EP1421364A1 - Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux - Google Patents

Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux

Info

Publication number
EP1421364A1
EP1421364A1 EP02791516A EP02791516A EP1421364A1 EP 1421364 A1 EP1421364 A1 EP 1421364A1 EP 02791516 A EP02791516 A EP 02791516A EP 02791516 A EP02791516 A EP 02791516A EP 1421364 A1 EP1421364 A1 EP 1421364A1
Authority
EP
European Patent Office
Prior art keywords
mirror
receptacle
card
face
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02791516A
Other languages
German (de)
English (en)
Inventor
Michel Canton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biocytex SRL
Original Assignee
Biocytex SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biocytex SRL filed Critical Biocytex SRL
Publication of EP1421364A1 publication Critical patent/EP1421364A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N15/1436Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1484Electro-optical investigation, e.g. flow cytometers microstructural devices

Definitions

  • the invention relates to devices for analyzing a sample, in particular by flow cytometry.
  • Flow cytometry is currently commonly used in various fields (medicine, food, biotechnology, environment) for the analysis of different compounds such as cells, macromolecules, etc.
  • Flow cytometry can for example be implemented as follows.
  • the cells (particles) to be analyzed are centered by a liquid vein system in the axis of a liquid jet. They pass individually, at the rate of a few thousand per second, through a laser beam focused on the axis of the jet and thus induce a certain number of light signals.
  • Appropriate optical systems recover the laser light scattered at a solid angle between 0.5 ° and 15 ° (axial scatter) and the light emitted perpendicular to the jet and to the laser beam (perpendicular scatter, fluorescence).
  • a set of mirrors and optical filters makes it possible to decompose the collected signals according to their wavelength (for example green and red fluorescences of acridine orange).
  • the optical signals transformed into electrical signals by photodetectors are processed in specialized electronic circuits which assign the intensities of the signals transmitted to each cell.
  • Mono- or multidimensional frequency distributions give the distribution of the population of cells analyzed.
  • a device of this type is for example described in the document FR-2 325 038.
  • a device of this type is for example described in the document FR-2 325 038.
  • Such a device can be removably received in an apparatus which comprises the light source, the optical members and the means of analysis of the light rays emitted by the sample, as well as the fluid system capable of lead the sample.
  • the system connects to the card to drive the sample through an analysis window of the latter.
  • removable cards have the disadvantage that the amount of light collected for the analysis is much less than that collected in a conventional device. Indeed, in the latter, the optical organs such as the lenses are generally arranged very close to the analysis vein in order to collect the greatest possible amount of light, that is to say at the largest solid angle possible around the point of the vein crossed by the incident ray. In a removable card, on the other hand, the removable nature means that there must be a minimum spacing between the vein and the lens, which results in a reduction in the solid collection angle and therefore in less collection.
  • document EP-1 058 939 proposes integrating an optical member such as a collection lens into the wall of the card. As this lens can be placed very close to the vein, the amount of light collected is increased. This document also suggests incorporating a reflective element on the card. Such an element can help increase the collection of light.
  • An object of the invention is to further increase the amount of light that can be collected in the context of an analysis device.
  • a device for analyzing a sample by means of a light ray comprising a sample receptacle and a mirror, the mirror having a discontinuity so that a light ray can cross the mirror to reach the receptacle.
  • the device according to the invention may also have at least one of the following characteristics: - the mirror is fixed to the receptacle,
  • the device comprises an external wall defining the mirror
  • the mirror is attached to an external wall of the device
  • the device has an essentially flat shape
  • the receptacle extends parallel to a main face of the device, the mirror extending in line with the receptacle along a thickness e of the device,
  • the discontinuity is to the right of the receptacle along a thickness e of the device
  • the discontinuity is arranged so that the light ray is inclined relative to a thickness e of the device
  • the device is arranged so that a fluid flows in the receptacle in a predetermined direction, the discontinuity being in an upstream half of the mirror with reference to the direction of flow,
  • the device comprises a substrate having a face forming the mirror, this face being in contact with a medium different from that of the substrate and extending between the substrate and the receptacle,
  • the device comprises a substrate having a face forming the mirror and extending in contact with a medium different from that of the substrate, the substrate extending between the face and the receptacle,
  • the medium is a gas
  • the mirror has the shape of a portion of a sphere
  • the device is arranged so that the ray emerges from the device on one side of the receptacle opposite the mirror, the device also has an optical member fixed to the receptacle,
  • the device comprises an external wall defining the optical member
  • the receptacle has an elongated shape
  • the device comprises a fluid reservoir, the sample comprises a fluid, and
  • an assembly for the analysis of a sample comprising a device and an apparatus having a housing for removable reception of the device and a light source, the source being capable of emitting a light ray passing through the mirror for reach the receptacle when the device is in the housing.
  • This arrangement can make it possible to verify the correct positioning of the card in its housing by measuring the intensity of the incident ray transmitted through the card, which must be maximum, and the intensity of the ray reflected by the periphery of the orifice in the direction from the source, which must be minimal.
  • the apparatus comprises means for analyzing the radius arranged so that the device extends between the source and the means of analysis when the device is in the housing.
  • the assembly includes means for analyzing radiation coming directly or indirectly from the source so as to determine whether the device is received at a predetermined position in the housing.
  • FIG. 1 is a perspective view in principle of a device according to the invention.
  • FIG. 2 is a schematic view of an assembly according to the invention adapted to receive the device of Figure 1;
  • - Figure 3 is a cross-sectional view showing the edge of the device of Figure 1 and illustrating the first preferred embodiment;
  • FIG. 4 is a view similar to Figure 3 in which the identical elements have not been shown and illustrating the second preferred embodiment
  • FIG. 5 is a view similar to Figure 3 illustrating the third preferred embodiment
  • FIG. 7 is a view of the member 52 of FIG. 3.
  • FIG. 1 A device according to the invention is illustrated in FIG. 1 in the form of a card 2.
  • This card has a generally rectangular plan shape and has a length and a width similar to that of a credit card, each of the order of a few centimeters. It has a thickness e of the order of a few millimeters, for example 3 mm.
  • This card is preferably transparent. It has in its thickness different conduits 4 as well as one or more compartments 6, one or more reservoirs 6, and / or one or more orifices 6 arranged in mutual fluid communication by means of conduits 4.
  • the card can thus include one or more several liquids stored or circulating inside the card.
  • the hole (s) of the card make it possible to act on the inside of the latter to introduce a liquid into the card, to extract a liquid from the card, or to circulate a liquid in the card.
  • the card includes a conduit 8 in the form of a capillary in communication with the other conduits 4.
  • the card comprises with reference to FIG. 3 an internal wall 10 and two front 12 and rear 14 intermediate walls extending on either side of the internal wall 10. The latter is therefore sandwiched between the intermediate walls.
  • the card also comprises front 16 and rear 18 external walls extending on either side of the group of three walls 10, 12 and 14.
  • the five walls 10 to 18 have shapes which are substantially identical to each other and generally correspond to the shape of the card.
  • the intermediate walls 12 and 14 have identical cutouts and opposite one another forming a window 20 in the thickness of the card.
  • the walls 10, 12 and 14 are formed by the stacking of several sheets each having internal cutouts adapted so that the stacking of the different sheets defines inside the card elements 4, 6, 8 and 20 above.
  • a card is known in principle.
  • the card 2 is intended to be received in a removable manner in an apparatus 22 such as that illustrated diagrammatically in FIG. 2.
  • the apparatus has a housing 24 formed by suitable elements 26.
  • this apparatus comprises at least one light source 28 such as a laser radiation source, and means of analysis and treatment 30, 52 of the radiation emanating from the card.
  • These means conventionally include different optical organs such as lenses, filters, mirrors, etc. as well as organs capable of converting this radiation into electronic form for processing.
  • the apparatus also comprises means 32 necessary for ensuring the circulation of one or more fluids inside the card. These means may in particular include one or more pumps. Once the card has been received in its slot, these means are able to enter into fluid communication with the interior of the card by means of the orifice or orifices which it presents.
  • the front wall 16 of the card 2 comprises an outer face 34 of planar shape intended to extend opposite the source 28 when the card is received in the housing 24.
  • the internal face 36 constituting the second main face of this wall also has a planar shape over most of its surface but has a hollow spherical portion 38 providing a cavity 39.
  • This spherical portion 38 extends opposite the capillary 8 and opposite the window 20.
  • This portion is covered by a suitable coating such as a metal coating so as to form a mirror.
  • This mirror therefore constitutes the diopter forming the junction between the material of the front wall 16 and the air filling the cavity 39.
  • the mirror is formed so that the point C of the capillary extending in the center of the window 20 occupies the center of the sphere.
  • an orifice 40 is formed in the front wall
  • the source 28 is positioned so that, when the card 2 is received in the housing 24, a ray 42 emitted by the source crosses the wall 16 at the orifice 40 to intercept the capillary 8 at the center C of the window 20, that is to say at the focus of the mirror 38.
  • the rear wall 18 has an internal face 44 having a protuberance 46 able to fill in the cutout of the rear intermediate wall 14 corresponding to the window 20.
  • the rear wall 18 also has a rear external face 46. Most of this face is formed by a flat area. It further comprises a curved spherical zone 48 extending projecting from the planar zone. This zone 48 forms a lens extending opposite the window and the focus of which is at the point of the capillary 8 capable of receiving the incident ray 42.
  • the capillary 8 is therefore interposed between the mirror 38 on the one hand and the lens 48 on the other hand.
  • the lens 48 is a converging lens. In the embodiment of FIG. 3, the incident ray 42 is essentially perpendicular to the plane of the card.
  • the apparatus also comprises means such as a mirror 50 disposed in the vicinity of the processing means 30, in the path of the incident ray 42 emitted by the source 28, and capable of deviating towards a suitable device not shown the fraction of the incident ray having passed through the capillary without having been substantially deflected by it. Indeed, this fraction which we will call transmitted fraction includes practically no exploitable information and must therefore be removed without hindering the analysis of the other fractions.
  • the incident ray 42 of the source 28 passes through the orifice 40 and strikes the capillary 8 containing the sample being analyzed at the point which corresponds to the center of the mirror 38 and at the focal point of the lens 48.
  • the fraction transmitted from this ray crosses the card and is evacuated by the mirror 50.
  • This ray is difracted during interactions with the particles of the sample during its passage through the capillary. This diffraction takes place at a solid angle of a few steradians on either side of the transmitted beam. This part contains bright information about the size of the particles in the sample and can therefore be usefully analyzed.
  • This fraction crosses the rear wall 18.
  • the rays which constitute it are initially divergent. Their orientation is modified by the passage of the lens 48 which transforms for example this fraction into a parallel radiation or of reduced divergence. In FIG. 3, the function of the lens 48 has also been illustrated by the arrow 48 in accordance with the conventional symbolization.
  • the entire beam initially diffracted at a small solid angle (typically between 0.5 and 15 steradians) is therefore collected to be sent to the processing means 52 via the mirror 50.
  • FIG. 7 illustrates a view of the face 53 of the member 52 receiving the radiation.
  • This face has a generally circular shape. It presents at mid-height a bar 55 for laser obscuration extending over the entire width of the face.
  • This bar comprises detectors 57 of direct laser light intensity, here three in number, spaced from one another.
  • a fraction of the incident ray 42 is also diffused at a large solid angle around the point of incidence of the ray on the capillary, and even most often throughout the space, that is to say over a solid angle of 4U steradians. A part of this fraction diffused towards the lens emerges from the card through the lens 48 so that it is also collected and sent to the processing means 30.
  • This diffused fraction is oriented towards the mirror 38 which it reflects it at the center of the capillary, which causes it to be collected by the lens 48 and then by the processing means 30. A very large part of the scattered beam is therefore sent directly or indirectly to the processing means 30.
  • the components forming the scattered beam can be separated from each other and measured for example at the wavelength of the laser and at the length or lengths of the fluorescence characteristic of the fluorescence markers used in the context of the analysis and resulting from the passage of the ray in the capillary.
  • the assembly comprising the apparatus 22 and the card 2 may include optical members 54 disposed between the source 28 and the orifice 40, for example converging lenses capable of focusing the incident ray on the capillary. These organs may either be permanently fixed to the apparatus or else permanently fixed to the card 2 while being integrated therein.
  • the separation of the different components of the diffracted and scattered beams can be done by means of conventional organs integrated into the apparatus such as separating mirrors, filters, networks or prisms.
  • the quantification of each component can be carried out using photodetectors of appropriate sensitivity.
  • the mirror 38 collects the back scattered light and returns it as a superposition of the scattered light directly towards the lens, towards the front, which makes it possible to double the intensity of the flux.
  • the orifice 40 makes it possible to give a large surface to the mirror without the incident ray constituting an obstacle.
  • the presence of port 40 in the mirror 38 also makes it possible to verify that the positioning of the card 2 in its housing 24 is correct. Indeed, one can provide for example between the mirror 50 and the analysis means 52 as illustrated (or even within the means 52 themselves) means 58 for measuring the intensity of the light flux reflected by the mirror 50 and received by this body.
  • Means can also be provided at the source 28 for measuring the intensity of a light flux formed by the fraction of the incident ray 42 possibly reflected by the periphery of the orifice 40.
  • the light flux received by the member 58 must be maximum while the light flux reflected by the periphery of the orifice on the source 28 will be minimal.
  • the orifice 40 is not precisely opposite the source 28. Under these conditions, the light intensity received by the member 58 is not maximum while the the intensity reflected by the periphery of the orifice towards the source is not minimal.
  • the control of the positioning of the card in the switchgear can naturally be automated to be used for a self-optimization system.
  • the laser beam has at the point of illumination c in section a flattened ellipse shape having a major axis (inscribed in the plane of FIG. 3) of between 60 and 100 micrometers, or even between 20 and 100 ⁇ m, and a small axis (perpendicular to the plane of the figure) between 10 and 20 micrometers, or even between 3 and 20 ⁇ m.
  • the cells or particles subject to analysis by cytometry may have dimensions between 0.1 and 20 micrometers.
  • the largest transverse dimension of the capillary 8 crossed by the ray, possibly its diameter if it has a circular cross section, may be of the order of 100 micrometers. It can more generally be between 50 micrometers and 1 millimeter. As illustrated in FIG.
  • this conduit 8 here has a rectangular section in a plane perpendicular to its longitudinal axis. This section here has a width between 20 and 200 ⁇ m and a length between 50 ⁇ m and 1 mm.
  • the sheets forming the inside of the card, in particular forming the wall 10, may be made of the material known by the name mylar.
  • the intermediate walls and the external walls can be formed from glass or plastic such as PMMA or polycarbonate.
  • the source 28 may be of low power (for example between 10 milliwatts and 100 milliwatts, or even between 1 mW and 25 mW), which makes it possible to reduce the cost thereof. Low power also has the advantage of simplifying the means to be used to deflect and absorb the transmitted ray (organs 50 and 58) as well as to eliminate any parasitic rays.
  • the cavity 39 it may be envisaged to fill the cavity 39 with a material having a refractive index different from the air index.
  • This material could for example be a gel known in itself for its advantageous index.
  • Such a material makes it possible to favor the orientation of the rays during their reflections in the cavity.
  • FIG. 4 A second preferred embodiment of the invention has been illustrated in FIG. 4.
  • the apparatus is identical to that of the first mode. Only the card 102 is modified.
  • the rear wall 18 has the same shape as in the mode of FIG. 3.
  • the front wall 116 has a shape generally symmetrical with that of the rear wall 18 with respect to the median plane extending in the thickness of the card.
  • the internal face 136 this time has a protuberance coming to occupy the window 20.
  • the external face 134 has a spherical portion 138 projecting from the planar zone of this face.
  • the portion 138 is covered with a coating such as a metallization capable of giving it reflective properties so as to make it a mirror.
  • the mirror 138 is therefore formed by the diopter constituting the junction between the wall 116 and the ambient air.
  • the wall 116 is interposed between the ambient air and the capillary 8 while in the previous mode the cavity filled with air was interposed between the wall and the capillary.
  • This embodiment therefore differs from the previous one in particular in that the coating 138 extends this time outside the card and no longer inside
  • the coating 138 has a discontinuity 140 at the point C of the capillary 8 occupying the center of the window 20, depending on the thickness of the card. This discontinuity extends at the same place as the orifice 40 in the embodiment of FIG. 3.
  • This embodiment is very close to the mode of FIG. 4 in which the discontinuity on the mirror is formed by an interruption of the coating forming the external mirror.
  • the discontinuity 240 of the card 202 does not extend to the right of the window center C along the thickness e but is offset towards an edge of the mirror as this is shown in Figure 5.
  • the straight line extending from this discontinuity 240 to the center C of the window occupied by the capillary is inclined at an acute angle relative to the longitudinal direction of the capillary.
  • the position of the source 28 is modified accordingly. This time, the axis of the source intersects with the axis 31 of the processing means 30 at the center c of the window.
  • the source no longer extends directly opposite the means 30 or coaxially with them.
  • the source is arranged so that, when the card is properly positioned in its housing, the ray 42 crosses the discontinuity 240 to reach the center C of the window in the capillary.
  • the member 52 intended to receive a fraction of the diffracted ray no longer extends opposite the means 30 coaxially therewith but is in alignment with the source, the discontinuity 240 and the center C of the window.
  • a central zone of the lens of very large surface is therefore opposite the means 30 without any obstacle between them so that all the rays passing through this zone can be collected to be processed.
  • This arrangement makes it possible for the solid angle 260 corresponding to the fraction of the ray collected by the members 52 and 58 to extend completely outside the solid angle 262 corresponding to the fraction of the radiation (wide angles) collected by the means 30.
  • FIG. 5 illustrates a section of the map in a plane perpendicular to the general plane of the map.
  • the capillary extends in the plane of the section, unlike the cases of FIGS. 3 and 4.
  • the source 28 is arranged so that the radius 42 extends in this plane. It is not strictly necessary for the radius to extend in this plane.
  • the separation of the solid angles 260 and 262 can be obtained by placing the source 28 outside the plane of FIG. 5 while providing for the discontinuity 240 in the vicinity of an edge of the mirror 238.
  • the arrangement of the source 28 in this plane makes it possible to collect a large and very significant fraction of the scattered and diffracted beam.
  • the angle a is equal to 45 °. It will advantageously be between 30 and 50 °.
  • the source 28 it is preferable to bring the source 28 closer to an upstream part of the capillary 8 as illustrated in FIG. 5 rather than to a downstream part of the latter with reference to the direction of flow of the fluid in the capillary illustrated by the arrow 72. In fact, in this way the radiation trapped in the capillary is sent to a fraction of downstream fluid which has already been analyzed.
  • part of the radiation would be sent to the upstream fractions and would risk reacting in advance with the fluorochromes present in the liquid or other substances intended to interact with the incident radiation and consequently could risk the analysis.
  • Particles to be analyzed such as cells or macromolecules have been illustrated in FIG. 6 in the form of beads traveling one after the other in the capillary 8 in accordance with the principle of flow cytometry.
  • the incident radiation 42 enters the card through the discontinuity 240 and arrives in the capillary in the center of the window.
  • a fraction 66 of the transmitted radiation 68 remains trapped in the capillary while a fraction 70 is treated and eliminated by the organs 52 and 58.
  • Diffracted fraction 260 of the radiation is collected by the lens 48 and received by the processing means 52.
  • a fraction of the radiation scattered towards the lens is received by the means 30.
  • the fraction scattered towards the mirror is reflected by the mirror 238 in the center of the window and collected by the lens 48 in the same way.
  • the device 2 may be disposable and for single use. It can be mass produced.
  • the capillary can be formed by the superposition of the different sheets located in the center of the card. Alternatively, it may be an individual capillary, for example made of glass or quartz.
  • the card may include one or more optical members such as mirrors, lenses, prisms, networks, etc. One or more of these elements may be in one piece with one of the external or internal walls of the card. One or more of these elements may be reported on the permanent card. In a variant of the embodiment of FIG. 5, a mirror may be provided adjacent to a cavity as in the mode of FIG. 3.
  • the device according to the invention makes it possible to collect a large amount of the light emerging from the capillary.
  • the mirror and the lens being permanently fixed to the card in the above embodiments, their centering relative to the capillary is carried out, once and for all, during assembly.
  • the invention may be implemented during analyzes carried out using techniques other than flow cytometry. It can for example be implemented as part of an electrophoresis technique.
  • the incident radiation may be of various natures. It could be ordinary light, non-laser light, non-coherent light, non-monochromatic light, fluorescent, ultraviolet light, or a wave of non-luminous or even non-electromagnetic nature (sound wave, gamma radiation, ray x, ...) etc ....
  • the invention may be implemented in a device receiving the samples in a fixed and not removable manner.
  • the fluid may be static rather than mobile.
  • the fluid may be a non-aqueous fluid such as a solvent or an oil.
  • the invention can be implemented in certain circumstances without the presence of a fluid.
  • the invention can be used with a capillary comprising a solid active principle.
  • the orifice 40 is located near an upstream region of the capillary according to an arrangement of the source 28 similar to that of FIG. 5.
  • a device such as a card, comprising a receptacle and a mirror (for example of spherical shape) fixed to the device.
  • This device may further comprise an optical member such as a lens arranged so that the receptacle extends between the mirror and the lens in accordance with the illustrated embodiments.

Abstract

L'invention concerne un dispositif pour l'analyse d'un échantillon comprenant un réceptacle d'échantillon (8) et un miroir, le miroir (38) présentant une discontinuité (40) de sorte qu'un rayon lumineux (42) peut traverser le miroir pour arriver jusqu'au réceptacle (8). L'invention concerne également un ensemble pour l'analyse d'un échantillon comprenant un dispositif (2) et un appareillage présentant un logement de réception amovible du dispositif et une source de lumière, la source étant apte a émettre un rayon lumineux (42) traversant le miroir (38) pour arriver jusqu'au réceptacle (8) lorsque le dispositif est dans le logement.

Description

« Dispositif pour l'analyse d'un échantillon notamment par cytométrie de flux»
L'invention concerne les dispositifs d'analyse d'un échantillon, notamment par cytométrie de flux.
La cytométrie de flux est aujourd'hui couramment utilisée dans des domaines variés (médecine, agroalimentaire, biotechnologies, environnement) pour l'analyse de différents composés tels que des cellules, des macromolécules, etc. La cytométrie de flux peut par exemple être mise en œuvre de la façon suivante.
Les cellules (particules) à analyser sont centrées par un système de veine liquide dans l'axe d'un jet liquide. Elles passent individuellement, à raison de quelques milliers par seconde, au travers d'un rayon laser focalisé sur l'axe du jet et induisent ainsi un certain nombre de signaux lumineux.
Des systèmes optiques appropriés récupèrent la lumière laser diffusée dans un angle solide entre 0,5° et 15° (scatter axial) et la lumière émise perpendiculairement au jet et au rayon laser (scatter perpendiculaire, fluorescences). Un ensemble de miroirs et de filtres optiques permet de décomposer les signaux collectés selon leur longueur d'onde (par exemple fluorescences verte et rouge de l'orangé d'acridine). Les signaux optiques transformés en signaux électriques par des photodétecteurs sont traités dans des circuits électroniques spécialisés qui assignent à chaque cellule les intensités des signaux émis. Des distributions de fréquence mono- ou multi- dimensionnelles (histogrammes) donnent la répartition de la population de cellules analysée.
Un dispositif de ce type est par exemple décrit dans le document FR-2 325 038. En vue de rendre plus souple l'utilisation de cette technique, il existe maintenant des dispositifs jetables ayant presque le format d'une carte de crédit et adaptés à recevoir un échantillon à analyser. Un tel dispositif peut être reçu de façon amovible dans un appareillage qui comprend la source lumineuse, les organes optiques et les moyens d'analyse des rayons lumineux émis par l'échantillon, ainsi que le système de fluide apte à entraîner l'échantillon. Le système se connecte à la carte pour entraîner l'échantillon à travers une fenêtre d'analyse de celle-ci.
Certaines de ces cartes amovibles ont toutefois pour inconvénient que la quantité de la lumière collectée pour l'analyse est très inférieure à celle collectée dans un dispositif classique. En effet, dans ce dernier, les organes optiques tels que les lentilles sont généralement agencées très près de la veine d'analyse afin de collecter la plus grande quantité de lumière possible, c'est-à-dire suivant un angle solide le plus grand possible autour du point de la veine traversé par le rayon incident. Dans une carte amovible, en revanche, le caractère amovible oblige à prévoir un espacement minimal entre la veine et la lentille, ce qui entraîne une réduction de l'angle solide de collecte et donc une collecte moins importante.
Pour palier cet inconvénient, le document EP-1 058 939 propose d'intégrer à la paroi de la carte un organe optique tel qu'une lentille de collecte. Cette lentille pouvant être disposée très près de la veine, la quantité de lumière collectée se trouve accrue. Ce document propose également d'intégrer à la carte un élément réfléchissant. Un tel élément peut contribuer à augmenter la collecte de la lumière.
Un but de l'invention est d'accroître encore la quantité de la lumière pouvant être collectée dans le cadre d'un dispositif d'analyse.
A cet effet, on prévoit selon l'invention un dispositif pour l'analyse d'un échantillon au moyen d'un rayon lumineux comprenant un réceptacle d'échantillon et un miroir, le miroir présentant une discontinuité de sorte qu'un rayon lumineux peut traverser le miroir pour arriver jusqu'au réceptacle.
Ainsi, en ménageant dans le miroir une discontinuité pour le passage du rayon incident, il est possible d'étendre le miroir sur une grande superficie notamment de part et d'autre du rayon afin d'accroître encore la collecte de la lumière. Cet avantage est particulièrement utile dans les cartes d'analyse par cytométrie de flux, notamment si le miroir est intégré à la carte. Il est également utile dans les systèmes de cytométrie sans élément amovible ou même d'autres domaines que l'analyse par cytométrie.
Le dispositif selon l'invention pourra présenter en outre au moins l'une des caractéristiques suivantes : - le miroir est fixé au réceptacle,
- le dispositif comprend une paroi externe définissant le miroir,
- le miroir est rapporté sur une paroi externe du dispositif,
- le dispositif a une forme essentiellement plate,
- le réceptacle s'étend parallèlement à une face principale du dispositif, le miroir s'etendant au droit du réceptacle suivant une épaisseur e du dispositif,
- la discontinuité se trouve au droit du réceptacle suivant une épaisseur e du dispositif,
- la discontinuité est disposée de sorte que le rayon lumineux est incliné par rapport à une épaisseur e du dispositif,
- le dispositif est agencé pour qu'un fluide s'écoule dans le réceptacle dans un sens prédéterminé, la discontinuité se trouvant dans une moitié amont du miroir par référence au sens d'écoulement,
- le dispositif comprend un substrat ayant une face formant le miroir, cette face étant en contact avec un milieu différent de celui du substrat et s'etendant entre le substrat et le réceptacle,
- la face forme une cavité interne du dispositif,
- le dispositif comprend un substrat ayant une face formant le miroir et s'etendant en contact avec un milieu différent de celui du substrat, le substrat s'etendant entre la face et le réceptacle,
- le milieu est un gaz,
- le miroir a une forme en portion de sphère,
- le dispositif est agencé pour que le rayon émerge du dispositif d'un côté du réceptacle opposé au miroir, - le dispositif présente en outre un organe optique fixé au réceptacle,
- le réceptacle s'étend entre le miroir et l'organe optique, - le dispositif comprend une paroi externe définissant l'organe optique,
- le réceptacle a une forme allongée,
- le dispositif comprend un réservoir de fluide, - l'échantillon comprend un fluide, et
- il s'agit d'un dispositif d'analyse par cytométrie de flux.
On prévoit également selon l'invention un ensemble pour l'analyse d'un échantillon comprenant un dispositif et un appareillage présentant un logement de réception amovible du dispositif et une source de lumière, la source étant apte à émettre un rayon lumineux traversant le miroir pour arriver jusqu'au réceptacle lorsque le dispositif est dans le logement.
Cet agencement peut permettre de vérifier le bon positionnement de la carte dans son logement en mesurant l'intensité du rayon incident transmis à travers la carte, qui doit être maximale, et l'intensité du rayon réfléchi par le pourtour de l'orifice en direction de la source, qui doit être minimale.
Avantageusement, l'appareillage comprend des moyens d'analyse du rayon disposés de sorte que le dispositif s'étend entre la source et les moyens d'analyse lorsque le dispositif est dans le logement. Avantageusement, l'ensemble comprend des moyens pour analyser un rayonnement provenant directement ou indirectement de la source de façon à déterminer si le dispositif est reçu à une position prédéterminée dans le logement.
D'autres caractéristiques et avantages de l'invention apparaîtront encore dans la description suivante de trois modes préférés de réalisation donnés à titre d'exemples non limitatifs. Aux dessins annexés :
- la figure 1 est une vue en perspective de principe d'un dispositif selon l'invention ;
- la figure 2 est une vue schématique d'un ensemble selon l'invention apte à recevoir le dispositif de la figure 1 ; - la figure 3 est une vue en coupe transversale montrant la tranche du dispositif de la figure 1 et illustrant le premier mode préféré de réalisation ;
- la figure 4 est une vue analogue à la figure 3 dans laquelle les éléments identiques n'ont pas été représentés et illustrant le deuxième mode préféré de réalisation ;
- la figure 5 est une vue analogue à la figure 3 illustrant le troisième mode préféré de réalisation ;
- la figure 6 est une vue à plus grande échelle du détail D de la figure 5 ; et
- la figure 7 est une vue de l'organe 52 de la figure 3.
On a illustré à la figure 1 un dispositif selon l'invention sous la forme d'une carte 2. Cette carte a une forme en plan généralement rectangulaire et présente une longueur et une largeur analogues à celles d'une carte de crédit, chacune de l'ordre de quelques centimètres. Elle présente une épaisseur e de l'ordre de quelques millimètres, par exemple 3 mm. Cette carte est de préférence transparente. Elle présente dans son épaisseur différents conduits 4 ainsi qu'un ou plusieurs compartiments 6, un ou plusieurs réservoirs 6, et/ou un ou plusieurs orifices 6 agencés en communication de fluide mutuelle au moyen des conduits 4. La carte peut ainsi comprendre un ou plusieurs liquides stockés ou en circulation à l'intérieur de la carte. Le ou les orifices de la carte permettent d'agir sur l'intérieur de celle-ci pour introduire un liquide dans la carte, extraire un liquide de la carte, ou faire circuler un liquide dans la carte. La carte comprend un conduit 8 sous la forme d'un capillaire en communication avec les autres conduits 4.
La carte comprend en référence à la figure 3 une paroi interne 10 et deux parois intermédiaires avant 12 et arrière 14 s'etendant de part et d'autre de la paroi interne 10. Cette dernière est donc prise en sandwich entre les parois intermédiaires. La carte comprend en outre des parois externes avant 16 et arrière 18 s'etendant de part et d'autre du groupe des trois parois 10, 12 et 14. Les cinq parois 10 à 18 ont des formes sensiblement identiques entre elles et correspondant généralement à la forme de la carte.
En regard du capillaire 8, les parois intermédiaires 12 et 14 présentent des découpes identiques et en regard l'une de l'autre formant une fenêtre 20 dans l'épaisseur de la carte.
D'une façon classique et qui ne sera détaillée ici, les parois 10, 12 et 14 sont formées par l'empilement de plusieurs feuilles présentant chacune des découpes internes adaptées pour que l'empilement des différentes feuilles définisse à l'intérieur de la carte les éléments 4, 6, 8 et 20 précités. Une telle carte est connue dans son principe.
La carte 2 est destinée à être reçue de façon amovible dans un appareillage 22 tel que celui illustré schématiquement à la figure 2. A cette fin, l'appareillage présente un logement 24 formé par des éléments adaptés 26. De façon classique et connue en soi dans son principe, cet appareillage comprend au moins une source de lumière 28 telle qu'une source de rayonnement laser, et des moyens d'analyse et de traitement 30, 52 du rayonnement émanant de la carte. Ces moyens comprennent classiquement différents organes optiques tels que des lentilles, des filtres, des miroirs, etc. ainsi que des organes aptes à convertir ces rayonnements sous forme électronique en vue de leur traitement. L'appareillage comprend également des moyens 32 nécessaires pour assurer une circulation d'un ou plusieurs fluides à l'intérieur de la carte. Ces moyens pourront notamment comprendre une ou plusieurs pompes. Une fois la carte reçue dans son logement, ces moyens sont aptes à entrer en communication de fluide avec l'intérieur de la carte au moyen du ou des orifices qu'elle présente.
En référence à la figure 3 qui est une section perpendiculaire au plan général de la carte, la paroi avant 16 de la carte 2 comprend une face externe 34 de forme plane destinée à s'étendre en regard de la source 28 lorsque la carte est reçue dans le logement 24. La face interne 36 constituant la deuxième face principale de cette paroi a également une forme plane sur la plus grande partie de sa surface mais présente une portion sphérique 38 en creux ménageant une cavité 39.
Cette portion sphérique 38 s'étend en regard du capillaire 8 et en regard de la fenêtre 20. Cette portion est recouverte par un revêtement adapté tel qu'un revêtement en métal de façon à former un miroir. Ce miroir constitue donc le dioptre formant la jonction entre le matériau de la paroi avant 16 et l'air emplissant la cavité 39. Le miroir est formé de sorte que le point C du capillaire s'etendant au centre de la fenêtre 20 occupe le centre de la sphère. Dans le présent exemple, un orifice 40 est formé dans la paroi avant
16, dans la zone du miroir 38 s'etendant au droit du capillaire 8 suivant l'épaisseur e. Compte tenu de la forme du miroir, cette zone est celle de la paroi 16 où son épaisseur est la plus faible. Dans l'appareillage 22, la source 28 est positionnée de sorte que, lorsque la carte 2 est reçue dans le logement 24, un rayon 42 émis par la source traverse la paroi 16 au niveau de l'orifice 40 pour venir intercepter le capillaire 8 au centre C de la fenêtre 20 c'est-à-dire au foyer du miroir 38.
La paroi arrière 18 présente une face interne 44 présentant une protubérance 46 apte à remplir la découpe de la paroi intermédiaire arrière 14 correspondant à la fenêtre 20. La paroi arrière 18 présente en outre une face externe arrière 46. La plus grande partie de cette face est formée par une zone plane. Elle comprend en outre une zone sphérique bombée 48 s'etendant en saillie de la zone plane. Cette zone 48 forme une lentille s'etendant en regard de la fenêtre et dont le foyer se trouve au point du capillaire 8 apte à recevoir le rayon incident 42. Le capillaire 8 est donc interposé entre le miroir 38 d'une part et la lentille 48 d'autre part. La lentille 48 est une lentille convergente. Dans le mode de réalisation de la figure 3, le rayon incident 42 est essentiellement perpendiculaire au plan de la carte.
L'appareillage comprend également des moyens tels qu'un miroir 50 disposés au voisinage des moyens de traitement 30, dans le trajet du rayon incident 42 émis par la source 28, et aptes à dévier vers un dispositif adapté non illustré la fraction du rayon incident ayant traversé le capillaire sans avoir été sensiblement déviée par celui-ci. En effet, cette fraction que nous appellerons fraction transmise ne comprend pratiquement aucune information exploitable et doit donc être évacuée sans gêner l'analyse des autres fractions.
En fonctionnement, lorsque la carte 2 est reçue dans le logement, le rayon incident 42 de la source 28 traverse l'orifice 40 et vient frapper le capillaire 8 contenant l'échantillon en cours d'analyse au point qui correspond au centre du miroir 38 et au foyer de la lentille 48. La fraction transmise de ce rayon traverse la carte et est évacuée par le miroir 50.
Une autre partie de ce rayon est difractée lors des interaction avec les particules de l'échantillon durant son passage dans le capillaire. Cette diffraction a lieu suivant un angle solide de quelques stéradians de part et d'autre du faisceau transmis. Cette partie contient des informations lumineuses relatives à la taille des particules dans l'échantillon et peut donc être utilement analysée. Cette fraction traverse la paroi arrière 18. Les rayons qui la constituent sont initialement divergents. Leur orientation est modifiée au passage de la lentille 48 qui transforme par exemple cette fraction en un rayonnement parallèle ou de divergence réduite. Sur la figure 3, la fonction de la lentille 48 a également été illustrée par la flèche 48 conformément à la symbolisation classique. L'ensemble du faisceau diffracté initialement suivant un angle solide faible (typiquement compris entre 0,5 et 15 stéradians) est donc collecté pour être envoyé aux moyens de traitement 52 via le miroir 50.
On a illustré à la figure 7 une vue de la face 53 de l'organe 52 recevant le rayonnement.. Cette face a une forme générale circulaire. Elle présente à mi-hauteur une barre 55 d'obscuration laser s'etendant sur toute la largeur de la face. Cette barre comprend des détecteurs 57 d'intensité de lumière laser directe, ici au nombre de trois, espacés les uns de autres. Une fraction du rayon incident 42 est également diffusée suivant un grand angle solide autour du point d'incidence du rayon sur le capillaire, et même le plus souvent dans tout l'espace, c'est-à-dire sur un angle solide de 4U stéradians. Une partie de cette fraction diffusée vers la lentille émerge de la carte à travers la lentille 48 de sorte qu'elle est également collectée et envoyée vers les moyens de traitement 30. Une autre partie de cette fraction diffusée est orientée en direction du miroir 38 qui la réfléchit au centre du capillaire, ce qui entraîne sa collecte par la lentille 48 puis par les moyens de traitement 30. Une très grande partie du faisceau diffusé se trouve donc envoyée directement ou indirectement vers les moyens de traitement 30.
Les composantes formant le faisceau diffusé pourront être séparées les unes des autres et mesurées par exemple à la longueur d'onde du laser et à la ou aux longueurs de la fluorescence caractéristiques des marqueurs de fluorescence utilisés dans le cadre de l'analyse et résultant du passage du rayon dans le capillaire.
L'ensemble comprenant l'appareillage 22 et la carte 2 pourra comprendre des organes optiques 54 disposés entre la source 28 et l'orifice 40, par exemple des lentilles convergentes aptes à focaliser le rayon incident sur le capillaire. Ces organes pourront être ou bien fixés à demeure sur l'appareillage ou bien fixés à demeure sur la carte 2 en étant intégrés à celle-ci.
La séparation des différentes composantes des faisceaux diffractés et diffusés pourra se faire au moyen d'organes classiques intégrés à l'appareillage tels que miroirs séparateurs, filtres, réseaux ou prismes. La quantification de chaque composante pourra s'effectuer au moyen de photodétecteurs de sensibilité appropriée.
Le miroir 38 permet de recueillir la lumière rétro diffusée et de la renvoyer en superposition de la lumière diffusée directement vers la lentille, vers l'avant ce qui permet de doubler l'intensité du flux. L'orifice 40 permet de donner une grande surface au miroir sans que le rayon incident ne constitue un obstacle. La présence de l'orifice 40 dans le miroir 38 permet également de vérifier que le positionnement de la carte 2 dans son logement 24 est correct. En effet, on peut prévoir par exemple entre le miroir 50 et les moyens d'analyse 52 tel qu'illustré (ou encore au sein des moyens 52 eux-mêmes) des moyens 58 pour mesurer l'intensité du flux lumineux réfléchi par le miroir 50 et reçu par cet organe. On peut également prévoir au niveau de la source 28 des moyens pour mesurer l'intensité d'un flux lumineux constitué par la fraction du rayon incident 42 éventuellement réfléchie par le pourtour de l'orifice 40. Lorsque le positionnement de la carte dans son logement est correct, le flux lumineux reçu par l'organe 58 devra être maximal tandis que le flux lumineux réfléchi par le pourtour de l'orifice sur la source 28 sera minimal. En revanche, si le positionnement de la carte est erroné, l'orifice 40 ne se trouve pas précisément en regard de la source 28. Dans ces conditions, l'intensité lumineuse reçue par l'organe 58 n'est pas maximale tandis que l'intensité réfléchie par le pourtour de l'orifice vers la source n'est pas minimale. Le contrôle du positionnement de la carte dans l'appareillage peut naturellement être automatisé pour servir à un système d'auto optimisation.
En l'espèce, le rayon laser a au niveau du point d'illumination c en section une forme d'ellipse aplatie ayant un grand axe (inscrit dans le plan de la figure 3) compris entre 60 et 100 micromètres, voire entre 20 et 100 μm, et un petit axe (perpendiculaire au plan de la figure) compris entre 10 et 20 micromètres, voire entre 3 et 20 μm. Les cellules ou les particules faisant l'objet de l'analyse par cytométrie pourront avoir des dimensions comprises entre 0,1 et 20 micromètres. La plus grande dimension transversale du capillaire 8 traversé par le rayon, éventuellement son diamètre s'il a une section transversale circulaire, pourra être de l'ordre de 100 micromètres. Il pourra plus généralement être compris entre 50 micromètres et 1 millimètre. Tel qu'illustré à la figure 3, ce conduit 8 ici présente une section rectangulaire dans un plan perpendiculaire à son axe longitudinal. Cette section a ici une largeur comprise entre 20 et 200 μm et une longueur comprise entre 50 μm et 1 mm. Les feuilles formant l'intérieur de la carte notamment formant la paroi 10 pourront être constituées dans le matériau connu sous l'appellation mylar. Les parois intermédiaires et les parois externes pourront être formées en verre ou en matière plastique telle que du PMMA ou du polycarbonate. La source 28 pourra être de faible puissance (par exemple comprise entre 10 milliwatts et 100 milliwatts, ou encore entre 1 mW et 25 mW), ce qui permet d'en réduire le coût. La faible puissance a également pour avantage de simplifier les moyens à mettre en œuvre pour dévier et absorber le rayon transmis (organes 50 et 58) ainsi que pour éliminer les rayons parasites éventuels.
Dans une variante de réalisation, on pourra envisager de remplir la cavité 39 avec un matériau présentant un indice de réfraction différent de l'indice de l'air. Ce matériau pourra par exemple être un gel connu en lui- même pour son indice avantageux. Un tel matériau permet de favoriser l'orientation des rayons lors de leurs réflexions dans la cavité.
On a illustré à la figure 4 un deuxième mode préféré de réalisation de l'invention. L 'appareillage est identique à celui du premier mode. Seul est modifiée la carte 102. La paroi arrière 18 a la même forme que dans le mode de la figure 3. La paroi avant 116 a une forme généralement symétrique de celle de la paroi arrière 18 par rapport au plan médian s'etendant dans l'épaisseur de la carte. En d'autres termes, la face interne 136 présente cette fois une protubérance venant occuper la fenêtre 20. De plus, la face externe 134 présente une portion sphérique 138 s'etendant en saillie de la zone plane de cette face. La portion 138 est recouverte d'un revêtement tel qu'une metallisation apte à lui conférer des propriétés réfléchissantes de façon à en faire un miroir. Le miroir 138 est donc formé par le dioptre constituant la jonction entre la paroi 116 et l'air ambiant. Toutefois, à l'inverse de l'agencement du mode de réalisation de la figure 3, la paroi 116 est interposée entre l'air ambiant et le capillaire 8 tandis que dans le précédent mode la cavité remplie d'air était interposée entre la paroi et le capillaire. Ce mode de réalisation diffère donc du précédent notamment en ce que le revêtement 138 s'étend cette fois à l'extérieur de la carte et non plus à l'intérieur
Le revêtement 138 présente une discontinuité 140 au droit du point C du capillaire 8 occupant le centre de la fenêtre 20, suivant l'épaisseur de la carte. Cette discontinuité s'étend au même endroit que l'orifice 40 dans le mode de réalisation de la figure 3.
Le fonctionnement est sensiblement inchangé par rapport au mode précédent. Ainsi le rayon émanant de la source 28 pénètre dans la carte à travers la zone 140 de la paroi 116 non couverte de revêtement pour venir frapper le capillaire 8. La fraction axiale est transmise comme précédemment vers les organes 52 et 58. La fraction diffractée aux petits angles passe à travers la lentille puis est traitée par les moyens 52. Enfin, la fraction diffusée aux grands angles passe par la lentille et est traitée par les moyens 30 tandis qu'une fraction rétrodiffusée traverse la paroi 116 et est réfléchie par le miroir 138 qui comme celui du premier mode est centré sur le capillaire. Les rayons sont donc réfléchis vers le foyer de la lentille, collectés par celle-ci, puis traités par les moyens 30.
Ces deux modes de réalisation ont toutefois pour inconvénient que la fraction transmise suit le même trajet qu'une partie significative de la fraction diffusée aux grands angles. Par conséquent, éliminer la fraction transmise pour ne pas perturber l'analyse entraîne l'élimination concomitante de cette partie de la fraction diffusée. De plus, des réflexions parasites du rayon incident sur les parois du capillaire et les parois de la carte demeurent dans le trajet des rayons mesurés et peuvent perturber l'analyse. Le mode de réalisation qui va être décrit maintenant en référence aux figures 5 et 6 est à cet égard plus avantageux.
Ce mode de réalisation est très proche du mode de la figure 4 dans lequel la discontinuité sur le miroir est formée par une interruption du revêtement formant le miroir externe. Dans ce troisième mode de réalisation, la discontinuité 240 de la carte 202 ne s'étend au droit du centre C de fenêtre suivant l'épaisseur e mais est décalée vers un bord du miroir comme le montre la figure 5. Ainsi, la droite s'etendant depuis cette discontinuité 240 jusqu'au centre C de la fenêtre occupé par le capillaire est inclinée suivant un angle aigu par rapport à la direction longitudinale du capillaire.
Dans l'appareillage, la position de la source 28 est modifiée en conséquence. Cette fois, l'axe de la source est sécant avec l'axe 31 des moyens de traitement 30 au centre c de la fenêtre. La source ne s'étend plus directement en regard des moyens 30 ni coaxialement à ceux-ci. La source est disposée de sorte que, lorsque la carte est convenablement positionnée dans son logement, le rayon 42 traverse la discontinuité 240 pour arriver au centre C de la fenêtre dans le capillaire. De même, l'organe 52 destiné à recevoir une fraction du rayon diffracté ne s'étend plus en regard des moyens 30 coaxialement à ceux-ci mais se trouve dans l'alignement de la source, de la discontinuité 240 et du centre C de la fenêtre.
Une zone centrale de la lentille de très grande surface se trouve donc en regard des moyens 30 sans aucun obstacle entre ceux-ci de sorte que tous les rayons traversant cette zone peuvent être recueillis pour être traités. Cet agencement permet de faire en sorte que l'angle solide 260 correspondant à la fraction du rayon recueillie par les organes 52 et 58 s'étend totalement en dehors de l'angle solide 262 correspondant à la fraction du rayonnement (grands angles) recueillie par les moyens 30.
La figure 5 illustre une section de la carte dans un plan perpendiculaire au plan général de la carte. Le capillaire s'étend dans le plan de la section, contrairement aux cas des figures 3 et 4. On remarque sur cette figure que la source 28 est disposée de sorte que le rayon 42 s'étend dans ce plan. Il n'est pas strictement nécessaire que le rayon s'étende dans ce plan. Ainsi, on pourra obtenir la séparation des angles solides 260 et 262 en disposant la source 28 en dehors du plan de la figure 5 tout en prévoyant la discontinuité 240 au voisinage d'un bord du miroir 238. Toutefois, la disposition de la source 28 dans ce plan permet de recueillir une fraction importante et très significative du faisceau diffusé et diffracté. De plus, il est avantageux que l'angle a illustré sur la figure 6, formé entre le rayon incident 42 et l'axe 64 du capillaire, soit sensiblement inférieur à 90° pour faire en sorte qu'au moins une partie importante 66 du faisceau transmis 68 demeure piégée dans le capillaire 8 par réflexion sur la face interne du capillaire, celui-ci formant ainsi un guide d'ondes. Il s'ensuit que la fraction 70 du faisceau transmis émergeant effectivement de la carte a une intensité d'autant plus réduite et est donc d'autant plus facile à éliminer. Cet agencement permet également de réduire sensiblement le rayonnement parasite généré au cours de l'analyse. Dans le mode de réalisation de la figure 5, l'angle a est égal à 45°. Il sera avantageusement compris entre 30 et 50°.
De surcroît, il est préférable de rapprocher la source 28 d'une partie amont du capillaire 8 comme illustré sur la figure 5 plutôt que d'une partie aval de ce dernier par référence au sens d'écoulement du fluide dans le capillaire illustré par la flèche 72. En effet, de cette façon le rayonnement piégé dans le capillaire est envoyé vers une fraction de fluide aval qui a déjà été analysée.
Dans l'agencement contraire, une partie du rayonnement serait envoyée vers les fractions amont et risquerait de réagir par avance avec les fluorochromes présents dans le liquide ou autres substances destinées à interagir avec le rayonnement incident et par suite risquerait de fausser l'analyse.
Des particules à analyser telles que des cellules ou des macromolécules ont été illustrées sur la figure 6 sous la forme de billes défilant l'une après l'autre dans le capillaire 8 conformément au principe de la cytométrie de flux.
Ce mode de réalisation fonctionne sensiblement comme les précédents. Le rayonnement incident 42 pénètre dans la carte à travers la discontinuité 240 et arrive dans le capillaire au centre de la fenêtre. Une fraction 66 du rayonnement transmis 68 reste piégée dans le capillaire tandis qu'une fraction 70 est traitée et éliminée par les organes 52 et 58.. Une fraction diffractée 260 du rayonnement est collectée par la lentille 48 et reçue par les moyens de traitement 52. Une fraction du rayonnement diffusée vers la lentille est reçue par les moyens 30. La fraction diffusée vers le miroir est réfléchie par le miroir 238 au centre de la fenêtre et collectée par la lentille 48 de la même façon.
Le dispositif 2 pourra être jetable et à usage unique. Il pourra être fabriqué en grande série. Le capillaire pourra être formé par la superposition des différentes feuilles se trouvant au centre de la carte. Alternativement, il pourra s'agir d'un capillaire individuel, par exemple en verre ou en quartz. La carte pourra comprendre un ou plusieurs organes optiques tels que miroirs, lentilles, prismes, réseaux etc.... Un ou plusieurs de ces éléments pourront être d'une seule pièce avec l'une des parois externes ou internes de la carte. Un ou plusieurs de ces éléments pourront être rapportés sur la carte à demeure. Dans une variante du mode de réalisation de la figure 5, on pourra prévoir un miroir adjacent à une cavité comme dans le mode de la figure 3.
Le dispositif selon l'invention permet de collecter une grande quantité de la lumière émergeant du capillaire. Le miroir et la lentille étant fixés à demeure sur la carte dans les modes de réalisation ci-dessus, leur centrage par rapport au capillaire est effectué, une bonne fois pour toutes, au montage.
Dans les modes de réalisation des figures 4 et 5, et en partie dans le mode de réalisation de la figure 3, le confinement des organes optiques autour du capillaire sans présence d'air permet de réduire les problèmes liés à la présence de poussière parasite.
Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci.
L'invention pourra être mise en œuvre lors d'analyses menées au moyen de techniques autres que la cytométrie de flux. Elle pourra par exemple être mise en œuvre dans le cadre d'une technique d'électrophorèse. Bien que l'on ait décrit les modes de réalisation ci-dessus en référence à une source laser, le rayonnement incident pourra être de natures variées. Il pourra s'agir de lumière ordinaire, de lumière non laser, de lumière non cohérente, de lumière non monochromatique, de lumière fluorescente, ultraviolette, ou d'une onde de nature non lumineuse voire non électromagnétique (onde sonore, rayonnement gamma, rayon x, ...) etc....
L'invention pourra être mise en œuvre dans un dispositif recevant les échantillons de façon fixe et non pas amovible. Le fluide pourra être statique plutôt que mobile. Le fluide pourra être un fluide non aqueux tel qu'un solvant ou une huile. On pourra mettre en œuvre l'invention dans certaines circonstances sans présence d'un fluide. Ainsi l'invention pourra être utilisée avec un capillaire comprenant un principe actif solide.
On pourra également prévoir dans une variante du mode de réalisation de la figure 3 que l'orifice 40 se trouve à proximité d'une zone amont du capillaire suivant un agencement de la source 28 semblable à celui de la figure 5.
Indépendamment de la présence de la discontinuité, on pourra prévoir un dispositif tel qu'une carte, comprenant un réceptacle et un miroir (par exemple de forme sphérique) fixé au dispositif. Ce dispositif pourra comprendre en outre un organe optique tel qu'une lentille disposé de sorte que le réceptacle s'étend entre le miroir et la lentille conformément aux modes de réalisation illustrés.

Claims

REVENDICATIONS
1. Dispositif (2 ;102 ;202) pour l'analyse d'un échantillon au moyen d'un rayon lumineux comprenant un réceptacle d'échantillon (8) et un miroir, caractérisé en ce que le miroir (38 ;138 ;238) présente une discontinuité (40 ;140 ;240) de sorte qu'un rayon lumineux (42) peut traverser le miroir pour arriver jusqu'au réceptacle (8).
2. Dispositif selon la revendication 1 , caractérisé en ce que le miroir (38 ;138 ;238) est fixé au réceptacle.
3. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il comprend une paroi externe (16 ;116) définissant le miroir.
4. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le miroir est rapporté sur une paroi externe du dispositif.
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il a une forme essentiellement plate.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le réceptacle (8) s'étend parallèlement à une face principale (34 ;134) du dispositif, le miroir (38 ; 138 ;238) s'etendant au droit du réceptacle suivant une épaisseur (e) du dispositif.
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la discontinuité (40 ;140) se trouve au droit du réceptacle suivant une épaisseur (e) du dispositif.
8. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la discontinuité (240) est disposée de sorte que le rayon lumineux (42) est incliné par rapport à une épaisseur (e) du dispositif.
9. Dispositif selon la revendication 8, caractérisé en ce qu'il est agencé pour qu'un fluide s'écoule dans le réceptacle dans un sens prédéterminé (72), la discontinuité (240) se trouvant dans une moitié amont du miroir (238) par référence au sens d'écoulement.
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend un substrat (16) ayant une face (38) formant le miroir, cette face étant en contact avec un milieu différent de celui du substrat et s'etendant entre le substrat (16) et le réceptacle (8).
11. Dispositif selon la revendication 10, caractérisé en ce que la face
(38) forme une cavité interne (39) du dispositif.
12. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend un substrat ayant une face (138 ;238) formant le miroir et s'etendant en contact avec un milieu différent de celui du substrat, le substrat (116) s'etendant entre la face (138 ;238) et le réceptacle
(8).
13. Dispositif selon l'une quelconque des revendications 10 ou 12, caractérisé en ce que le milieu est un gaz.
14. Dispositif selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le miroir (38 ; 138 ;238) a une forme en portion de sphère.
15. Dispositif selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il est agencé pour que le rayon (42) émerge du dispositif d'un côté du réceptacle (8) opposé au miroir (38 ;138 ;238).
16. Dispositif selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il présente en outre un organe optique (48) fixé au réceptacle.
17. Dispositif selon la revendication 16, caractérisé en ce que le réceptacle (8) s'étend entre le miroir (38 ;138 ;238) et l'organe optique.
18. Dispositif selon l'une quelconque des revendications 16 ou 17, caractérisé en ce qu'il comprend une paroi externe (18) définissant l'organe optique (48).
19. Dispositif selon l'une quelconque des revendications 1 à 18, caractérisé en ce que le réceptacle (8) a une forme allongée.
20. Dispositif selon l'une quelconque des revendications 1 à 19, caractérisé en ce qu'il comprend un réservoir de fluide (6).
21. Dispositif selon l'une quelconque des revendications 1 à 20, caractérisé en ce que l'échantillon comprend un fluide.
22. Dispositif selon l'une quelconque des revendications 1 à 21 , caractérisé en ce qu'il s'agit d'un dispositif d'analyse par cytométrie de flux.
23. Dispositif selon l'une quelconque des revendications 1 à 22, caractérisé en ce qu'il s'agit d'un dispositif microfluidique.
24. Ensemble pour l'analyse d'un échantillon comprenant un dispositif (2 ;102 ;202) et un appareillage (22) présentant un logement (24) de réception amovible du dispositif et une source de lumière (28), caractérisé en ce que le dispositif est conforme à l'une quelconque des revendications 1 à 23, la source étant apte à émettre un rayon lumineux (42) traversant le miroir (38 ;138 ;238) pour arriver jusqu'au réceptacle (8) lorsque le dispositif est dans le logement.
25. Ensemble selon la revendication 24, caractérisé en ce que l'appareillage comprend des moyens d'analyse (30, 52) du rayon (42) disposés de sorte que le dispositif (2) s'étend entre la source (28) et les moyens d'analyse lorsque le dispositif est dans le logement (24).
26. Ensemble selon l'une quelconque des revendications 24 à 25, caractérisé en ce qu'il comprend des moyens pour analyser un rayonnement provenant directement ou indirectement de la source de façon à déterminer si le dispositif est reçu à une position prédéterminée dans le logement.
EP02791516A 2001-08-02 2002-08-02 Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux Withdrawn EP1421364A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0110380A FR2828281B1 (fr) 2001-08-02 2001-08-02 Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux
FR0110380 2001-08-02
PCT/FR2002/002791 WO2003012403A1 (fr) 2001-08-02 2002-08-02 Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux

Publications (1)

Publication Number Publication Date
EP1421364A1 true EP1421364A1 (fr) 2004-05-26

Family

ID=8866228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02791516A Withdrawn EP1421364A1 (fr) 2001-08-02 2002-08-02 Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux

Country Status (6)

Country Link
US (1) US20050014248A1 (fr)
EP (1) EP1421364A1 (fr)
JP (1) JP2004537720A (fr)
CA (1) CA2456041A1 (fr)
FR (1) FR2828281B1 (fr)
WO (1) WO2003012403A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819411B1 (en) 1997-01-31 2004-11-16 Xy, Inc. Optical apparatus
US6149867A (en) 1997-12-31 2000-11-21 Xy, Inc. Sheath fluids and collection systems for sex-specific cytometer sorting of sperm
US7208265B1 (en) 1999-11-24 2007-04-24 Xy, Inc. Method of cryopreserving selected sperm cells
US7713687B2 (en) 2000-11-29 2010-05-11 Xy, Inc. System to separate frozen-thawed spermatozoa into x-chromosome bearing and y-chromosome bearing populations
WO2002043574A2 (fr) 2000-11-29 2002-06-06 Xy, Inc. Systeme de dissociation de spermatozoides congeles-decongeles porteurs d'un chromosome x de ceux porteurs d'un chromosome y
JP4595067B2 (ja) 2002-08-01 2010-12-08 エックスワイ,エルエルシー 低圧精子細胞分離システム
US8486618B2 (en) 2002-08-01 2013-07-16 Xy, Llc Heterogeneous inseminate system
JP2005535346A (ja) 2002-08-15 2005-11-24 エックスワイ,インコーポレイテッド 高分解能フローサイトメーター
US7169548B2 (en) 2002-09-13 2007-01-30 Xy, Inc. Sperm cell processing and preservation systems
BRPI0408857B1 (pt) 2003-03-28 2018-09-11 Inguran Llc aparelho, métodos e processos para separar partículas e para prover esperma de animal separado por sexo
AU2004242121B2 (en) 2003-05-15 2010-06-24 Xy, Llc. Efficient haploid cell sorting for flow cytometer systems
BRPI0509485A (pt) 2004-03-29 2007-09-11 Monsanto Technology Llc suspensões de esperma para uso em inseminação
EP2269617B1 (fr) 2004-07-22 2016-04-27 Inguran, LLC Suspensions de sperme pour trier des populations enrichies contenant les chromosomes X ou Y
EA023941B1 (ru) 2010-04-16 2016-07-29 Опкоу Дайагностикс, Ллк. Анализатор микрофлюидного образца и способ выполнения анализа микрофлюидного образца
USD645971S1 (en) 2010-05-11 2011-09-27 Claros Diagnostics, Inc. Sample cassette
US9746412B2 (en) 2012-05-30 2017-08-29 Iris International, Inc. Flow cytometer
WO2015065909A1 (fr) * 2013-10-30 2015-05-07 The General Hospital Corporation Système et procédé destinés à un cytomètre à focalisation inertielle comportant des composants optiques intégrés permettant une caractérisation de particules
USD804682S1 (en) 2015-08-10 2017-12-05 Opko Diagnostics, Llc Multi-layered sample cassette

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989381A (en) * 1975-05-05 1976-11-02 Coulter Electronics, Inc. Optical chamber with spherical reflective portion and apparatus employing same
US4189236A (en) * 1978-03-20 1980-02-19 Coulter Electronics, Inc. Ellipsoid-conic radiation collector and method
US4702598A (en) * 1985-02-25 1987-10-27 Research Corporation Flow cytometer
US6100541A (en) * 1998-02-24 2000-08-08 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03012403A1 *

Also Published As

Publication number Publication date
FR2828281B1 (fr) 2004-12-31
FR2828281A1 (fr) 2003-02-07
JP2004537720A (ja) 2004-12-16
WO2003012403A1 (fr) 2003-02-13
US20050014248A1 (en) 2005-01-20
CA2456041A1 (fr) 2003-02-13

Similar Documents

Publication Publication Date Title
EP1421364A1 (fr) Dispositif pour l'analyse d'un echantillon notamment par cytometrie de flux
EP0030875B1 (fr) Dispositif d'éclairage pour grand écran
EP0165868B1 (fr) Dispositif optique à rendement de collection élevé et cytofluorimètre en faisant application
FR2587119A1 (fr) Appareil optique servant a effectuer des analyses
EP0820348A1 (fr) Carte d'analyse
EP2084515A2 (fr) Dispositif pour la detection exaltee de l'emission d'une particule cible
WO2005059523A1 (fr) Dispositif optique pour detecter de la lumiere
EP3210938B1 (fr) Dispositif de caracterisation de particules dispersees dans un milieu liquide
EP2024771B1 (fr) Microscope confocal interférométrique
EP2960642A1 (fr) Chambre optique pour dispositif de détection de gaz
CH629592A5 (fr) Appareil collecteur de radiation.
EP1409999B1 (fr) Appareil de separation par electrophorese sur microcanaux et de detection par fluorescence induite par laser
EP3751258B1 (fr) Dispositif et procédé d'observation d'un échantillon fluorescent
EP2473827A1 (fr) Système de spectroscopie de fluorescence par corrélation temporelle pour l'analyse de particules dans un milieu
WO2007057574A1 (fr) Procede et dispositif de denombrement de corps dans un liquide
EP1554565B1 (fr) Dispositif de lecture de luminescence integre
EP1516218A2 (fr) Dispositif de centrage automatique d un faisceau laser et pr ocede de fabrication de ce dispositif
EP4179318B1 (fr) Appareil et procédé de détermination du taux d'hémoglobine ou d'hématocrite d'un liquide en circulation
EP1300675A1 (fr) Capteur optique pour la détection d'au moins une substance chimique et sondes optiques comprenant de tels capteurs optiques
FR2463504A1 (fr) Source d'ions pour analyseur de masses
CH653132A5 (en) Flow cell for apparatus for analysis of individual particles in suspension in a liquid and analysis apparatus using this cell
FR2738082A1 (fr) Dispositif pour la conformation avec homogeneisation de la repartition spatiale transverse d'intensite, d'un faisceau laser
WO2018134281A1 (fr) Dispostif et procede de discrimination de spermatozoïdes
EP4012476A1 (fr) Microscope confocal avec réallocation de photons
FR3112391A1 (fr) Appareil de détermination du taux d’hémoglobine ou d’hématocrite d’un liquide en circulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060405