WO1986005524A1 - Process for the manufacture of a p-conducting epitaxy layer from a iii/v semi-conductor - Google Patents

Process for the manufacture of a p-conducting epitaxy layer from a iii/v semi-conductor Download PDF

Info

Publication number
WO1986005524A1
WO1986005524A1 PCT/DE1986/000116 DE8600116W WO8605524A1 WO 1986005524 A1 WO1986005524 A1 WO 1986005524A1 DE 8600116 W DE8600116 W DE 8600116W WO 8605524 A1 WO8605524 A1 WO 8605524A1
Authority
WO
WIPO (PCT)
Prior art keywords
main group
iii
metal
substrate
structural formula
Prior art date
Application number
PCT/DE1986/000116
Other languages
German (de)
English (en)
French (fr)
Inventor
Pieter Balk
Harald Heinecke
Meino Heyen
Hans LÜTH
Norbert PÜTZ
Markus Weyers
Original Assignee
Pieter Balk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pieter Balk filed Critical Pieter Balk
Publication of WO1986005524A1 publication Critical patent/WO1986005524A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the invention relates to a method for producing a p-type epitaxial layer from a III / V semiconductor in accordance with the preamble of claim 1 and to an apparatus for carrying out the method.
  • a method according to the preamble of claim 1 is from the article "Molecular beam epitaxial growth of GaAs using trimethylgallium as a Ga source” by Eisuke Tokumitsu, Yoshimitsu Kudou, Makoto Konagai and Kayoshi Takahashi in Journal applied Physics 55 (8), April 15 Known in 1984.
  • trimethyl gallium is used as the gallium source and hydrogen arsenic (AsH_) as the arsenic source.
  • AuH_ hydrogen arsenic
  • the molecular beams are evaporated by evaporating elements of III. and IV. Group generated from Knudsen cells and added as a dopant beryllium.
  • the process according to the preamble of claim 1 has the advantage that the highly toxic beryllium is not used as a dopant, but on the other hand has the disadvantage that that it is not possible to realize the entire desired range of doping concentrations from about 10 14 cm-3.
  • the invention is therefore based on the object of developing the method according to the preamble of patent claim 1 in such a way that doping concentrations between 10 14 cm-3 and 1020 cm-3 are specifically possible.
  • organometallic compounds having the general structural formula Me (CnHx) -3 are used, where My metal of III.
  • C atoms per metal atom of the third main group have as the previously used trimethyl gallium (Ga (CH ⁇ ) -.
  • the metal from the V. main group can in principle be applied as desired using a molecular beam, for example arsenic can be evaporated in a Knud ⁇ en line and directed as a molecular beam onto the layer or the substrate.
  • a molecular beam for example arsenic can be evaporated in a Knud ⁇ en line and directed as a molecular beam onto the layer or the substrate.
  • a molecular beam of hydrides of the V. main group for example arsenic hydrogen (AsH-,) is used in addition to the molecular beam.
  • the hydride be thermally decomposed by heating before it hits the substrate or the layer already applied in order to achieve sufficient growth in the order of ⁇ m / h to achieve.
  • a device is therefore specified in which the molecular beams are introduced into the ultra-high vacuum recipient via capillary tubes. While the capillary tube through which the organometallic compound is passed remains at room temperature, the capillary tube through which the metal hydride, for example AsH 3 , is passed is heated to temperatures between 500 K and 850 K.
  • the capillary tube through which the metal hydride, for example AsH 3 is passed is heated to temperatures between 500 K and 850 K.
  • This device has the further advantage that existing UHV systems, which are set up, for example, to vaporize elements in Knudsen cells, can be easily modified so that the method according to the invention can be carried out with you. Way of carrying out the invention
  • a substrate on which the layer is to be applied is arranged in an ultra-high vacuum recipient, and the recipient is evacuated and at
  • the residual gas consists essentially of hydrogen and methane.
  • the substrate is heated to temperatures which are customary in the epitaxial application of III / V semiconductor layers by means of molecular beams (for example 600 ° C.).
  • An organometallic compound for example trithyl gallium and a metal hydride, for example arsenic hydrogen, are introduced via UHV metering valves.
  • the molecular beams each consisting of the organometallic compound or the metal hydride are generated by means of quartz tubes connected to the UHV metering valves with a length of approximately 30 cm and an inner diameter of 1.5 mm. With a certain geometry of the capillary tubes, the partial pressure of the respective connection is directly proportional to the beam intensity.
  • the entire length of the quartz tube through which AsH 3 is passed is provided with tantalum heating coils, by means of which the quartz tube can be heated to a temperature between approximately 500 K and 850 K, so that the arsenic hydrogen thermally decomposes before he on the substrate or the epitaxial layer strikes.
  • Triethyl gallium partial pressure in the order of magnitude of a few 10 -4 Pa gives a growth of the epitaxial layer of 0.1-2 mh.
  • the growth rate depends linearly on triethyl gallium feed.
  • the dosage concentration is between 10 15 and 2 * 1017cm-3, and depends strictly on the equilibrium pressure of the triethyl
  • Epitaxial layers mirror quality with small oval defects in the order of less than 1000 cm -3
  • the mobility of the free carriers at room temperature is on the order of the values for doped LPE and MBE
  • the Photoluminescenz spectrum of this low doped samples showed sharp exciton transitions with a Halb ⁇ value width of the (A C, X) transition of less than 0.5 meV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
PCT/DE1986/000116 1985-03-18 1986-03-18 Process for the manufacture of a p-conducting epitaxy layer from a iii/v semi-conductor WO1986005524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853509739 DE3509739A1 (de) 1985-03-18 1985-03-18 Verfahren zur herstellung einer p-leitenden epitaxieschicht aus einem iii/v-halbleiter
DEP3509739.6 1985-03-18

Publications (1)

Publication Number Publication Date
WO1986005524A1 true WO1986005524A1 (en) 1986-09-25

Family

ID=6265584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1986/000116 WO1986005524A1 (en) 1985-03-18 1986-03-18 Process for the manufacture of a p-conducting epitaxy layer from a iii/v semi-conductor

Country Status (3)

Country Link
EP (1) EP0215859A1 (enrdf_load_stackoverflow)
DE (1) DE3509739A1 (enrdf_load_stackoverflow)
WO (1) WO1986005524A1 (enrdf_load_stackoverflow)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Japanese Journal of Applied Physics, Supplement 16th International Conference on Solid State Devices and Materials, 30 August - 1st September 1984, Tokyo (JP) Y. KUDOU et al.: "Crystal Growth of GaAs by Metalorganic Molecular Beam Epitaxy using Trimethyl-Gallium and Triethylgallium", pages 687-690, see pages 689 and 690 *
Journal of Crystal Growth, Volume 55, No. 1, October 1981, Amsterdam (NL) C.Y. CHANG et al.: "Characterization of GaAs Epitaxial Layers by Low Pressure MOVPE using TEG as Ga Source", see pages 24 to 34 *

Also Published As

Publication number Publication date
EP0215859A1 (de) 1987-04-01
DE3509739A1 (de) 1986-09-18
DE3509739C2 (enrdf_load_stackoverflow) 1988-09-29

Similar Documents

Publication Publication Date Title
EP0321909B1 (de) Verfahren und Vorrichtung zum Atomschicht-Epitaxie-Aufwachsen
DE69016809T2 (de) Verfahren und Vorrichtung zur Verdampfung und Zuführung von organometallischen Verbindungen.
DE3587853T2 (de) Ein verfahren zur herstellung einer verbindungshalbleiterstruktur.
DE112007001605B4 (de) Zinkoxiddünnfilm vom p-Typ und Verfahren zur Ausbildung desselben und lichtemittierendes Element
DE2102582B2 (de) Verfahren zur Herstellung von Filmen aus Einkristallverbindungen von Aluminiumnitrid oder Galliumnitrid
DE3620329C2 (enrdf_load_stackoverflow)
EP3155145A1 (de) Verfahren zum abscheiden einer kristallschicht bei niedrigen temperaturen, insbesondere einer photolumineszierenden iv-iv-schicht auf einem iv-substrat, sowie ein eine derartige schicht aufweisendes optoelektronisches bauelement
DE3446956A1 (de) Verfahren zum herstellen eines einkristall-substrates aus siliciumcarbid
DE2429634A1 (de) Verfahren zum herstellen eines halbleiterbauelements im molekularstrahl-epitaxieverfahren
DE69926985T2 (de) Verfahren zur herstellung von diamanten des n-typs mit niedrigem widerstand
DE3526825A1 (de) Verfahren zum bilden eines monokristallinen duennen films aus einem elementhalbleiter
EP3786321A2 (de) Verfahren und vorrichtung zur herstellung einer schicht und damit versehenes substrat
DE3417395A1 (de) Verfahren zur bildung einer dotierten schicht und unter verwendung dieses verfahrens hergestelltes halbleiterbauelement
DE3220683A1 (de) Verfahren und vorrichtung zur herstellung einer amorphen siliciumschicht
DE2813250A1 (de) Verfahren zur herstellung von verbindungshalbleiterchips
DE102011002145A1 (de) Vorrichtung und Verfahren zum großflächigen Abscheiden von Halbleiterschichten mit gasgetrennter HCI-Einspeisung
DE1185293B (de) Verfahren zum Herstellen einer Halbleiteranordnung
DE1285465B (de) Verfahren zum epitaktischen Aufwachsen von Schichten aus Silicium oder Germanium
DE3877358T2 (de) Verfahren zur reinigung und ablagerung von verbindungen der grupen iii b und v b zur bildung epitaktischer schichten.
DE2005271B2 (de) Epitaxialverfahren zum Aufwachsen von Halbleitermaterial auf einem dotierten Halbleitersubstrat
DE3526824A1 (de) Verfahren zum bilden eines monokristallinen duennen films aus einem verbindungshalbleiter
DE3526889A1 (de) Einrichtung zum bilden eines halbleiterkristalls
DE69320540T2 (de) Herstellungsverfahren von Verbindungshalbleitern
DE10009876B4 (de) Verfahren zum Bilden eines einkristallinen Films
DE69228631T2 (de) Verfahren zur Kristallzüchtung eines III-V Verbindungshalbleiters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE