WO1983002449A1 - Aqua-soluble copolymers, preparation and utilization thereof - Google Patents

Aqua-soluble copolymers, preparation and utilization thereof Download PDF

Info

Publication number
WO1983002449A1
WO1983002449A1 PCT/EP1982/000264 EP8200264W WO8302449A1 WO 1983002449 A1 WO1983002449 A1 WO 1983002449A1 EP 8200264 W EP8200264 W EP 8200264W WO 8302449 A1 WO8302449 A1 WO 8302449A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
formula
water
assemblies
parts
Prior art date
Application number
PCT/EP1982/000264
Other languages
English (en)
French (fr)
Inventor
Klaus Uhl
James K. Bannerman
Friedrich Engelhardt
Arvind Patel
Original Assignee
Cassella Aktiengesellschaft
Hoechst Aktiengesellschaft
Dresser Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cassella Aktiengesellschaft, Hoechst Aktiengesellschaft, Dresser Industries, Inc. filed Critical Cassella Aktiengesellschaft
Priority to BR8208082A priority Critical patent/BR8208082A/pt
Priority to JP83500140A priority patent/JPS58502213A/ja
Priority to AU10194/83A priority patent/AU1019483A/en
Publication of WO1983002449A1 publication Critical patent/WO1983002449A1/de
Priority to FI832997A priority patent/FI832997A/fi
Priority to DK4111/83A priority patent/DK411183D0/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/935Enhanced oil recovery
    • Y10S507/936Flooding the formation

Definitions

  • the present invention relates to certain new polymers which provide significantly improved water retention of the drilling fluids, i.e. the presence of which significantly reduces the tendency of the drilling fluid to release filtrate into the formation. Compared to the currently Available drilling fluid additives, the polymers according to the invention have a considerably superior calcium tolerance and thermal stability.
  • the present invention thus relates to water-soluble copolymers which are composed of
  • crosslinking agents which contain at least two olefinic double bonds in the molecule, where R 1 or R 2 independently of one another are hydrogen, methyl or ethyl or together trimethylene or pentamethylene,
  • R3 and R 5 are hydrogen or methyl; R 4 imidazole- (1) or imidazole- (2) and
  • R 6 is hydroxy, alkoxycarbonyl with 1 to 12 carbon atoms in the alkoxy group, cycloalkoxycarbonyl with 6 to 10 carbon atoms in the cycloalkoxy group, phenyl, alkanoyloxy with 1 to 4 carbon atoms or ß-hydroxyalkoxycarbonyl with 2 or 3 carbon atoms in the Hydroxy-alkoxy group mean.
  • Y stands for a simple covalent bond or a group of the formula -CON-C (CH 3 ) 2 -CH 2 - and x + stands for a cation.
  • the present invention also relates to water-soluble copolymers which are composed of 1 a) 1 to 95 wt. % Assemblies of formula Ib
  • Preferred copolymers according to the invention are composed of 20 to 80% by weight of assemblies of the formula I, 0 to 15% by weight of assemblies of the formula II, 0 to 40% by weight of assemblies of the formula III, 0 to 20% by weight of assemblies of the formula V. and 5 to 50% by weight of components of the formula IV in which R4 is an imidazolyl (1) radical.
  • Copolymers according to the invention which contain an assembly, the proportion of which can also be O by definition, are preferred if the proportion of these assemblies is at least 1% by weight.
  • copolymers according to the invention are particularly preferred in which several of the preferred features mentioned above are combined.
  • the alkyl unit of the alkoxycarbonyl group of R 6 can, for example, be one of the groups methyl, ethyl, propyl, isopropyl, n-butyl- (1), n-butyl- (2), isobutyl, tert-butyl, amyl, neopentyl, hexyl, 2 -Ethyl-hexyl- (1), octyl, dodecyl and it can be linear or branched with the appropriate chain length.
  • Examples of the cycloalkyl unit of a cycloalkoxycarbonyl group representing R 6 are the monocyclic cyclohexyl group or polycyclic groups, such as, for example, boryl, isobornyl, norbornyl and derivatives of such terpenes.
  • Examples of the ⁇ -hydroxyalkyl unit in the substituent R 6 are ⁇ -hydroxyethyl, 2-hydroxypropyl- (1) or 1-hydroxypropyl- (2).
  • the cation X + can in principle be derived from any known water-soluble base which is strong enough to neutralize the sulfonic acid and which does not impair the water-solubility of the copolymer.
  • the selection can thus be made in a simple known manner, in particular X + can be an alkali metal cation, preferably a sodium or potassium cation or an ammonium cation of the formula [HNR 3 7 ] + .
  • the three R 7 radicals can be the same or different and denote hydrogen, alkyl having 1 to 4 carbon atoms or hydroxyethyl.
  • the present invention also relates to partial hydrolysis of the copolymers defined above.
  • partial hydrolysis of the copolymers according to the invention up to 60%, preferably 10 to 30%, of the amide functions of the assemblies of the formula III and of the ester functions in the assemblies of the formula V can be converted into carboxyl functions, as a result of which the above-mentioned assemblies in those of formula VI (VI)
  • R 3 and X + have the meanings given above.
  • the excellent dispersion stabilization and viscosity increase of the polymers according to the invention and their partial hydrolyzates in concentrated salt solutions as well as their temperature stability can be further improved by the presence of basic groups, i.e. those that are able to add proton.
  • copolymers according to the invention are hydrolyzed which contain components of the formula II. Depending on the conditions of the partial hydrolysis, these assemblies can be hydrolyzed to a certain degree, and after the acyl residues -COR 2 have been split off, free amido groups -NHR 1 appear on the polymer chains, which show the above-mentioned basic reaction.
  • the copolymers according to the invention can of course also include several different individuals in the molecule from each of the structural groups defined by the general formulas I to VI, which differ in the meanings of the symbols Y or R 1 and R 2 or R 3 and R 5 or R 4 or R 6 , contain. For example, in the same polymer molecule, they can contain both AIBS and vinylsulfonic acid building blocks or ring-open as well as ring-closed ones
  • the copolymers according to the invention from the individual groups of the general formulas I to VI contain no more than three, preferably no more than two different individuals and, if appropriate, the crosslinking agent.
  • Preferred crosslinkers which contain at least two olefinic double bonds in the molecule are divinyl benzene, methylene-bis-acrylamide, tetraallyloxetane, hexaallyl sucrose and triallyl isocyanurate.
  • DBP 1 101 760 describes a process for the preparation of water-soluble copolymers from vinylsulfonic acid and acrylonitrile or methacrylonitrile, optionally in a mixture with other ethylenically unsaturated compounds.
  • Copolymers of vinyl or alkyl sulfonates with acrylamide and vinyl amides have been described, for example, in DAS 2 444 108.
  • AIBS 2-acrylamido-2-methyl-propanesulfonic acid- (3)
  • Copolymers of vinylsulfonic acid, vinylimidazole, acrylic acid, butyl methacrylate and methacrylamide are to be used as casein substitutes in paper production according to DE-OS 2 457 117.
  • a copolymer of vinylimidazole, acrylamide and acrylic acid in a molar ratio of 5: 90: 5 can be used as a desensitizer of photographic emulsions.
  • the preparation of vinylimidazole / acrylic acid copolymers is, for example, from "Macromolecules" (1973), 6 (2), pages 163-168 and from J. Am. Soc, Div. Polym. Chem. (1972) 13 (1), pp. 364-368, and their use as binders for photoemulsions are known from FR patent application 2 182 170.
  • the production of vinylimidazole / acrylamide copolymers by suspension polymerization is known from DE-OS 20 09 218 and the use of such copolymers in the production of offset printing plates from DE-OS 21 65 358.
  • copolymers according to the invention insofar as they contain copolymerized comonomers of the formula II in which R 1 and R 2 together mean trimethylene, can be reacted in the manner known from the prior art, for example according to the information in US Pat. No. 3,929,741 the monomers at temperatures of about 10 to 120 ° C; preferably at 40 to 80 ° C, in the presence of suitable polymerization catalysts.
  • the copolymers according to the invention contain radicals of the formula in which R 1 and R 2 do not jointly mean trimethylene or pentamethylene, it is necessary to convert the acidic components vinylsulfonic acid and AIBS into the salts with the cation ⁇ + before the polymerization by adding bases .
  • the bases expediently used here are the hydroxides or salts of the cations X + with weak acids, such as, for example, carbonic acid or phosphoric acid, or, in the case of amine bases, NH 3 or the free amines.
  • -CH 2 CH-N-CO-R 2 (Ha) in which R 1 and R 2 are identical or different and are hydrogen, methyl or ethyl or together are trimethylene or pentamethylene and, if appropriate, 0 to 80 parts by weight of acrylamide and / or methacrylamide, 0 to 50% by weight of a comonomer of the formula Va
  • R 5 -CH 2 CR 6 (Va), where the symbols R 5 and R 6 have the meanings given above, and, if appropriate, 0 to 25% by weight of a crosslinking which comprises at least two, olefi
  • the copolymerization is then initiated in a manner known per se and carried out at 10 to 120 ° C.
  • Preferred copolymers according to the invention are obtained when 20 to 80% by weight of the olefinically unsaturated sulfonic acid of the formula Ia, O to 15% by weight of the vinyl acylamine of the formula Ha, 0 to 40% by weight of acrylamide and / or methacrylamide are used to prepare the copolymer , 5 to 50 parts by weight of vinylimidazole, 0 to 10% by weight of the comonomer of the formula Va and, if appropriate, 0 to 25% by weight of the crosslinking agent.
  • the polymerisation can be carried out as solution polymerisation, as precipitation polymerisation or in reverse emulsion, e.g. according to the information given in German patent 1,089,173.
  • the polymerization proceeds under the conditions of the solution polymerization , and a viscous aqueous or aqueous / alkanolic solution of the copolymer according to the invention is obtained, from which the product can be isolated by distilling off the solvent or precipitation by mixing the solution with a water-miscible organic solvent, such as methanol, ethanol, acetone or the like.
  • a water-miscible organic solvent such as methanol, ethanol, acetone or the like.
  • the aqueous or aqueous alkanolic solution obtained is preferably fed to the intended use directly, possibly after setting a desired concentration.
  • a water-miscible organic solvent When carrying out the copolymerization in a water-miscible organic solvent, one works under the conditions of the precipitation polymerization.
  • the polymer precipitates directly in solid form and can be isolated by distilling off the solvent or else by suction and drying.
  • Water-miscible organic solvents which are suitable for carrying out the production process according to the invention are, in particular, water-soluble alkanols, namely those having 1 to 4 carbon atoms, such as methanol, ethanol, propanol, isopropanol, n-, sec- and isobutanol, but preferably tert-butanol.
  • the water content of the lower alkanols used as solvents should not exceed 6% by weight, since otherwise a lump formation can occur during the polymerization.
  • the water content is preferably 0-3%.
  • the amount of solvent to be used depends to a certain extent on the type of comonomers used.
  • the aqueous monomer solution is known in a known manner in an water-immiscible organic solvent such as cyclohexane, toluene, xylene, heptane or still boiling gasoline fractions with the addition of 0.58%, preferably 1-4% W / O type emulsifiers, emulsified and polymerized with conventional free-radical initiators.
  • the initiator can be both water-soluble in nature and is then dissolved in the monomer solution, but it can also be oil-soluble and in this case is added to the finished W / O emulsion or the oil phase.
  • a more detailed description of the method can be found, for example, in German Patent 1,089,173.
  • the copolymers according to the invention are optionally still partially saponified.
  • any water-soluble base whose strength is sufficient for a reaction with the hydrolyzable groups can be used as the saponification agent.
  • NaOH, KOH, NH 3 or neutral or acidic alkali (especially sodium and potassium) and ammonium salts of carbonic acid, boric acid and phosphoric acid are preferred.
  • the saponification agent is either already added to the monomer solution or mixed with the polymer. Depending on the procedure, the saponification therefore takes place already during the normally exothermic polymerization or by further supply of heat after the polymerization. A combination of both procedures is also possible.
  • Preferred copolymers according to the invention and to be used according to the invention with a particularly high degree of polymerization are obtained if the polymerization is carried out in aqueous solution by the so-called gel polymerization method. 15-50% aqueous solutions of the comonomers are known to be suitable
  • High-energy electromagnetic radiation or the usual chemical polymerization initiators can be used to initiate the polymerization, e.g. organic peroxides, such as benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, azo compounds such as azo-di-iso-butyro-nitrile or 2,2'-azo-bis (2-amiöino ⁇ ropan) dihydrochloride
  • HN -C (CH 3 ) 2 -N- NC (CH 3 ) 2 - NH. 2 HCl NH 2 NH 2 and inorganic peroxy compounds such as
  • reducing agents such as sodium hydrogen sulfite and iron (II) sulfate or redox systems which, as a reducing component, contain an aliphatic and aromatic sulfinic acid, such as benzenesulfin contain acid and toluenesulfinic acid or derivatives of this acid, such as Mannich adducts of sulfinic acid, aldehydes and amino compounds, as described in German Patent 1,301,566.
  • 0.03 to 2 g of the polymerization initiator are used per 100 g of total monomers.
  • the quality properties of the polymers can be improved further by reheating the polymer gels obtained by the gel polymerization process in the temperature range of 50-130 ° C., preferably 70-100 ° C. for several hours.
  • copolymers according to the invention prepared in this way in the form of aqueous jellies, can, after mechanical comminution, be dissolved directly in water using suitable apparatus and used. However, they can also be obtained in solid form by known drying processes after removal of the water and can only be dissolved in water again when they are used.
  • copolymers according to the invention are outstandingly suitable as auxiliaries in drilling fluids. They show a very good protective colloid effect both at high. Temperatures as well as at high electrolyte concentrations and are, in particular with regard to electrolyte stability and heat and aging resistance, considerably superior to the closest comparable drilling fluid additives known from US Pat. No. 2,775,557 and DTPS 1,300,481 and 2,444,108.
  • the products according to the invention have a further improved combination of valuable application properties, which are particularly advantageous when used for particularly critical drilling tasks under difficult conditions at great depths and in the presence of formation water with a very high electrolyte content.
  • the polymers according to the invention are also characterized in particular by stability to 10-40% mineral acids such as HCl, HNO 3 , H 2 SO 4 , HCIO 4 and so on, and also to organic acids such as HCOOH and CH 3 COOH. No precipitation occurs even if the acidic solutions are stored for several hours.
  • the copolymers according to the invention are therefore also outstandingly suitable as thickeners for acids.
  • the copolymers according to the invention are used in concentrations of 0.5 to 40 kg / m ⁇ , preferably 3 - 30 kg / m ⁇ .
  • the aqueous drilling fluids mainly contain bentonites to increase the viscosity and seal through pierced formations. Shear spar, chalk and iron oxides are added to increase the density of the drilling mud.
  • Bentonite, heavy spar, chalk and iron oxide can be added to the drilling fluids alone or in a wide variety of mixing ratios.
  • the upward limiting factor is the rheological properties of the drilling mud.
  • copolymers according to the invention are added to conventional deep drilling cement slurries, products with considerably improved flow and setting properties are obtained.
  • VA N-vinylacetamide AM: acrylamide
  • VMA N-vinyl-N-methyl-acetamide
  • AIBS 2-acrylamido-2-methyl-propanesulfonic acid- (3) being the high number
  • VIM l-vinylimidazole
  • VPYR N-vinyl pyrrolidone
  • VCAP N-vinyl caprolactam
  • VSS-Na vinyl sulfonic acid Na salt
  • PVA polyvinyl alcohol
  • TMPTA trimethylolpropane triacrylate
  • K values given in the following examples are the K values according to Fikentscher, "cellulose chemistry”. Vol. 13, page 58 (1932).
  • the mixture is heated for a further 2 hours at 80 ° C., forming a viscous suspension.
  • the polymer can be isolated by suction and drying under vacuum at 50 ° C. However, the solvent can also be distilled off directly from the reaction mixture under reduced pressure.
  • the polymer is obtained in the form of a white, light powder which dissolves well in water. K value according to Fikentscher 195.
  • the copolymer seeds of Table 1 can also be prepared.
  • Example 1 In the apparatus described in Example 1 540 g of water and 20 g of 25% solution of vinyl sulfonic acid Na salt are initially introduced and 60 g of AIBS are dissolved therein. The solution is adjusted to a pH of 9.0 by adding 42.7 g of 27% strength aqueous sodium hydroxide solution. After adding 10 g of 1-vinylimidazole, 10 g of VMA and 15 g of acrylamide, the solution is heated to 60 ° C. while stirring and introducing a weak stream of N 2 . At this temperature, the polymerization is initiated by adding a solution of 0.5 g azoisobutyronitrile in 2.5 g dirnethylformamide. After an induction period of approx.
  • Induction period of about 50 minutes sets in and the temperature rises to about 84 ° C over about 60 minutes.
  • the mixture is heated for a further 2 hours at 80 ° C.
  • a slightly cloudy, yellow-brown gel which can be cut after cooling and has a K value of 215 according to Fikentscher is obtained.
  • the polymer can also be converted into readily water-soluble powder form, for example in such a way that the gel is mechanically reduced in size, dried - for example by freeze-drying or drying at an elevated temperature - and then in a known manner, for example using an oscillating mill, to give a fine powder grinds.
  • the monomers specified in Table I were copolymerized in accordance with the instructions of Example 1.
  • the monomers of Examples 12-14 were copolymerized according to Example 2.
  • Solution II is now emulsified in solution I at room temperature, then the emulsion is flushed with nitrogen for 30 minutes with thorough stirring and finally heated to 60 ° C. As soon as this temperature is reached, a solution of 25 ml of dicyclohexyl peroxidicarbonate in 0.5 ml of toluene is injected, then the heating bath is removed and the stirring speed is reduced to 100 rpm. The internal temperature rises to 78 ° C within a few minutes (T. max.), At the same time the emulsion becomes increasingly transparent. After the main reaction has subsided, the mixture is heated for a further 30 minutes at 70 ° C. and then allowed to cool to room temperature.
  • a storage-stable, low-viscosity W / O emulsion with a polymer content of 30% is obtained.
  • the copolymer can be obtained in bulk by pouring the present emulsion into an excess of acetone.
  • the copolymer precipitates and can be isolated, for example, by filtration, suction or centrifugation and, if appropriate, washing with acetone.
  • the polymers can be isolated, as described above, by precipitation with a water-miscible solvent which dissolves the oil phase, preferably with acetone.
  • Example 2 In the polymerization apparatus described in Example 1, 70 ml of water, 15 g of AIBS sodium salt, 3 g of 1-vinylimide azole and 1.5 g of polyvinyl alcohol, degree of hydrolysis 88%, are mixed and stirred until a clear solution is obtained. Then 3 g of IBOMA are dissolved in 30 ml of a technical
  • Isoparaffin mixture with a boiling range of 200 to 240 ° C ( ® ISOPAR M) added.
  • the two layers are stirred vigorously for two hours and the apparatus is flushed with nitrogen.
  • 3.5 ml of an emulsifier (HLB 6-7) are added and the mixture is again stirred vigorously.
  • 60 mg of 2,2'-azo-bis (2-amidinopropane) dihydrochloride is added as a radical-forming polymerization initiator.
  • the reaction mixture is then gradually warmed to 60 ° C with slow stirring, giving a milky gel over two hours.
  • the mixture is stirred for a further 16 hours at 60.degree. C. and the polymer is then converted into powder form according to Example 31.
  • the K value of the product is 142.
  • the copolymers of Table V below can also be prepared by the above process.
  • each of the polymers from Table Va are added to a drilling fluid which consists of 350 ml synthetic seawater, 21 g attapulgite and 10 g illite and the pH of which has been adjusted to 9.5.
  • the loss of liquid in the drilling mud mixtures thus obtained was immediately after the production (initial value) and measured after aging for 16 hours at 176.6 ° C at 190.5 ° C and 204.4 ° C.
  • the initial water loss was 10.5 ml
  • the value after 16 hours aging at 149 ° C was 19.5 ml.
  • a drilling fluid is produced in the laboratory that contains 159 liters (one barrel) of synthetic seawater, 9.53 kg (21 pounds) of attapulgite clay and 4.54 kg (10 pounds) of illite clay.
  • This drilling fluid has a high water loss. if you don't add polymers that reduce water loss.
  • Samples of this drilling fluid were each mixed with one of the copolymers according to the invention specified above, namely in an amount corresponding to 1.81 kg (4 pounds) per 159 liters (one barrel) of the drilling fluid. Then the water loss of the drilling fluids thus obtained was measured. The measurement was carried out according to the well-known 30-minute water loss standard tests of the American Petroleum Institute. After the measurement, all Drill samples heated to a certain temperature for 16 hours and then the water loss test repeated.
  • the polymers according to the invention bring about different degrees of improvement in the water retention capacity of the drilling fluids compared to known, commercially available polymers known for this purpose.
  • the copolymers according to the invention also show improved heat stability of the water retention capacity compared to known products.
  • the water loss of the drilling fluid not mixed with polymer is 98.0 ml, while after addition of the polymer from Example 4 in an amount corresponding to 1.81 kg per 159 1 drilling fluid, there is only a water loss of 9.5 ml.
  • Drilling fluid with a water-soluble polyacrylate which is commercially available as an aid to reducing the water loss from drilling fluids ( ® CYPAN)
  • the initial water loss is 8 ml
  • the water loss after 16 hours of aging is 176.6 ° C and 58.0 ml
  • copolymers according to the invention show outstanding cation tolerance towards divalent cations, especially against calcium. This is clear from Table VII below.
  • Example 56 water loss measurements described in Example 56 were repeated with the difference that different amounts of calcium chloride were added to the drilling fluids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Wasserlösliche Copolymere, ihre Herstellung und ihre Verwendung
Bei der Herstellung von Erdölbohrungen unter Verwendung der Rotary-Bohrtechnik kann es vorkommen, daß aus der Bohrspülflüssigkeit Filtrat in die anstehende unterirdische Formation eingepreßt wird. Im Fall von wäßrigen Bohrspülfluids besteht dieses Filtrat im wesentlichen aus Wasser, das gewisse unerwünschte Wirkungen auf die Formation ausüben kann. Die vorliegende Erfindung be trifft bestimmte neue Polymerisate, die ein erheblich verbessertes Wasserrückhaltevermögen der Bohrspülungen bewirken, d.h. deren Anwesenheit die Tendenz der Bohrspülung, Filtrat in die anstehende Formation abzugeben, erheblich vermindert. Im Vergleich zu den z.Z. verfügbaren Bohrspüladditiven weisen die erfindungsgemäßen Polymerisate eine erheblich überlegene Kalzium-Toleranz und Thermostabilität auf.
Die vorliegende Erfindung betrifft somit wasserlösliche Copolymerisate, die aufgebaut sind aus
a) 5 bis 90 Gew.% Baugruppen der Formel I
(I)
Figure imgf000003_0001
b) 0 bis 30 Gew.% Baugruppen der Formel II
(II) c) 0 bis 80 Gew.% Baugruppen der Formel III
(III)
Figure imgf000004_0001
d) 5 bis 60 Gew.% Baugruppen der Formel IV
Figure imgf000004_0002
(IV)
e) 0 bis 50 ruppen der Formel V
(V)
Figure imgf000004_0003
und f ) zu 0 bis 25 Gew.% aus Vernetzern, die mindestens zwei olefinische Doppelbindungen im Molekül enthalten, wobei R1 oder R2 unabhängig voneinander Wasserstoff, Methyl, oder Ethyl oder gemeinsam Trimethylen oder Pentamethylen,
R3 und R5 Wasserstoff oder Methyl; R4 Imidazol-(1) oder Imidazol-(2) und
R6 Hydroxy, Alkoxycarbonyl mit 1 bis 12 C-Atomen in der Alkoxygruppe, Cycloalkoxycarbonyl mit 6 bis 10 C Atomen in der Cycloalkoxygruppe, Phenyl, Alkanoyloxy mit 1 bis 4 C-Atomen oder ß-Hydroxyalkoxycarbonyl mit 2 oder 3 C-Atomen in der Hydroxy-alkoxygruppe bedeuten.
Y für eine einfache covalente Bindung oder eine Gruppe der Formel -CON-C(CH3)2-CH2- und x+ für ein Kation stehen.
Gegenstand der vorliegenden Erfindung sind auch wasserlösliche Copolymerisate, die aufgebaut sind aus 1 a) 1 bis 95 Gew . % Baugrupen der Formel Ib
( Ib)
Figure imgf000005_0005
b) 0 bis 30 Gew.% Baugruppen der Formel II
Figure imgf000005_0001
(II)
c) 0 bis 80 Gew.% Baugruppen der Formel III
(III)
Figure imgf000005_0002
d) 5 bis 60 Gew.% Baugruppen der Formel IV
(IV)
Figure imgf000005_0003
e) 0 bis 50 Gew.% Baugruppen der Formel V
(V)
Figure imgf000005_0004
und f) zu 0 bis 25 Gew.% aus Vernetzern, die mindestens zwei olefinische Doppelbindungen im Molekül enthalten, wobei R1 bis R6 und X+ die oben genannten Bedeu tungen haben.
Bevorzugte erfindungsgemäße Copolymere sind aufgebaut aus 20 bis 80% Gew.% Baugruppen der Formel I, 0 bis 15 Gew.% Baugruppen der Formel II, 0 bis 40 Gew.% Baugruppen der Formel III, 0 bis 20 Gew.% Baugruppen der Formel V und 5 bis 50 Gew.% Baugruppen der Formel IV worin R4 ein Imidazolyl-(1) Rest ist. Erfindungsgemäße Copolymerisate, die eine Baugruppe enthalten, deren Anteil definitionsgemäß auch O sein kann, sind dann bevorzugt wenn der Anteil dieser Baugruppen mindestens 1 Gew.% beträgt.
Besonders bevorzugt sind solche erfindungsgemäßen Copolymerisate, in denen mehrere der obengenannten bevorzugten Merkmale vereinigt sind.
Die Alkyleinheit der Alkoxycarbonylgruppe von R6 kann beispielsweise eine der Gruppen Methyl, Ethyl, Propyl, Isopropyl, n-Butyl-(1), n-Butyl-(2), Isobutyl, tert.-Butyl, Amyl, Neopentyl, Hexyl, 2-Ethyl-hexyl-(1), Octyl, Dodecyl sein und sie kann bei entsprechender Kettenlänge linear oder verzweigt sein.
Beispiele für die Cycloalkyleinheit einer für R6 stehenden Cycloalkoxycarbonylgruppe sind die monocyclische Cyclohexylgruppe oder polycylische Gruppen, wie z.B. Bόrnyl, Isobornyl, Norbornyl und Derivate derartiger Terpene.
Beispiele für die ß-Hydroxyalkyleinheit in dem Substi tuentsi R6 sind ß-Hydroxyethyl, 2-Hydroxypropyl-(1) oder 1-Hydroxypropyl-(2).
Das Kation X+ kann sich grundsätzlich von jeder bekannten wasserlöslichen Base ableiten, die stark genug ist, die Sulfonsäure zu neutralisieren und die die Wasserlöslichkiet des Copolymers nicht beeinträchtigt. Die Auswahl kann somit auf einfache bekannte Weise erfolgen, insbesondere kann X+ ein Alkalimetallkation, vorzugsweise ein Natrium- oder Kaliumkation sein oder ein Ammoniumkation der Formel [HNR3 7]+ . Die drei R7 Reste können gleich oder verschieden sein und bedeuten Wasserstoff, Alkyl mit 1 bis 4 C-Atomen oder Hydroxyethyl.
Die vorliegende Erfindung betrifft auch Partialhydroly säte der oben definierten Copolymeren. Durch Partialhy drolyse der erfindungsgemäßen Copolymere können bis zu 60%, vorzugsweise 10 bis 30%, der Amid-Funktionen der Baugruppen der Formel III und der Ester-Funktionen in den Baugruppen der Formel V in Carboxyl-Funktionen über führt werden, wodurch die obengenannten Baugruppen in solche der Formel VI
Figure imgf000007_0001
(VI)
übergehen. Hierbei haben R3 und X+ die oben genannten Bedeutungen.
In vielen Fällen kann die hervorragende Dispersionsstabilisierung und Viskositätserhöhung der erfindungsgemässen Polymeren und ihrer Partialhydrolysate in konzentrierten Salzlösungen sowie ihre Temperaturstabilität noch weiter verbessert werden durch die Anwesenheit von basischen Gruppen, d.h. solchen, die in der Lage sind, Proton zu addieren.
Derartige Gruppen treten insbesondere dann auf, wenn erfindungsgemäße Copolymerisate hydrolysiert werden, die Baugruppen der Formel II enthalten. Diese Baugruppen können je nach Bedingungen der Partialhydrolyse bis zu einem gewissen Grad mithydrolys iert werden , wobe i nach Abspaltung der Acylreste -COR2 freie Amidogruppen -NHR1 an den Polymerketten auftreten, welche die oben erwähnte basische Reaktion zeigen. Die erfindungsgemäßen Copolymerisate können im Molekül aus jeder der durch die allgemeinen Formeln I bis VI definierten Baugruppen selbstverständlich auch mehrere verschiedene Individuen, die sich in den Bedeutungen der Symbole Y oder R 1 und R2 oder R3und R5 oder R4 oder R6 unterscheiden, enthalten. So können sie zum Beispiel im gleichen Polymermolekül sowohl AIBS als auch Vinylsulfonsäure-Bausteine oder ringoffene neben ringgeschlossenen
Vinylamid-Bausteinen der Formel II oder auch Imidazol-(1)neben Imidazol-(2)-Resten oder auch Isobornylmethacrylat neben Polyvinylalkohol enthalten.
In der Regel enthalten die erfindungsgemäßen Copolymerisate aus den einzelnen Gruppen der allgemeinen Formeln I bis VI nicht mehr als je drei, vorzugsweise nicht mehr als je zwei verschiedene Individuen und gegebenenfalls das Vernetzungsmittel.
Bevorzugte Vernetzer, die mindestens zwei olefinische Doppelbindungen im Molekül enthalten, sind Divinyl benzol, Methylen-bis-acrylamid, Tetraallyloxetan, Hexaallylsaccharose und Triallylisocyanurat.
Die Herstellung wasserlöslicher Polymerisate, welche Sulfonsäuregruppen im Makromolekül eingebaut enthalten, ist bereits in zahlreichen Patenten sowie in der Fachliteratur ausführlich beschrieben worden. So ist z.B. die Synthese von Copolymeren der Vinylsulfonsäure mit Acrylamid und Vinylpyrrolidon in J. Polymer Sci.,38 , Seite 247 (1959) veröffentlicht worden.
Im DBP 1 101 760 ist ein Verfahren zur Herstellung wasserlöslicher Copolymerisate aus Vinylsulfonsäure und Acrylnitril bzw. Methacrylnitril gegebenenfalls im Gemisch mit weiteren ethylenisch ungesättigten Verbindungen beschrieben worden. Copolymerisate aus Vinyl bzw. Alkylsulfonaten mit Acrylamid und Vinylamiden sind z.B. in der DAS 2 444 108 beschrieben worden. Wasserlösliche Copolymerisate, welche 2-Acrylamido-2-me thyl-propansulfonsäure-(3), im folgenden mit AIBS abgekürzt als Comonomeres enthalten, sind in USP 3 953 342, 3 768 565, DOS 2 502 012, 2 547 773, USP 3 907 927, 3 926 718, und 3 948 783 beschrieben.
Copolymerisate aus Vinylsulfonsäure, Vinylimidazol, Acrylsäure, Butylmethacrylat und Methacrylamid sind gemäß DE-OS 2 457 117 als Casein-Ersatz bei der Papier herstellung zu verwenden.
Nach der japanischen Kokai 74-36402 (CA 81, 84441c) kann ein Copolymerisat von Vinylimidazol Acrylamid und Acrylsäure im Molverhältnis 5 : 90 : 5 als Desensibilisator photographischer Emulsionen eingesetzt werden. Die Herstellung von Vinylimidazol/Acrylsäure-Copolymerisaten ist beispielsweise aus "Macromolecules" (1973), 6(2), Seiten 163-168 sowie aus J. Am. Soc, Div. Polym. Chem. (1972) 13(1), S. 364-368, und ihre Verwendung als Binder für Photoemulsionen aus der FR-Patentanmeldung 2 182 170 bekannt. Die Herstellung von Vinylimidazol/Acrylamid Copolymerisaten durch Suspensionspolymerisation ist aus der DE-OS 20 09 218 und die Verwendung solcher Copolymerisate bei der Herstellung von Offset-Druckplatten aus der DE-OS 21 65 358 bekannt.
Die erfindungsgemäßen Copolymerisate, soweit sie Comono mere der Formel II einpolymerisiert enthalten, bei denen R1 und R2 gemeinsam Trimethylen bedeuten, lassen sich in der aus dem Stand der Technik bekannten Weise, z.B. gemäß den Angaben der US-PS 3 929 741 durch Umsetzung der Monomeren bei Temperaturen von etwa 10 bis 120°C; vorzugsweise bei 40 bis 80ºC, in Gegenwart von geeigneten Polymerisationskatalysatoren herstellen. Wenn man unter analogen Bedingungen die Copolymerisation von AIBS oder Vinylsulfonsäure mit nicht ringgeschlossenen N-Vinylamiden, d.h. solchen der allgemeinen Formel
Figure imgf000010_0001
1 CH2=CH-N-COR2 in denen R1 und R2 gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten, durchführt, so treten jedoch Nebenreaktionen ein ι und die Polymerisation zu wasserlöslichen Produkten ist behindert.
Soweit die erfindungsgemäßen Copolymerisate Reste der Formel enthalten, bei denen R1 und R2 nicht gemeinsam Trimethylen oder Pentamethylen bedeuten, ist es erforderlich, die sauren Komponenten Vinylsulfonsäure und AIBS vor der Polymerisation durch Zusatz von Basen in die Salze mit dem Kation χ+ zu überführen. Die hierbei zweckmäßigerweise eingesetzten Basen sind die Hydroxyde oder Salze der Kationen X+ mit schwachen Säuren, wie z.B. Kohlensäure oder Phosphorsäure, oder im Falle von Aminbasen NH3 oder die freien Amine.
Die Neutralisation der sauren Komponenten vor der Polymerisation ist aber auch bei der Copolymerisation von ringgeschlossenen Verbindungen möglich und in der Regel sogar vorteilhaft.
Zweckmäßigerweise werden somit zur Herstellung eines erfindungsgemäßen Copolymerisats 5 bis 95 Gewichtsteile einer olefinisch ungesättigten Sulfonsäure der Formel Ia CH2 = CH-Y-SO3H (Ia) In Wasser, einer Wasser/Alkanol-Mischung, in der auch das fertige Copolymerisat noch löslich ist, oder einem wassermischbaren organischen Lösungsmittel gelöst, für den Fall, daß R1 und R2 nicht gemeinsam Tri- oder Pentamethylen bedeuten, obligatorisch, für den Fall, daß R1 und R2 gemeinsam Tri- oder Pentamethylen be deuten, gegebenenfalls durch Zusatz einer Base die Sulfosäure neutralisiert, danach 5-60 Gewichtsteile 1oder 2-Vinylimidazol, O bis 30 Gewichtsteile eines Vinyl-acylamins der Formel IIa
Figure imgf000011_0001
R1
-CH2=CH-N-CO-R2 (Ha) worin R1 und R2 gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl oder gemeinsam Trimethylen oder Pentamethylen bedeuten und ggf. 0 bis 80 Gewichtsteile Acrylamid und/oder Methacrylamid, 0 bis 50 Gew.% eines Comonomers der Formel Va
R5
Figure imgf000011_0002
-CH2=CR6 (Va), wobei die Symbole R5 und R6 die obengenannten Bedeutungen haben, sowie gegebenenfalls 0 bis 25 Gew.% eines Vernetzes zugefügt, der mindestens zwei, olefi
nische Doppelbindungen aufweist. Die Copolymerisation wird dann in an sich bekannter Weise eingeleitet und bei 10 bis 120ºC durchgeführt.
Bevorzugte erfindungsgemäße Copolymerisate werden erhalten, wenn zur Herstellung des Copolymerisats 20 bis 80 Gew.% der olefinisch ungesättigten Sulfonsäure der Formel Ia, O bis 15 Gew.% des Vinyl-acylamins der Formel Ha, 0 bis 40 Gew.% Acrylamid und/oder Methacrylamid, 5 bis 50 Gewichtsteile Vinylimidazol, 0 bis 10 Gew.% des Comonomers der Formel Va und ggf. 0 bis 25 Gew.% des Vernetzers eingesetzt werden.
Die Polymerisation kann als Lösungspolymerisation, als Fällungspolymerisation oder in umgekehrter Emulsion, z.B gemäß den Angaben der deutschen Patentschrift 1 089 173, ausgeführt werden.
Bei der Verwendung von Wasser oder einer Wasser/AlkanolMischung als Lösungsmittel, wobei ein mit Wasser mischbarer Alkanol mit 1 bis 4 C-Atomen eingesetzt wird und das fertige Copolymerisat in der Wasser/Alkanol-Mischung löslich ist, verläuft die Polymerisation unter den Bedingungen der Lösungspolymerisation, und es wird eineviskose wäßrige bzw. wäßrig/alkanolische Lösung des erfindungsgemäßen Copolymerisats erhalten, aus der das Produkt durch Abdestillieren des Lösungsmittels oder Ausfällung durch Mischen der Lösung mit einem wassermischbaren organischen Lösungsmittel, wie Methanol, Ethanol, Aceton oder dergleichen isoliert werden kann.
Vorzugsweise wird jedoch d.ie erhaltene wäßrige bzw. wässrig alkanolische Lösung direkt, evtl. nach Einstellen einer gewünschten Konzentration, der bestimmungsgemäßen Verwendung zugeführt. Bei der Durchführung der Copolymerisation in einem mit Wasser mischbaren organischen Lösungsmittel arbeitet man unter den Bedingungen der Fällungspolymerisation. Hierbei fällt das Polymerisat direkt in fester Form aus und kann durch Abdestillieren des Lösungsmittels oder aber Absaugen und Trocknen isoliert werden.
Als wassermischbare organische Lösungsmittel, die zur Durchführung des erfindungsgemäßen Herstellungsverfahren geeignet sind, kommen insbesondere wasserlösliche Alka nole, nämlich solche mit 1 bis 4 C-Atomen, wie Methanol, Ethanol, Propanol, Isόpropanol, n- , sec- und iso-Bu tanol, vorzugsweise aber tert.-Butanol in Betracht.
Der Wassergehalt der hierbei als Lösungsmittel eingeset zen niederen Alkanole sollte 6 Gew.% nicht überschreiten, da sonst eine Klumpenbildung bei der Polymerisation auftreten kann. Vorzugsweise wird bei einem Wassergehalt von 0 - 3% gearbeitet.
Die Menge des einzusetzenden Lösungsmittels richtet sich bis zu einem gewissen Grad nach der Art der eingesetzten Comonomeren.
In der Regel werden pro 100 g Gesamtmonomere 200 bis 1000 g des Lösungsmittels eingesetzt.
Bei der Durchführung der Polymerisation in umgekehrter Emulsion wird die wäßrige Monomerenlösung in bekannter Weise in einem mit Wasser nicht mischbaren organischen Lösungsmittel wie Cyclohexan, Toluol, Xylol, Heptan oder noch siedenden Benzinfraktionen unter Zusatz von 0,58%, vorzugsweise 1 - 4%, bekannter Emulgatoren vom W/OTyp, emulgiert und mit üblichen radikal bildenden Initiatoren polymerisiert. Der Initiator kann sowohl wasserlöslicher Natur sein und wird dann in der Monomerenlösung gelöst, er kann aber auch öllöslich sein und wird in diesem Fall der fertigen W/O-Emulsion oder der ölphase zusetzt. Eine detailliertere Beschreibung des Verfahrens findet sich beispielsweise in der deutschen Patentschrift 1 089 173.
Die erfindungsgemäßen Copolymerisate sind ggf. noch partiell verseift. Als Verseifunsmittel, kann prinzipiell jedewasserlösliche Base eingesetzt werden, deren Stärke für eine Reaktion mit den hydrolysierbaren Gruppen ausreicht. Bevorzugt werden jedoch NaOH, KOH, NH3 oder neutrale oder saure Alkali- ( insbesondere Natrium- und Kalium-) und Ammoniumsalze der Kohlensäure, Borsäure und Phosphorsäure. Das Verseifungsmittel wird entweder schon der Monomerenlösung zugesetzt oder mit dem Polymerisat vermischt. Die Verseifung erfolgt daher - je nach Verfahrensweise - bereits während der normalerweise exotherm verlaufenden Polymerisation oder durch weitere Wärmezufuhr im Anschluß an die Polymerisation. Auch eine Kombination beider Verfahrensweisen ist möglich.
Bevorzugte erfindungsssgemäße und erfindungsgemäß einzusetzende Copolymerisate mit besonders hohem Polymerisationsgrad werden erhalten, wenn man die Polymerisation in wäßriger Lösung nach dem Verfahren der sogenannten Gelpolymerisation durchführt. Dabei werden 15 - 50%ige wäßrige Lösungen der Comonomeren mit bekannten geeigneten
Katalysatorsystemen und ggf. mit einem der genannten Verseifungsmittel ohne mechanische Durchmischung unter Ausnutzung des Trommsdorff-Norrish-Effektes (Bios Final Rep. 363,22; Makromol. Chem. 1, 169 (1947) polymerisiert. Aus den hohen Viskositäten wäßriger, insbesondere elektrolythaltiger wäßriger Lösungen der in dieser Weise hergestellten erfindungsgemäßen und erfindungsgemäß einzusetzenden wasserlöslichen Copolymerisate lassen sich unter Zugrundelegung der üblichen Modellvor Stellungen über den Zusammenhang von Viskosität und mittlerem Molekulargewicht polymerer Substanzen, sowie unter Berücksichtigung von Vergleichswerten ähnlich gebauter Polymerer für die erfindungsgemäßen Produkte mittlere Molekulargewichte von 2 . 106 bis 20 . 106 abschätzen. Die Polymerisationsreaktion kann sowohl bei Normaldruck als auch unter erhöhtem Druck durchgeführt werden. Wie üblich kann die Polymerisation auch in einer Schutzgasatmosphäre, vorzugsweise unter Stickstoff, ausgeführt werden.
Zur Auslösung der Polymerisation können energiereiche elektromagnetische Strahlen oder die üblichen chemischen Polymerisationsinitiatoren herangezogen werden, z.B. organische Peroxide, wie Benzoylperoxid, tert.-Butyl hydroperoxid, Methylethyl-keton-peroxid, Cumol-hydroperoxid, Azoverbindungen wie Azo-di-iso-butyro-nitril oder 2,2'-Azo-bis-(2-amiöinoρropan)-dihydrochlorid
HN -C(CH3)2-N-=N-C(CH3)2- NH . 2 HCl
Figure imgf000015_0001
Figure imgf000015_0002
NH2 NH2 sowie anorganische Perόxiverbindungen wie
(NH4)2S2O8 oder K2S2O8 oder H2O2 gegebenenfalls in Kombination mit Reduktionsmitteln wie Natriumhydrogensulfit und Eisen-II-Sulfat oder Redox Systeme, welche als reduzierende Komponente eine aliphatische und aromatische Sulfinsäure, wie Benzolsulfin- säure und Toluolsulfinsäure oder Derivate dieser Säure enthalten, wie z.B. Mannichaddukte aus Sulfinsäure, Aldehyden und Aminoverbindungen, wie sie in der deutsehen Patentschrift 1 301 566 beschrieben sind. Pro 100g Gesaratmonomeren werden in der Regel 0,03 bis 2 g des Polymerisationsinitiators eingesetzt. Durch mehrstündiges Nachheizen der nach dem Verfahren der Gelpolymerisation erhaltenen Polymerisatgele im Temperaturbereich von 50 - 130°C, vorzugsweise 70 100°C, können die Qualitätseigenschaften der Polymerisate noch verbessert werden.
Die auf diesem Wege hergestellten, in Form wäßriger Gallerten vorliegenden erfindungsgemäßen Copolymerisate können nach mechanischer Zerkleinerung mit geeigneten Apparaten direkt in Wasser gelöst werden und zum Einsatz gelangen. Sie können aber auch nach Entfernung des Wassers durch bekannte Trocknungsprozesse in fester Form erhalten und erst bei ihrer Verwendung wieder in Wasser aufgelöst werden.
Die erfindungsgemäßen Copolymerisate sind hervorragend geeignet als Hilfsmittel bei Bohrspülungen. Sie zeigen dabei eine sehr gute Schutzkolloidwirkung sowohl bei hohen. Temperaturen als auch bei hohen Elektrolytkonzentra- tionen und sind insbesondere im Hinblick auf Elektrolytstabilität und Hitze- und Alterungsbeständigkeit den nächstvergleichbaren aus der US-PS 2 775 557 und den DTPS 1 300 481 und 2 444 108 bekannten Bohrspülzusätzen erheblich überlegen.
Gegenüber den Copolymerisaten der DE-OS 29 31 897.6 weisen die erfindungsgemäßen Produkte eine weitere verbesserte Kombination wertvoller anwendungstechnischer Eigenschaften auf, die sich insbesondere beim Einsatz für besonders kritische Bohraufgaben unter schwierigen Bedingungen in großen Tiefen und in Gegenwart von Formationswassern mit sehr hohem Elektrolytgehalt vorteilhaft auswirken. Die erfindungsgemäßen Polymerisate zeichnen sich außerdem insbesondere durch Stabilität gegenüber 10 - 40%igen Mineralsäuren wie HCl, HNO3 , H2SO4, HCIO4 u.s.w. aus, ebenso gegenüber organischen Säuren wie HCOOH und CH3COOH . Selbst bei mehrstündiger Lagerung der sauren Lösungen treten keine Ausfällungen auf. Die erfindungsgemäßen Copolymerisate sind daher auch als Verdicker für Säuren in hervorragender Weise geeignet.
Zur Formulierung von wäßrigen Bohrspülungen werden die erfindungsgemäßen Mischpolymerisate in Konzentrationen von 0,5 bis 40 kg/mз, vorzugsweise 3 - 30 kg/mз, eingesetzt. Die wäßrigen Bohrspülungen enthalten zur Viskosi tätserhöhung and Abdichtung durchbohrter Formationen vorwiegend Bentonite. Zur Dichteerhöhung der Bohr schlämme werden Scherspat, Kreide und Eisenoxide zugesetzt.
Bentonit, Schwerspat, Kreide und Eisenoxid können allein oder in den verschiedensten Mischungsverhältnissen den Bohrspülungen zugegeben werden. Der begrenzende Faktor nach oben sind die rheologischen Eigenschaften der Bohrschlämme.
Werden erfindungsgemäße Copolymerisate zu üblichen Tiefbohrzementschläramem zugesetzt, so erhält man Produkte mit erheblich verbesserten Fließ- und Abbinde-Eigenschaften.
In den folgenden Ausführungsbeispielen, die die Herstellung der erfindungsgemäß einzusetzenden wasserlöslichen Copolymeren veranschaulichen und in der anschließenden Tabelle sind die folgenden Abkürzungen verwendet worden: VA : N-Vinylacetamid AM : Acrylamid VMA: N-Vinyl-N-me thyl-acetamid AIBS : 2- Acrylamido-2-methyl-propansul fonsäure- ( 3 ) wobei die Hochzahl
1 das NH4-Salz
2 das Na-Salz bedeutet
VFA : Vinylformamid
VIM : l-Vinylimidazol
VPYR : N-Vinylpyrrolidon
VCAP : N-Vinylcaprolactam
VSS-Na : Vinylsulfonsäure-Na-Salz
MAM : Methacrylsäureamid
IBOMA : Isobornylmethacrylat
PVA : Polyvinylalkohol
DVB : Divinylbenzol
TMPTA : Trimethylolpropan-triacrylat
In der Spalte "Katalysatoren" bedeuten
A : Azoisobutyronitril B : Ammoniumpersulfat C : Azo-bis-(2-amidinopropan)-dihydrochlorid
Bei den in den folgenden Beispielen angegebenen K-Werten handelt es sich um die K-Werte nach Fikentscher, "Cellulosechemie". Vol. 13, Seite 58 (1932).
Beispiel 1
In einem Polymerisationskolben von 2 1 Inhalt, ausgestattet mit Rührer, Rückflußkühler, Tropftrichter, Gaseinleitungsrohr und elektrisch beheiztem Wasserbad werden 600 ml tert. Butanol vorgelegt und darin 65 g AIBS unter Rühren suspendiert, dann werden 7,1 1 NH3 Gas eingeleitet und anschließend 15 g Acrylamid und 20 g 1-Vinylimidazol zugegeben. Unter Einleiten von Stickstoff wird mit dem elektrischen Wasserbad das Reaktions gemisch auf 50°C geheizt und 1,0 g Azoisobutyronitril zugesetzt. Nach einer Induktionszeit von ca. 2 Stunden setzt die Polymerisation ein. Die Reaktionstemperatur steigt bis auf 69°C an und das Polymerisat fällt aus. Es wird noch 2 Stunden bei 80°C nachgeheizt, wobei eine dickflüssige Suspension entsteht. Das Polymere kann durch Absaugen und Trocknen unter Vakuum bei 50ºC isoliert werden. Das Lösungsmittel kann jedoch auch unter vermindertem Druck direkt aus dem Reaktionsgemisch abdestilliert werden. Man erhält das Polymere in Form eines weißen leichten Pulvers, das sich in Wasser gut löst. K-Wert nach Fikentscher 195.
Gemäß dieser Verfahrensweise können auch die Copolymeri säte der Tabelle 1 hergestellt werden.
Beispiel 2
In der im Beispiel 1 beschriebenen Apparatur werden 540 g Wasser und 20 g 25%ige Lösung von Vinylsulfon säure-Na-Salz vorgelegt und 60 g AIBS darin gelöst. Durch Zugabe von 42,7 g 27%iger wäßriger Natronlauge wird die Lösung auf einen pH-Wert von 9,0 eingestellt. Nach Zugabe von 10 g 1-Vinylimidazol, 10 g VMA und 15 g Acrylamid wird die Lösung unter Rühren und Einleitungen eines schwachen N2-Stromes auf 60 °C angeheizt. Bei dieser Temperatur wird die Polymerisation durch Zugabe einer Lösung aus 0,5 g Azoisobutyronitril in 2,5 g Dirnethylformamid initiiert. Nach einer Induktionsperiode von ca. 30 Min. setzt die Polymerisation ein, die Temperatur steigt bis auf 65°C an und das Reaktionsgemisch wird viskos. Es wird noch 2 Stunden bei 80ºC nachgeheizt. Man erhält eine klare, gelbliche hochviskose Lösung mit einem K-Wert von 205 nach Fikentscher, die direkt der Verwendung als Bohrspülzusatz zugeführt werden kann. In analoger Weise können auch die in der Tabelle II zusammengestellten Copolymerisate synthetisiert werden, bei denen als Reaktionsmedium Wasser dient.
Beispiel 3
In einem Polymerisationskolben von 1 1 Inhalt, ausgestattet mit Rührer, Gaseinleitungsrohr und Thermometer werden 280 g Wasser vorgelegt und 102 g AIBS darin gelost. Durch Zugabe von 72,5 g 27%iger Natronlauge wird die Lösung auf einen pH-Wert von 9,5 eingestellt, wobei gekühlt wird, um die Temperatur nicht höher als die Umgebungstemperatur ansteigen zu lassen. Nach Zugabe von 80 g Acrylamid, 4 g VFA und 14 g 1-Vinylimidazol wird die Lösung auf eine Temperatur von 22 βC eingestellt und die Katalysatorlösung, bestehend aus 10 g Wasser, 0,1 g Dibutylaminhydrochlorid und 0,1 g Ammoniumpersulfat zugegeben. Der Rϊihrer wird dann entfernt,und man leitet einen schwachen N2-Strom in die Lösung. Nach einer
Induktionsperiode von ca. 50 Min. setzt die Polymerisation ein und die Temperatur steigt im Verlaufe von ca. 60 Min. bis auf 84ºC an. Es wird noch 2 Stunden bei 80ºC nachgeheizt.
Man erhält ein schwach trübes, gelb-braunes nach Erkalten schneidbares Gel mit einem K-Wert von 215 nach Fikentscher. Das Polymer kann auch in gut wasserlösliche Pulverform überführt werden, z.B in der Weise, daß man das Gel mechanisch verkleinert, trocknet - beispielsweise durch Gefriertrocknung oder Trocknung bei erhöhter Temperatur - und anschließend in bekannter Weise, wie z.B. mit einer Schwingmühle, zu einem feinen Pulver mahlt. Bei den Beispielen 4-11 und 15-24 sind die in der Tabelle I angegebenen Monomeren gemäß der Vorschrift des Ausführungsbeispiels 1 copolymerisiert worden. Die Monomeren der Beispiele 12-14 wurden gemäß Ausführungsbeispiel 2 copolymerisiert.
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Be ispiel 31
In einem 1 1 Glaskolben, ausgestattet mit Rührer, Ruckflußkühler und Gaseinleitungsrohr bereitet man eine Lösung aus 70,2 g eines techn. Isoparaffingemisches mit einem Siedebereich von 200 - 240ºC ( ISOPAR M), 3,1 g Sorbitan-trioleat mit 20 Mol Ethylenoxid und 6,2 g Di glycerin-sesquioleat (Lösung I).
In einem zweiten Gefäß werden nacheinander 23,4 g 2 Acrylamido-2-methyl-propansulfonsäure (AIBS), 7,8 g 1 Vinylimidazol, 7,8 g N-Vinylformamid und 39,0 g Acrylamid in 86,6 g entionisiertem Wasser gelöst und mit 15,8 g 27%-NaOH unter Kühlung auf pH 7,3-7 , 6 gestellt (Lösung II).
Lösung II wird nun bei Raumtemperatur in Lösung I emiulgiert, dann spült man die Emulsion unter gutem Rühren 30 Min. mit Stickstoff und heizt schließlich auf 60ºC. Sobald diese Temperatur erreicht ist, wird eine Lösung von 25 ml Dicyclohexyl-peroxidicarbonat in 0,5 ml Toluol zugespritzt, dann entfernt man das Heizbad und reduziert die Rührgeschwindigkeit auf 100 Upm. Die Innentemperatur steigt innerhalb von wenigen Minuten auf 78°C an (T. max.), gleichzeitig wird die Emulsion zunehmend transparenter. Nach dem Abklingen der Hauptreaktion heizt man noch 30 Min. bei 70°C nach und läßt dann auf Raumtemperatur abkühlen.
Man erhält eine lagerstabile niedrigviskose W/O-Emulsion mit einem Polymergehalt von 30%. Die Gewinnung des Copolymerisats in Substanz kann leicht dadurch erfolgen, daß man die vorliegende Emulsion in einen Überschuß von Aceton eingießt. Das Copolymerisat fällt dabei aus und kann z.B. durch Abfiltrieren, Absaugen oder Zentrifugieren und gegebenenfalls Nachwaschen mit Aceton isoliert werden . Beispiel 32 - 40
Man verfährt wie in Beispiel 31, die Wasserphase (Lösung II) hat jedoch die in der folgenden Tabelle III angegebene Zusammensetzung:
Figure imgf000026_0001
Die Isolierung der Polymerisate kann, wie oben beschrieben durch Fällung mit einem wassermischbaren und die Ölphase lösenden Lösungsmittel, vorzugsweise mit Aceton, erfolgen.
Zur Invertierung der W/O-Emulsion gibt man 1,67 g davon in 100 ml entionisiertes Wasser, in dem zuvor 0,25 g eines Nonyl phenol-Ethylenoxidaddukts mit 10 Mol Ethylenoxid gelöst wurden. Man rührt 10 Min. und reduziert schließlich mit entionisierten Wasser auf 1000 g. Die K-Werte der so erhaltenen 0,05 %-Lösungen können der Tabelle IV entnommen werden.
Figure imgf000027_0001
Beispiel 41
In dem in Beispiel 1 beschriebenen Polymerisationsapparat werden 70 ml Wasser, 15 g AIBS-Natriumsalz, 3 g 1-Vinylimid azol und 1,5 g Polyvinylalkohol, Hydrolysegrad 88 % , gemischt und so lange gerührt, bis eine klare Lösung enstanden ist. Danach werden 3 g IBOMA gelöst in 30 ml eines technischen
Isoparaffingemisches mit einem Siedebereich von 200 bis 240°C ( ®ISOPAR M) zugesetzt. Die zwei Schichten werden zwei Stunden lang kräftig gerührt und die Apparatur mit Stickstoff durchspült. Dann werden 3,5 ml eines Emulgators (HLB 6-7) zugesetzt und die Mischung wiederum kräftig gerührt. Anschlies send setzt man 60 mg 2,2'-Azo-bis-(2-amidinopropane)-dihydro chlorid als radikalbildenden Polymerisationsinitiator zu. Die Reaktionsmischung wird dann unter langsamem Rühren allmählich auf 60ºC erwärmt, wobei im Verlauf von zwei Stunden ein milchiges Gel entsteht. Man rührt noch weitere 16 Stunden bei 60ºC und überführt dann das Polymer gemäß Angabe des Ausführungsbeispiels 31 in Pulverform. Der K-Wert des Produkts beträgt 142. Nach dem obigen Verfahren können auch die Copolymerisate der folgenden Tabelle V hergestellt werden.
Figure imgf000028_0001
Beisp:iele 48 bis 56
In tert.-Butanol als Lösungsmittel wurden die in der folgen dan Tabelle Va angegebenen Monomeren copolymerisiert.
Figure imgf000028_0002
Je 4 g der Polymerisate der Tabelle Va werden zu einer Bohrspülflüssigkeit zugesetzt, die aus 350 ml synthetischem Meerwasser, 21 g Attapulgit und 10 g Illit besteht und deren pH-Wert auf 9,5 eingestellt wurde.
Der Flüssigkeitsverlust der so erhaltenen Bohrspülmischungen wurde unmittelbar nach der Herstellung (Anfangswert) und nach 16-stündigem Altern bei 176, 6°C bei 190, 5°C und 204,4°C gemessen.
In der folgenden Tabelle VI sind für die Polymerisate 49 bis 55 sowie für ®CYPAN ein zum Vergleich unter gleichen Bedingungen gemessenes handelsübliches Polymer die Wasserverluste in ml angegeben.
Figure imgf000029_0001
Für das Polymerisat des Beispiels 48 war der Anfangswert des Wasserverlustes 10,5 ml, der Wert nach 16 stündiger Alterung bei 149ºC betrug 19,5 ml.
Beispiel 56
Im Labor wird ein Bohrspülfluid hergestellt, das auf je 159 1 (ein Barrel) synthetischem Meerwasser, 9,53 kg (21 Pounds) Attapulgit-Ton und 4,54 kg (10 Pounds) Illit-Ton enthält. Dieses Bohrspülfluid hat einen hohen Wasserver- lust. wenn man es nicht mit Polymeren versetzt, die den Wasserverlust mindern. Proben dieses Bohrspülmittels wurden mit je einem der oben angegebenen erfindungsgemäßen Copolymerisate versetzt und zwar in einer Menge entsprechend 1,81 kg (4 Pounds) pro 159 1 (ein Barrel) des Bohrspülmittels. Dann wurde der Wasserverlust der so erhaltenen Bohrspülflüssigkeiten gemessen. Die Messung erfolgte nach den bekannten 30 Minuten Wasserverlust-Standardtests des American Petroleum Institute. Nach der Messung werden alle Bohrspülproben für 16 Stunden auf eine bestimmte Temperatur erhitzt und dann der Wasserverlust-Test wiederholt. Hierbei findet man, daß die erfindungsgemäßen Polymeren gegenüber bekannten, handelsüblichen, für diesen Zweck bekannten Polymeren eine Verbesserung des Vasserrückhalte-Vermögens der Bohrspülungen in unterschiedlichem Ausmaß bewirken. Die erfindungsgemäßen Copolymerisate zeigen auch gegenüber bekannten Produkten eine verbesserte Hitze-Stabilität des Wasserrückhalte Vermögens. So ist z.B. der Wasserverlust der nicht mit Polymerisat versetzten Bohrspülflüssigkeit 98,0 ml, während nach Zusatz des Polymerisats von Beispiel 4 in einer Menge entsprechend 1,81 kg pro 159 1 Bohrspülflüssigkeit nur noch ein Wasserverlust von 9,5 ml eintritt. Wird diese Mischung 16 Stunden bei 176,6 "C gealtert, so ist der Wasserverlust 13,5 ml, und findet die Alterung 16 Stunden lang bei 190,5ºC statt, so findet man einen Wasserverlust von 18,0 ml. Versetzt man dagegen die Bohrspülflüssigkeit mit einem wasserlöslichen Polyacrylat, das als Hilfsmittel zur Herabsetzung des Wasserverlustes von Bohrspülungen im Handel ist ( ®CYPAN), so beträgt der anfängliche Wasserverlust 8 ml, der Wasserverlust nach 16 stündiger Alterung 176,6 °C beträgt 58,0 ml und bei einer Alterung 16 Stdn bei 190,5°C sogar 72,0 ml.
Die erfindungsgemäßen Copolymerisate zeigen überragende Kationen-Toleranz gegenüber zweiwertigen Kationen speziell gegen Kalzium. Dies wird deutlich aus der folgenden Tabelle VII.
Hier wurden die Wasserverlustmessungen, die im Beispiel 56 beschrieben sind, wiederholt mit dem Unterschied, daß unterschiedliche Mengen von Kalziumchlorid zu den Bohrspülflüssigkeiten zugesetzt wurden.
Figure imgf000031_0001

Claims

P a t e n t a n s p r ü c h e
1. Wasserlösliche Copolymerisate enthaltend
a) 1 bis 95% Baugruppen der Formel Ib
CO NH-C(CH3)2-CH2-SO3 -~χX+
Figure imgf000032_0001
-CH2-CH- (Ib)
b) 0 bis 30 Gew.% Baugruppen der Formel II
(II)
Figure imgf000032_0002
c) 0 bis 80 Gew.% Baugruppen der Formel III
(III)
Figure imgf000032_0003
d) 5 bis 60 Gew.% Baugruppen der Formel IV (IV)
Figure imgf000032_0004
e) 0 bis 50 Gew.% Baugruppen der Formel V
(V)
Figure imgf000032_0005
und f) 0 bis 25 Gew.% eines Vernetzers der mindestens zwei olefinische Doppelbindungen enthält, worin R1 und R2 unabhängig voneinander Wasserstoff,
Methyl oder Ethyl oder gemeinsam Trimethylen oder Pentamethylen;
R3 und R5 Wasserstoff oder Methyl R4 Imidazolyl-(1) oder Imidazolyl-(2); R6 Hydroxy, Alkoxycarbonyl mit 1 bis 12 C-Atomen in der Alkoxygruppe, Cycloalkoxycarbonyl mit 6 bis 10 C-Atomen in der Cycloalkoxygruppe, Phenyl, Alkanoyloxy mit 1 bis 4 C-Atomen oder ß-Hydroxyalkoxycarbonyl mit 2 oder 3 C-Atomen in dem Hydroxyalkoxyrest, bedeuten und X+ für ein Kation steht.
2. Wasserlösliche Copolymerisate enthaltend
a) 5 bis 90 Gew.% Baugruppen der Formel I
Figure imgf000033_0001
b) O bis 30 Gew.% Baugruppen der Formel. II
(II)
Figure imgf000033_0002
c) 0 bis 80 Gew.% Baugruppen der Formel III
(III)
Figure imgf000033_0003
d) 5 bis 60 Gew.% Baugruppen der Formel IV (IV)
Figure imgf000033_0004
e) 0 bis 50 Gew.% Baugruppen der Formel V
(V)
Figure imgf000033_0005
f) 0 bis 25 Gew.% eines Vernetzes, der mindestens zwei olefinische Doppelbindungen enthält, worin R1 und R2 unabhängig voneinander Wasserstoff, Methyl oder Ethyl oder gemeinsam Trimethylen oder Pentamethylen ; R3 und R5 Wasserstoff oder Methyl,
R4 Imidazolyl-(1) oder Imidazolyl-(2);
R6 Hydroxy, Alkoxycarbonyl mit 1 bis 12 C-Atomen in der Alkoxygruppe, Cycloalkoxycarbonyl mit 6 bis 10 C Atomen in der Cycloalkoxygruppe, Phenyl, Alkanoyloxy mit 1 bis 4 C-Atomen oder ß-Hydroxyalkoxycarbonyl mit 2 oder 3 C-Atomen in dem Hydroxyalkoxyrest bedeuten; Y für eine einfache covalente Bindung oder für eine Gruppe der Formel
-CO-NH-C(CH3)2-CH2- ; und χ+ für ein Kation steht.
3. Wasserlösliche Copolymerisate gemäß den Ansprüchen 1 oder 2, die in statistischer Verteilung a) 20 bis 80 Gew.% Baugruppen der Formel I, b) 0 bis 15 Gew.% Baugruppen der Formel II, c) 0 bis 40 Gew.% Baugruppen der Formel III, d) 5 bis 50 Gew.% Baugruppen der Formel IV, e) 0 bis 20 Gew.% Baugruppen der Formel V und f) 0 bis 25 Gew.% Divinylbenzol oder Trimethylolpropantriacrylat enthalten.
4. Wasserlösliche Copolymerisate gemäß den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß X+ ein Natriumoder Kaliumkation oder die Gruppe [HNR3 7]+ ist, worin die drei Reste R 7 unabhängig voneinander Wasserstoff, Alkyl mit 1 bis 4 C-Atomen oder Hydroxyethyl bedeuten.
5. Wasserlösliche Copolymerisate gemäß den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß es 5 bis 90 Gew.% Baugruppen der Formel Ib
-CH2-CH-
CO-NH-C(CH3)2-CH2-SO3 -X+ ( lb) enthalt.
6. Wasserlösliche Copolymerisate gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß bis zu 60 Gew.% der darin enthaltenen Baugruppen der Formel III zu Bau gruppen der Formel VI
Figure imgf000035_0001
(VI) hydrolysiert sind.
7. Verfahren zur Herstellung der wasserlöslichen Copolymerisate der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man zur Herstellung von je 100 Gew.-Teilen des Copolymerisats a) 5 bis 90 Gew.Teile einer Sulfonsäure der Formel Ia in Wasser oder einer Wasser/Alkohol-Mischung, in der das Copolymer ebenfalls löslich ist oder in einem wassermischbaren organischen Lösungsmittel auflöst,
b) die gemäß a) erhaltene Lösung der Sulfonsäure neutralisiert,
c) der neutralen Mischung 5 bis 60 Gew.-Teile 1-Vinyl imidazol oder 2-Vinylimidazol, 5 bis 30 Gew.-Teile eines Vinylacylamins der Formel Ha
(Ha)
Figure imgf000035_0002
0 bis 80 Gew.-Teile Acrylamid oder Methacrylamid, eines Monomeren der Formel Va
(Va)
Figure imgf000035_0003
0 bis 25 eines Vernetzers. der mindestens zwei olefinische Doppelbindungen enthält, wobei die Symbole R1 bis R7 die in den Ansprüchen 1 und 2 genannten Bedeutungen haben, zufügt und schließlich
d) die Copolymerisation in an sich bekannter Weise initiiert und bei 10 bis 120ºC durchführt.
8. Verfahren zur Herstellung der wasserlöslichen Copolymerisate der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man zur Herstellung von je 100 Gew.-Teilen des Copolymerisats a) 1 bis 95 Gew.-Teile einer Sulfonsäure der Formel Ic
CH2=
Figure imgf000036_0001
CH CONH-C(CH3)2-CH2-SO3 -X+ (Ic)
in Wasser oder in einer Wasser/Alkohol- Mischung in der das Copolymer ebenfalls löslich ist, oder in einem wassermischbaren organischen Lösungsmittel auf löst und dann fortfahrt, wie unter den Punkten b) bis d) des Anspruchs 7 beschrieben.
9. Verfahren gemäß einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß man die wäßrige Lösung der Comonomeren in einem wasserunlöslichen organischen Lösungsmittel emulgiert und dann die Copolymerisation initiiert und durchführt .
10. Verfahren gemäß einem der Ansprüchen 7 bis 9, dadurch gekennzeichnet, daß man als Monomer der Formel Va Isobornylmethacrylat und als Vernetzer Divinylbenzol oder Trimethylolpropantriacrylat einsetzt.
11. Verfahren zur Herstellung der wasserlöslichen Copolymerisate des Anspruchs VI, dadurch gekennzeichnet, daß man in einem gemäß einem der Ansprüche 7 bis 10 hergestellten Copolymerisat die Baugruppen der Formel III während oder nach der Polymerisation bis zu 60% zu Baugruppen der Formel VI -CH2-CH-
COO -X+ (VI) hydrolysiert.
12. Verfahren gemäß einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß man 0 bis 15 Gew.-Teile des Vinylacylamins der Formel Ila, 0 bis 40 Gew.-Teile Acrylamid oder Methacrylamid und 5 bis 50 Gew.-Teile des Vinylimidazols einsetzt.
13. Bohrspülung^ dadurch gekennzeichnet, daß sie einen Zusatz von etwa 0,5 bis 40 kg/m3 eines Copolymerisats des Anspruchs 1 oder 2 enthält.
14. Verfahren zum Tiefbohren, dadurch gekennzeichnet, daß eineBohrspülung eingesetzt wird, die ein Copolymerisat der Ansprüche 1 oder 2 enthält.
PCT/EP1982/000264 1982-01-11 1982-12-14 Aqua-soluble copolymers, preparation and utilization thereof WO1983002449A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR8208082A BR8208082A (pt) 1982-01-11 1982-12-14 Copolimeros hidrossoluveis, sua obtencao e sua aplicacao
JP83500140A JPS58502213A (ja) 1982-01-11 1982-12-14 水溶性共重合体、その製造およびその用途
AU10194/83A AU1019483A (en) 1982-01-11 1982-12-14 Aqua-soluble copolymers, preparation and utilization thereof
FI832997A FI832997A (fi) 1982-01-11 1983-08-22 Vattenloesliga sampolymerer, deras framstaellning och anvaendning
DK4111/83A DK411183D0 (da) 1982-01-11 1983-09-09 Vandoploeselige copolymere, deres fremstilling og anvendelse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US338,543 1982-01-11
US06/338,543 US4471097A (en) 1982-01-11 1982-01-11 Water soluble copolymers containing vinyl imidazole as drilling fluid additives

Publications (1)

Publication Number Publication Date
WO1983002449A1 true WO1983002449A1 (en) 1983-07-21

Family

ID=23325201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1982/000264 WO1983002449A1 (en) 1982-01-11 1982-12-14 Aqua-soluble copolymers, preparation and utilization thereof

Country Status (11)

Country Link
US (1) US4471097A (de)
EP (1) EP0111486A1 (de)
JP (1) JPS58502213A (de)
AU (1) AU1019483A (de)
BR (1) BR8208082A (de)
DK (1) DK411183D0 (de)
FI (1) FI832997A (de)
IT (1) IT1201961B (de)
NO (1) NO833078L (de)
WO (1) WO1983002449A1 (de)
ZA (1) ZA83134B (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115836A2 (de) * 1983-01-28 1984-08-15 Phillips Petroleum Company Polymere verwendbar in der Rückgewinnung und Verarbeitung von Bodenschätzen
US4644020A (en) * 1983-01-28 1987-02-17 Phillips Petroleum Company Production of high molecular weight vinyl lactam polymers and copolymers
WO1995032356A1 (en) * 1994-05-25 1995-11-30 Colorado School Of Mines Additives and method for controlling clathrate hydrates in fluid systems
US5880319A (en) * 1992-11-20 1999-03-09 Colorado School Of Mines Method for controlling clathrate hydrates in fluid systems
US6380137B1 (en) 1999-03-03 2002-04-30 Clariant Gmbh Copolymers and their use as drilling aids
WO2007133415A1 (en) * 2006-05-02 2007-11-22 Celanese International Corporation Polyvinyl alcohol films with improved resistance to oxidizing chemicals

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1220929A (en) * 1982-09-13 1987-04-28 S. Richard Turner Sodium styrene sulfonate-co-sodium-n-(4-sulfophenyl)- maleimide - an improved viscosity control additive
US5326854A (en) * 1983-01-28 1994-07-05 Phillips Petroleum Company Flocculation process using lactam or vinyl sulfonate polymer
US5080809A (en) 1983-01-28 1992-01-14 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
US5186257A (en) 1983-01-28 1993-02-16 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
JPS59223710A (ja) * 1983-06-01 1984-12-15 Sanyo Chem Ind Ltd 原油増産用添加剤
US4581147A (en) * 1984-01-12 1986-04-08 Sun Drilling Products Corp. Dispersant for water-based solids-containing fluids and a drilling fluid
DE3404491A1 (de) * 1984-02-09 1985-08-14 Wolff Walsrode Ag, 3030 Walsrode Wasserloesliche polymerisate und deren verwendung als bohrspueladditive
US4690219A (en) * 1984-03-05 1987-09-01 Phillips Petroleum Company Acidizing using n-vinyl lactum/unsaturated amide copolymers
US4604430A (en) * 1984-05-11 1986-08-05 Bristol-Myers Company Novel bile sequestrant resin
US4649048A (en) * 1984-05-11 1987-03-10 Bristol-Myers Company Novel bile sequestrant resin
JPS6128434A (ja) * 1984-07-19 1986-02-08 Nippon Paint Co Ltd 分散安定剤とその使用
US5079288A (en) * 1984-11-12 1992-01-07 Imperial Chemical Industries Plc Oral hygiene compositions and polymers active therein
US4726906A (en) * 1984-11-23 1988-02-23 Calgon Corporation Polymers for use as filtration control aids in drilling muds
JPS61197008A (ja) * 1985-02-27 1986-09-01 Mitsubishi Chem Ind Ltd 微細鉱物粒子を含む廃水処理用アニオン性凝集剤
US4626362A (en) * 1985-04-11 1986-12-02 Mobil Oil Corporation Additive systems for control of fluid loss in aqueous drilling fluids at high temperatures
US4812544A (en) * 1985-09-10 1989-03-14 The Lubrizol Corporation Method of producing polymers of amido-sulfonic acid monomers with high energy agitators
DE3616583A1 (de) * 1985-11-08 1987-05-21 Nalco Chemical Co Verfahren zur herstellung von wasserloeslichen sulfonierten polymeren
US4931194A (en) * 1986-10-01 1990-06-05 Pinschmidt Jr Robert K Enhanced oil recovery with high molecular weight polyvinylamine formed in-situ
US4785028A (en) * 1986-12-22 1988-11-15 Mobil Oil Corporation Gels for profile control in enhanced oil recovery under harsh conditions
MY104007A (en) * 1988-05-19 1993-10-30 Bast Corp Fluid loss control additives for oil well cementing compositions.
US4931489A (en) * 1988-05-19 1990-06-05 Basf Corporation Fluid loss control additives for oil well cementing compositions
MX18620A (es) * 1988-12-19 1993-10-01 American Cyanamid Co Floculante polimerico de alto desempeño, proceso para su preparacion, metodo para la liberacion de agua de un dispersion de solidos suspendidos y metodo de floculacion de una dispersion de solidos suspendidos
US5135909A (en) * 1990-01-25 1992-08-04 Phillips Petroleum Company Drilling mud comprising tetrapolymer consisting of N-vinyl-2-pyrrolidone, acrylamidopropanesulfonic acid, acrylamide, and acrylic acid
US5380705A (en) * 1990-01-25 1995-01-10 Phillips Petroleum Company Drilling mud comprising tetrapolymer consisting of n-vinyl-2-pyrrolidone, acrylamidopropanesulfonicacid, acrylamide, and acrylic acid
US5046562A (en) * 1990-06-11 1991-09-10 Basf Corporation Fluid loss control additives for oil well cementing compositions
US5228915A (en) * 1990-06-11 1993-07-20 Basf Corporation Fluid loss control additives for oil well cementing compositions
US5025040A (en) * 1990-06-11 1991-06-18 Basf Fluid loss control additives for oil well cementing compositions
US5130389A (en) * 1990-10-12 1992-07-14 Phillips Petroleum Company Superabsorbent crosslinked ampholytic ion pair copolymers containing 2-methacryloyloxyethyldimethylammonium
US5098970A (en) * 1990-10-31 1992-03-24 Phillips Petroleum Company Superabsorbent crosslinked ampholytic ion pair copolymers
US5130391A (en) * 1990-10-31 1992-07-14 Phillips Petroleum Company Superabsorbent crosslinked ampholytic ion pair copolymers
US5110887A (en) * 1990-10-31 1992-05-05 Phillips Petroleum Company Superabsorbent crosslinked ampholytic ion pair copolymers
US5075399A (en) * 1990-11-15 1991-12-24 Phillips Petroleum Company Superabsorbent crosslinked ampholytic ion pair copolymers
US5214117A (en) * 1990-12-20 1993-05-25 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5219970A (en) * 1991-02-11 1993-06-15 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5206326A (en) * 1991-03-07 1993-04-27 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5243008A (en) * 1991-04-01 1993-09-07 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5334685A (en) * 1991-04-03 1994-08-02 Phillips Petroleum Company Grafted copolymers highly absorbent to aqueous electrolyte solutions
US5225506A (en) * 1992-04-24 1993-07-06 Phillips Petroleum Company Superabsorbent polymers
US5252690A (en) * 1992-04-24 1993-10-12 Phillips Petroleum Company Superabsorbent polymers
US5270382A (en) * 1992-04-24 1993-12-14 Phillips Petroleum Company Compositions and applications thereof of water-soluble copolymers comprising an ampholytic imidazolium inner salt
US5789349A (en) * 1996-03-13 1998-08-04 M-I Drilling Fluids, L.L.C. Water-based drilling fluids with high temperature fluid loss control additive
DK0950138T3 (da) * 1996-12-31 2002-07-01 Ciba Spec Chem Water Treat Ltd Fremgangsmåder og materialer til fremstilling af papir
DE19905639A1 (de) 1999-02-11 2000-08-17 Clariant Gmbh Wasserlösliche oder wasserquellbare Polymerisate
JP4534178B2 (ja) * 1999-11-19 2010-09-01 昭和電工株式会社 乳化重合方法及びそれにより得られるエマルジョン
US6465397B1 (en) * 2000-02-11 2002-10-15 Clariant Finance (Bvi) Limited Synthetic crosslinked copolymer solutions and direct injection to subterranean oil and gas formations
US6715552B2 (en) * 2002-06-20 2004-04-06 Halliburton Energy Services, Inc. Well cementing methods and compositions
US7098171B2 (en) * 2003-05-13 2006-08-29 Halliburton Energy Services, Inc. Synthetic filtration control polymers for wellbore fluids
US10883037B2 (en) 2013-06-26 2021-01-05 Halliburton Energy Services, Inc. Crosslinked n-vinylpyrrolidone polymers for use in subterranean formations and wells
US10414963B2 (en) 2013-06-26 2019-09-17 Halliburton Energy Services, Inc. High-temperature crosslinked polymer for use in a well
US10017680B2 (en) 2013-06-26 2018-07-10 Halliburton Energy Services, Inc. Crosslinked N-vinylpyrrolidone polymers for use in subterranean formations and wells
CN106749836B (zh) * 2016-11-21 2018-03-20 中国石油大学(北京) 具有抗温抗钙能力的适于降滤失的共聚物及其制备方法和应用及钻井液及其应用
US10858566B2 (en) 2020-04-14 2020-12-08 S.P.C.M. Sa Drilling fluid with improved fluid loss and viscosifying properties
CN114057933B (zh) * 2020-07-30 2023-03-17 中石化石油工程技术服务有限公司 一种无固相抗污染钻井液
CN114085319B (zh) * 2020-08-24 2023-04-07 中石化石油工程技术服务有限公司 一种钻井液用抗高温聚合物流型调节剂及制备方法
CN114437288B (zh) * 2020-10-16 2023-04-11 中国石油化工股份有限公司 一种钻井液用降滤失剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023712A1 (de) * 1979-08-06 1981-02-11 CASSELLA Aktiengesellschaft Wasserlösliches Copolymerisat, Verfahren zu seiner Herstellung und seine Verwendung
EP0024012A1 (de) * 1979-08-04 1981-02-18 Hoechst Aktiengesellschaft Verfahren zur Verringerung des Reibungsverlustes strömender wässriger Flüssigkeiten und Suspensionen durch Zusatz eines Strömungsbeschleunigers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444108C2 (de) * 1974-09-14 1978-01-19 Hoechst Ag Wasserbasische tonspuelung fuer tiefbohrungen und verwendung eines mischpolymerisats fuer solche spuelungen
US4151333A (en) * 1977-08-01 1979-04-24 Air Products And Chemicals, Inc. Cell regulators in structural foams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024012A1 (de) * 1979-08-04 1981-02-18 Hoechst Aktiengesellschaft Verfahren zur Verringerung des Reibungsverlustes strömender wässriger Flüssigkeiten und Suspensionen durch Zusatz eines Strömungsbeschleunigers
EP0023712A1 (de) * 1979-08-06 1981-02-11 CASSELLA Aktiengesellschaft Wasserlösliches Copolymerisat, Verfahren zu seiner Herstellung und seine Verwendung

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0115836A2 (de) * 1983-01-28 1984-08-15 Phillips Petroleum Company Polymere verwendbar in der Rückgewinnung und Verarbeitung von Bodenschätzen
EP0115836A3 (en) * 1983-01-28 1985-01-09 Phillips Petroleum Company Polymeres useful in the recovery and processing of natural resources
US4644020A (en) * 1983-01-28 1987-02-17 Phillips Petroleum Company Production of high molecular weight vinyl lactam polymers and copolymers
TR22394A (tr) * 1983-01-28 1987-03-23 Phillips Petroleum Co Dogal kaynaklarin istihsalinde ve islenmesinde faydah polimerler
US4951921A (en) * 1983-01-28 1990-08-28 Phillips Petroleum Company Polymers useful in the recovery and processing of natural resources
US5639925A (en) * 1992-11-20 1997-06-17 Colorado School Of Mines Additives and method for controlling clathrate hydrates in fluid systems
US5880319A (en) * 1992-11-20 1999-03-09 Colorado School Of Mines Method for controlling clathrate hydrates in fluid systems
WO1995032356A1 (en) * 1994-05-25 1995-11-30 Colorado School Of Mines Additives and method for controlling clathrate hydrates in fluid systems
GB2307244A (en) * 1994-05-25 1997-05-21 Colorado School Of Mines Additives and method for controlling clathrate hydrates in fluid systems
GB2307244B (en) * 1994-05-25 1998-12-30 Colorado School Of Mines Additives and method for controlling clathrate hydrates in fluid systems
US6380137B1 (en) 1999-03-03 2002-04-30 Clariant Gmbh Copolymers and their use as drilling aids
WO2007133415A1 (en) * 2006-05-02 2007-11-22 Celanese International Corporation Polyvinyl alcohol films with improved resistance to oxidizing chemicals

Also Published As

Publication number Publication date
FI832997A0 (fi) 1983-08-22
JPS58502213A (ja) 1983-12-22
FI832997A (fi) 1983-08-22
IT1201961B (it) 1989-02-02
EP0111486A1 (de) 1984-06-27
US4471097A (en) 1984-09-11
ZA83134B (en) 1983-12-28
DK411183A (da) 1983-09-09
IT8319055A0 (it) 1983-01-11
AU1019483A (en) 1983-07-28
BR8208082A (pt) 1984-05-08
DK411183D0 (da) 1983-09-09
NO833078L (no) 1983-08-26

Similar Documents

Publication Publication Date Title
WO1983002449A1 (en) Aqua-soluble copolymers, preparation and utilization thereof
EP0023712B1 (de) Wasserlösliches Copolymerisat, Verfahren zu seiner Herstellung und seine Verwendung
DE19909231C2 (de) Wasserlösliche Copolymere auf AMPS-Basis und ihre Verwendung als Bohrhilfsmittel
EP0173033B1 (de) Verfahren zur Herstellung von Copolymeren
EP0483638B1 (de) Wasserlösliche Mischpolymerisate und deren Verwendung
DE3027422A1 (de) Hochmolekulare wasserloesliche copolymerisate, ihre herstellung und verwendung
DE1044409B (de) Verfahren zur Herstellung von wasserempfindlichen Partialestern und Partialamiden eines Polymerisats
EP0003235A1 (de) Wasserlösliche Copolymerisate auf der Basis von hydrophilen äthylenisch ungesättigten Monomeren;Verfahren zur Herstellung dieser Copolymerisate und ihre Verwendung
DE1269337B (de) Stabile waessrige Dispersionen selbstvernetzender Mischpolymerisate
DE3248019A1 (de) Wasserloesliche copolymerisate, ihre herstellung und ihre verwendung
EP0123297B1 (de) Vernetzte hydrophile Copolymerisate, ihre Herstellung und Verwendung
EP0113438B1 (de) Wasserlösliche Copolymerisate, ihre Herstellung und ihre Verwendung
DD148213A5 (de) Verfahren zur herstellung von alpha-beta-ungesaettigten n-substituierten carbonsaeureamiden
EP0025979B1 (de) Wässrige Lösung oder Dispersion eines Styrol/Maleinsäureanhydrid-Copolymers, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0079071A1 (de) Wasserlösliches Copolymerisat, seine Herstellung und Verwendung
EP0065136B1 (de) Oberflächenaktive Azoverbindungen und ihre Verwendung
DE3338431A1 (de) Wasserloesliche mischpolymerisate und deren verwendung als dispergatoren fuer feststoffe
EP2267038B1 (de) Copolymerisierbare Tenside
DE2534792A1 (de) Vernetzte aethylen-maleinsaeureanhydrid-copolymerisate und verfahren zu ihrer herstellung
DE4441940B4 (de) Lactamring enthaltendes Polymer
DE3245541A1 (de) Wasserloesliche copolymerisate, ihre herstellung und ihre verwendung
DE3326391A1 (de) Phosphonsaeuregruppen enthaltende polymerisate, ihre herstellung und ihre verwendung
WO2010063401A1 (de) Copolymerisierbare (meth)acrylsäureester
EP2267039B1 (de) Copolymerisierbare Tenside
DE1182826B (de) Verfahren zur Herstellung von kationischen Polymerisaten

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR DK FI JP NO SU

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB NL SE

WWE Wipo information: entry into national phase

Ref document number: 832997

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 1983900030

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1983900030

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1983900030

Country of ref document: EP