WO1987005110A1 - Glow discharge lamp and use thereof - Google Patents

Glow discharge lamp and use thereof Download PDF

Info

Publication number
WO1987005110A1
WO1987005110A1 PCT/DE1987/000063 DE8700063W WO8705110A1 WO 1987005110 A1 WO1987005110 A1 WO 1987005110A1 DE 8700063 W DE8700063 W DE 8700063W WO 8705110 A1 WO8705110 A1 WO 8705110A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber body
glow discharge
discharge lamp
anode
sample
Prior art date
Application number
PCT/DE1987/000063
Other languages
English (en)
French (fr)
Inventor
Jae Bak; KO
Original Assignee
Gesellschaft Zur Förderung Der Spektrochemie Und A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gesellschaft Zur Förderung Der Spektrochemie Und A filed Critical Gesellschaft Zur Förderung Der Spektrochemie Und A
Priority to DE8787901348T priority Critical patent/DE3781065D1/de
Priority to KR1019870700982A priority patent/KR960016169B1/ko
Priority to AT87901348T priority patent/ATE79471T1/de
Publication of WO1987005110A1 publication Critical patent/WO1987005110A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/64Cathode glow lamps

Definitions

  • the invention relates to a glow discharge lamp according to the preamble of patent claim 1 and its use according to patent claim 9.
  • Glow discharge lamps have found wide application in metal analysis by atomic emission spectroscopy (AES).
  • AES atomic emission spectroscopy
  • an electrically conductive sample to be examined is connected to an anode, a gas capable of glow discharge, preferably an inert gas under low pressure, being located in the space between the cathode and the anode.
  • the occurrence of the glow discharge depends on the ratio of both the operating voltage, the current and the gas pressure between the cathode and the anode.
  • the radiation from the glow discharge is observed through a window which is usually arranged above the anode, and information about the content of certain elements in the sample is obtained from its spectral analysis.
  • a glow discharge lamp is known from German patent application P 34 29 765, in which a carrier gas flows through an inner gas space and a glow discharge occurs in the gas space when a voltage is applied between the anode and cathode.
  • the sample is connected as part of the cathode, while a transparent housing part is used for the spectral analysis of the glow discharge light.
  • the anode is partially embedded in a solid, non-conductive body and is at high voltage potential, while the sample - as cathode - is at zero potential.
  • the short-circuit strength of the housing of the glow lamp can be ensured in the simplest way.
  • this prior art mög ⁇ Lich to place the anode at a high voltage and the cathode at zero potential, whereby a light and risk-free "Replacing the sample is made possible.
  • the non-conductive material in the gas space is achieved that quickly adjust the walls of the discharge space to the temperature in the gas space, since electrically non-conductive material is generally also poorly heat-conductive, and this known arrangement ensures rapid setting of constant measurement conditions and reproducible results.
  • the invention is therefore based on the object of developing the known glow discharge lamps while lowering the detection limit in atomic emission spectroscopy in such a way that the use of other spectroscopic methods by means of which excited atoms, such as those present in a glow discharge, can be examined, is also investigated enable.
  • a solution to this problem according to the invention is characterized by its developments in the claims.
  • the invention is based on the idea of observing the glow discharge also through a side window. Because, in contrast to previously known glow discharge lamps, side windows are now provided for the first time, which also allow lateral observation of the glow light, possibly after optical excitation by incident radiation, the glow discharge lamp can now also be used for other spectroscopic methods, such as the atom -Fluorescence spectroscopy or the like. It is also possible to attach a light guide or the like to the side window. to be connected in order to investigate the emerging radiation, if necessary spatially further away.
  • the chamber body has a first gas supply line emerging in the area of the negative glow light, a first vacuum line arranged above the first gas supply line, a second, optionally closable, arranged between the first gas supply line and below the anode embedded in the chamber body re gas supply line and a third, arranged between the anode and the end of the gas supply line.
  • a further line is provided on the end part, to which both vacuum and the gas supply can be connected. Due to the geometrically balanced reinforcement of the bushings for vacuum and the gas feeds, a uniform pressure distribution above the sample and thus a plane-parallel sample removal can be achieved, as is particularly desired for surface and depth profile analyzes.
  • the different arrangement of the lines also makes it possible to adapt the design of the sample crater to the analysis requirements - surface analysis, depth analysis or to certain material conditions - rough, uneven surface with high release energies or low release energies.
  • an interchangeable insert part can be arranged in the cathode part holding the sample, which through its inner opening surrounds the sample section exposed to the vacuum or the removal of materials.
  • This section can be controlled in any way by the choice of the insert, depending on whether small sections of the sample are to be examined or whether the removal is as flat as possible.
  • the reservoir of free atoms can be used for methods of atomic absorption spectroscopy, atomic fluorescence spectral copy and LEI ("laser-enhanced ionization").
  • LEI laser-enhanced ionization
  • FIG. 1 shows the essential parts of a glow discharge lamp according to the invention, cut along the anode / cathode connecting line;
  • FIG. 2 shows the sample-side part of the glow discharge lamp of FIG. 1, cut along the vacuum line;
  • FIG. 3 shows two enlarged sections of possible preferred embodiments of the sample area of a glow discharge lamp according to the invention.
  • FIG. 4 shows a further preferred embodiment of the glow discharge lamp according to the invention in the region of the end part, with a shielded anode.
  • the glow discharge lamp according to the invention has a sample 2 which is fastened to a cathode part 3 in a sealing manner by means of a seal, for example an O-ring seal.
  • the cathode part adjoins the chamber body 4 made of non-conductive material, preferably a ceramic material, in which a first gas supply line 5, which ends just above the sample, a first vacuum line 6, which is above the first gas supply line is arranged, a second gas supply line 7, preferably with a lower transverse Cut as the first gas supply line, an anode 8 embedded in the chamber body 4 and a third gas supply line 11 are provided, which supply argon above the anode, below the end part 12. All lines open into a gas interior.
  • a through opening, the gas interior GR, is formed in the chamber body 4, which, in this preferred embodiment, increases in the shape of a truncated cone in the direction of the anode, starting from the sample 2.
  • the anode has an internal opening that is aligned with the axis of the gas interior.
  • the gas interior (GR) is closed off by a closing part 12, which can be a window, for example, and which can optionally have a further line for gas supply or vacuum connection, and in the embodiment shown here is also connected via O- Sealed rings.
  • At least one lateral observation window 18 is formed in the cathode part, through which the negative glow light developing above the sample can be observed in the gas interior.
  • a further observation window can be provided, which can also be used to introduce rays, for example excitation radiation in the UV (ultraviolet) or VIS (visible) range.
  • the introduction of radiation to excite the atoms present in the negative glow light can also take place through the end window 12 and can be observed from the side.
  • the observation window 18 is replaced by an optical waveguide which enables connection to a spectrometer which is relatively far away.
  • an aligned arrangement can also an irradiation opening and an observation opening can be provided.
  • the surface area of the sample exposed to the detection method is preferably limited by an insert 15, as shown in FIG. 2. It is possible to change the inside opening of the sample part according to the method used or the type of analysis result desired.
  • FIG. 3 shows the sample area of two embodiments of the glow lamp according to the invention in a representative manner enlarged (different on the left and right), the insert part 15 being provided with an opening 17 for an operating mode in which a further part part 16 is provided is designed to be interchangeable.
  • An opening 17 is provided in the divider part 16, through which a part or the total amount of the carrier gas, depending on the intended use, can flow into the chamber.
  • the distance between the 'end face of the insert part 15 in front of the sample for example, 0.01 mm to 0.5, preferably less than 0.2 mm.
  • the anode 8 is shielded from the gas interior by a partition wall 21.
  • the shielded anode procedure is advantageous in some preferred applications of the glow discharge lamp according to the invention. It is preferred if no metallic or conductive parts on the anode 8 and the sample 2 limit the gas interior.
  • the glow discharge lamp according to the invention is operated by charging the openings 5 and 11 with argon and applying a vacuum to the opening 6 at high voltage (sample as cathode at zero potential, anode at high voltage potential).
  • the noble gas supply conduits 5, 7 and 17 are closed and noble gas only enters through the opening 11 while a vacuum is being drawn through the opening 6.
  • the latter mode of operation is particularly suitable for samples made of aluminum-silicon alloys which are very poorly degradable and poorly conductive, as occurs generally in the case of high-melting substances with high binding energy.
  • the noble gas supply 11 As well as the line 17 and to supply noble gas only via the lines 5 and 7, while a vacuum is drawn through the opening 6.
  • the inventive design of the glow discharge lamp makes it possible for the first time to measure not only end-on but also side-on, the negative glow light being formed at a distance of 0.5 to 20 mm above the sample.
  • the openings 5 in the chamber body are provided approximately in the plasma plane.
  • Known light sources can be used as primary radiation sources in connection with the glow discharge lamp according to the invention in atomic absorption sorption spectroscopy or atomic fluorescence spectroscopy.
  • light sources can be used which emit light with a narrow line width and high coherence.
  • the line width of the light emitted by the light source is typically an order of magnitude smaller than the width of the absorption line: for example, the line width of the light from the light source can be between 5 and 500 MHz, preferably between 10 and 50 MHz.
  • tunable temperature-stabilized semiconductor lasers are preferably used as light sources.
  • the glow discharge lamp according to the invention makes it possible for the first time to increase the analytical performance to an unprecedented extent by changing the height of the radiation guidance above the sample and thus the relevant discharge layer.
  • the arrangement according to the invention makes it possible to use the gas discharges at reduced pressure not only for the optical emission spectroscopic method (OES), but rather also for other proven methods, such as atomic absorption (AAS), atomic fluorescence spectroscopy (AFS) and the optogalvanic method (LEI) analytically.
  • the glow discharge lamp according to the invention lowers the limits of the trace analysis at the OES.
  • the arrangement according to the invention makes it possible for the first time to use glow discharge lamps in methods other than OES.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

Glimmentladungslampe sowie deren V rwendung
B e s c h r e i b u n g
Technisches Gebiet
Die Erfindung betrifft eine Glimmentladungslampe nach dem Oberbegriff des Patentanspruchs 1 sowie deren Verwendung gemäß Patentanspruch 9.
Stand der Technik
Glimmentladungslampen haben eine breite Anwendung bei der Metallanalyse durch Atom-Emissionsspektroskopie (AES) gefunden. Dabei wird eine zu untersuchende elektrisch leitfähige Probe gegen eine Anode geschaltet, wobei sich im Raum zwischen Kathode und Anode ein zur Glimmentladung befähigtes Gas, bevorzugt ein Edelgas unter niedrigem Druck, befindet. Das Auftreten der Glimmentladung hängt dabei vom Verhältnis sowohl der Brennspannung, des Stro¬ mes, als auch des Gasdruckes zwischen Kathode und Anode ab. Die Strahlung der Glimmentladung wird durch ein übli¬ cherweise oberhalb der Anode angeordnetes Fenster beobach¬ tet und aus ihrer spektralanalytischen Zerlegung werden Informationen über den Gehalt bestimmter Elemente in der Probe gewonnen.
Aus der deutschen Patentanmeldung P 34 29 765 ist eine Glimmentladungslampe bekannt, bei der ein innerer Gasraum von einem Trägergas durchströmt wird und bei angelegter Spannung zwischen Anode und Kathode im Gasraum eine Glimm¬ entladung entsteht. Die Probe ist als Teil der Kathode geschaltet, während ein durchsichtiger Gehäuseteil zur Spektralanalyse des Glimmentladungslichtes benutzt wird. Die Anode ist dabei z.T. in einen festen nicht leitenden Körper eingebettet und liegt auf Hochspannungspotential, während sich die Probe - als Kathode - auf Null-Potential befindet .
Durch das Einbetten der Anode in einen festen nicht lei¬ tenden Körper kann die Kurzschlußfestigkeit des Gehäuses der Glimmlampe auf einfachste Art und Weise gewährleistet werden. Ferner ist es bei diesem Stand der Technik mög¬ lich, die Anode auf Hochspannung zu legen und die Kathode auf Null-Potential, wodurch ein leichtes und gefahrloses" Auswechseln der Proben ermöglicht wird. Durch das nicht leitende Materials im Gasraum wird erreicht, daß sich die Wände des Entladungsraumes schnell auf die Temperatur im Gasraum einstellen, da elektrisch nicht leitendes Material in der Regel auch schlecht warmeleitfähig ist. Durch diese bekannte Anordnung wird eine schnelle Einstellung konstan¬ ter Meßbedingungen und reproduzierbarer Ergebnisse gewähr¬ leistet.
Die aus der P 34 29 765 bekannte Vorrichtung stellt zwar bereits einen erheblichen Fortschritt gegenüber bekannten Glimmentladungslampen dar, nichts destoweniger ist aber die herkömmliche Glimmlampe nur für die übliche Anwendung in der Atom-Emissionsspektroskopie geeignet.
Darstellung der Erfindung
Der Erfindung liegt deshalb die Aufgabe zugrunde, die bekannten Glimmentladungslampen unter Erniedrigung der Nachweisgrenze in der Atom-Emissionsspektroskopie derart weiterzubilden, daß auch den Einsatz anderer spektroskopi¬ scher Methoden, mit denen angeregte Atome, wie sie in einer Glimmentladung vorliegen, untersucht werden können, zu ermöglichen. Eine erfindungsgemäße Lösung dieser Aufgabe ist mit ihren Weiterbildungen in den Patentansprüchen gekennzeichnet.
Der Erfindung liegt der Gedanke zugrunde, die Glimmentla¬ dung auch durch ein seitliches Fenster zu beobachten. Dadurch, daß im Gegensatz zu bisher bekannten Glimmentla¬ dungslampen nun erstmals Seitenfenster vorgesehen sind, welche auch eine seitliche Beobachtung des Glimmlichtes, ggf. nach optischer Anregung durch einfallende Strahlung, ermöglichen, kann die Glimmentladungslampe nun auch für andere spektroskopische Verfahren, wie beispielsweise die Atom-Fluoreszenz-Spektroskopie o.a., eingesetzt werden. Es ist auch möglich, am seitlichen Fenster einen Lichtleiter o.a. anzuschließen, um die austretende Strahlung ggf. räumlich weiter entfernt zu untersuchen.
Durch das seitlich angebrachte Fenster ist erstmals eine Untersuchung von von der Probe emittierten Strahlen ohne Anregungsstrahlen möglich.
Dabei ist es vorteilhaft, wenn der Kammerkörper eine im Bereich des negativen Glimmlichtes austretende erste Gas¬ zuführleitung, eine oberhalb der ersten Gaszuführleitung angeordnete erste Vakuumleitung, eine zweite, zwischen der ersten Gaszuführleitung und unterhalb der im Kammerkörper eingebetteten Anode angeordnete zweite, ggf. verschließba¬ re Gaszuführleitung sowie eine dritte, zwischen Anode und Abschlußteil angeordnete Gaszuführleitung aufweist.
Dabei kann es sein, daß an dem Abschlußteil eine weitere Leitung vorgesehen ist, an die sowohl Vakuum als auch die Gaszufuhr angeschlossen werden kann. Durch die geometrisch ausgewogene Verteifung der Durchfüh¬ rungen für Vakuum und der Gaszuführungen kann eine gleich¬ mäßige Druckverteilung oberhalb der Probe und damit eine planparallele Probenabtragung erzielt werden, wie es ins¬ besondere für Oberflächen- und Tiefenprofilanalysen er¬ wünscht ist.
Durch die verschiedenartige Anordnung der Leitungen ist es auch möglich, die Ausbildung des Probenkraters den Analy¬ senanforderungen - Oberflächenanalyse, Tiefenanalyse oder an bestimmte Materialgegebenheiten - rauhe, unebene Ober¬ fläche mit hohen Ablösungsenergien oder geringen Ablö¬ sungsenergien - anzupassen.
Vorteilhafterweise kann ein auswechselbares Einsatzteil im die Probe haltenden Kathodenteil angeordnet sein, das durch seine innere Öffnung den dem Vakuum bzw. der Abtra¬ gung von Materialien ausgesetzten Probenabschnitt umgibt. Dieser Ausschnitt kann durch die Wahl des Einsatzteils in beliebger Weise gesteuert werden, je nachdem, ob kleine Abschnitte der Probe untersucht werden sollen oder ob eine möglichst flächige Abtragung erfolgen soll.
Durch die direkte Zerstäubung der Probe und durch die erfindungsgemäße Anordnung der Fenster kann das Reservoir freier Atome für Verfahren der Atom-Absorptions-Spektro¬ skopie, Atom-Fluoreszenz-Spektrskopie und LEI ( "Laser- enhanced Ionisation") eingesetzt werden. Die planparallele Zerstäubung der Probe macht es möglich, die oben erwähnten Verfahren nicht nur für Durchschnitts-, sondern auch zum ersten Mal für Oberflächen- und Tiefenprofilanalyse er¬ folgreich einzusetzen. Kurze Beschreibung der Zeichnung
Die Erfindung wird nachstehend anhand eines Ausführungs¬ beispiels unter Bezugnahme auf die Zeichnung näher be¬ schrieben, in der zeigen:
Fig. 1 die wesentlichen Teile einer erfindungsgemäßen Glimmentladungslampe, entlang der Verbindungs¬ linie Anode/Kathode geschnitten;
Fig. 2 den probenseitigen Teil der Glimmentladungs¬ lampe der Fig. 1 , entlang der Vakuumleitung geschnitten;
Fig. 3 zwei vergrößerte Ausschnitte möglicher bevor¬ zugter Ausführungsformen des Probenbereiches einer erfindungsgemäßen Glimmentladungslampe, sowie
Fig. 4 eine weitere bevorzugte Ausführungsform der erfindungsgemäßen Glimmentladungslampe im Bereich des Abschlußteils, mit abgeschirmter Anode.
Beschreibung eines Ausführungsbeispiels
Wie in Fig. 1 gezeigt, weist die erfindungsgemäße Glimm¬ entladungslampe eine Probe 2 auf, die mittels einer Dich¬ tung, beispielsweise einer O-Ringdichtung , an einem Katho¬ denteil 3 dichtend befestigt ist. Der Kathodenteil schließt sich an den aus nicht leitendem Material, bevor¬ zugt einem Keramik-Material, hergestellten Kammerkörper 4 an, in dem eine erste Gaszuführleitung 5, die kurz ober¬ halb der Probe endet, eine erste Vakuumleitung 6, die oberhalb der ersten Gaszuführleitung angeordnet ist, eine zweite Gaszuführleitung 7, bevorzugt mit geringerem Quer- schnitt als die erste Gaszuführleitung, eine im Kammerkör¬ per 4 eingebettete Anode 8 sowie eine dritte Gaszuführlei¬ tung 11 vorgesehen sind, die Argon oberhalb der Anode, unterhalb des Abschlußteils 12 zuführt. Sämtliche Leitun¬ gen münden in einen Gasinnenraum. Im Kammerkörper 4 ist eine Durchgangsöffnung, der Gasinnenraum GR, ausgebildet, der sich bei dieser bevorzugten Ausführungsform stumpfke¬ gelförmig in Richtung Anode, ausgehend von der Probe 2, vergrößert. Die Anode besitzt eine Innenöffnung, die mit der Achse des Gasimmenraumes fluchtet. Der Ga≤innenraum (GR) ist durch ein Abschlußteil 12, welches beispielsweise ein Fenster sein kann, und das ggf. eine weitere Leitung zur Gaszufuhr oder Vakuumanschluß aufweisen kann, abge¬ schlossen und wird bei der hier dargestellten Ausführungs¬ form ebenfalls über O-Ringe abgedichtet.
Ferner ist im Kathodenteil mindestens ein seitliches Beo¬ bachtungsfenster 18 ausgebildet, durch das das sich ober¬ halb der Probe entwickelnde negative Glimmlicht im Gasin¬ nenraum beobachtet werden kann.
Gegebenenfalls kann ein weiteres Beobachtungsfenster, welches auch zum Einleiten von Strahlen, beispielsweise Anregungsstrahlung im UV- (ultraviolett) oder VIS-(sicht¬ bar) Bereich eingesetzt werden kann, vorgesehen sein. Das Einleiten von Strahlung zur Anregung der im negativen Glimmlicht vorhandenen Atome kann auch durch das Abschlu߬ fenster 12 erfolgen und seitlich beobachtet werden. Bei einer bevorzugten Ausführungs orm wird das Beobachtungs¬ fenster 18 durch einen Lichtleiter ersetzt, der den An¬ schluß an ein relativ weit entferntes Spektrometer ermög¬ licht.
Wie in Fig. 2 gezeigt, kann auch eine fluchtende Anordnung einer Einstrahlungs- und einer Beobachtungsöffnung vorge¬ sehen sein.
Bevorzugt wird der dem Nachweisverfahren ausgesetzte Ober¬ flächenbereich der Probe durch ein Einsatzteil 15, wie in Fig. 2 gezeigt, begrenzt. Dabei ist es möglich, die Innen¬ öffnung des Probenteils gemäß dem angewendeten Verfahren bzw. der Art des erwünschten Analysenergebnisses zu verän¬ dern.
In Fig. 3 ist nun der Probenbereich zweier Ausführungsfor¬ men der erfindungsgemäßen Glimmlampe repräsentativ ver¬ größert dargestellt (links und rechts unterschiedlich), wobei das Einsatzteil 15 mit einer Öffnung 17 für eine Betriebsweise versehen ist, bei welcher ein weiteres Tei¬ lerteil 16 vorgesehen ist, das auswechselbar gestaltet ist. In dem Teilerteil 16 ist eine Öffnung 17 vorgesehen, durch welche ein Teil oder die Gesamtmenge des Trägerga¬ ses, je nach Einsatzzweck, in die Kammer einströmen kann. Dabei beträgt der Abstand zwischen der' Stirnfläche des Einsatzteiles 15 vor der Probe beispielsweise 0,01 bis 0,5 mm, bevorzugt weniger als 0,2 mm.
Bei einer weiteren bevorzugten Ausführungsform der erfin¬ dungsgemäßen Glimmlampe ist, wie in Fig. 4 gezeigt, die Anode 8 vom Gasinnenraum durch eine Trennwand 21 abge¬ schirmt. Die Verfahrensweise mit abgeschirmter Anode ist bei einigen bevorzugten Anwendungen der erfindung≤ge äßen Glimmentladungslampe vorteilhaft. Es ist bevorzugt, wenn an der Anode 8 und der Probe 2 keine metallischen oder leitenden Teile den Gasinnenraum begrenzen.
Die gesamte beschriebene Kammer wird üblicherweise durch ein dünnes Metallblech auf Null-Potential abgeschirmt, dieses wurde in den Figuren aufgrund verbesserter Übersichtlichkeit nicht dargestellt.
Nachstehend werden bevorzugte Betriebsweisen der erfin¬ dungsgemäßen Glimmentladungslampe mit unterschiedlichen Proben beschrieben.
Im Normalfall wird die erfindungsgemäße Glimmentladungs¬ lampe durch Beschickung der Öffnungen 5 und 11 mit Argon und Anlegen eines Vakuums an die Öffnung 6 bei Hochspan¬ nung betrieben (Probe als Kathode auf Null-Potential, Anode auf Hochspannungs-Potential).
Es gibt aber auch Proben wie beispielsweise Reinstalumini- um oder auch sehr rauhe Proben, bei denen es ggf. vorteil¬ haft ist, das Trägergas durch die Öffnungen 11 und 17 einzuführen.
Für besonders hohe Anforderungen kann es nützlich sein, wenn die Edelgaszufuhrleitühgen 5, 7 und 17 geschlossen sind und Edelgas nur durch die Öffnung 11 eintritt, während über die Öffnung 6 Vakuum gezogen wird.
Letztere Betriebsweise eignet sich insbesondere für Proben aus Aluminium-Silizium-Legierungen, die sehr schlecht abbaubar und schlecht leitend sind, wie es allgemein bei hochschmelzenden Stoffen mit hoher Bindungsenergie auf¬ tritt.
Falls es erwünscht ist, eine geringe Abbaurate der Probe zu erzielen, ist es günstig, die Edelgaszuführung 11 wie auch die Leitung 17 zu schließen und Edelgas lediglich über die Leitungen 5 und 7 zuzuführen, während über die Öffnung 6 Vakuum gezogen wird. Für andere analytische Verfahren kann es günstig sein, Vakuum an der Öffnung 17 anzulegen und über die Öffnungen 5, 7 oder 11 Edelgas zuzuführen, wobei ggf. über die Öffnung 6 noch zusätzlich Vakuum gezogen werden kann.
Durch die erfindungsgemäße Ausgestaltung der Glimmentla¬ dungslampe ist es erstmals möglich, nicht nur end-on, sondern auch side-on zu messen, wobei das negative Glimm¬ licht sich in einem Abstand von 0,5 bis 20 mm über der Probe ausbildet. Die Öffnungen 5 im Kammerkörper sind etwa in Plasmaebene vorgesehen.
Durch die Strahlungsfenster 18 auf etwa gleicher Höhe wie das Plasma ist es möglich, dieses genau zu beobachten und ggf. die in der Glimmentladung vorhandenen Ionen/Atome durch Strahlungseinwirkung anzuregen und deren Emissions¬ spektren zu beobachten:
Bei der Atom-Aßsorptions-Spektroskopie oder der Atom- Fluoreszenz-Spektroskopie können als Primär-Strahlungs- guellen in Verbindung mit der erfindungsgemäßen Glimment¬ ladungslampe die bekannten Lichtquellen verwendet werden. Insbesondere können Lichtquellen verwendet werden, die Licht mit schmaler Linienbreite und hoher Kohärenz aussen¬ den. Die Linienbreite des von der Lichtquelle emittierten Lichts ist bei der AAS und der AFS typischerweise um eine Größenordnung geringer als die Breite der Absorptionsli¬ nie: Beispielsweise kann die Linienbreite des Lichts der Lichtquelle zwischen 5 und 500 MHz, bevorzugt zwischen 10 und 50 MHz betragen. Dabei werden bevorzugt als Lichtquel¬ len durchstimmbare Temperaturstabiϊisierte Halbleiter- LAser verwendet. Vorstehend ist die Erfindung anhand von Ausführungsbei¬ spielen ohne Beschränkung des allgemeine Erfindungsgedan¬ kens beschrieben worden. In jedem Falle ermöglicht die erfindungsgemäße Glimmentladungslampe es erstmals, durch die Abänderung der Höhe der Strahlungsführung über der Probe und damit der relevanten Entladungsschicht die ana¬ lytische Leistungsfähigkeit in einem bisher nicht gekann¬ ten Maße zu steigern. Durch die erfindungsgemäße Anordnung ist es möglich, die Gasentladungen bei vermindertem Druck nicht nur für das optische emissionsspektroskopische Ver¬ fahren (OES), sondern vielmehr auch für andere bewährte Verfahren, wie Atomabsorption (AAS), Atomfluoreszenz- Spektroskopie (AFS) und das optogalvanische Verfahren (LEI) analytisch einzusetzen. Die erfindungsgemäße Glimm¬ entladungslampe erniedrigt beim OES die Grenzen der Spu¬ renanalyse. Durch die erfindungsgemäße Anordnung ist es erstmals möglich, Glimmentladungslampen auch bei anderen Verfahren außer beim OES einzusetzen.
Dabei sind innerhalb des allgemeinen Erfindungsgedankens - eine seitliche Fensteröffnung vorzusehen -selbstverständ¬ lich die verschiedensten Modifikationen möglich: Bei¬ spielsweise kann die Probe auch auf Hochspannungspotential liegen.

Claims

P a t e n t a n s p r ü c h e
1. Glimmentladungslampe mit einem eine oder mehrere Gaszu¬ fuhr- und Vakuumabsaugöffnung(en) aufweisenden Kammerkör¬ per aus isolierendem Material, mit einem sich in Richtung der Anode erweiternden, durch die Kammerkörperinnenwände seitlich begrenzten Gasraum, dessen größter Durchmesser in etwa auf Anodenhöhe liegt und dessen kleinster Durchmesser dem üntersuchungsabschnitt der zu untersuchenden Probe entspricht und mit einer am Kathodenende des Kammerkörpers angeordneten Probe und einer im Kammerkörper aufgenommenen Anode, sowie mit einem am Ende des Kammerkörpers angeord¬ neten, ggf. als Beobachtungsfenster ausgebildeten An¬ schlußteil, dadurch g e k e n n z e i c h n e t, daß mindestens eine seitlich im Kammerkörper (4), in etwa in Höhe des negati¬ ven Glimmlichtes angeordnete Fensteröffnung (18) vorgese¬ hen ist, und daß die Probe (2) den inneren Gasraumes am Kathodenende dichtend abschließt.
2. Glimmentladungslampe nach Anspruch 1 , dadurch g e k e n n z e i c h n e t, daß der Kammerkörper (4) eine im Bereich des negativen Glimmlichts, nahe der Probe (2) angeordnete erste, ggf. schließbare Gaszuführ¬ leitung (5); eine über der ersten Gaszuführleitung (5) im Kammerkörper (4) angeordnete erste Vakuumleitung (6), eine zweite, zwischen der ersten Gaszuführleitung (5) und un¬ terhalb der im Kammerkörper (4) eingebettete Anode (8) angeordnete zweite, ggf. schließbare Gaszuführleitung (7), sowie eine dritte, zwischen Anode (8) und Abschlußteil (12) angeordnete, ggf. schließbare Gaszuführleitung (11) aufweist .
3. Glimmentladungslampe nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t, daß das Abschlu߬ teil (12) eine ggf. verschließbare Anschlußleitung für Vakuum oder Gaszuführung aufweist.
4. Glimmentladungslampe nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t, daß die Probe (2) an einem an den Kammerkörper (4) anschließenden Kathoden¬ teil (3) angeordnet ist.
5. Glimmentladungslampe nach Anspruch 4, dadurch g e k e n n z e i c h n e t, daß ein aus nicht leitendem Material gefertigtes ggf. auswechselbares Ein¬ satzteil (15) mit einer dem üntersuchungsabschnitt der Probe entsprechenden Innenöffnung in der Durchgangsöffnung des Kathodenteils (3) angeordnet ist, wobei die Innenöff¬ nung des Einsatzteils (15) wahlweise rund, rechteckig, rechtwinklig, mit abgerundeten Ecken, elliptisch oder dgl. gewählt werden kann.
6. Glimmentladungslampe nach einem der Ansprüche 1 bis 5, dadurch g e k e n n z e i c h n e t, daß die Anode (8) durch eine Trennwand (21) vom Gasinnenraum (GR) abge¬ schirmt ist.
7. Glimmentladungslampe nach Anspruch 5, dadurch g e k e n n z e i c h n e t, daß im Einsatzteil (15) ein Teilerteil (16) aus nicht leitendem Material mit einer Gaszuführöffnung (17) eingesetzt ist.
8. Glimmentladungslampe nach einem der Ansprüche 1 bis 7, dadurch g e k e n n z e i c h n e t, daß die Probe auf Null-Potential und die im Kammerkörper aufgenommene Anode mit einer Durchgangsöffnung auf Hochspannung liegt.
9. Verwendung der Glimmentladungslampe nach einem der Ansprüche 1 bis 8 in der Atomabsorptions-Spektroskopie (AAS), dem optischen emissionsspektroskopischen Verfahren (OES), der Atomfluoreszenz-Spektroskopie (AFS) sowie dem optogalvanischen Verfahren (LEI).
PCT/DE1987/000063 1986-02-24 1987-02-24 Glow discharge lamp and use thereof WO1987005110A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8787901348T DE3781065D1 (de) 1986-02-24 1987-02-24 Glimmentladungslampe sowie deren verwendung.
KR1019870700982A KR960016169B1 (ko) 1986-02-24 1987-02-24 글로우 방전램프
AT87901348T ATE79471T1 (de) 1986-02-24 1987-02-24 Glimmentladungslampe sowie deren verwendung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3605911.0 1986-02-24
DE19863605911 DE3605911A1 (de) 1986-02-24 1986-02-24 Glimmentladungslampe sowie ihre verwendung

Publications (1)

Publication Number Publication Date
WO1987005110A1 true WO1987005110A1 (en) 1987-08-27

Family

ID=6294824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1987/000063 WO1987005110A1 (en) 1986-02-24 1987-02-24 Glow discharge lamp and use thereof

Country Status (7)

Country Link
US (1) US4830492A (de)
EP (1) EP0258331B1 (de)
JP (1) JP2530189B2 (de)
KR (1) KR960016169B1 (de)
AU (1) AU7081487A (de)
DE (2) DE3605911A1 (de)
WO (1) WO1987005110A1 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3827322A1 (de) * 1988-07-05 1990-01-11 Spectruma Gmbh Geraet zur simultanen atomabsorptionsspektrometrie
US5560890A (en) * 1993-07-28 1996-10-01 Gas Research Institute Apparatus for gas glow discharge
US5405514A (en) * 1993-07-28 1995-04-11 Gas Research Institute Atmospheric pressure gas glow discharge
US20030047146A1 (en) * 2001-09-10 2003-03-13 Daniel Michael J. Plasmatron-internal combustion engine system having an independent electrical power source
US6959542B2 (en) * 2002-01-25 2005-11-01 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to regenerate a DPNR device
US7014930B2 (en) * 2002-01-25 2006-03-21 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to generate multiple reformate gases
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
US6976353B2 (en) * 2002-01-25 2005-12-20 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to provide reformate gas to both a fuel cell and an emission abatement device
US6651597B2 (en) * 2002-04-23 2003-11-25 Arvin Technologies, Inc. Plasmatron having an air jacket and method for operating the same
WO2003091551A1 (en) * 2002-04-24 2003-11-06 Arvin Technologies, Inc. Apparatus and method for regenerating a particulate filter of an exhaust system of an internal combustion engine
US6881386B2 (en) * 2002-05-30 2005-04-19 Massachusetts Institute Of Technology Low current plasmatron fuel converter having enlarged volume discharges
US20040020188A1 (en) * 2002-08-05 2004-02-05 Kramer Dennis A. Method and apparatus for generating pressurized air by use of reformate gas from a fuel reformer
US20040020191A1 (en) * 2002-08-05 2004-02-05 Kramer Dennis A. Method and apparatus for advancing air into a fuel reformer by use of a turbocharger
US20040020447A1 (en) * 2002-08-05 2004-02-05 William Taylor Method and apparatus for advancing air into a fuel reformer by use of an engine vacuum
WO2004015511A1 (en) * 2002-08-12 2004-02-19 Arvin Technologies, Inc. Apparatus and method for controlling the oxygen-to-carbon ratio of a fuel reformer
US20040050345A1 (en) * 2002-09-17 2004-03-18 Bauer Shawn D. Fuel reformer control system and method
US6758035B2 (en) * 2002-09-18 2004-07-06 Arvin Technologies, Inc. Method and apparatus for purging SOX from a NOX trap
US20040052693A1 (en) * 2002-09-18 2004-03-18 Crane Samuel N. Apparatus and method for removing NOx from the exhaust gas of an internal combustion engine
US6702991B1 (en) 2002-11-12 2004-03-09 Arvin Technologies, Inc. Apparatus and method for reducing power consumption of a plasma fuel reformer
US6715452B1 (en) 2002-11-13 2004-04-06 Arvin Technologies, Inc. Method and apparatus for shutting down a fuel reformer
US6903259B2 (en) * 2002-12-06 2005-06-07 Arvin Technologies, Inc. Thermoelectric device for use with fuel reformer and associated method
US20040139730A1 (en) * 2003-01-16 2004-07-22 William Taylor Method and apparatus for directing exhaust gas and reductant fluid in an emission abatement system
US6843054B2 (en) * 2003-01-16 2005-01-18 Arvin Technologies, Inc. Method and apparatus for removing NOx and soot from engine exhaust gas
US20040144030A1 (en) * 2003-01-23 2004-07-29 Smaling Rudolf M. Torch ignited partial oxidation fuel reformer and method of operating the same
US6851398B2 (en) * 2003-02-13 2005-02-08 Arvin Technologies, Inc. Method and apparatus for controlling a fuel reformer by use of existing vehicle control signals
US7407634B2 (en) * 2003-04-11 2008-08-05 Massachusetts Institute Of Technology Plasmatron fuel converter having decoupled air flow control
US20040216378A1 (en) * 2003-04-29 2004-11-04 Smaling Rudolf M Plasma fuel reformer having a shaped catalytic substrate positioned in the reaction chamber thereof and method for operating the same
US7244281B2 (en) * 2003-10-24 2007-07-17 Arvin Technologies, Inc. Method and apparatus for trapping and purging soot from a fuel reformer
US7285247B2 (en) * 2003-10-24 2007-10-23 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer so as to purge soot therefrom
US7381382B2 (en) * 2004-03-29 2008-06-03 Massachusetts Institute Of Technology Wide dynamic range multistage plasmatron reformer system
US20060175973A1 (en) * 2005-02-07 2006-08-10 Lisitsyn Igor V Xenon lamp
US7776280B2 (en) * 2005-05-10 2010-08-17 Emcon Technologies Llc Method and apparatus for selective catalytic reduction of NOx
US7698887B2 (en) * 2005-06-17 2010-04-20 Emcon Technologies Llc Method and apparatus for determining local emissions loading of emissions trap
US20060283176A1 (en) * 2005-06-17 2006-12-21 Arvinmeritor Emissions Technologies Gmbh Method and apparatus for regenerating a NOx trap and a particulate trap
US20070033929A1 (en) * 2005-08-11 2007-02-15 Arvinmeritor Emissions Technologies Gmbh Apparatus with in situ fuel reformer and associated method
US20070095053A1 (en) * 2005-10-31 2007-05-03 Arvin Technologies, Inc. Method and apparatus for emissions trap regeneration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806212A1 (de) * 1977-02-14 1978-08-17 South African Inventions Verfahren und vorrichtung zum erzeugen eines atomnebels und zum durchfuehren spektroskopischer analysen
DE3213660A1 (de) * 1982-04-14 1983-10-27 Klöckner-Werke AG, 4100 Duisburg Verfahren und vorrichtung zur spektralanalytischen untersuchung von werkstuecken aus eisen- und stahllegierungen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1673217B1 (de) * 1966-03-16 1972-02-03 Werner Dr Rer Nat Grimm Hohlkathodenentladungsroehre
DE2341204A1 (de) * 1972-08-18 1974-02-28 Commw Scient Ind Res Org Vorrichtung zur durchfuehrung von spektralanalysen
JPS50107784A (de) * 1974-02-01 1975-08-25
FI752199A (de) * 1975-07-31 1977-02-01 Spectroscandia Ab
JPS58127150A (ja) * 1982-01-25 1983-07-28 Seiko Instr & Electronics Ltd グロ−放電装置
JPS5954841U (ja) * 1982-09-21 1984-04-10 セイコーインスツルメンツ株式会社 発光分光分析用グロ−放電装置
JPS59100842A (ja) * 1982-12-02 1984-06-11 Seiko Instr & Electronics Ltd 発光分光分析用グロ−放電装置
JPS59195549U (ja) * 1983-06-14 1984-12-26 日本ジヤ−レル・アツシユ株式会社 短絡防止型グロ−放電管
DE3429765A1 (de) * 1984-08-13 1986-02-27 Siemens AG, 1000 Berlin und 8000 München Glimmentladungslampe zur untersuchung einer probe mittels spektralanalyse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806212A1 (de) * 1977-02-14 1978-08-17 South African Inventions Verfahren und vorrichtung zum erzeugen eines atomnebels und zum durchfuehren spektroskopischer analysen
DE3213660A1 (de) * 1982-04-14 1983-10-27 Klöckner-Werke AG, 4100 Duisburg Verfahren und vorrichtung zur spektralanalytischen untersuchung von werkstuecken aus eisen- und stahllegierungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Applied Physics, Band 50, Nr. 12, 1979, (New York, US), R. WILLIAMSON et al.: "Glow-Discharge Optical Spectroscopy Measurement of B-, Ge, and Mg-Implanted Gaas", seiten 8019-8024, siehe seite 8019, sigur 1; seiten 8019, 8020 *
PATENT ABSTRACTS OF JAPAN, Band 7, Nr. 241 (P-232) (1386) 26. Oktober 1983, & JP, A, 58-127150 (Daini Seikosha K.K.) 28. Juli 1983, siehe Zusammenfassung *

Also Published As

Publication number Publication date
EP0258331A1 (de) 1988-03-09
US4830492A (en) 1989-05-16
AU7081487A (en) 1987-09-09
EP0258331B1 (de) 1992-08-12
KR880700930A (ko) 1988-04-13
KR960016169B1 (ko) 1996-12-04
DE3605911A1 (de) 1987-08-27
JP2530189B2 (ja) 1996-09-04
JPS63503009A (ja) 1988-11-02
DE3781065D1 (de) 1992-09-17

Similar Documents

Publication Publication Date Title
EP0258331B1 (de) Glimmentladungslampe sowie deren verwendung
DE19820321B4 (de) Kompaktes Röntgenspektrometer
DE69113819T2 (de) Glimmentladungsspektrometrie.
DE1589389B2 (de) Glimmentladungsroehre
DE4036115C2 (de) Verfahren und Einrichtung zur quantitativen nichtresonanten Photoionisation von Neutralteilchen und Verwendung einer solchen Einrichtung
EP3717892B1 (de) Funkenemissionsspektrometer und verfahren zum betrieb desselben
DE1929429C3 (de) Vorrichtung zur spektrochemischen Analyse eines Materials
DE2048862C3 (de) Vorrichtung zur spektralphotometrischen Analyse
DE4320607C2 (de) Anordnung zur Spurengasanalyse
DE4317749A1 (de) Massenspektrometer mit Einrichtungen zum Überwachen der Strahlung, die ausgesendet wird, wenn Ionen mit einem Zielgas kollidieren
DE2908350C2 (de) Glimmentladungslampe zur qualitativen und quantitativen Spektralanalyse
DE2637364A1 (de) Geraet zur spektroskopischen untersuchung der zusammensetzung einer unbekannten substanz und diesbezuegliches verfahren
EP0038549A1 (de) Verfahren und Vorrichtung zum spektroskopischen Nachweis von an der Oberfläche eines Festkörpers befindlichen Elementen
DE102021108009B4 (de) Multi-Wellenlängen UV-Strahlungsquelle sowie UV-Sonde, insbesondere für die Fluoreszenzanalyse
AT525093B1 (de) Vorrichtung zur Aufnahme eines Feststoff-Probenmaterials
EP0174505B1 (de) Glimmentladungslampe zur Untersuchung einer Probe mittels Spektralanalyse
DE1589389C (de) Glimmentladungsröhre
DE2600489A1 (de) Strahlungsquelle fuer die zeeman-atomabsorptionsspektrometrie und verfahren zu ihrem betrieb
DE2905166A1 (de) Vakuum-funken-generator
CH626724A5 (en) Process for generating an atomic mist
DE1673217C (de) Hohlkathodenentladungsröhre
DE3429765A1 (de) Glimmentladungslampe zur untersuchung einer probe mittels spektralanalyse
DE10259831A1 (de) Plasmagenerator
DE1673217B1 (de) Hohlkathodenentladungsroehre
DD289849A5 (de) Zerlegbare, abgeschirmte hohlkathodenlampe zur erzeugungk heisser hohlkathodenentladungen fuer die emissionsspektralanalyse von elementspuren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK FI HU JP KP KR NO RO SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987901348

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987901348

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987901348

Country of ref document: EP