EP0193457B1 - Dispositif acoustique multi-lentilles à grandissement et focale variables - Google Patents

Dispositif acoustique multi-lentilles à grandissement et focale variables Download PDF

Info

Publication number
EP0193457B1
EP0193457B1 EP86400354A EP86400354A EP0193457B1 EP 0193457 B1 EP0193457 B1 EP 0193457B1 EP 86400354 A EP86400354 A EP 86400354A EP 86400354 A EP86400354 A EP 86400354A EP 0193457 B1 EP0193457 B1 EP 0193457B1
Authority
EP
European Patent Office
Prior art keywords
lenses
lens
acoustic
transducer
coupling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86400354A
Other languages
German (de)
English (en)
Other versions
EP0193457A1 (fr
Inventor
Bertrand Nongaillard
Jean-Michel Rouvaen
Patrice Logette
Guy Thomin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to AT86400354T priority Critical patent/ATE45642T1/de
Publication of EP0193457A1 publication Critical patent/EP0193457A1/fr
Application granted granted Critical
Publication of EP0193457B1 publication Critical patent/EP0193457B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses

Definitions

  • the invention relates to acoustic microscopy.
  • Acoustic microscopy offers certain advantages over traditional optical microscopy. First of all, it allows you to explore not only the surface of a body, but also the areas close to the surface, which are not visible when the body is opaque. In addition, for transparent bodies; it allows acoustic contrasts to appear, where the optics give little information.
  • the word “lens” is associated with a meniscus shape. It is different in acoustics, where the “lens” function is achieved by a diopter, that is to say by the interface between a solid and a coupling medium. However, we will keep the word “lens”, as is customary, to define the solid body which carries one or more diopters of this type.
  • diopter index the relative index of the coupling medium with respect to the solid, and this index is defined by the ratio of the speed of the acoustic waves in the solid to that in the coupling medium.
  • the Applicant has found that, to carry out an image or a detection throughout the volume of a sample, it is necessary to use several lenses whose depths of field make it possible to cover the entire thickness of the sample. For example, more than ten lenses would be required to test a 10 millimeter thick ceramic sample with uniform resolution.
  • the depth of field and the resolution obtained in the sample material depend on the aperture angle presented by the focused beam in the coupling medium.
  • this opening angle is in turn related to the size of the transducer used, and consequently to the electrical impedance thereof.
  • this electrical impedance has a nominal value of 50 ohms, which is the internal impedance of the excitation generator. It is therefore necessary to have an additional degree of freedom in order to be able to make the desired depth of field and resolution compatible with this electrical impedance of 50 ohms.
  • the present invention provides a solution to these problems, a solution which essentially consists of an acoustic device with several lenses, forming a probe capable of variable magnification and focal length.
  • a “complex acoustic lens” comprising a frame which coaxially houses at least two acoustic lenses, and which contains an acoustic coupling medium in the interval separating these two lenses.
  • the present invention uses an apparatus having a certain relationship with this anterior complex lens, it being observed that it uses it in an entirely different context.
  • the prior patent recommends the use of polystyrene lenses, and a filling medium chosen from freons, silicone oils, and fluorinated hydrocarbons. These choices are based on the search for a high acoustic propagation speed, for a frequency of a few megahertz. Outside the lenses at least, the prior patent uses the most conventional coupling medium, namely water, but lenses made of the aforementioned materials do not have a high relative index with respect to water.
  • the device described in the previous French patent n ° 2 241 228 cannot be used at frequencies of the order of 50 MHz or more.
  • it aims to treat simultaneously all points of an image, which is very unfavorable in terms of signal / noise ratio.
  • it cannot work at a wide aperture, which compromises its resolution.
  • the present invention makes use of an acoustic device with several lenses having the general structure defined above, but in which the acoustic frequency can be made higher, and above all the diopters have a high relative index, the coupling medium being such that the water.
  • the device is suitable for high-resolution scanning imaging applications, and in particular it is suitable for acoustic microscopy.
  • a first lens consisting of a concave diopter, hollowed out at the end of a rod of a solid material such as corundum, the other end of which is provided with a transducer acoustic material made of a piezoelectric material, focuses the radiation from the transducer. This radiation then consists of a plane acoustic wave propagating in the material of the lens.
  • the second lens is composed of an internal concave diopter (that is to say facing the other lens) whose object focal point is close to the image focal point of the concave diopter of the first lens, and of a concave diopter external suitable to be coupled to the sample.
  • the frame is arranged to allow relative axial displacement of the two lenses, continuously-adjustable over a predetermined range. An acoustic probe with variable focal length and magnification is thus obtained.
  • the lenses are made of a material, preferably monocrystalline, which has a high relative index.
  • the currently preferred material is corundum.
  • silica and sintered ceramics such as alumina or silicon carbide.
  • said predetermined adjustment range comprises the confocal position of the two internal diopters.
  • the concave diopters can be spherical or cylindrical dioptres.
  • the coupling medium provided between the two lenses is preferably mercury or liquid gallium.
  • the coupling medium is mercury
  • for the internal dioptres, and preferably the internal faces of the frame to be coated with a layer of gold with a bonding undercoat (Chrome or Titanium for example).
  • the external diopter of the second lens is advantageously provided with a quarter-wave layer, preferably made of glass, to form an adaptation with the external coupling medium (with respect to the sample) if this medium coupling is water.
  • the transducer which is in particular a lithium niobate transducer, has an active surface such that it has a radiation resistance of approximately 50 ohms, and the characteristics of the lenses are chosen for obtain the desired beam opening while respecting this radiation resistance.
  • the present invention essentially considers the use of two lenses, it goes without saying that a higher number of lenses can be provided, at least for certain applications.
  • the combination of the two lenses provides an enlargement of the acoustic beam.
  • the combination of two (or more) lenses provides a reduction in the acoustic beam.
  • the transducer which is excited in pulses, is chosen of a type capable of delivering an acoustic wave of frequency between a few tens of megahertz and a gigahertz.
  • the device is designed to deliver an acoustic beam into the external coupling medium, the opening of which can be made optimal with respect to the total angle of reflection on the sample.
  • the device of the invention applies in particular to the examination, in volume, of ceramic or metallic samples.
  • a thin section of the sample to be examined is placed transversely at the focal point F1, in an acoustic coupling medium with the lens L1.
  • a receiving device symmetrical with the preceding one with respect to the point F1, is placed on the other side, in order to detect the acoustic waves transmitted through the sample.
  • This Patent Application can also apply to the examination of thin sections of samples, but it preferably relates to the non-destructive testing of thicker samples, more precisely the high-resolution non-destructive testing of materials in their volume.
  • This application is particularly interesting for metals and ceramics. The rest of the description will focus mainly on the examination of ceramic materials, which better highlight the advantages of the invention, because the low toughness of ceramic materials gives, under identical stress conditions, critical defect sizes. about a hundred times weaker than in metals (typically about 0.1 mm).
  • the lenses are made of corundum, unless otherwise stated.
  • the coupling medium between the lenses is mercury, while the coupling medium with the sample is mercury or water, it being observed that these two materials have similar acoustic propagation speeds.
  • the coupling medium such as mercury or water
  • the depth of field is defined as the distance over which the focal spot remains the same width, that is to say truly the area where the light beam remains parallel.
  • the depth of field must be defined differently, because, by controlling the structure of a material, one is essentially interested in whether or not one will know how to detect the echo. Even if the echo is due to a structural element on which it is not focused, the important thing is to have been able to detect this element correctly. It therefore seems preferable to refer to a depth of acoustic efficiency, defined according to the reduction in the amplitude of the field created by the lens.
  • this evaluation of the depth of effectiveness of the lens corresponds to a zone of propagation medium which can give acoustic echoes for a fixed lens geometry. Outside this zone, the conditions for phasing the echoes, at the level of the lens, are no longer sufficiently respected, the detection of faults in the medium analyzed will be difficult (echoes are only observed in certain cases) , or even impossible.
  • the total reflection angle on the ceramic is approximately 7 °, under the conditions set.
  • d is the equivalent depth that the wave would travel from the interface between the coupling medium MC1 and the sample EC, in the absence of the sample, while Om is the opening angle which then remains the same as before.
  • d ' is the distance that the wave will actually travel taking into account the presence of the sample EC, while Oi is the opening angle modified due to the refraction.
  • n m is the relative index of water with respect to the material of the sample EC.
  • the resolution is then given at 6dB by where d is the focusing distance in the material.
  • d is the focusing distance in the material.
  • the resolution is of the order of 6 to 7 wavelengths (acoustic wavelengths in water).
  • the document EP-A-150 843 proposed a first solution consisting in machining several diopters at the exit of a bar such as that of FIG. 1. Although this solution allows certain progress, it is not without also posing problems, in particular of realization and implementation, when the dioptres must have neighboring radii of curvature.
  • the present invention offers another solution, the block diagram of which is illustrated in FIG. 3.
  • a high frequency pulse generator G10 is connected by a directional coupler CD to the two electrodes of an ultrasonic transducer T.
  • the echoes received by this transducer are transmitted by the coupler CD to an echo reception and analysis circuit noted R10 .
  • this device has in common with that of FIG. 1 the fact that a lens L1 is formed of a cylindrical bar whose front face L11, flat, receives the ultrasonic transducer T. Its rear face L12 is machined like a spherical or cylindrical diopter centered in C1. The image focal point associated with this diopter L12 is at F in FIG. 3.
  • the acoustic radiation from this first lens L1 is applied to a second lens L2, which is here a biconcave lens, formed of two spherical or cylindrical diopters, L21 on the inside, and L22 on the outside, facing the EC sample.
  • the internal diopter L21 centered at C2, is positioned here so that its object focal point is the image focal point F of the internal diopter L12.
  • the acoustic lens L2 is then crossed by a parallel acoustic beam, in other words a plane wave, which passes through the material constituting the lens L2, namely corundum.
  • the combination of lenses L1 and L2 makes it possible to obtain focusing at variable distance.
  • the internal diopter L12 of the first lens L1 associated with the internal diopter L21 of the second lens L2 constitutes a beam-expanding system in the application presented, which is the acoustic inspection of a sample of ceramic material. It can also be used as a beam reducer in other applications such as measuring the thickness of coatings (paints).
  • the acoustic beam is substantially parallel to the axis of the system inside the lens L2, and the focusing depth is given by: where e is the thickness of the coupling medium, which can be neglected in practice. Furthermore, n denotes here the relative index of the lens L2, n m denotes the index of the coupling medium relative to the material of the sample examined.
  • a lithium niobate transducer which would have the shape of Figure 1, and which should illuminate such a large pupil, would have a radiation resistance of about 2 ohms.
  • the invention makes it possible to produce said pupil, while retaining the electrical impedance adaptation required for the transducer, at the usual value of 50 ohms.
  • the ratio between the radii of curvature of the diopters L21 and L12 is therefore equal to 5.
  • the optimization of the geometry of the device also requires that the distance between the lenses L1 and L2 be minimized, in order to reduce as far as possible the travel time of the acoustic waves inside the device. Indeed, in acoustic microscopy, as in any other imaging application, it is necessary to keep a sufficient number of points on each line of the image.
  • This transit time Tp is written: where e 1 and e 2 are the thicknesses of the lenses L1 and L2 respectively, v c is the speed of propagation of the ultrasound in the corundum, the two lenses being assumed to be made of corundum in this example, ⁇ is the difference between the two lenses with respect to the confocal position, and v H is the propagation speed of the acoustic waves in the coupling medium between the lenses L1 and L2.
  • Corundum has various advantages including that of offering excessively low acoustic attenuation. There is therefore no constraint on the maximum dimensions to be given to the lenses L1 and L2. And we can even operate these at frequencies much higher than 100 megahertz. On the other hand, such constraints on the dimensions may occur if the output lens L2 is made of silica or sintered alumina.
  • Corundum still has the distinction of being an anisotropic material, unlike silica or sintered alumina, and it belongs to the trigonal crystallographic system.
  • the acoustic wave is practically a plane wave.
  • the corundum has a slightly focusing section for energy, that is to say that the diffraction is less important than expected, and that the performances are a little better than that which is given by the relationships set out above.
  • A is as before the distance between the focal point of the diopter L12 of the lens L1, and that of the diopter L21 of the lens L2; d is the thickness of the exit lens, R 2 is the radius of curvature of the diopter L21, R 3 is the radius of curvature of the diopter L22, and n is the refractive index (assumed to be the same) associated with the diopters L12 , L21 and L22.
  • FIG. 4 illustrates the same lenses L1 and L2 in a different relative position, where the focal point F1 of the diopter L12 is spaced from the focal point F2 of the diopter L21.
  • the thick dashed line M provisionally schematizes the frame which will connect the lenses L1 and L2 to allow their relative displacement, as will be seen below.
  • FIG. 9 illustrates the relationship between the focusing distance f, counted from the top of the diopter L22 of the lens L2 and the spacing A between the focal points F1 and F2, this spacing being positive when F2 is to the right of F1.
  • the equivalent focal distance of the lens in water varies from 0 (focusing on the output diopter L22) to 7 cm. This corresponds to a variation in the focusing distance in a ceramic sample which goes practically from the surface of the sample up to 10 mm in depth, which solves the problem posed.
  • the losses at each diopter crossing are approximately 9 dB. With mercury, they reduce to less than 1 dB. (If we switch to silica lenses, these losses would be 4.5 dB and 0.2 dB respectively).
  • the better transmission which results from this choice of the coupling medium is also accompanied by a significant reduction in the amplitude of the multiple echoes in the probe.
  • mercury also has the advantage of attenuating very little the acoustic waves, which allows large variations in the parameter. This does not result in a significant modification of the losses in the probe. In particular, for the above-mentioned variation from +3 to -6 mm, the losses in the probe would only vary by around 4.5 dB.
  • the coupling medium MC1 between the lens L1 and the lens L2 a liquid medium, of low propagation speed, of high acoustic impedance, and having a low attenuation at the acoustic waves. It has been observed that mercury and possibly gallium meet these conditions.
  • the lens L22 is mechanically adapted to the coupling medium with the sample, which is water.
  • This quarter wave layer performs an anti-reflection function. It is not necessary with mercury.
  • the diopter L21 is covered with a layer of a few hundred nanometers of a chromium-gold alloy, which facilitates the wetting of the mercury on its surface by the formation of an amalgam. The same is done for the inner face of the frame M22, as well as of the frame M21 (FIG. 6) which cooperates with it, and the inner diopter L12 of the lens L1.
  • the lens L1 for its part, can be of the type of conventional lenses used in acoustic microscopy.
  • a corundum bar is provided at one of its ends with a piezoelectric transducer, for example made of lithium niobate, provided with suitable armatures, and capable of generating a longitudinal plane wave inside the bar.
  • a piezoelectric transducer for example made of lithium niobate, provided with suitable armatures, and capable of generating a longitudinal plane wave inside the bar.
  • an L12 diopter is machined which is polished and rigorously centered on the axis of the corundum bar.
  • the diopter 12 is also well centered on its mount M21, which moves around the mount M22 in the embodiment of FIG. 6.
  • the diopter L12 is first machined, so that it is centered on the axis of the corundum cylinder L1.
  • the electrode is evaporated on the L11 face of the corundum bar.
  • the transducer is placed on this electrode.
  • a counter electrode is then evaporated on the transducer T, taking care that this counter electrode is well centered on the axis of the corundum cylinder.
  • the corundum bar is then placed in the frame M 21 or M31 so that the axis of the latter coincides with that of the cooperating frame M22 or M32 as the case may be.
  • An alternative embodiment consists in machining the lens L1 once mounted in its frame M31, and in doing the same for the evaporation of the counter-electrode.
  • FIGS. 8, 8A and 8B illustrate a detailed embodiment of the device of the invention, in which provision is made for a controlled leak of the coupling medium, the latter being typically mercury.
  • the assembly is similar to that of FIG. 7.
  • the corundum bar L1 is mounted on the frame M41, of which an external thread 410 cooperates with an internal thread 420 of an enlarged part 425 of the frame M42 of the biconcave lens L2.
  • a leak exists between the M41 and M42 mounts, through one or more flats 415 of the M41 mount.
  • This slot ends in the reservoir 400 formed between 425 and M41. This avoids almost all of the problems encountered with mercury, given the variable volume that will exist between the lenses L1 and L2. In particular, the presence of air bubbles, or the introduction of vibrations would be very damaging, especially for imaging applications.
  • the bore 417 receives an adapter body of the transducer T, held by a transverse screw 418 (FIG. 8B).
  • the larger terminal bore 419 is used to house the adapter electronics for the transducer.

Description

  • L'invention concerne la microscopie acoustique.
  • La microscopie acoustique offre certains avantages par rapport à la microscopie optique traditionnelle. Tout d'abord, elle permet d'explorer non seulement la surface d'un corps, mais aussi les zones proches de la surface, non visibles dès lors que le corps est opaque. De plus, pour les corps transparents; elle permet de faire apparaître des contrastes acoustiques, là où l'optique ne donne que peu d'informations.
  • Ainsi, à une fréquence acoustique l'ordre du gigahertz, on obtient une résolution spatiale acoustique comparable à celle de l'optique, et qui ouvre des horizons nouveaux, notamment en biologie.
  • A des fréquences un peu plus basses, de l'ordre de la centaine de mégahertz, la microscopie acoustique est susceptible de procurer un moyen de contrôle non destructif des matériaux dans leur volume. Mais cette voie est encore peu explorée à l'heure actuelle.
  • Il convient de rappeler tout d'abord que, si l'on cherche en acoustique à raisonner comme en optique, il existe néanmoins des différences entre ces deux disciplines.
  • En optique traditionnelle, le mot «lentille» est associé à une forme en ménisque. Il en est différemment en acoustique, où la fonction «lentille» est réalisée par un dioptre, c'est-à-dire par l'interface entre un solide et un milieu de couplage. On conservera néanmoins le mot «lentille», comme il est d'usage, pour définir le corps solide qui porte un ou plusieurs dioptres de ce type.
  • Par ailleurs, il est habituel dans les raisonnements d'optique, de travailler sur des indices de réfraction supérieurs à l'unité. On appellera donc ici «indice du dioptre» l'indice relatif du milieu de couplage par rapport au solide, et cet indice est défini par le rapport de la vitesse des ondes acoustiques dans le solide à celle dans le milieu de couplage.
  • Il a été indiqué précédemment que l'usage de la microscopie acoustique à des fins de contrôle non destructif des matériaux dans leur volume est peu répandu à l'heure actuelle. Il existe en effet un préjugé, suivant lequel le franchissement du dioptre constitué par le milieu de couplage acoustique et l'échantillon à examiner crée sur le faisceau acoustique des aberrations qui l'empêchent d'at- teindre une résolution satisfaisante.
  • Le Demandeur a observé qu'en fait les «rayons» très inclinés, qui créeraient cette aberration, sont fortement atténués à la traversée de l'interface milieu de couplage/échantillon. Il est alors possible de réduire lesdites aberrations, pourvu que les aberrations dues aux lentilles elles-mêmes ne soient pas prédominantes. Ce facteur, et d'autre considérations développées plus loin, conduisent à préférer des lentilles d'indice élevé, notamment supérieur à 4.
  • Il a été proposé dans le document EP-A-150 843 (une demande de brevet européen telle que définie à l'article 54, paragraphe 3 de la CBE) de faire usage d'une sonde électro-acoustique focalisée, opérant autour de 100 mégahertz.
  • Cette Demande de brevet antérieure a mis en lumière une autre difficulté: lorsque l'on observe un échantillon à l'aide d'un faisceau acoustique focalisé (pour avoir une bonne résolution), le temps d'examen devient rapidement prohibitif si le volume de l'échantillon est important.
  • Le Demandeur a constaté que, pour réaliser une image ou une détection dans tout le volume d'un échantillon, il est nécessaire d'utiliser plusieurs lentilles dont les profondeurs de champ permettent de couvrir la totalité de l'épaisseur de l'échantillon. Il faudrait par exemple plus de dix lentilles pour contrôler un échantillon de céramique d'épaisseur 10 millimètres avec une résolution uniforme.
  • Une autre difficulté intervient alors: la profondeur de champ et la résolution obtenues dans le matériau de l'échantillon dépendent de l'angle d'ouverture que présente le faisceau focalisé dans le milieu de couplage. Mais cet angle d'ouverture est à son tour en relation avec la taille du transducteur utilisé, et par conséquent avec l'impédance électrique de celui-ci. Or, il est souhaitable que cette impédance électrique ait une valeur nominale de 50 ohms, qui est l'impédance interne du générateur d'excitation. Il faut donc disposer d'un degré de liberté supplémentaire pour pouvoir rendre compatible la profondeur de champ et la résolution désirées avec cette impédance électrique de 50 ohms.
  • La présente invention apporte une solution à ces problèmes, solution qui consiste essentiellement en un dispositif acoustique à plusieurs lentilles, formant sonde capable de grandissement et de focale variables.
  • Par le Brevet français publié sous le n° 2 241 228, on connaît une «lentille acoustique complexe» comprenant une monture qui loge coaxialement au moins deux lentilles acoustiques, et qui contient un milieu de couplage acoustique dans l'intervalle séparant ces deux lentilles.
  • La présente invention fait appel à un appareil possédant une certaine parenté avec cette lentille complexe antérieure, étant observé qu'elle s'en sert dans un contexte tout à fait différent.
  • Tout d'abord, le Brevet antérieur préconise l'usage de lentilles en polystyrène, et d'un milieu de remplissage choisi parmi les fréons, les huiles de silicone, et les hydrocarbures fluorés. Ces choix sont fondés sur la recherche d'une vitesse de propagation acoustique élevée, pour une fréquence de quelques mégahertz. A l'extérieur des lentilles au moins, le brevet antérieur utilise le milieu de couplage le plus classique, à savoir l'eau, mais des lentilles constituées des matériaux précités ne possèdent pas un indice relatif élevé par rapport à l'eau.
  • A côté de cela, le dispositif décrit dans le Brevet français antérieur n° 2 241 228 n'est pas utilisable à des fréquences de l'ordre de 50 MHz ou plus. De surcroît, il a pour but de traiter simultanément tous les points d'une image, ce qui est très défavorable en termes de rapport signal/bruit. Enfin, il ne peut travailler à grande ouverture, ce qui compromet sa résolution.
  • La présente invention fait appèl à un dispositif acoustique à plusieurs lentilles possédant la structure générale définie ci-dessus, mais dans lequel la fréquence acoustique peut être rendue plus haute, et surtout les dioptres présentent un indice relatif élevé, le milieu de couplage étant tel que l'eau. De plus, le dispositif est propre à des applications d'imagerie par balayage, à haute résolution, et en particulier il convient en microscopie acoustique.
  • Selon un premier aspect de la présente invention, une première lentille, constituée d'un dioptre concave, creusé à l'extrémité d'un barreau d'un matériau solide tel que le corindon, dont l'autre extrémité est munie d'un transducteur acoustique constitué d'un matériau piézo-électrique, focalise le rayonnement du transducteur. Ce rayonnement est alors constitué d'une onde acoustique plane se propageant dans le matériau'de la lentille. La seconde lentille est composée d'un dioptre concave interne (c'est-à-dire faisant face à l'autre lentille) dont le foyer objet est voisin du foyer image du dioptre concave de la première lentille, et d'un dioptre concave externe propre à être couplé à l'échantillon. Enfin, la monture est agencée pour permettre un déplacement axial relatif des deux lentilles, continûment-réglable sur une plage prédéterminée. On obtient ainsi une sonde 'acoustique à focale et grandissement variables.
  • Les lentilles sont faites en un matériau, de préférence monocristallin, qui possède un fort indice relatif. Le matériau actuellement préféré est le corindon.
  • D'autres types de matériaux peuvent également convenir, comme la silice, et les céramiques frittées telles que l'alumine ou le carbure de silicium.
  • Très avantageusement, ladite plage prédéterminée de réglage comprend la position confocale des deux dioptres internes.
  • Les dioptres concaves peuvent être des dioptres sphériques ou cylindriques.
  • Selon un autre aspect de l'invention, le milieu de couplage prévu entre les deux lentilles est, de préférence, le mercure ou le gallium liquide.
  • Il est alors avantageux de prévoir, entre les deux parties en mouvement relatif de la monture, une fuite contrôlée vers un réservoir du milieu de couplage.
  • Il est également avantageux, du moins lorsque le milieu de couplage est le mercure, que les dioptres internes, et de préférence les faces internes de la monture, soient revêtus d'une couche d'or avec une sous-couche d'accrochage (Chrome ou Titane par exemple).
  • De son côté, le dioptre externe de la seconde lentille est avantageusement muni d'une couche quart d'onde, de préférence en verre, pour former adaptation avec le milieu de couplage externe (à l'égard de l'échantillon) si ce milieu de couplage est l'eau.
  • Selon un autre aspect de l'invention, le transducteur, qui est en particulier un transducteur en niobate de lithium, a une surface active telle qu'il possède une résistance de radiation d'environ 50 ohms, et les caractéristiques des lentilles sont choisies pour obtenir l'ouverture de faisceau désirée en respectant cette résistance de radiation. Bien que la présente invention considère essentiellement l'usage de deux lentilles, il va de soi que l'on pourra prévoir un nombre de lentilles plus élevé, au moins pour certaines applications.
  • Dans une première famille d'applications, la combinaison des deux lentilles (ou plus) procure un agrandissement du faisceau acoustique.
  • Dans une autre famille d'applications, la combinaison des deux lentilles (ou plus) procure une réduction du faisceau acoustique.
  • Selon un autre aspect de l'invention, le transducteur, qui est excité en impulsions, est choisi d'un type propre à délivrer une onde acoustique de fréquence comprise entre quelques dizaines de mégahertz et un gigahertz.
  • Plus particulièrement encore, le dispositif est agencé pour délivrer dans le milieu de couplage externe un faisceau acoustique dont l'ouverture peut être rendue optimale par rapport à l'angle de réflexion totale sur l'échantillon.
  • Le dispositif de l'invention s'applique en particulier à l'examen, en volume, d'échantillons céramiques ou métalliques.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels:
    • - la figure 1 illustre schématiquement une sonde acoustique classique,
    • - la figure 2 illustre schématiquement le couplage de la sonde de la figure 1 à un échantillon,
    • - la figure 3 est le schéma de principe d'un dispositif selon l'invention, dans une première position relative des deux lentilles qu'il contient,
    • - la figure 4 est le schéma du même dispositif dans une deuxième position relative des deux lentilles,
    • - la figure 5 est un schéma du montage de la seconde lentille sur un tube,
    • - les figures 6 et 7 sont deux variantes de réalisation d'un dispositif à deux lentilles selon l'invention,
    • - la figure 8 est le schéma détaillé, en coupe, d'un mode de réalisation particulier de l'invention, tandis que les figures 8A et 8B sont des vues en demi-coupe de parties de la figure 8, et
    • - les figures 9 à 11 sont des diagrammes servant à expliquer le fonctionnement du dispositif de l'invention.
  • Il a déjà été fait référence au Brevet français n° 73 30 024, publié sous le n° 2 241 228. Tout en visant spécifiquement l'examen d'organismes vivants, et l'imagerie ultrasonore associée, ce brevet antérieur paraît concerner plus généralement de nombreuses autres applications de la formation d'images et de la concentration d'ondes acoustiques. Il est à noter encore que ce brevet antérieur- permet la formation d'images relatives à des objets macroscopiques.
  • Les premières propositions de microscopie acoustique ont été formulées dans les brevets Etats-Unis n° 4 012 950 et 4 028 933.
  • Ces brevets font usage d'une source d'ultrasons correspondant au schéma de la figure 1. Un transducteur ultrasonore T est collé sur la face arrière plane L1 d'un barreau cylindrique L1 dont la face avant est usinée pour former un dioptre L12, sphérique ou cylindrique, et centré en C1.
  • Il en résulte une focalisation de l'onde acoustique plane émise par le transducteur à l'intérieur du barreau L1, en un foyer F1. La distance focale image, comptée à partir du sommet du dioptre, est donnée par la relation:
    Figure imgb0001
    où R est le rayon de courbure du dioptre L12, tandis que n est l'indice relatif du dioptre que porte la lentille L1, cette formule, et celles qui suivent, correspondent à une approximation du même type que l'approximation d'optique géométrique paraxiale.
  • Dans les brevets Etats-Unis cités, une coupe mince de l'échantillon à examiner est placée transversalement au niveau du foyer F1, dans un milieu de couplage acoustique avec la lentilb L1. Un dispositif récepteur, symétrique du précédent par rapport au point F1, est placé de l'autre côté, afin de détecter les ondes acoustiques transmises à travers l'échantillon.
  • Et l'excitation du transducteur T se fait en principe en ondes continues.
  • Ces Brevets décrivent également des variantes où l'on opère en réflexion.
  • La présente Demande de Brevet peut s'appliquer aussi à l'examen de coupes minces d'échantillons, mais elle vise préférentiellement le contrôle non destructif d'échantillons plus épais, plus exactement le contrôle non destructif à haute résolution de matériaux dans leur volume. Cette application intéresse notamment les métaux et les céramiques. La suite de la description s'attachera essentiellement à l'examen de matériaux céramiques, qui mettent mieux en lumière les avantages de l'invention, car la faible ténacité des matériaux céramiques donne, dans des conditions de sollicitation identiques, des tailles de défaut critiques environ cent fois plus faibles que dans les métaux (typiquement environ 0,1 mm).
  • Dans la suite de la description, on admet aussi que les lentilles sont en corindon, sauf mention contraire. Le milieu de couplage entre les lentilles est le mercure, tandis que le milieu de couplage avec l'échantillon est le mercure ou l'eau, étant observé que ces deux matériaux possèdent des vitesses de propagation acoustiques voisines.
  • Il est encore rappelé que le milieu de couplage, tel que le mercure ou l'eau, possède un indice élevé, à savoir environ 7,3, par rapport au corindon.
  • Si l'on revient maintenant à la figure 1, il a été observé que le dispositif illustré donne une tache focale pratiquement exempte d'aberrations de sphéricité, et dont le diamètre à -6dB est donné par la relation suivante:
    Figure imgb0002
    où k est une constante voisine de 1, et liée à la forme de la pupille et à son éclairement,
    • λ est la longueur d'onde dans le milieu de focalisation.
    • f est la distance focale image du dioptre déjà défini;
    • et a est le diamètre de la pupille avec a = 2.R.sin 0m où Om est l'ouverture angulaire du dioptre.
  • On sait qu'en optique lumineuse, la profondeur de champ est définie comme la distance sur laquelle la tache focale reste de même largeur, c'est-à-dire véritablement la zone où le faisceau lumineux reste parallèle.
  • Le Demandeur a observé qu'en acoustique, la profondeur de champ doit être définie différemment, car, en contrôlant la structure d'un matériau, on s'intéresse essentiellement au fait que l'on va savoir ou non détecter l'écho. Même si l'écho est dû à un élément de structure sur lequel il n'est pas focalisé, l'important est d'avoir pu détecter correctement cet élément. Il apparaît donc préférable de se référer à une profondeur d'efficacité acoustique, définie d'après la diminution de l'amplitude du champ créé par la lentille.
  • A partir de là, le Demandeur a pu observer que la profondeur d'efficacité 2p est donnée, pour une diminution de l'amplitude du champ acoustique de 6 dB par la formule:
    Figure imgb0003
    où k' est une constante de forme voisine de 1.
  • Comparativement, en optique, la profondeur de champ eût été donnée par la formule 2ï.f2/az.
  • Il convient encore de souligner que cette évaluation de la profondeur d'efficacité de la lentille correspond à une zone de milieu de propagation pouvant donner des échos acoustiques pour une géométrie de lentille fixée. En dehors de cette zone, les conditions de mise en phase des échos, au niveau de la lentille, n'étant plus suffisamment respectées, la détection de défaut dans le milieu analysé sera difficile (on n'observe des échos que dans certains cas), voire même impossible.
  • La profondeur d'efficacité ainsi obtenue est bien entendu limitée. Pour réaliser une image ou une détection dans tout le volume d'un échantillon, il apparaît donc nécessaire d'utiliser plusieurs lentilles dont les profondeurs d'efficacité respectives permettent de couvrir la totalité de l'épaisseur de l'échantillon. On peut ainsi établir qu'il faudrait plus de dix lentilles pour contrôler un échantillon de céramique sur une épaisseur de dix millimètres en conservant la même résolution quelle que soit la profondeur d'investigation.
  • En effet, l'angle de réflexion totale sur la céramique est d'environ 7°, dans les conditions fixées. Pour avoir un diamètre de tache focale mesurant environ une longueur d'onde à mi-hauteur, il est nécessaire de prendre une ouverture de lentille d'environ 5°. Cette ouverture donne, dans les céramiques, une profondeur d'efficacité à mi-hauteur qui est d'environ neuf à dix longueurs d'onde.
  • Il est maintenant fait référence à la figure 2, où l'on note a l'ouverture du faisceau à l'entrée dans le matériau constitutif de l'échantillon EC. d est la profondeur équivalente que parcourrait l'onde à partir de l'interface entre le milieu de couplage MC1 et l'échantillon EC, en l'absence de l'échantillon, tandis que Om est l'angle d'ouverture qui reste alors le même que précédemment. d' est la distance que va parcourir effectivement l'onde compte tenu de la présence de l'échantillon EC, tandis que Oi est l'angle d'ouverture modifié du fait de la réfraction. Enfin nm est l'indice relatif de l'eau par rapport au matériau de l'échantillon EC.
  • On peut écrire en première approximation:
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
  • Il en résulte qu'à l'angle d'ouverture initial Om = 5° correspond l'angle d'ouverture modifié Oi = 32° dans le matériau, ce qui amène 2p = 9,7 λm, où k,, est la longueur d'onde acoustique dans la céramique à la fréquence de 100 mégahertz, soit environ 0,1 millimètre. Ceci donne bien une profondeur de champ d'environ 1 mm pour chaque lentille, d'où la nécessité d'avoir une dizaine de lentilles pour couvrir la totalité de l'épaisseur d'un échantillon de 10 mm.
  • Au foyer, la résolution est alors donnée à 6dB par
    Figure imgb0007
    où d' est la distance de focalisation dans le matériau. Dans le milieu de couplage, qui est par exemple de l'eau, on observe que la résolution est de l'ordre de 6 à 7 longueurs d'onde (longueurs d'onde acoustiques dans l'eau).
  • Dans le matériau de l'échantillon, on observe, pour un faisceau dont l'ouverture est de 5° à l'intérieur du milieu de.couplage, une résolution dans le matériau même de l'échantillon qui est de l'ordre de la longueur d'onde de propagation dans le matériau.
  • Il va de soi que cette nécessité d'utiliser un grand nombre de lentilles pose un problème majeur à l'homme de l'art.
  • Le document EP-A-150 843 a proposé une première solution consistant à usiner plusieurs dioptres à la sortie d'un barreau tel que celui de la figure 1. Bien que cette solution permette certains progrès, elle n'est pas sans poser aussi des problèmes, notamment de réalisation et de mise en oeuvre, lorsque les dioptres doivent avoir des rayons de courbure voisins.
  • La présente invention offre une autre solution, dont le schéma de principe est illustré sur la figure 3.
  • Un générateur d'impulsions haute fréquence G10 est relié par un coupleur directif CD aux deux électrodes d'un transducteur ultrasonore T. Les échos reçus par ce transducteur sont transmis par le coupleur CD à un circuit de réception et d'analyse des échos noté R10.
  • Pour le reste, ce dispositif possède en commun avec celui de la figure 1 le fait qu'une lentille L1 est formée d'un barreau cylindrique dont la face antérieure L11, plane, reçoit le transducteur d'ultrasons T. Sa face postérieure L12 est usinée comme un dioptre sphérique ou cylindrique centré en C1. Le point de focalisation image associé à ce dioptre L12 est en F sur la figure 3.
  • Mais au lieu d'être appliqué directement à l'échantillon, le rayonnement acoustique issu de cette première lentille L1 est appliqué à une seconde lentille L2, qui est ici une lentille biconcave, formée de deux dioptres sphériques ou cylindriques, L21 du côté intérieur, et L22 du côté extérieur, tourné vers l'échantillon EC.
  • Le dioptre interne L21, centré en C2, est positionné ici de façon que son point focal objet soit le point focal image F du dioptre interne L12. La lentille acoustique L2 est alors traversée par un faisceau acoustique parallèle, en d'autres termes une onde plane, qui transite dans le matériau constitutif de la lentille L2, à savoir du corindon.
  • La combinaison des lentilles L1 et L2 permet d'obtenir une focalisation à distance variable.
  • On observera tout d'abord que le dioptre interne L12 de la première lentille L1, associé au dioptre interne L21 de la seconde lentille L2, constitue un système élargisseur de faisceau dans l'application présentée, qui est l'inspection acoustique d'un échantillon de matériau céramique. Il peut être également utilisé en réducteur de faisceau en d'autres applications comme la mesure d'épaisseur de revêtements (peintures).
  • Par ce moyen consistant à élargir ou diminuer la taille du faisceau acoustique sur la lentille L2, il devient possible de rendre compatibles les deux exigences suivantes:
    • - obtenir l'ouverture de faisceau désirée sur le dioptre de sortie L22 de la seconde lentille. En l'espèce, cette ouverture est 001 = 5° environ, ce qui, pour un rayon de courbure R3 donné du dioptre L22, impose:
      Figure imgb0008
    • - conserver une résistance de rayonnement du transducteur T qui soit proche de 50 ohms (impédance interne du générateur d'émission G10 de la figure 3), afin d'en faciliter l'adaptation d'impédance électrique.
  • On s'intéressera maintenant à la variation de focalisation que permet le dispositif de l'invention.
  • Lorsque les deux lentilles sont dans la position relative afocale, comme montré sur la figure 3, le faisceau acoustique est sensiblement parallèle à l'axe du système à l'intérieur de la lentille L2, et la profondeur de focalisation est donnée par:
    Figure imgb0009
    où e est l'épaisseur du milieu de couplage, que l'on peut négliger en pratique. Par ailleurs, n désigne ici l'indice relatif de la lentille L2, nm désigne l'indice du milieu de couplage relativement au matériau de l'échantillon examiné.
  • Avec l'approximation consistant à négliger l'épaisseur e du milieu de couplage, on obtient:
    Figure imgb0010
  • Dans le cas où la lentille L2 est en corindon, et où l'échantillon est en céramique, on a nm ≅ n - 7, ce qui donne une distance de focalisation à peu près égale à un sixième du rayon de courbure R3. En conséquence, pour une distance d'observation moyenne de 5 millimètres, il vient un rayon de courbure du dioptre de sortie L22 de valeur R3.= 30 millimètres.
  • Pour les raisons précédemment indiquées, il convient que l'ouverture du faisceau 0m soit égale à 5° environ, afin d'obtenir dans le matériau une résolution voisine de λm = 0,1 millimètre à 100 mégahertz dans la céramique.
  • Le diamètre du dioptre de sortie L22 est alors donné par la relation:
    Figure imgb0011
  • Un transducteur en niobate de lithium qui présenterait la forme de la figure 1, et qui devrait éclairer une pupille aussi grande, présenterait une résistance de rayonnement d'environ 2 ohms. Par l'obtention d'un facteur d'expansion a = 5, l'invention permet de réaliser ladite pupille, tout en conservant l'adaptation d'impédance électrique requise pour le transducteur, à la valeur habituelle de 50 ohms.
  • Il vient maintenant:
    Figure imgb0012
    où D et a sont les largeurs de faisceau dans les lentilles L1 et L2 (figure 3).
  • Le rapport entre les rayons de courbure des dioptres L21 et L12 est donc égal à 5.
  • Mais l'optimisation de la géométrie du dispositif demande encore que l'on minimise la distance entre les lentilles L1 et L2, afin de réduire dans toute la mesure du possible le temps de parcours des ondes acoustiques à l'intérieur du dispositif. En effet, en microscopie acoustique, comme en toute autre application d'imagerie, il faut conserver un nombre suffisant de points sur chaque ligne de l'image.
  • La création d'images à l'aide du dispositif selon l'invention peut se faire de la manière décrite dans la Demande de Brevet français n° 84 01 597 déjà citée. Son contenu descriptif est à cet égard intégré à la présente demande de brevet. En bref, le balayage ligne est obtenu en faisant vibrer l'objet ou échantillon à examiner, à l'aide d'un montage du genre diapason. Le balayage d'image s'effectue à l'aide d'un déplacement micrométrique contrôlé (table motorisée) de l'échantillon.
  • Ainsi, il a été possible de faire fonctionner un dispositif selon l'invention avec une fréquence de balayage ligne de 80 hertz. Le nombre de points sur une ligne était fixé à 512. Cela implique une fréquence de répétition des impulsions ultiasono- res au moins égale à 40 kHz, ce qui correspond à une période maximale de 25 microsecondes environ. Le temps de transit dans l'ensemble de la sonde de l'invention doit donc être bien inférieur à cette valeur. Ce temps de transit Tp s'écrit:
    Figure imgb0013
    où e1 et e2 sont respectivement les épaisseurs des lentilles L1 et L2, vc est la vitesse de propagation des ultrasons dans le corindon, les deux lentilles étant supposées réalisées en corindon dans cet exemple, Δ est l'écart que présentent les deux lentilles par rapport à la position confocale, et vH est la vitesse de propagation des ondes acoustiques dans le milieu de couplage entre les lentilles L1 et L2.
  • Cette formule introduit une relation supplémentaire entre R1 et R2. Ces valeurs se trouvent alors fixées, car, comme on le verra plus loin, l'épaisseur de la lentille de sortie est imposée par la variation de la distance de focalisation qui est souhaitée en fonction de l'écartement Δ. Pour sa part, l'épaisseur de la lentille L1 est choisie de telle manière que les échos multiples donnent une périodicité égale ou supérieure à celle des échos multiples dans la lentille L2, d'où il résulte e1 supérieur ou égal à e2.
  • Le corindon présente différents avantages dont celui d'offrir une atténuation acoustique excessivement faible. Il n'en résulte donc pas de contrainte sur les dimensions maximales à doner aux lentilles L1 et L2. Et l'on peut même faire fonctionner celles-ci à des fréquences beaucoup plus élevées que 100 mégahertz. Par contre, de telles contraintes sur les dimensions pourront intervenir si l'on réalise la lentille de sortie L2 en silice ou en alumine frittée.
  • Le corindon présente encore la particularité d'être un matériau anisotrope, contrairement à la silice ou à l'alumine frittée, et il appartient au système cristallographique trigonal. On choisit de faire propager l'onde acoustique suivant l'axe Z du système trigonal, qui est un axe de mode pur. Pour la lentille émettrice L1 l'onde acoustique est pratiquement une onde plane.
  • Il a également été observé que, suivant son axe Z, le corindon présente une coupe légèrement focalisante pour l'énergie, c'est-à-dire que la diffraction est moins importante que prévu, et que les performances sont un peu meilleures que ce qui est donné par les relations exposées plus haut.
  • La situation est un peu différente dans la lentille de sortie L2. En particulier, si celle-ci est également réalisée en corindon, lorsque l'on fait varier la distance Δ entre les foyers des lentilles L1 et L2, le faisceau acoustique prend des inclinaisons importantes dans la lentille de sortie L2 par rapport à l'axe Z. L'homme de l'art comprendra que l'angle entre le vecteur d'onde et la direction de l'énergie devient alors également important. Il en résulte que la longueur focale image globale F du dispositif, exprimée dans le milieu de couplage diffère un peu de celle que l'on peut prévoir d'après la relation suivante:
    Figure imgb0014
  • Dans cette relation, A est comme précédemment la distance entre le foyer du dioptre L12 de la lentille L1, et celui du dioptre L21 de la lentille L2; d est l'épaisseur de la lentille de sortie, R2 est le rayon de courbure du dioptre L21, R3 est le rayon de courbure du dioptre L22, et n est l'indice de réfraction (supposé le même) associé aux dioptres L12, L21 et L22.
  • La figure 4 illustre les mêmes lentilles L1 et L2 dans une position relative différente, où le foyer F1 du dioptre L12 est écarté du foyer F2 du dioptre L21. Il en résulte la courbure précitée de la propagation des ondes dans le matériau de la lentille L2, et le fait que la focalisation dans l'échantillon EC s'effectue plus près de l'interface entre cet échantillon EC et le milieu de couplage MC2 qui le relie à la lentille L2. Le trait tireté épais M schématise provisoirement la monture qui va relier les lentilles L1 et L2 pour permettre leur déplacement relatif, comme on le verra ci-après.
  • La figure 9 illustre la relation entre la distance de focalisation f, comptée à partir du sommet du dioptre L22 de la lentille L2 et l'écartement A entre les foyers F1 et F2, cet écartement étant positif lorsque F2 est à la droite de F1. La figure 10 fait de même pour une lentille L2 en silice, étant observé que l'on a fixé dans les deux cas les rayons de courbure de L21 et L22 respectivement à R2 = 10 mm et R3 = 30 mm. Il apparaît que, dans les deux cas, on dispose d'une zone assez large dans laquelle la variation de la distance focale f en fonction de A est sensiblement linéaire. Si l'on examine plus particulièrement la figure 9, il apparaît qu'une lentille L2 d'épaisseur 5 mm permet d'obtenir la variation de focale voulue. En particulier, pour une variation de A qui va de +3 à -6 mm, la distance focale équivalente de la lentille dans l'eau varie de 0 (focalisation sur le dioptre de sortie L22) à 7 cm. Il correspond à cela une variation de la distance de focalisation dans un échantillon céramique qui va pratiquement de la surface de l'échantillon jusqu'à 10 mm en profondeur, ce qui résoud le problème posé.
  • Pour une utilisation satisfaisante du dispositif, il est nécessaire de minimiser les pertes à l'intérieur de la sonde, tout en conservant l'indice de la lentille équivalent, afin de conserver aussi une tache focale dont les dimensions sont proches de la longueur d'onde dans le matériau, pour minimiser les aberrations. Il a été observé que cette condition peut être remplie en utilisant comme milieu de couplage MC1 du mercure ou encore du gallium. Le mercure est particulièrement intéressant, en ce qu'il constitue un liquide dont la vitesse de propagation est pratiquement égale à celle de l'eau, alors que son impédance acoustique est élevée. Il en résulte une diminution considérable des pertes à la transmission dans chaque interface entre le milieu de couplage et la lentille.
  • Par exemple, si on utilise des lentilles en corindon couplées avec de l'eau, les pertes à chaque franchissement de dioptre sont de 9 dB environ. Avec du mercure, elles se réduisent à moins de 1 dB. (Si l'on passe à des lentilles en silice, ces pertes seraient respectivement de 4,5 dB et 0,2 dB). La meilleure transmission qui résulte de ce choix du milieu de couplage s'accompagne également d'une diminution importante de l'amplitude des échos multiples dans la sonde.
  • Enfin, le mercure présente également l'avantage d'atténuer très peu les ondes acoustiques, ce qui autorise de grandes variations du paramètre .- sans qu'il s'ensuive une modification notable des pertes dans la sonde. En particulier, pour la variation précitée de +3 à -6 mm, les pertes dans la sonde ne varieraient que de 4,5 dB environ.
  • Il est donc important d'utiliser comme milieu de couplage MC1 entre la lentille L1 et la lentille L2 un milieu liquide, de faible vitesse de propagation, de grande impédance acoustique, et présentant une faible atténuation aux ondes acoustiques. Il a été observé que le mercure et éventuellement le gallium satisfont ces conditions.
  • Exemple de realisation particulier
  • Les dioptres L21 et L22 sont sphériques ou cylindriques, et de centre situé sur l'axe de la sonde Z. Alors que le centrage du dioptre L22 n'est pas excessivement critique, il est apparu que toute imprécision sur la position du centre de courbure du dioptre L21 entraîne des pertes très importantes. En effet, travaillant à 100 mégahertz, la lentille concentre dans le mercure l'énergie acoustique sur une tache focale de moins de 50 micromètres, qu'il faut recueillir à une distance n R2/(n-1) à l'aide de la lentille L2 (avec typiquement R2 = 5 à 10 mm). On prend par exemple R, = 1 mm.
  • Comme le montre la figure 5, la lentille L2 possédant un dioptre L21 de rayon R2 = 10 mm et un dioptre L22 de rayon R3 = 30 mm est placée dans une partie de monture M22 qui est un tube cylindrique d'acier inoxydable par exemple, de telle manière que les axes des dioptres L22 et surtout L21 soient confondus avec l'axe Z de la monture.
  • A l'aide d'une couche quart d'onde en verre déposée par évaporation, la lentille L22 est adaptée mécaniquement au milieu de couplage avec l'échantillon, qui est de l'eau. Cette couche quart d'onde réalise une fonction anti-reflet. Elle n'est pas nécessaire avec du mercure.
  • Le dioptre L21 est recouvert d'une couche de quelques centaines de nanomètres d'un alliage chrome-or, qui facilite le mouillage du mercure sur sa surface par formation d'un amalgame. On fait de même pour la face intérieure de la monture M22, ainsi que de la monture M21 (figure 6) qui coopère avec elle, et le dioptre intérieur L12 de la lentille L1.
  • La lentille L1, pour sa part, peut être du type des lentilles classiques utilisées en microscopie acoustique. Un barreau de corindon est muni à l'une de ses extrémités d'un transducteur piézo-électrique, par exemple en niobate de lithium, muni d'armatures convenables, et propre à engendrer une onde plane longitudinale à l'intérieur du barreau. A l'autre extrémité, on usine un dioptre L12 qui est poli, et rigoureusement centré sur l'axe du barreau de corindon. Le dioptre 12 est également bien centré sur sa monture M21, qui se déplace autour de la monture M22 dans le mode de réalisation de la figure 6.
  • On peut bien entendu concevoir un mode de réalisation inverse, comme illustré sur la figure 7, dans lequel la monture M32 associée à la lentille L2 est extérieure et sert à guider la monture M31 associée à la lentille L1.
  • En pratique, on usine d'abord le dioptre L12, de façon qu'il soit centré sur l'axe du cylindre de corindon L1. On évapore l'électrode sur la face L11 du barreau de corindon. On place le transducteur sur cette électrode. On évapore alors une contre-électrode sur le transducteur T, en prenant soin que cette contre-électrode soit bien centrée sur l'axe du cylindre de corindon. Le barreau de corindon est ensuite placé dans la monture M 21 ou M31 de façon que l'axe de celle-ci soit confondu avec celui de la monture coopérante M22 ou M32 suivant le cas.
  • Une variante de réalisation consiste à usiner la lentille L1 une fois montée dans sa monture M31, et à faire de même pour l'évaporation de la contre-électrode.
  • Les expérimentations menées ont montré qu'il n'est pas souhaitable d'utiliser une lentille L1 de grande ouverture, car son faible rayon de courbure rend alors difficile et dans certains cas aléatoire l'établissement du contact acoustique avec l'autre lentille L2. De plus, compte tenu du grandissement du faisceau acoustique, il n'est pas nécessaire en fait de travailler à grande ouverture: avec les valeurs numériques précitées, une ouverture de 20° sur le dioptre L21 (ou la lentille L1 ) donne une ouverture utile 0m du faisceau de sortie (dans le milieu de couplage) qui varie de 3,5° à 9° pour une distance de focalisation allant de 12 à 70 mm.
  • Les figures 8, 8A et 8B illustrent un mode de réalisation détaillé du dispositif de l'invention, dans lequel on prévoit une fuite contrôlée du milieu de couplage, celui-ci étant typiquement le mercure. Le montage est semblable à celui de la figure 7. Le barreau L1 de corindon est monté sur la monture M41, dont un filetage externe 410 coopère avec un filetage interne 420 d'une partie élargie 425 de la monture M42 de la lentille biconcave L2. Une fuite existe entre les montures M41 et M42, par un ou plusieurs méplats 415 de la monture M41. Cette fente aboutit dans le réservoir 400 ménagée entre 425 et M41. On évite ainsi la quasi-totalité des problèmes rencontrés avec le mercure, compte tenu du volume variable qui va exister entre les lentilles L1 et L2. En particulier, la présence de bulles d'air, ou l'introduction de vibrations serait très dommageable, notamment pour les applications d'imagerie.
  • L'alésage 417 reçoit un corps d'adaptation du transducteur T, maintenu par une vis transverse 418 (figure 8B). L'alésage terminal 419, plus important, sert à loger l'électronique d'adaptation du transducteur.
  • Des mesures ont été réalisées pour déterminer les variations de la distance focale. Pour un échantillon d'épaisseur connue e, on a relevé l'amplitude de l'écho réfléchi sur sa face arrière (qui serait situé à droite sur les figures 3 et 4) en fonction de l'écart Δ par rapport à la position afocale des deux lentilles, tout en maintenant constante la distance entre la sonde et l'échantillon. La position du maximum d'amplitude de l'écho sur la partie arrière de l'échantillon permet de déduire la distance focale équivalente F de la lentille. Les résultats illustrés sur la figure 11 pour le corindon montrent la possibilité de focaliser un faisceau acoustique dans des échantillons céramiques d'épaisseur comprise entre 10 et 1 mm, avec le type de lentille décrit. Cette figure 11 correspond aux conditions suivantes:
    • - Rayons de courbure: R, = 1 mm, R2 = 10 mm, R3 = 30 mm.
    • - Ouvertures (dans le milieu de couplage, qui est du mercure) 01 = 20°, 02 = 20°, Os = 7°.
    • - Lentilles L, et L2 en corindon, l'épaisseur de L2 étant 4,5 mm.
  • Les amplitudes A (en millivolts) sont illustrées en fonction de pour des épaisseurs d'échantillon e = 10,5 mm, 5,2 mm, 3,1 mm et 0,7 mm.

Claims (15)

1. Dispositif à lentilles acoustiques, du type dans lequel deux lentilles acoustiques (L1, L2) sont logées coaxialement dans une monture (M), laquelle contient également un milieu de couplage acoustique (MC1) entre les faces internes (L12, L21 ) des lentilles, tandis que la face externe (L11 ) de la première lentille est destinée à être couplée acoustiquement à un transducteur (T), et que la face externe (L22) de la seconde lentille est destinée à être couplée acoustiquement (MC2) à un échantillon (EC) que l'on souhaite examiner, caractérisé en ce que la première lentille (Ll ) constituée d'un dioptre concave (L11) creusé à l'extrémité d'un barreau (L1) dont l'autre extrémité est munie du transducteur acoustique (T), focalise le rayonnement de ce transducteur; en ce que la seconde lentille (L2) est composée d'un dioptre concave interne (L21 ) dont le foyer objet (F2) est voisin du foyer image du dioptre concave (L12) de la première lentille, et d'un dioptre concave externe (L22) propre à être couplé acoustiquement à l'objet, et en ce que la monture (M) est agencée (M21, M22; M31, M32; M41, M42) pour permettre un déplacement axial relatif des deux lentilles (L1, L2), continûment réglable sur une plage prédéterminée, ce qui définit une sonde acoustique à focale et grandissement variables.
2. Dispositif selon la revendication 1, caractérisé en ce que les lentilles (L1, L2) sont faites en un matériau, de préférence monocristallin, avec lequel le milieu de couplage définit un fort indice relatif.
3. Dispositif selon la revendication 2, caractérisé en ce que l'une au moins des lentilles (L1, L2) est en corindon.
4. Dispositif selon l'une des revendications 2 et 3, caractérisé en ce que l'une au moins des lentilles (L1, L2) est en silice.
5. Dispositif selon l'une des revendications 2 à 4, caractérisé en ce que l'une au moins des lentilles (L1, L2) est en céramique frittée.
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le transducteur (T) est excité en impulsions pour délivrer une onde acoustique de fréquence comprise entre quelques dizaines de Mégahertz et un Gigahertz environ.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que ladite plage prédéterminée de réglage comprend la position confocale des deux dioptres internes (L12, L21 ).
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que les dioptres concaves (L12, L21, L22) sont des dioptres sphériques ou cylindriques.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que le transducteur (T), qui est en particulier un transducteur au Niobate de Lithium, a une surface active telle qu'il possède une résistance de radiation d'environ 50 ohms, et en ce que les caractéristiques des lentilles (L1, L2) sont choisies pour obtenir l'ouverture de faisceau désirée en respectant cette résistance de radiation.
10. Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que le milieu de couplage (MC1) prévu entre les deux lentilles est le Mercure ou le Gallium liquide.
11. Dispositif selon la revendication 10, caractérisé en ce qu'il est prévu, entre les deux parties (M41, M42) en mouvement relatif de la monture, une fuite contrôlée vers un réservoir (M40) du milieu de couplage.
12. Dispositif selon l'une des revendications 10 et 11, dans lequel le milieu de couplage est le mercure, caractérisé en ce que les dioptres internes (L12, L21 ) ainsi que de préférence les faces internes de la monture (M), sont revêtues d'une couche d'or avec sous-couche d'accrochage.
13. Dispositif selon l'une des revendications 1 à 12, caractérisé en ce que la combinaison des deux lentilles (L1, L2) procure un agrandissement du faisceau acoustique.
14. Dispositif selon l'une des revendications 1 à 12, caractérisé en ce que la combinaison des deux lentilles (L1, L2) procure une réduction du faisceau acoustique.
15. Application du dispositif selon l'une des revendications précédentes pour l'examen, en volume, d'échantillons céramiques ou métalliques.
EP86400354A 1985-02-28 1986-02-19 Dispositif acoustique multi-lentilles à grandissement et focale variables Expired EP0193457B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86400354T ATE45642T1 (de) 1985-02-28 1986-02-19 Akustisches geraet mit mehreren linsen und regelbarer verstaerkung und regelbarem brennpunkt.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8502977A FR2578081B1 (fr) 1985-02-28 1985-02-28 Dispositif acoustique multi-lentilles a grandissement et focale variables
FR8502977 1985-02-28

Publications (2)

Publication Number Publication Date
EP0193457A1 EP0193457A1 (fr) 1986-09-03
EP0193457B1 true EP0193457B1 (fr) 1989-08-16

Family

ID=9316743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400354A Expired EP0193457B1 (fr) 1985-02-28 1986-02-19 Dispositif acoustique multi-lentilles à grandissement et focale variables

Country Status (4)

Country Link
EP (1) EP0193457B1 (fr)
AT (1) ATE45642T1 (fr)
DE (1) DE3665109D1 (fr)
FR (1) FR2578081B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100298688A1 (en) * 2008-10-15 2010-11-25 Dogra Vikram S Photoacoustic imaging using a versatile acoustic lens
CN108838747A (zh) * 2018-08-10 2018-11-20 天津大学 一种基于声透镜的超声聚焦流体振动抛光系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934460A (en) * 1973-08-06 1976-01-27 General Electric Company Apparatus for focusing and collimating ultrasonic waves
GB1498843A (en) * 1974-03-29 1978-01-25 Westinghouse Electric Corp Acoustic camera apparatus
EP0131653A1 (fr) * 1983-07-19 1985-01-23 N.V. Optische Industrie "De Oude Delft" Dispositif pour la destruction à distance des objets pierreux présents dans le corps par ondes de choc soniques
DE3328051A1 (de) * 1983-08-03 1985-02-14 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum beruehrungslosen zertruemmern von konkrementen

Also Published As

Publication number Publication date
ATE45642T1 (de) 1989-09-15
EP0193457A1 (fr) 1986-09-03
FR2578081A1 (fr) 1986-08-29
FR2578081B1 (fr) 1987-05-07
DE3665109D1 (en) 1989-09-21

Similar Documents

Publication Publication Date Title
EP0385897A1 (fr) Sonde microéchographique de collimation à ultrasons à travers une surface déformable
US7804598B2 (en) High power acoustic resonator with integrated optical interfacial elements
EP0150779B1 (fr) Verre de contact pour l'observation et le traitement de l'oeil par irradiation lumineuse
US7616986B2 (en) Optical fiber scanner for performing multimodal optical imaging
CA2650856C (fr) Tete optique miniaturisee a haute resolution spatiale et haute sensibilite, notamment pour l'imagerie de fluorescence confocale fibree
FR2783330A1 (fr) Dispositif d'observation de l'interieur d'un corps produisant une qualite d'observation perfectionnee
CA2251336A1 (fr) Procede et systeme de microscopie acoustique en 3-d au moyen d'impulsions d'excitation courtes et microscope acoustique en 3-d correspondant
EP0161645B1 (fr) Verre de contact pour l'ophtalmoscopie et l'ophtalmotherapie par rayons laser
FR2708357A1 (fr) Microscope acoustique.
WO2003056379A1 (fr) Tete optique de focalisation miniaturisee, notamment pour endoscope
JP2019002906A (ja) 対物光学系及び光音響イメージング装置
EP0001532A1 (fr) Système de visualisation par ultra-sons d'une coupe mince d'un corps
FR2612722A1 (fr) Transducteur acoustique multifrequences, notamment pour imagerie medicale
EP0193457B1 (fr) Dispositif acoustique multi-lentilles à grandissement et focale variables
EP0176415B1 (fr) Microscope acoustique pour analyser un objet en profondeur comportant des lentilles asphériques
EP0219519B1 (fr) Procede non destructif pour determiner au moins un point d'un front de fissuration dans une piece et dispositif pour la mise en o euvre du procede
EP0005116B1 (fr) Procédé pour exploration d'une pièce par un faisceau
EP0109886B1 (fr) Dispositif acousto-optique d'analyse de spectre
Sangworasil et al. Investigation on feasibility of using surface plasmons resonance (SPR) sensor for ultrasonic detection: A novel optical detection of ultrasonic waves
Perez-Cota et al. Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells
EP1472532B1 (fr) Procede et dispositif de controle ultrasonore de tubes
EP0588732A1 (fr) Procédé de contrôle ultrasonore d'une pièce métallique
FR3051562A3 (fr) Systeme de stimulation par ultrasons d'un echantillon in vitro
EP2361383A1 (fr) Dispositif et procede pour etudier une zone d'etude par onde acoustique
RU2603819C2 (ru) Оптоакустический объектив

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870114

17Q First examination report despatched

Effective date: 19881025

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 45642

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3665109

Country of ref document: DE

Date of ref document: 19890921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910131

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910208

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910212

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910214

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910215

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910228

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910326

Year of fee payment: 6

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910513

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920219

Ref country code: GB

Effective date: 19920219

Ref country code: AT

Effective date: 19920219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920229

Ref country code: CH

Effective date: 19920229

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 86400354.6

Effective date: 19920904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050219