introduced into the support member (124) while a wedge in the form of a disc of predetermined thickness has been introduced into the central part (132b) of the orifice (132) opening at the end (130a) of the sleeve (130), so that the optical fiber (42) comes in abutment against this wedge exactly at the point intended to coincide with the focal point (102).
  • the optical fiber (42) is secured to the end piece (140), then the shim is removed.
  • the support member (124) is placed in the receiving member (122), then the end (42a) of the optical fiber (42) is brought exactly to the focal point (102).
  • the positioning of the focal point (102) can be adjusted, thanks to the fact that the focusing means (100), advantageously comprising a focusing lens (101), are mounted on a lens system (160) including the lens (101), for translating the position of the focal point (102) on the optical axis (104).
  • this lens system comprises an external member (162), for translational movement control, preferably without rotation, of an internal member (164) supporting the focusing means (100).
  • the external member (160) comprises a thread (166) meshing with a corresponding thread (168) of the internal member (164).
  • the external member (162) and the internal member (164) comprise through orifices (170, 172) for the free passage of the optical radiation (12b) and also of the optical axis (104).
  • the external member (162) when the external member (162) is rotated, it causes only a translater of the internal member (164) without causing it to rotate.
  • the internal member (164) there is provided in the internal member (164) at least one longitudinal slit (176), of predetermined length to fix the location of the displacement of the focal point (102).
  • a finger (178, 180) is released, dispensed in an annular groove of the external member (162), and secured to an annular part (182) comprising a radia shoulder. (182a) come into place inside a part (184) mounted on the frame (114), which is also fixed, like the frame (114).
  • this rotation is guided by the part (182) and, thanks to the cooperating threads (166, 168), an advancement by translation of the external member (164) is obtained. so as to translate the focal point (102) on the optical axis (104).
  • a self-draining system is obtained by predicting the dye circuit, as shown in FIG. 2.
  • the transfer device as shown in Figure 3 is an integral part of the invention, as well as the dye circuit shown in Figure 2. The same is true of the circuit of Figure 1.
  • control means (200) comprise for example a photodiode (202), which provides a peak (204) of intensity measured during a pulse of the optical radiation emitted by the laser (10). The surface of this peak (204) is integrated and constitutes a measure of the intensity of the radiation (12) emitted by the laser device (10).
  • This measured value is compared with a reference value, and when this measured intensity value is less than the reference value, a conventional servo device makes it possible to increase the power supply of the flash tube (22) to increase the power of the laser (10). It is thus possible to emit an intensity of optical radiation which is substantially constant over time.
  • the device (200) for measuring the intensity of the light radiation makes it possible to control the power of the laser to provide optical radiation of substantially constant intensity over time.

Abstract

L'invention concerne un dispositif de transfert du rayonnement ou faisceau optique sur une fibre optique. Ce dispositif comprend des moyens (100) de focalisation du rayonnement ou faisceau optique (12) en un point focal (102) situé sur l'axe optique, et des moyens (106) de positionnement de l'extrémité libre (42a) de la fibre (42) destinée à recevoir le rayonnement ou faisceau optique, sensiblement au point focal, caractérisé en ce que les moyens de positionnement (106) comprennent des moyens de déplacement (108) de l'extrémité (42a) de la fibre optique (42), destinés à recevoir le rayonnement ou faisceau optique (12) dans un plan sensiblement perpendiculaire à l'axe optique.

Description

Disposit if de transfert d'un rayon ou faisceau optique émis par un laser sur une fibre optique, et appareil de génération d'ondes de choc pour la destruction de cibles, notamment des tissus, des lithiases ou concrétions, pourvu d'un tel dispositif.
L'invention concerne essentiellement un dispositif de transfert d'un rayon ou faisceau optique émis par un laser sur une fibre optique et un appareil de génération d'ondes de choc pour la de st ruct ion de c ib les, notamment de s t issus , des l it h ia se s ou concrétions, pourvu d'un tel dispositif.
On sait que dans la lithotritie, divers appareils sont maintenant disponibles pour la destruction de tissus, lithiases ou concrétions, destinés à être retirés de l'intérieur du corps humain. On connaît par exemple par le brevet US RIEBER 2 559 227, un appareil générateur d'ondes de choc de fréquence élevée comprenant un réflecteur ellipsoïdal tronqué (80), générant des ondes de choc au premier foyer de l'ellipsoïde qui sont focalisées au deuxième foyer de l'ellipsoïde où se trouve la cible à détruire. Cet appareil est utilisé dans le domaine médical, notamment pour détruire des tissus, et peut également être utilisé pour détruire des lithiases ou des concrétions.
On connaît également la destruction de lithiase ou concrétion par des ondes de choc produites par ultrasons, (voir DE-31 19 295 = US-A-4 526 168).
Enfin, on connaît également des appareils de génération d'ondes de choc pour la destruction de cibles, en particulier des lithiases ou concrétions, à partir d'un rayonnement laser. Par exemple, le document WO-A-86/06269 décrit l ' ut i l isat ion de laser pour la destruction de lithiases ou concrétions ainsi que d'autres matériaux à enlever du corps humain. Le rayonnement laser est transmis jusqu'à la concrétion à détruire via une fibre optique. Le laser utilisé délivre des impulsions ayant une longueur d'ondes, une énergie, une intensité et une durée d'impulsions capables de provoquer la destruction des concrétions, sans que l'énergie délivrée soit suffisante pour causer un dommage à d'autres tissus dans le voisinage. Ce document correspond également à FR-A-2 580 922. On y souligne que le laser est de préférence de type puisé a colorant, dont les impulsions ont des durées d'au moins 10 nanomètres, (de préférence comprises entre 0,05 et 5 microsecondes), et l'énergie de l'impulsion ne dépasse pas 0,200 joules. La fibre est souple et a un diamètre d'âme qui ne dépasse pas 1000 micromètres et qui est de préférence compris entre 60 et 600 micromètres, et plus précisément de 200 micromètres. Les impulsions du laser sont appliquées en courte salve, de préférence ayant une fréquence supérieure à 10 Hertz, et les fragments restant sont broyés par des impulsions uniques.
La longueur d'onde utilisée est de préférence comprise entre 350 et 550 nanomètres dans le cas des calculs urinaires. Des longueurs d'onde particulièrement préférées sont 251,504 à 450 nanomètres (voir page 2, lignes 1 à 20 de FR-A-2 580 922).
Un dispositif de transfert (16, 18) du rayonnement (20) émis par le laser (22) comprend des moyens de focalisation du rayon ou faisceau optique (20) en un point focal, par l'intermédiaire d'une lentille (18) de focalisation, constituant des moyens de focalisation, ainsi qu'un dispositif (16) de montage de la fibre optique (12) pour qu'elle reçoive le rayonnement optique. La fibre (12) passe naturellement dans un utéroscope (14) pour être amenée à proximité de la fibre à détruire, telle qu'une lithiase ou concrétion (10) (voir page 3, lignes 6 à 28).
On peut également citer comme document antérieur "Lasers in Surgery and Medicine", vol 5, N|2, 1985, page 160, abrégé 82 et page 178, abrégé 133, et page 189, abrégé 163.
Un autre document est également constitué par la revue Photonics Spectra de Septembre 1986 ayant pour titre "The Dyes Laser' s Surgical Sucesses" écrit par Ronald L. CARR0LL, ou encore la revue "Lasers and Applications", d'Avril 1987, pages 69-70.
On a également utilisé les lasers pour traiter des angioplasties (voir EP-A-225 913 issu de la demande internationale WO 86/0642). On a pu observer que avec les dispositifs connus le transfert du rayonnement optique émis par le laser à la fibre optique était réalisé de manière imprécise, ce qui aboutissait à une dimunition de l'énergie émise et donc à une perte d'efficacité de destruction de la cible.
La présente invention a donc pour but de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de réaliser un positionnement reproductible, fiable des fibres optiques afin d'assurer le transfert d'un rayonnement ou faisceau optique sur des fibres optiques, dans les meilleures conditions.
La présente invention a encore pour but de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de réaliser un transfert d'un rayonnement ou faisceau optique sur des fibres optiques, permettant d'utiliser des fibres optiques standards.
La présente invention a encore pour but de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de transférer un rayonnement ou faisceau optique sur des fibres optiques d'une manière très précise par un positionnement très précis de l'extrémité de la fibre optique en un point de transfert du rayonnement ou faisceau optique, dit point focal.
La présente invention a pour but de résoudre le nouveau problème technique consistant en la fourniture d'une solution permettant de transférer un rayonnement ou faisceau optique sur une fibre optique permettant un déplacement dans le plan perpendiculaire à l'axe optique de manière à amener l'extrémité de la fibre optique en un point précis de transfert, dans de larges limites de positionnement initial de l'extrémité de la fibre optique.
Tous ces problèmes techniques sont résolus simultanément par la présente invention, d'une manière satisfaisante, utilisable à l'échelle industrielle. Ainsi , la présente invention, selon un premier aspect, fournit un dispositif de transfert d'un rayonnement ou faisceau optique parcourant un trajet définissant un axe optique, notamment en provenance d'un laser, sur une fibre optique, de manière à véhiculer ce rayonnement ou faisceau optique à un lieu d'utilisation, comprenant des moyens de focalisation du rayonnement ou faisceau optique en un point focal situé sur l'axe optique, et des moyens de positionnement de L'extrémité libre de la fibre destinée à recevoir le rayonnement ou faisceau optique, sensiblement au point focal, caractérisé en ce que les moyens de positionnement comprennent des moyens de déplacement de l'extrémité de la fibre optique, destinés à recevoir le rayonnement ou faisceau optique dans un plan sensiblement perpendiculaire à l'axe optique.
Selon un mode de réalisation avantageux, les moyens de déplacement précités comprennent un ensemble de deux platines croisées, de préférence de type micrométrique, se déplaçant respectivement dans deux directions perpendiculaires.
Selon un autre mode de réalisation avantageux de l'invention, les moyens de positionnement précités comprennent un organe support de la fibre optique venant s'introduire dans un organe de réception de l'organe support, qui est solidaire en déplacement des moyens de déplacement précités.
Selon un mode de réalisation particulièrement avantageux de l'invention, l'organe support précité comprend un manchon sensiblement cylindrique pourvu d'un orifice central traversant présentant un rétrécissement axial de diamètre approprié pour laisser passer la fibre optique sensiblement sans jeu, ce rétrécissement se trouvant de préférence sensiblement proche d'une extrémité du manchon destiné à être situé du côté de la réception du rayonnement ou faisceau optique.
Selon un autre mode de réalisation avantageux du dispositif selon l'invention, il est disposé provisoirement un élément formant cale dans l'orifice central du manchon sensiblement cylindrique précité pour servir de butée à l'enfoncement de l'extrémité de la fibre optique, de manière à aboutir à un positionnement précis de l'extrémité de la fibre optique dans le manchon. Ensuite, la fibre optique est solidarisée à l'organe support par tous moyens appropriés, par exemple par collage avec tous moyens de collage appropriés. Selon une autre caractéristique particulière du dispositif selon l'invention, les moyens de focalisation précités comprennent une lentille de focalisation .
Selon une autre caractéristique préférée du dispositif selon l'invention, les moyens de focalisation précités sont montés sur un système d'objectifs optiques comprenant ladite lentille de focalisation, permettant de translater la position du point focal sur l'axe optique. De préférence, ce système d'objectifs comprend un organe externe de commande en déplacement par translation, de préférence sans rotation, d'un organe interne supportant les moyens de focalisation précités.
Selon un deuxième aspect, la présente invention concerne aussi un appareil de génération d'ondes de choc pour la destruction de cibles, notamment des tissus, des lithiases ou concrétions, comprenant un dispositif de génération d'un faisceau ou rayonnement optique, de préférence type laser, caractérisé en ce qu'il comprend un dispositif de transfert d'un rayonnement ou faisceau optique tel que précédemment défini.
Selon un mode de réalisation particulier de cet appareil de génération d'ondes de choc, celui-ci est caractérisé en ce que le dispositif de génération du rayonnement ou faisceau optique précité comprend au moins un laser à colorant, de préférence du type pulsé.
Selon un mode de réalisation particulier de cet appareil de génération d'ondes de choc, celui-ci est caractérisé en ce qu'il comprend un réservoir fixe de colorant connecté en circuit fermé avec le laser à colorant.
Selon une autre caractéristique particulière de l'appareil de génération d'ondes de choc selon l'invention, celui-ci comprend des moyens de soutirage du colorant pour soutirer le colorant depuis le circuit fermé dans un réservoir de vidange, de préférence mobile, et des moyens de réintroduction du colorant dans le circuit fermé vidangé, de préférence utilisant également un réservoir mobile introduit en lieu et place du réservoir mobile de vidange.
Selon un autre mode de réalisation particulier de cet appareil de génération d'ondes de choc selon l'invention, celui-ci est caractérisé en ce qu'il comprend une boucle interne de retraitement du colorant, avantageusement via un filtre, en particulier à charbon actif.
Selon encore un autre mode de réalisation particulièrement avantageux de l'appareil de génération d'ondes de choc selon l'invention, celui-ci est caractérisé en ce qu'il comprend des moyens d'asservissement de la puissance d'émission du laser en sortie à l'intensité détectée du rayonnement ou faisceau optique émis par le laser.
On comprend ainsi que l'on obtient tous les avantages techniques déterminants précédemment mentionnés, en résolvant les problèmes techniques précédemment énoncés. En particulier, on peut utiliser des fibres optiques
"standard" ce qui constitue un avantage considérable par rapport au dispositif antérieur.
De même, on peut obtenir un positionnement reproductible, fiable, extrêmement précis des fibres optiques, grâce d'une part à la possibilité d'amener la fibre optique sur l'axe optique par un déplacement dans un plan perpendiculaire à l'axe optique, ainsi qu'à la possibilité de déplacer le point focal par translation sur l'axe optique, notamment par l'emploi d'un système d'objectif tel que précédemment défini. D'autres buts, caractéristiques et avantages de l'invention apparaîtront clairement à la lumière de la description explicative qui va suivre, faite en référence aux dessins annexés représentant un mode de réalisation actuellement préféré d'un appareil de génération d'ondes de choc pour la destruction de cibles, notamment des tissus, des lithiases ou concrétions, selon l'invention, incorporant un dispositif de transfert d'un rayonnement ou faisceau optique sur une fibre optique.
La figure 2 représente schématiquement le circuit fermé du colorant du laser à colorant représenté à la figure 1 ; et la figure 3 représente en coupe axiale dans un plan passant par l'axe optique le dispositif de transfert du rayonnement ou faisceau optique en provenance ici du laser, sur la fibre optique.
En référence, tout d'abord à la figure 1, on a représenté un appareil de génération d'ondes de choc, représenté par le numéro de référence général 1.
Cet appareil comprend un dispositif (10) de génération d'un faisceau optique ou rayonnement optique (12).
De préférence, selon l'invention, ce rayonnement optique est émis par un laser qui est avantageusement du type à colorant, de préférence émettant des impulsions. De tels lasers à colorant puisé sont connus, notamment à partir des documents cités dans la partie introductive de la description, et sont donc disponibles dans le commerce. Ces lasers à colorant comprennent habituellement une cellule à colorant (14) remplie de colorant, circulant selon un circuit fermé (18) représenté en détail à la figure 2 et aboutissant à une entrée (16) et à une sortie (17) de colorant par rapport à la cellule (14). Ce laser comprend en outre, de manière classique, une enceinte flash (20), émettant des flashs grâce à une lampe recti ligne (22) à éclair. On peut prévoir un circuit de refroidissement (24) pour refroidir la lampe recti ligne (22). Pour d'autres caractéristiques du laser, on peut se reporter aux documents antérieurs précités. Il est préféré d'utiliser un laser de type puisé à colorant donnant des durées d'impulsion relativement grandes, d'une durée d'au moins 100 nanosecondes de préférence comprise entre 0,05 et 5 microsecondes. La longueur d'onde de l'impulsion est de préférence comprise entre 350 et 550 nanomètres, et l'énergie de l'impulsion ne dépasse pas 0,5 Joules et de préférence est comprise entre 0,05 et 0,5 Joules.
Les impulsions du laser sont appliquées en courte salve, de préférence ayant une fréquence comprise entre 1 et 20 Hertz.
On préfère utiliser un colorant fournissant un faisceau laser vers 510 nm. Le colorant préféré selon l'invention est la coumarine.
En amont du dispositif de génération du faisceau optique
(12), on dispose, comme représenté à la figure 1, un miroir de cavité de réflexion totale (26) dans le but de transmettre la totalité du rayonnement optique ou du faisceau optique (12) à la sortie du dispositif (10).
A la sortie du dispositif (10), ici un laser, on peut prévoir un obturateur amovible (28) permettant d'interrompre à volonté le rayonnement optique, ainsi qu'un deuxième miroir dit de cavité (30) à réflexion partielle, par exemple de l'ordre de 30 à 35 %, comme cela est également connu dans les lasers. Ensuite, on peut interposer au moins provisoirement un dispositif séparateur (32), permettant de séparer une partie du rayonnement ou faisceau optique (12) en une fraction (12a) qui est utilisée ensuite pour calculer l'intensité du rayonnement ou faisceau optique (12) émis par le laser (10), comme cela sera expliqué plus loin.
Ce dispositif séparateur peut être constitué par un simple pavé de verre ayant un indice de réfraction n = environ 1,5 disposé obliquement, par exemple à 45°, par rapport à l'axe optique qui est ici confondu avec la représentation du rayonnement optique
(12).
Ensuite, en aval, on a représenté le dispositif de transfert selon l'invention référencé (40) de la fraction (12b) du rayonnement optique C12) non séparée par le dispositif de séparation (32) sur une fibre optique (42) dont la partie opposée (42b) peut être incorporée avantageusement dans un uthéroscope, pour être disposée à proximité de la cible à détruire référencée (44), par exemple constituée par un tissu, une lithiase ou une concrétion, par exemple une lithiase rénale. Selon l'invention, selon une autre caractéristique avantageuse, on prévoit de marquer en permanence l'axe optique par l'emploi d'un laser de préférence du type HeNe, émettant en continu, référencé (50), disponible dans le commerce, émettant un rayonnement optique (52) qui peut être renvoyé de manière appropriée par la présence de miroirs de renvoi (54, 56) pour traverser ensuite la cellule à colorant (14). Dans ce cas, le miroir de cavité (26) est totalement réfléchissant pour la longueur d'onde d'émission du laser à colorant mais transmet partiellement le faisceau HeNe. Ce rayonnement permet d'effectuer les réglages du dispositif de transfert (40), comme explicité plus loin.
En référence à la figure 2, on a représenté le circuit fermé (18) du laser à colorant. Ce circuit fermé (18) comprend une conduite (18a) aboutissant à la sortie (17) de la cellule à colorant (14) du laser à colorant (10), ainsi qu'à un réservoir à colorant (60), fixe, interne à l'appareil et donc intégré à celui-ci. Ensuite, une conduite (18b) relie le réservoir fixe (60) à l'entrée (16) de la cellule à colorant (14) grâce à des moyens de recirculation (62) tels qu'une pompe, éventuellement par l'intermédaire d'un dispositif de réfrigération (64), par exemple à serpentins, et également éventuellement par l'intermédiaire d'un dispositif (66) de purification comportant par exemple un filtre (68) disposé verticalement, éliminant les impuretés ainsi que les bulles d'air éventuellement contenues dans le circuit. Il peut s'agir par exemple d'un filtre (68) de type mélamine, de manière à introduire un colorant dans la cellule à colorant (14) d'une extrême pureté, ne contenant pas de bulles d'air (ou microbulles). la porosité de ce filtre est donc prévue pour éliminer également les microbulles. Selon l'invention, on prévoit des moyens de soutirage
(70) de colorant, pour soutirer le colorant depuis le circuit fermé (18) dans un réservoir de vidange (72), de préférence mobile. Le soutirage peut être réalisé en un point quelconque du circuit fermé (18). Ici, on a représenté deux possibilités de soutirage, d'une part entre le réservoir fixe (60) et la pompe de recîrculation (62) par une dérivation (70a), ainsi qu'à la base du dispositif de fîltration (66) par une dérivation (70b) sur laquelle est prévue une valve ou clapet anti-retour (74). On peut également prévoir une pompe de soutirage (76). On prévoit également des moyens (78) de réintroduction de colorant dans le circuit fermé (18) vidangé. Ces moyens de réintroduction sont de préférence prévus pour permettre une réintroduction à partir d'un réservoir mobile inséré en lieu et place au réservoir mobile de vidange (72). Dans ce cas, les derniers moyens de réintroduction (78) sont intégrés et la réintroduction est facilitée par exemple par l'emploi de moyens de pompage (80).
On comprend ainsi que selon l'invention, il est possible de vidanger complètement le circuit de colorant d'une manière extrêmement simple, par l'emploi d'un réservoir annexe de colorant, mobile, extérieur à l'appareil, qui peut être connecté par des moyens de connection simple extérieurement à l'appareil, pour réaliser sa vidange. On peut faire de même lors du remplissage du circuit de colorant avec un colorant vierge.
On peut également prévoir une branche interne (90a, 90b) de retraitement du colorant montée en dérivation au circuit fermé (18), comme représenté à la figure 2, permettant de réaliser un retraitement du colorant via un filtre (92), de préférence à charbon actif avec la présence d'une vanne (94), on peut ainsi augmenter de manière importante la durée de vie du colorant. En référence à la figure 3, on a représenté en détail de dispositif de transfert du rayonnement ou faisceau optique (12) sur la fibre optique (42).
Ce dispositif de transfert (40) comprend des moyens (100) de focalisation en rayonnement ou faisceau optique (12), (ici 12b), en un point focal (102) situé sur l'axe optique (104) qui est avantageusement matériellement défini par le rayonnement (52) du laser auxiliaire (50).
Ce dispositif de transfert comprend aussi des moyens (106) de positionnement de l'extrémité libre (42a) de la fibre optique (42), destinés à recevoir le rayonnement ou faisceau optique (12b) sensiblement au point focal (102).
Ces moyens de positionnement (106) comprennent des moyens (108) de déplacement de l'extrémité (42a) de la fibre optique (42) dans un plan sensiblement perpendiculaire à l'axe optique.
Avantageusement, ces moyens de déplacement (108) comprennent un ensemble de deux platines croisées, de préférence de type micrométrique, respectivement référencées (110, 112), montées l'une sur l'autre sensiblement perpendiculairement l'une par rapport à l'autre.
Cet ensemble de deux platines croisées (110, 112) est lui-même monté déplaçable relativement à un bâti support (114) fixe solidaire du bâti de l'appareil de génération d'ondes de choc, chacune de ces deux platines (110, 112) comprend un orifice axial (116, 118), pour le passage du faisceau optique (12b) et naturellement de l'axe optique (104) matérialisé par le rayonnement (52). Par exemple, la platine (112) montée sur le bâti (114) est montée déplaçable horizontalement, perpendiculairement à l'axe optique (104) tandis que la platine (110) est montée sur la platine (112) de manière à être déplaçable verticalement, perpendiculairement à l'axe optique (104) et la direction de déplacement horizontale de la platine (112), afin de permettre le déplacement dans tout le plan perpendiculaire à l'axe optique (104), et ce de manière extrêmement précise grâce aux vis micrométriques telle que la vis (120). Sur la deuxième platine (110) est solidarisée un organe (122) de réception d'un organe support (124) proprement dit de la fibre optique (42). L'organe de réception (122) comprend donc un Logement (126), par exemple sensiblement cylindrique, de réception de l'organe support (124) comportant une partie frontale évasée en forme de disque (128) servant au positionnement précis de l'organe support (124) dans l'organe de réception (122). L'organe support (124) est pourvu à sa partie frontale d'un manchon (130) sensiblement cylindrique solidaire du disque cylindrique, pourvu d'un orifice central (132) traversant présentant un rétrécissement axial (134) de diamètre approprié pour laisser passer la fibre optique (42), sensiblement sans jeu. De préférence, ce rétrécissement (134) est proche de l'extrémité libre (130a) du manchon (130), destinée à être située du côté de la réception du rayonnement optique, comme est cela est clairement compréhensible à partir de la considération de la figure 3. L'orifice central (132) est coaxial avec un orifice (136), central, traversant l'organe support (124), pour laisser le passage libre à la fibre optique (42). A la partie arrière (124a) de sortie de la fibre optique (42) de l'organe support (124), il est prévu un embout (140) comprenant un orifice axial (142) traversant venant s'insérer dans un logement correspondant (144) constituant un évasement de l'orifice traversant (136).
On peut solidariser la fibre optique (42) dans l'embout (140) par tous moyens de solidarisation, tel que par collage, une fois que la fibre optique est correctement positionnée dans l'organe support (124).
Pour un positionnement correct de la fibre optique (42), qui est de préférence une fibre optique type standard, par exemple d'un diamètre de 200 microns, on introduit la fibre optique dans l'organe support (124) alors qu'une cale sous forme de disque d'épaisseur prédéterminée a été introduite dans la partie centrale (132b) de l'orifice (132) débouchant à l'extrémité (130a) du manchon (130), de manière que la fibre optique (42) vienne en butée contre cette cale exactement au point destiné à coincider avec le point focal (102). Une fois la fibre optique (42) ainsi calée, on solidarise la fibre optique (42) avec l'embout (140), puis on enlève la cale.
Ensuite, on dispose l'organe support (124) dans l'organe de réception (122), puis on amène l'extrémité (42a) de la fibre optique (42) exactement au point focal (102).
Selon l'invention, on peut régler le positionnement du point focal (102), grâce au fait que les moyens de focalisation (100), comprenant avantageusement une lentille de focalisation (101), sont montés sur un système d'objectif (160) comprenant la lentille (101), permettant de translater la position du point focal (102) sur l'axe optique (104).
De Préférence, ce système d'objectif comprend un organe externe (162), de commande en déplacement par translation, de préférence sans rotation, d'un organe interne (164) supportant les moyens de focalisation (100). Pour ce faire, l'organe externe (160) comprend un filetage (166) engrenant avec un filetage correspondant (168) de l'organe interne (164).
Naturellement, l'organe externe (162) et l'organe interne (164) comprennent des orifices traversant (170, 172) pour le libre passage du rayonnement optique (12b) et également de l'axe optique (104).
Il est préféré que lors de la mise en rotation de l'organe externe (162), celui-ci no provoque qu'une translater de l'organe interne (164) sans en provoquer de rotation.
Pour ce faire, on prévoit dans l'organe interne (164) au moins une fente longitudinale (176), de longueur prédéterminée pour fixer la lorqueur du déplacement du point focal (102). Dans chaque fente (176) se déclace un doigt (178, 180) dispesé dans une rainure annulaire de l'organe externe (162), et solidaire d'une pièce annulaire (182) comportant un épaulement radia. (182a) venan' s'insérer à l'intérieur d'une pièce (184) montée sur le bâti (114), qui est également fixe, comme le bâti (114). Ainsi, lors de la rotation de l'organe externe (162), cette rotation est guidée par la pièce (182) et grâce aux filetages coopérants (166, 168), on obtient un avancement par translation de l'organe externe (164) de manière à translater le point focal (102) sur l'axe optique (104).
On comprend ainsi que l'on peut positionner de manière extrêment précise, reproductible et fiable, l'extrémité (42a) de la fibrp optique (42) exactement au point focal (102), en jouant d'une part sur le positionnement du point focal (102) et sur l'amenée de l'extrémité (42a) de la fibre optique (42) à ce point focal (102) à l'aide des platines croisées (110, 112) se déplaçant dans un plan perpendiculaire à l'axe optique (104), c'est-à-dire dans un axe X et selon un axe Y. En outre, en cours d'opération, il est extrêmement aisé de changer la fibre optique et de réaliser un nouveau réglage.
En outre, selon l'invention, on obtient un système auto-vîdangeable par la prévision du circuit de colorant, comme représenté à la figure 2.
Par ailleurs, le dispositif de transfert tel que représenté à la figure 3 fait partie intégrante de l'invention, ainsi que le circuit de colorant représenté à la figure 2. Il en est de même du circuit de la figure 1. On observera que selon d'autres caractéristiques avantageuses de l'invention, on interpose sur le trajet de la partie (12a) séparée du faisceau (12) des moyens (200) d'asservissement de la puissance d'émission de laser en sortie à l'intensité (204) détectée du rayonnement ou faisceau optique émis par le laser. Ces moyens d'asservissement (200) comprennent par exemple une photodiode (202), qui fournit un pic (204) d'intensité mesurée lors d'une impulsion du rayonnement optique émise par le laser (10). La surface de ce pic (204) est intégrée et constitue une mesure de l'intensité du rayonnement (12) émis par le dispositif laser (10). On compare cette valeur mesurée avec une valeur de référence, et lorsque cette valeur mesurée d'intensité est inférieure à la valeur de référence, un dispositif d'asservissement classique permet d'accroître la puissance d'alimentation du tube éclair (22) pour augmenter la puissance du laser (10). On peut ainsi aboutir à émettre une intensité de rayonnement optique sensiblement constante au cours du temps.
Autrement dit, le dispositif de mesure (200) de l'intensité du rayonnement lumineux permet d'asservir en puissance le l'aser pour fournir un rayonnement optique d'une intensité sensiblement constante au cours du temps.
Ceci constitue donc une autre caractéristique particulièrement préférée de l'invention, formant partie intégrante de l'invention. Egalement, l'emploi d'un laser auxiliaire (50) pour matérialiser L'axe optique (42) pour l'observation permanente de la cible et les réglages fait partie intégrante de l'invention.
Figure imgf000023_0001
UNIQUEMENTA TITRE D'INFORMATION
Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.
AT Autriche ES Espagne MG Madagascar
AU Australie FI Finlande ML MaU
BB Barbade FR France MR Mauritanie
BE Belgique GA Gabon MW Malawi
BF Burkina Fasso GB Royaume-Uni NL Pays-Bas
BG Bulgarie HU Hongrie NO Norvège
BJ Bénin IT Italie RO Roumanie
BR Brésil JP Japon SD Soudan
CA Canada KP République populaire démocratique SE Suède
CF République Centrancaine de Corée SN Sénégal
CG Congo KR République de Corée SU Union soviétique
CH Suisse LT Liechtenstein TD Tchad
CM Cameroun LK Sri Lanka TG Togo
DE Allemagne,. République fédérale d' LU Luxembourg US Etats-Unis d'Amérique
DK Danemark MC Monaco
Figure imgf000024_0001
Figure imgf000033_0001
UNIQUEMENT A TITRE D'INFORMATION
Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.
AT Autriche Fl Finlande ML Mali
AU Australie FR France MR Mauritanie
BB Barbade GA Gabon MW Malawi
BE Belgique GB Royaume-Uni NL Pays-Bas
BF Burkina Fasso HU Hongrie NO Norvège
BG Bulgarie FT Italie RO Roumanie
BJ Bénin JP Japon SD Soudan
BR Brésil KP République populaire démocratique SE Suède
CF République Centra ficainc de Corée SN Sénégal
CG Congo KR République de Corée SU Union soviétique
CH Suisse U Liechtenstein TD Tchad
CM Cameroun LK Sn Lanka TG Togo
DE Allemagne, République fédérale d' LU Luxembourg US Etats-Unis d'Amérique
DK Danemark MC Monaco
ES Espagne MG Madagascar
Figure imgf000034_0001

Claims

REVENDICATIONS
1. Dispositif de transfert d'un rayonnement ou faisceau optique (12) parcourant un trajet définissant un axe optique, notamment en provenance d'un laser (10), sur une fibre optique (42), de manière à véhiculer ce rayonnement ou faisceau optique (42) à un lieu d'utilisation (14), comprenant des moyens (100) de focalisation du rayonnement ou faisceau optique (12) en un point focal (102) situé sur l'axe optique, et des moyens (106) de positionnement de l'extrémité libre (42a) de la fibre (42) destinée à recevoir le rayonnement ou faisceau optique, sensiblement au point focal, caractérisé en ce que les moyens de positionnement (106) comprennent des moyens de déplacement (108) de l'extrémité (42a) de la fibre optique (42), destinés à recevoir le rayonnement ou faisceau optique (12) dans un plan sensiblement perpendiculaire à l'axe optique.
2. Dispositif selon la revendication 1, caractérisé en ce que les moyens de déplacement (108) précités comprennent un ensemble de deux platines croisées (110, 112), de préférence de type micrométrique, se déplaçant respectivement dans deux directions perpendiculaires.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les moyens de positionnement précités (106) comprennent un organe (114) support de la fibre optique venant s'introduire dans un organe de réception (122) de l'organe support (124), qui est solidaire en déplacement des moyens de déplacement (110, 112) précités.
4. Dispositif selon la revendication 3, caractérisé en ce que l'organe support (124) précité comprend un manchon (130) sensiblement cylindrique pourvu d'un orifice central traversant (132) présentant un rétrécissement axial (134) de diamètre approprié pour laisser passer la fibre optique sensiblement sans jeu, ce rétrécissement (134) se trouvant de préférence sensiblement proche de l'extrémité (130a) du manchon (130) destinée à être située du côté de la réception du rayonnement ou faisceau optique (12).
5. Dispositif selon la revendication 4, caractérisé en ce qu'il est disposé provisoirement un élément formant cale dans l'orifice central (132) du manchon sensiblement cylindrique (130) précité pour servir de butée à l'enfoncement de l'extrémité (42a) de la fibre optique (42), de manière à aboutir à un positionnement précis de l'extrémité (42a) de la fibre optique (42) dans le manchon (130), de préférence à l'organe support (124) par tous moyens appropriés, par exemple par collage avec tous moyens de collage appropriés.
6. Dispositif selon la revendication 1 à 5, caractérisé en ce que les moyens de focalisation précités (100) comprennent une lentille de focalisation (101).
7. Dispositif selon la revendication 1 ou 6, caractérisé en ce que les moyens de focalisation précités (100) sont montés sur un système d'objectif optique (160) comprenant ladite lentille de focalisation (101), permettant de translater la position du point focal (102) sur l'axe optique.
8. Dispositif selon la revendication 7, caractérisé en ce que ce système d'objectif (110) comprend un organe externe (162) de commande en déplacement par translation, de préférence sans rotation, d'un organe interne (164) supportant les moyens de focalisation (100) précités.
9. Appareil de génération d'ondes de choc pour la destruction de cibles, notamment des tissus, des lithiases ou concrétions, comprenant un dispositif (10) de génération d'un faisceau ou rayonnement optique, de préférence type laser, caractérisé en ce qu'il comprend un dispositif de transfert d'un rayonnement ou faisceau optique selon l'une quelconque des revendications 1 à 8.
10. Appareil de génération d'ondes de choc selon la revendication 9, caractérisé en ce que le dispositif (10) de génération du rayonnement ou faisceau optique précité comprend au moins un laser à colorant, de préférence du type pulsé.
11. Appareil de génération d'ondes de choc selon la revendication 10, caractérisé en ce qu'il comprend un réservoir fixe (60) de colorant connecté en circuit fermé (18) avec le laser à colorant (10).
12. Appareil de génération d'ondes de choc selon la revendication 11, caractérisé en ce qu'il comprend des moyens (70) de soutirage du colorant pour soutirer le colorant depuis le circuit fermé (18) dans un réservoir de vidange (72), de préférence mobile, et des moyens (78) de réintroduction du colorant dans le circuit fermé (18) vidangé, de préférence utilisant également un réservoir mobile introduit en lieu et place du réservoir mobile (72) de vidange.
13. Appareil de génération d'ondes de choc selon la revendication 11 ou 12, caractérisé en ce qu'il comprend une boucle e(90a, 90b) interne de retraitement du colorant, avantageusement via un filtre( 92), en particulier à charbon actif.
14. Appareil de génération d'ondes de choc selon l'une des revendications 9 à 13, caractérisé en ce qu'il comprend des moyens (200, 202) d'asservissement de la puissance d'émission du laser(10), en sortie à l'intensité (204) détectée du rayonnement ou faisceau optique émis par le laser (10).
15. Appareil selon l'une quelconque des revendications 9 à 14, caractérisé en ce que les fibres optiques (42) sont des fibres optiques "standard".
16. Appareil selon l'une des revendications 9 à 15, caractérisé en ce qu'il comprend un laser auxiliaire (50) pour matérialiser l'axe optique (42) pour l'observation permanente de la cible (44) et les réglages.
PCT/FR1989/000261 1988-05-31 1989-05-30 Dispositif de transfert de rayonnement du laser sur une fibre optique WO1989012244A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR88/07251 1988-05-31
FR8807251A FR2632075A1 (fr) 1988-05-31 1988-05-31 Dispositif de transfert d'un rayon ou faisceau optique emis par un laser sur une fibre optique, et appareil de generation d'ondes de choc pour la destruction de cibles, notamment des tissus, des lithiases ou concretions, pourvu d'un tel dispositif

Publications (2)

Publication Number Publication Date
WO1989012244A2 true WO1989012244A2 (fr) 1989-12-14
WO1989012244A3 WO1989012244A3 (fr) 1990-01-25

Family

ID=9366795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1989/000261 WO1989012244A2 (fr) 1988-05-31 1989-05-30 Dispositif de transfert de rayonnement du laser sur une fibre optique

Country Status (5)

Country Link
EP (1) EP0449829A1 (fr)
JP (1) JPH04500563A (fr)
FR (1) FR2632075A1 (fr)
IL (1) IL90450A0 (fr)
WO (1) WO1989012244A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991019216A1 (fr) * 1990-05-30 1991-12-12 Erich Weimel Dispositif pour l'introduction de rayons lumineux dans une fibre optique
EP0505486A1 (fr) * 1989-12-11 1992-09-30 COSMESCU, Ioan Montage de laparoscope a laser et procede s'y rapportant
FR2679389A1 (fr) * 1991-07-17 1993-01-22 Technomed Int Sa Procede et appareil de regeneration de colorant incluant la preparation de concentre de colorant.
EP0708347A1 (fr) * 1994-10-21 1996-04-24 Hewlett-Packard GmbH Dispositif d'ajustage, dispositif d'atténuation, dispositif de couplage et dispositif de filtrage
US5802229A (en) * 1995-10-31 1998-09-01 Indigo, Medical, Inc. Fiber optic radiation transmisson system connector for an optical fiber and methods of usine same
DE10006614A1 (de) * 2000-02-15 2001-08-23 Tui Laser Ag Kopplungsvorrichtung
EP1925975A1 (fr) * 2006-01-20 2008-05-28 Sumitomo Electric Industries, Ltd. Dispositif a source de lumiere

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014604B1 (fr) * 1998-12-22 2005-06-22 Contraves Space Ag Procédé et appareil pour la production d'un signal d'erreur en cas de réception hétérodyne cohérente des ondes lumineuses
JP2007193230A (ja) * 2006-01-20 2007-08-02 Sumitomo Electric Ind Ltd 光源装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH611429A5 (en) * 1976-11-18 1979-05-31 France Etat Device for connecting a laser diode to an optical fibre
DE2832847A1 (de) * 1978-07-26 1980-02-14 Sigma Instr Gmbh Kontroll- und sicherheitseinrichtung fuer ein laser-medizinisches geraet
US4364015A (en) * 1981-03-12 1982-12-14 Jersey Nuclear-Avco Isotopes, Inc. Compact reservoir system for dye lasers
EP0094269A1 (fr) * 1982-04-22 1983-11-16 Synthelabo Dispositif propre à la mise en oeuvre d'une solution dégradable d'un quelconque produit, par exemple d'un absorbant saturable, en particulier pour laser
DE3323653A1 (de) * 1983-05-11 1984-11-15 Institut für Nachrichtentechnik, DDR 1160 Berlin Justierbare, mikrooptische koppelvorrichtung fuer lichtleiter
JPS61208285A (ja) * 1985-03-13 1986-09-16 Ishikawajima Harima Heavy Ind Co Ltd 色素レ−ザ装置の色素液交換装置
WO1986006269A1 (fr) * 1985-04-24 1986-11-06 Candela Corporation Utilisation de lasers pour la destruction d'objets
US4652095A (en) * 1985-09-26 1987-03-24 George Mauro Optical component positioning stage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH611429A5 (en) * 1976-11-18 1979-05-31 France Etat Device for connecting a laser diode to an optical fibre
DE2832847A1 (de) * 1978-07-26 1980-02-14 Sigma Instr Gmbh Kontroll- und sicherheitseinrichtung fuer ein laser-medizinisches geraet
US4364015A (en) * 1981-03-12 1982-12-14 Jersey Nuclear-Avco Isotopes, Inc. Compact reservoir system for dye lasers
EP0094269A1 (fr) * 1982-04-22 1983-11-16 Synthelabo Dispositif propre à la mise en oeuvre d'une solution dégradable d'un quelconque produit, par exemple d'un absorbant saturable, en particulier pour laser
DE3323653A1 (de) * 1983-05-11 1984-11-15 Institut für Nachrichtentechnik, DDR 1160 Berlin Justierbare, mikrooptische koppelvorrichtung fuer lichtleiter
JPS61208285A (ja) * 1985-03-13 1986-09-16 Ishikawajima Harima Heavy Ind Co Ltd 色素レ−ザ装置の色素液交換装置
WO1986006269A1 (fr) * 1985-04-24 1986-11-06 Candela Corporation Utilisation de lasers pour la destruction d'objets
US4652095A (en) * 1985-09-26 1987-03-24 George Mauro Optical component positioning stage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biomedical Research, Development, and Engineering, 8 Mai 1980, The Johns Hopkins University, A.B. FRASER et al.: "Pulsed Laser Iridomoty Apparatus". *
Journal of Physics D: Applied Physics, Vol. 7, 1974 (GB), H. BRINKSCHULTE et al.: "A Repetitively Pulsed Q-Switched, Inorganic Liquid Laser", pages 1361-1368 *
PATENT ABSTRACTS OF JAPAN, Vol. 11, No. 41 (E-478) (2488), 6 Fevrier 1987; & JP-A-61208285 (Ishikawajima Harima Heavy Ind. Co. Ltd) 16 Septembre 1986 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505486A1 (fr) * 1989-12-11 1992-09-30 COSMESCU, Ioan Montage de laparoscope a laser et procede s'y rapportant
EP0505486A4 (en) * 1989-12-11 1993-11-10 Ioan Cosmescu Laser laparoscope assembly and method therefor
WO1991019216A1 (fr) * 1990-05-30 1991-12-12 Erich Weimel Dispositif pour l'introduction de rayons lumineux dans une fibre optique
FR2679389A1 (fr) * 1991-07-17 1993-01-22 Technomed Int Sa Procede et appareil de regeneration de colorant incluant la preparation de concentre de colorant.
EP0708347A1 (fr) * 1994-10-21 1996-04-24 Hewlett-Packard GmbH Dispositif d'ajustage, dispositif d'atténuation, dispositif de couplage et dispositif de filtrage
US5673348A (en) * 1994-10-21 1997-09-30 Hewlett-Packard Company Apparatus for adjustment, attenuating device, coupling device and filtering device
US5802229A (en) * 1995-10-31 1998-09-01 Indigo, Medical, Inc. Fiber optic radiation transmisson system connector for an optical fiber and methods of usine same
US5848209A (en) * 1995-10-31 1998-12-08 Indigo Medical Inc. Connection apparatus with optical fiber coding and detection means or with radiation emitter
US5875275A (en) * 1995-10-31 1999-02-23 Indigo Medical, Inc. Methods of connecting an optical fiber and methods of providing radiation from an optical fiber
DE10006614A1 (de) * 2000-02-15 2001-08-23 Tui Laser Ag Kopplungsvorrichtung
DE10006614C2 (de) * 2000-02-15 2002-02-14 Tui Laser Ag Kopplungsvorrichtung
EP1925975A1 (fr) * 2006-01-20 2008-05-28 Sumitomo Electric Industries, Ltd. Dispositif a source de lumiere
EP1925975A4 (fr) * 2006-01-20 2010-04-28 Sumitomo Electric Industries Dispositif a source de lumiere

Also Published As

Publication number Publication date
IL90450A0 (en) 1990-01-18
WO1989012244A3 (fr) 1990-01-25
JPH04500563A (ja) 1992-01-30
FR2632075A1 (fr) 1989-12-01
EP0449829A1 (fr) 1991-10-09

Similar Documents

Publication Publication Date Title
Noack et al. Influence of pulse duration on mechanical effects after laser-induced breakdown in water
EP0375578B1 (fr) Installation utilisant l'effet laser, pour la coupe ou la vaporisation de matériaux et tissus divers
JP2589674B2 (ja) 光ファイバ装置
EP0685211A1 (fr) Utilisation d'un échographe en mode A pour la surveillance de la position d'un patient pendant une séance de thérapie, et procédé en comportant application
FR2744803A1 (fr) Procede et dispositif de traitement d'une carte d'analyse
NO861136L (no) Kateter for angiokirurgi med laser.
WO1989012244A2 (fr) Dispositif de transfert de rayonnement du laser sur une fibre optique
EP0477361A1 (fr) Instrument dentaire a faisceau laser
CH645801A5 (fr) Tete optique d'une installation pour l'observation et le traitement par rayonnement laser de l'oeil.
FR2709763A1 (fr) Dispositif de traitement d'un matériau, à tête photo-ionique miniaturisée.
EP1421364A1 (fr) Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux
EP0197843A1 (fr) Dispositif pour l'excitation par ondes hyperfréquences d'un plasma dans une colonne de gaz, permettant notamment la réalisation d'un laser ionique
FR2759208A1 (fr) Dispositif de controle du pointage et de la focalisation des chaines laser sur une cible
CN217112081U (zh) 一种电子束激发阴极荧光光谱系统的连接装置
EP0089921B1 (fr) Tête optique d'une installation pour l'observation et le traitement par rayonnement laser de l'oeil
EP0200390B1 (fr) L'ablation de plaque atèrosclérotique d'un patient
FR2901067A1 (fr) Dispositif anti-lasage transverse pour un cristal laser
WO2004003616A2 (fr) Dispositif de centrage automatique d'un faisceau laser et procede de fabrication de ce dispositif
EP1579260A1 (fr) Systeme de microscopie laser confocale parallele base sur la technologie vcsel
FR2502783A1 (fr) Dispositif pour mesurer l'etat d'oxydo-reduction d'un organe vivant in situ
EP3999004A1 (fr) Appareil de decoupe a coupleur optique incluant un correcteur de polarisation
EP0193457B1 (fr) Dispositif acoustique multi-lentilles à grandissement et focale variables
EP0620459A2 (fr) Procédé pour appliquer un revêtement réfléchissant sur une face frontale d'une fibre optique
FR2653657A1 (fr) Endoscope d'observation et d'invention dans une cavite du corps humain par tirs laser.
FR2646927A1 (fr) Dispositif connecteur de fibre optique a duree de vie amelioree comportant une piece de centrage realisee au moins en partie en saphir et appareil de generation d'ondes de choc equipe d'un tel dispositif connecteur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LU NL SE

AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989906787

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989906787

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1989906787

Country of ref document: EP