WO1982000362A1 - Moisture-sensitive element,moisture-sensitive material and manufacturing method for same - Google Patents

Moisture-sensitive element,moisture-sensitive material and manufacturing method for same Download PDF

Info

Publication number
WO1982000362A1
WO1982000362A1 PCT/JP1981/000166 JP8100166W WO8200362A1 WO 1982000362 A1 WO1982000362 A1 WO 1982000362A1 JP 8100166 W JP8100166 W JP 8100166W WO 8200362 A1 WO8200362 A1 WO 8200362A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
layer
sensitive element
sensitive
latex
Prior art date
Application number
PCT/JP1981/000166
Other languages
English (en)
French (fr)
Inventor
Ltd Hitachi
Original Assignee
Kinjo N
Tsuchitani S
Sugawara T
Ohara S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9881580A external-priority patent/JPS5723848A/ja
Priority claimed from JP55172054A external-priority patent/JPS5796246A/ja
Application filed by Kinjo N, Tsuchitani S, Sugawara T, Ohara S filed Critical Kinjo N
Priority to DE8181902028T priority Critical patent/DE3174710D1/de
Publication of WO1982000362A1 publication Critical patent/WO1982000362A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Definitions

  • Humidity-sensitive element Humidity-sensitive element, moisture-sensitive material and method for producing them
  • the present invention relates to a moisture-sensitive element, a moisture-sensitive material, and a method for producing the same, and more particularly to a moisture-sensitive material whose electric resistance value changes according to the amount of moisture in the atmosphere (hereinafter, such a property of the moisture-sensitive material is referred to as a moisture-sensitive material)
  • the present invention relates to a moisture-sensitive element, a moisture-sensitive material, and a method for producing the same using moisture-sensitive properties.
  • the electrical measurement method is advantageous over the ⁇ ⁇ measurement method in that the structure of the measurement device can be reduced in size, the sensitivity of the measurement device is high, and humidity can be easily converted into an electric signal.
  • an electric resistance type moisture sensitive element utilizing the moisture sensitive property of the moisture sensitive material is used. This moisture sensitive element includes an insulating substrate, a pair of electrodes arranged on the insulating substrate, and a moisture sensitive material layer covering the electrodes.
  • Electrolyte salts such as lithium chloride (LiC)
  • the moisture sensitivity is better than the above three types, it absorbs a large amount and swells and contracts depending on the moisture content of the atmosphere, and the adsorbent layer is easily separated from the substrate or electrode.
  • An object of the present invention is to provide a moisture-sensitive element that has a direct relationship between relative humidity and electrical resistance and has a small hysteresis, and a method of manufacturing the same.
  • Another object of the present invention is to provide a highly reliable moisture-sensitive element that can easily convert the output humidity into an electric signal and a method for manufacturing the same.
  • Another object of the present invention is to provide a relationship between relative humidity and electric resistance.
  • Another object of the present invention is to provide a moisture-sensitive element which has a small hysteresis and can be made compact, and a method for manufacturing the same.
  • Another object of the present invention is that the relationship between the relative humidity and the electric resistance value is almost linear. However, the hysteresis is small, and
  • the moisture-sensitive material of the present invention comprises a water-based nucleus (referred to as a water-free nucleus) and a water-based nucleus.
  • the collected particles consisting of are collected and recommended.
  • the moisture-sensitive element of the present invention has a structure in which the skin covers a pair of electrodes provided on a plate.
  • the moisture sensitive element of the present invention is made of silicon provided with an insulating layer.
  • the first method is:
  • skin skin It is also characterized by its ability to obtain a skin that is made by assembling it (hereinafter referred to as “skin skin”).
  • the particles constituting the moisture-sensitive material of the present invention are composed of a core and a surface layer.
  • the shape of the core is particularly limited. Therefore spherical
  • the shape is not limited to a bar and a plate. However, since it is mainly used as a film on a green substrate,
  • the average particle diameter is preferably about 100 m or less.
  • the material that forms the core and the material that forms the surface layer are those whose core is hydrophobic,
  • the layers may use the same compound.
  • Part is assembled at the center to form a nucleus, ionic or hydrophilic
  • a copolymer of three or more monomers It may be a copolymer of three or more monomers.
  • the surface layer is more ionizable or hydrophilic than the core.
  • Type A particles contain a small amount of ionizable groups or
  • Emulsified weight in aqueous solution may contain a hydrophilic group. Emulsified weight in aqueous solution
  • the surface of the synthesized latex particles is naturally hydrophilic, which is advantageous in that the moisture-sensitive material of the present invention can be easily obtained.
  • B-type particles examples include those whose core is a water-based particle]) and those in which an ionizable or hydrophilic polymer compound is graphitized on the surface to form a surface layer ( Hereinafter, this form is referred to as type B.)
  • type B an ionizable or hydrophilic polymer compound is graphitized on the surface to form a surface layer
  • B-type particles The advantage of B-type particles is that their shape is stably maintained even when left in an atmosphere of high temperature and high humidity for a long time, and therefore the humidity-sensitive properties of the moisture-sensitive material are stably maintained.
  • hydrophobic moieties that form the core of the particles are predominantly nonionic vinyl monomer polymers. Powerful Bull Monomer
  • It may be a copolymer of two or more kinds of vinyl monomers, and is not limited to a vinyl polymer.
  • a condensation polymer such as a polyester, a polyamide, a polyurethane, or another addition polymer, Alternatively, it may be a mixture of various hydrophobic compounds.
  • the surface layer may be made of a compound having at least one of ionic and hydrophilic properties.
  • the ionized state can be positive or negative.
  • amphoteric latex particles may be used.
  • the anionic group includes an anionic group and a clickable group.
  • anionic groups include a group selected from a sulfonate group, a carboxylate group, and a phosphate group, or a salt thereof.
  • styrene sulfonate and Acrynorea midometinolev examples thereof include rononsulfonic acid, acrylic acid, methacrylic acid, and salts thereof.
  • amides and their salts quaternary ammonium salts, pyridinium salts, phosphonium salts, quaternary arsonium salts, Similarly, there may be mentioned quaternary stibonium salts, and monomers having a group selected from the group consisting of sulfonium salts and sodium salts. 9] Specifically, 2-methacrylyl salt, methyl trimethylammonium salt, bininole benzoinole trimethylammonium salt, trimethyl vinylamine salt, Metal salt Shetyl tri-n-butylammonium salt, BULFENE
  • the surface layer is composed mainly of a polymer or copolymer of these ionic monomers.
  • the nitrogen on the surface of the latex particles obtained by copolymerizing a hydrophobic monomer with a tertiary amine such as 2-dimethylaminomethacrylate is also effective.
  • hydrophilic compound examples include high molecular compounds such as polyvinyl alcohol and polyacrylamide.
  • the methods for producing the moisture-sensitive material of the present invention include the above-mentioned methods A and B1) .
  • a moisture-sensitive material comprising the above-mentioned A-type particles aggregated is obtained.
  • the B method the B-type particles are collected.
  • Method A is used for dialysis of impurities (for example, ionic impurities that affect the electrical conductivity) that have a significant effect on the moisture-sensitive properties of moisture-sensitive materials, and filtration through large-sized filters. And has the advantage that it can be easily removed.
  • impurities for example, ionic impurities that affect the electrical conductivity
  • Method B has the advantage that when hydrophobic latex particles are synthesized as nuclei, impurities can be removed after nucleation and after surface layer formation in the same manner as method A.
  • latex particles are usually synthesized by emulsion polymerization or emulsifier-free emulsion polymerization.
  • the particles may be subjected to a crosslinking treatment.
  • the particle structure is long-lasting. Therefore, for example, it is possible to prevent a phenomenon in which the resistance value of the moisture-sensitive material increases due to the fact that the ionizable group and the hydrophobic group are put into each other in each particle.
  • the crosslinking treatment of the latex particles is performed as follows. First, when synthesizing addition-polymerized latex particles, a polymer containing at least two polymerizable double bonds in the same molecule, such as divinylinolebenzene or ethylene glycol methacrylate. Crosslinking is achieved by copolymerizing flax. Alternatively, you can use Dali Singh Metacrylate,
  • the ionizing or hydrophilic polymer compound is graphitized on hydrophobic particles composed of a hydrophobic polymer compound as follows.
  • the hydrophobic particles are dispersed in a polar solvent so that the ionic or hydrophilic polymer compound is dissolved or the monomer of the ionic or hydrophilic polymer compound is dissolved.
  • a solvent include water and alcohol.
  • hydroxyl groups and isopropyl groups present on the surface of the hydrophobic particles are converted with a second ammonium nitrate ammonium nitrate to generate active radicals on the surface of the particles.
  • an ionic or hydrophilic monomer is dissolved in this solvent, and the active radical is used as a graft point to perform graphitization.
  • irradiation with r-rays, electron beams, ultraviolet rays, etc. is also effective in generating the graph points.
  • the moisture-sensitive material of the present invention obtained by each of the above methods has a relationship between the relative humidity and the electric resistance as shown in the experimental results described later. (Has a moisture-sensitive characteristic that is approximately linear with ID.
  • FIG. 1 is a plan view of a moisture-sensitive element showing one embodiment of the present invention
  • FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. 3 is another sectional view of the present invention.
  • FIG. 4 is a plan view of the moisture-sensitive element of the embodiment.
  • FIGS. 5 to 13 show an embodiment of the present invention, respectively.
  • FIG. 5 to FIG. 7 FIG. 5 to FIG.
  • Figures 9, 10 and 14 show humidity sensitivity to relative humidity.
  • the figure is a response characteristic diagram of the humidity sensing element.
  • the top surface of the insulating substrate 1A is square
  • Type electrodes 2 A and 3 A are arranged. Each electrode 2 A,
  • connection terminals 4 A and 5 A One end of 3 A is formed on connection terminals 4 A and 5 A, and lead
  • Lines 6 and 7 are connected. Insulating substrate 1 A, electrode 2 A, and
  • step 8A is shaped similarly to step 14 of the embodiment described below.
  • the insulating substrate 1 A and the electrodes 2 A and 3 A are respectively
  • the first insulating layer 1 1 of oxidized Li co down (S i 0 2) is formed thereon ing.
  • the first insulating layer 11 has a function as a cushioning material in addition to the function of electrical insulation. Silicon nitride on top of first insulating layer 11
  • a second insulating layer 12 of (Si 3 N 4 ) is formed.
  • the insulating substrate 1 includes these two insulating layers.
  • a pair of narrow electrodes 2, 3 with a narrow gap between boricons into which ionic ions or holionic ions are injected are arranged.
  • the ends 4, 5 of these electrodes 2, 3 are formed as connection terminals with titanium, palladium, and gold.
  • a film of a moisture-sensitive material, that is, a moisture-sensitive layer 8 is formed on this o
  • Step 1 Clean the silicon semiconductor wafer and clean the surface.
  • Step 2 A first insulating layer of silicon oxide having a thickness of several hundred k is formed on the wafer surface by thermal oxidation.
  • Step 3 On the first insulating layer, a chemical vapor deposition (hereinafter referred to as CVD) method is used to form a second insulating layer of silicon nitride having a thickness of several hundred A.
  • Step 4 Form a polysilicon layer with a thickness of several microns on the second insulating layer by CVD.
  • CVD chemical vapor deposition
  • Step 5 A boron ion or a line ion is implanted into the polysilicon layer to form an electrode with a reduced electric resistance value. Ion implantation can also be performed by a diffusion method instead of ion implantation.
  • Step 6 Photo-etching]? The unnecessary portions of the polysilicon layer are removed to form a pair of rectangular polysilicon electrodes 2 and 3 with a small space between them. .
  • Step 7 By photoetching] ?, the silicon nitride at the cut-off portion is removed.
  • the polysilicon and the silicon nitride are processed by etching] 3, but other etching may be used.
  • Step 8 Titanium is deposited on the end of the electrode.
  • Step 9 Palladium is deposited on the deposited titanium O
  • Step 10 Gold is deposited on the deposited palladium. Steps 8, 9, and 10 form connection terminals 4 and 5 whose surfaces are gold.
  • Step 1 Multiple chips are cut from the wafer! ) Separated.
  • Step 12 Each chip is mounted on the package.
  • Step 13 Lead wires are attached to the connection terminals 4 and 5.
  • Step 14 The moisture-sensitive material is applied, and the moisture-sensitive layer 8 is formed.
  • Silicon nitride is a good electrical insulator and also has good water resistance, so it is suitable for moisture sensitive devices.
  • silicon oxide is required when making one chip including the measurement circuit part, but it can be removed when only the sensor part, that is, only the moisture sensitive element is used.
  • Electrode connection terminals 4 and 5 are titanium, palladium and gold deposition layers, but the measurement circuit is formed on one chip, and the polysilicon electrode is extended to the measurement circuit. In this case, terminals 4 and 5 are not required.
  • the distance between a pair of polysilicon electrodes can be reduced to about 10 microns, and the size of the entire device can be reduced to 2 ⁇ or less. This is about two orders of magnitude smaller than conventional devices. Nevertheless, the electrical resistance is almost the same as before: ⁇ .
  • Fig. 14 shows a measurement example of the relative humidity vs. electric resistance characteristics when a sulfonated polystyrene resin is used as a moisture-sensitive layer. Shima
  • the electrodes and insulating layers were formed of water-resistant polysilicon and silicon nitride, respectively, and the connection terminals were formed of corrosion-resistant titanium, palladium, and gold. There is an effect that a long-term stable humidity sensor can be obtained. Further, since it on one chip, including the semiconductor of the measurement circuit, the effect that would have a less susceptible to electrical noise foreign also (using silicon substrates for) (Step 1 4 of the moisture-sensitive material coating Is applied in the form of a moisture-sensitive material dispersion.
  • the moisture-sensitive material dispersion is a latex in which A-type or B-type particles are dispersed.
  • latex particle dispersion after particles are synthesized by the A method The method of applying this latex is selected according to the viscosity, substrate area, production volume, etc., such as spraying, brushing, dipping, spinning, etc.
  • the substrate is dried.Drying causes adhesion of the latex particles to each other.]?
  • the film is broken.Drying is performed by air drying using dry air or nitrogen.
  • the particles themselves and the particles Made the film 8 have been Yabu ⁇ .
  • the humidity-sensitive element using the same is hard to discard. For example, like dust,
  • the film Since the core of each particle constituting the moisture-sensitive material has little hygroscopicity, the film does not swell or shrink, and it is less difficult to do so from the base. Therefore, it is possible to extend the life of the moisture sensitive element.
  • This latex was dialyzed and purified for 2 months using a cellophane dialysis tube.
  • the purified latex was used for the 20 jobs shown in Figs. 1 and 2> ⁇
  • the substrate was applied to a substrate exposed to 20 dew (hereinafter referred to as substrate I) and dried by ventilation to obtain a moisture-sensitive element ⁇ 1. 8 A film weighs about 3 mg
  • the humidity-sensitive characteristic of the humidity-sensitive element ⁇ 1 is such that the relative humidity and the electric resistance value have a substantially linear relationship in both the moisture absorption tendency and the dehumidification tendency, and furthermore, the hysteresis. Sex is small.
  • Example 2 The latex synthesized in Example 1 was treated with a cation exchange resin to obtain an acid type latex.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element 2.
  • the weight of the coating was about 3 mg .
  • the humidity-sensitive characteristics of the humidity-sensitive element ⁇ 2 indicate that the relative humidity and the electrical resistance are almost linear in both the moisture absorption tendency and the dehumidification tendency! ) And the hysteresis is small.
  • Example 2 After evaporating water from the latex obtained in Example 2, the residue was dissolved in dimethyl acetate. As a result, the structure of the latex particles was broken and the polymer was uniformly dissolved in the solvent.
  • This homogeneous solution was applied to the substrate I, and the weight of the coating 8 A was about 3 mg.
  • the coating was performed so as to form a coating, and then dried at 100 ° C. for 5 hours to obtain a moisture-sensitive element 3.
  • a moisture-sensitive element 3 As shown by the broken line iii in FIG. 5, the relationship between the relative humidity and the electric resistance value of the humidity-sensitive element 3 does not become a straight line as shown by the broken line iii in FIG. Moreover, the hysteresis is clearly higher than those of the humidity sensitive elements 1 and 2], and the electric resistance is also large.
  • the purified latex was applied to a 5 ⁇ X5 thigh base (hereinafter referred to as "Base II") shown in Figs. 3 and 4 and dried by ventilation to obtain a moisture-sensitive element 4.
  • the weight of the coating 8 was about 0.2 mg.
  • the structure of latex particles was almost destroyed by leaving the moisture-sensitive element # 4 obtained in Example 3 under a saturated mixed vapor pressure of 90 C of dimethyl acetate and water for one month. By this treatment, a moisture-sensitive element 5 was obtained.
  • the relationship between the relative humidity and the electric resistance value of the moisture-sensitive element 5 does not become substantially a straight line as shown by the broken line V in FIG. Moreover, the hysteresis is clearly larger than that of the moisture-sensitive element ⁇ .4]), and the electric resistance is also large.
  • the moisture sensitive material of the present invention is the same as the moisture sensitive material of the present invention.
  • Electric resistance value is lower than that of moisture sensitive material made of homogeneous polymerized material. This is because, in the case of a moisture-sensitive material composed of the homogeneous polymer, the moisture absorption and dissociation of the ionic group are suppressed by the effect of the water-phobic group, and the air resistance value increases.
  • the base material is swelled and shrunk during moisture absorption / dehumidification.
  • the moisture-sensitive material separates from the water.
  • Solvent consisting of ethanol 250 c c and water 250 c c
  • OMPI Hydrophobic methyl methacrylate 0.1 mol as hydrophobic monomer, sodium acrylate 0.04 mol as anionic monomer also used as emulsifier
  • the moles and 0.001 mole of sodium hydrogen sulfite as a polymerization initiator were added, the liquid temperature was adjusted to 60 ° C., and an emulsification copolymerization reaction was carried out under a nitrogen atmosphere at high speed.
  • a latex in which A-type latex particles were dispersed was obtained. Each particle had a nucleus composed of ⁇ -hydroxylmethacrylate and a surface layer composed of sodium acrylate.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element 6 having a film A weight of about 3 mg. This moisture sensitivity is shown by the solid line vi in FIG.
  • Example 4 0.06 mol of styrene as hydrophobic monomer and 0.04 mol of butadiene in 500 cc of water, 9 as water-philic monomer also used as emulsifier 0.005 mol of sodium permeate, 0.0001 mol of sodium persulfate as a polymerization initiator, and 0.0000 mol of sodium carbonate were added, and otherwise the same as in Example 4.
  • An emulsion copolymerization reaction was carried out under the same conditions, and the obtained latex was further dialyzed under the same conditions as in Example 4 and purified.
  • This latex was applied to the substrate II, and the other conditions were the same as in Example 4 to obtain a moisture-sensitive element 8.
  • the humidity sensitivity is shown by the solid line viii in Fig. 7.
  • This latex was applied to the substrate II, and the other conditions were the same as in Example 4 to obtain a moisture-sensitive element 10.
  • the humidity sensitivity is shown by the solid line X in FIG. .
  • Emulsion copolymerization was carried out under the same conditions as in Example 4 except for adding 0.01 mol, and the obtained latex was further dialyzed and purified under the same conditions as in Example 4.
  • This latex was applied to the substrate II, and the other conditions were the same as in Example 4 to obtain a moisture-sensitive element ⁇ 12.
  • the humidity sensitivity is shown by the solid line xii in FIG.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation, and the weight of the film 8A was reduced to about
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried with ventilation to obtain a moisture-sensitive element 14 having a film thickness of 8 mg and a weight of about 5 mg. 1 00166
  • the humidity sensor ⁇ 14 has a substantially constant electric resistance even when left in a high-temperature, high-humidity atmosphere for a long time, as compared with the humidity sensor y3 ⁇ 4l3 obtained by the method A.
  • the latex thus obtained was used as a graft polymerization initiator in an amount of 0.01 mol of cerium nitrate, and a cationic monomer capable of being graphitized.
  • the reaction is carried out with 0.1 mol of methacryloxymethylene tri-ammonium bromide, a liquid temperature of 501: and a high-speed stirring for 6 hours in a nitrogen atmosphere.
  • a latex in which B-type latex particles were dispersed was obtained.
  • the surface layer of this latex particle was formed of a cationic polymer.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element ⁇ 15 having a film 8A weight of about 5 mg.
  • Fig. 9 shows the humidity-sensitive characteristics of this moisture-sensitive element after it was left in a high-temperature, high-humidity atmosphere at 50 C and a relative humidity of 90% for 50 hours.
  • solid line xvi is the moisture sensitive element before leaving
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element ⁇ 16 having a film 8A weight of about 5 mg.
  • Example 15 (Method B)
  • styrene as a hydrophobic monomer in 500 cc of water, 0.01 mol of dibutylbenzene as a crosslinking agent, and 0 mol of P-isopropylstyrene as a monomer to give a graft point.
  • 1 mol, and 0.002 mol of sodium hydrogen sulfite and 0.001 mol of potassium persulfate as a polymerization initiator adjust the temperature of the liquid to 50 C, and place it in a nitrogen atmosphere for 10 hours. The copolymerization reaction was performed while stirring at high speed.
  • the latex obtained had copolymer latex particles of styrene and p-isopropylstyrene crosslinked with dibutylbenzene dispersed therein.
  • This latex was further heated to 80 ° C., and then oxygen was blown therein for 10 hours to give a hydroperoxide group to an isopropyl group on the surface of the latex particles.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation, and the weight of the film 8A was reduced to about
  • solid line ⁇ in FIG. 9 shows the humidity-sensitive characteristics after the moisture-sensitive element ⁇ 17 was left in a high-temperature and high-humidity atmosphere at 50 C and a relative humidity of 90% for 20 hours.
  • solid line XX is moisture sensitive element before leaving
  • the present moisture sensitive element 17 is also very stable even when left in a high-humidity / high-humidity atmosphere.
  • OMPI 0 A latex with dispersed particles was obtained. Each particle has a nucleus of methyl methacrylate and contains a trimethyl-trimethyl group, which is a cationic group. 2 — A methacryloxyshethyl trimethyl-dimethyl group has a surface. A layer was formed.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element ⁇ 18 having a film 8A weight of about 5 mg.
  • the humidity sensitivity of ⁇ 18 is shown by the solid line xxi in FIG.
  • Example 16 The same aqueous monomer, cationic monomer and polymerization initiator as in Example 16 were added to 300 cc of methanol in the same amounts as in Example 16; A solution copolymerization reaction was carried out in a methanol solvent in the same manner as described above. As a result, a homogeneous solution of cation polymer electrolyte was obtained.
  • the homogeneous solution was applied to the substrate I so that the weight of the film 8 A was 5 mg and dried by ventilation to obtain a moisture-sensitive element 19.
  • the relationship between the relative humidity and the resistance directly with respect to the humidity-sensitive characteristics and the dehumidification characteristics of the humidity-sensitive element 19 is not substantially linear, as indicated by the broken line xxii.
  • the electric resistance value is about one digit or more higher than the humidity sensitive element ⁇ 18.
  • Emulsion copolymerization is performed while stirring at high speed for 10 hours under nitrogen atmosphere.
  • the layer contains sulfonate groups, which are ionic groups.
  • FIG. 11 shows the response characteristics of the moisture-sensitive element 20.
  • FIG. 11 shows the response characteristics of the moisture-sensitive element 20.
  • the solid line xxiii changes the relative humidity from 40% to 60%
  • Example 17 Each type II latex particle dispersed in the resulting latex is made of styrene.
  • (31) is the nucleus, and the surface layer contains a trimethylammonium group, which is a cationic group.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried with ventilation to obtain a moisture-sensitive element ⁇ 21 having a film 8A weight of about 5 mg.
  • the response characteristics of the moisture sensitivity characteristic 21 are shown in FIG. 11 and FIG.
  • the solid line XXV shows the response characteristics in the moisture absorption direction when the relative humidity was changed from 40% to 60%
  • the solid line XXVI shows the response when the relative humidity was changed from 60% to 40%.
  • the response characteristics in the dehumidification direction are shown.
  • the moisture-sensitive element ⁇ 21 took only about 3 minutes in the moisture absorption direction and about 5 minutes in the dehumidification direction before the electrical resistance reached the equilibrium value, Very fast speed.
  • the equilibrium value of the electrical resistance after dehumidification is the same as the initial value before moisture absorption], which indicates that the moisture sensitive element ⁇ 21 has no hysteresis.
  • the dialysis-purified latex prepared in Example 2 was applied to the substrate I so that the weight of the film 8 A was about 1 mg to obtain a moisture-sensitive element ⁇ 22.
  • FIG. 12 shows the response characteristics of the moisture sensitivity characteristic ⁇ 22.
  • the solid line XXVjj shows the response characteristics in the moisture absorption direction when the relative humidity was changed from 40% to 60%
  • the solid line XXZiii shows the relative humidity. The response characteristics when changing from 60% to 40% are shown.
  • the amount of latex applied is small and the electric resistance is low.
  • the response speed is about 1.5 minutes in the direction of moisture absorption and about 2.5 minutes in the direction.
  • Emulsion copolymerization reaction was carried out by adding azobisisobutylamidine hydrochloride (mole) as a starting material, and the polymerization was carried out in the same manner as in the other polymerization examples 17.
  • the resulting latte was obtained as follows.
  • the cross-linked 15-bil viridin has a nucleus and a pyridinium group which is a cation group in the 3 ⁇ 4j layer.
  • This latex was analyzed and purified in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element 23 weighing about 5 mg.
  • This latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried by ventilation to obtain a moisture-sensitive element 24 having a film 8A weight of about 5 mg.
  • the moisture-sensitive characteristics of the moisture-sensitive element 24 are shown by the solid line XXX in FIG.
  • the latex was purified by dialysis in the same manner as in Example 1, applied to the substrate I, and dried with ventilation to obtain a moisture-sensitive element ⁇ 25 having a film 8A weight of about 5 mg .
  • the moisture-sensitive characteristics of the moisture-sensitive element 25 are shown by the solid line ⁇ ⁇ in FIG.
  • the humidity sensor 25 has a lower electric resistance than the humidity sensors 23 and ⁇ 24.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

明 細 書
感湿素子, 感湿材及びそれらの製造方法
技術分野
本発明は、 感湿素子, 感湿材及びそれらの製造方法に 係 、 特に雰囲気中の水分の量に応じて電気抵抗値が変 化する感湿材 (以下感湿材のこのよ う 性質を感湿特性 と称する ) を利用した感湿素子, 感湿材及びそれらの製 造方法に関する。
背景技術
相対湿度の測定法には機械的測定法と電気式測定法と がある。 電気式測定法は檨梂式測定法に比べて、 測定装 置の構造が小型化できる点、 測定装置の感応速度が速い 点、 及び湿度を電気的信号に変換し易い点で有利である。 電気式測定法は、 感湿材の感湿特性を利用した、 電気抵 抗式の感湿素子が使用される。 この感湿素子は、 絕縁基 板と、 この絶縁基板上に配した一対の電極と、 更にこの 電極を覆う感湿材層とから構成されている。
このよ うる電気抵抗式の感湿素子において使用される 従来の感湿材は次の通] 3である。
(1) セラ ミ ツクス材料
(2) 塩化リ チウム (L i C ) 等の電解質塩
(3) 導電性粉末を分散させた吸湿性樹脂
(4) 親'水性高分子化合物或いは高分子電解質
OMPI (5) 琼水性重合侔の分子中にカチオン基を導入して親水 性を与えたもの
これらの感湿材においては夫々次のよ う 欠点があつ た。
(1)について : セラ ミ ックスに対する水分の吸着が一部 分不可逆的る化学吸着であ 、 従ってこの感湿材を^い た感湿素子はヒ ステリシス性が大き く、 応答性が惡ぃ。
しかも高湿度雰囲気中に長時間放置すると形狖変化を生 じ易い。
(2)について : 高湿度雰囲気中では潮解して希釈され流 出してしま う。 従ってこの感湿材を用いた感湿素子は寿 命が極めて短かい。 また、 一個の感湿素子で計測できる 湿度領域が狭い。
(3)について : 低湿度雰囲気中では感湿特性を示さ ¾ C また導電性粉末の分散度合を均一にすることは難しく 、 この為、 感湿素子は製作歩留 が極めて惡く、 信頼性も 乏 しい。
(4)について : 上記 3種よ も感湿特性が良好であるが、 吸湿量が大きいので雰囲気の水分量に応じて膨潤、 収縮 が生じ、 吸着材層は基板や電極から剝離し易い。
(5)について : 上記 4種の持つ問題点を解消する為に開 発されたもので特開昭 5 4 - 8 0 1 9 1 号公報に記載され ている。 感湿素子が検出した相対湿度は、 電気抵抗直の
O PI 対数との相関関係から電気的信号に変換されるので、 こ の関係は直線と る ことが望ま しい。 しかし、 上記公開 公報に記載にされている感湿材を用いた感湿素子は、 そ の関係が直綴に ら いし、 ヒ ステ リ シス性も大である c そのため電気信号への変換回路が複雑と ¾ J?、 測定結杲 と して示された相対湿度と真の相対湿度との誤差が大き い。
又、 電極間の電気抵抗の低減が望まれている。 この電 気抵抗が低いと、 外部からの雑音の影響が受け難く、 精 度の良 測定が期待できるからである。
発明の開示
本発明の目的の 1つは、 相対湿度と電気抵抗 ί直との関 係がほ 直濂と 、 しかも ヒ ステ リ シスが小さい感湿 素子とその製造方法を提供することにある。
本発明の他の目的は、 瘐出湿度の電気的信号への変換 が簡単にでき信頼性の高い感湿素子とその製造方法を提 供することにある。
本発明の他の目的は、 相対湿度と電気抵抗値との関係
力 直線と ¾ ]? 、 ヒ ステ リ シスが小さ く 、 且つコ ンパ ク ト化が可能 感湿素子及びその製造方法を提供するこ とにある。
本発明の他の目的は、 相対湿度と電気抵抗値との関係 がほ 直線とる ]? 、 ヒ ステ リ シスが小さ く、 感湿素子の
_O FI 感湿材に適した材料とその製さするこる。
本発明の感湿材は、 琼水性 核 ( に竦 水性の核という。 ) と、 これ のであつィ
オン性基或いは親水铨基を有 ·]物 (以オン
5 性基を有する "を単に " ィ ォ:と、 ま水性
基を有する "を単に "親水性 <3う。 )層と
から成る徴粒子が集合して成 荐徵とる。
本発明の感湿素子は、 上記 皮嫫が板上 に設けられた一対の電極を覆 構造をして
10 ¾る。
本発明の感湿素子の絶緣基ネま しく気的 .絶緣層が設けられたシ リ コ ン ら成る
本発明の感湿材の製法と し-方法がある と確認された。 第 1 の方法は:;単 るを含
15 む。 以下同じ。 ) 中にてラテ:子を乳合等
にて合成した後に該水溶液を て、 表部よ
もィオン性或いは親水性で;ックス集合 してつく られる皮嫫 (以下、 ス皮虞) を 得ることを特徵と している (■!の方 とい
20 う ) 。 また第 2の方法は琼水 ヒ合物 した
後、 各該粒子の表面にイオン i親水性化合 物をグラ フ ト化せしめること: してい 下、 この方法を B法とい う ) 。
ΟΜ?Ι― 本発明の感湿材を構成する粒子は、 核と表面層とから
形成される。 核の形状は、 特に限定しるい。 従って球状
に限らず棒状、 板状であってもさ しつかえない。 ただし、 主と して絶緑基板の皮膜と して使用されるので電極間を
該粒子が密に満たすことが望ま しく、 このことから実際
には平均粒子径は約 1 0 0 m以下が好ま しい。
核を成す物質及び表面層を成す物質は、 核が疎水性、
表面層がィオ ン性或いは親水性を示すものであれば足
る。 従って高分子化合物である必要も ¾くまた核と表面
層とが同一化合物を利用するものであってもかまわるい。
高分子化合物の場合には、 線状高分子化合物であっても
僑かけ高分子化合物であってもかまわない。
粒子の一形態と して、 水溶液中で合成したラテックス
粒子の如く、 各粒子を構成する化合物と しては、 疎水性
の部分が中央に集合して核を成し、 イ オ ン性或いは親水
性の部分が外側に表われて表面層を成すものを挙げるこ
とができる (以下、 この形態を A型という。 ) 。 また、
3種以上のモノマの共重合体であってもかまわるい。 A
型の粒子は表面層と核との境界が必ずしも明確では ¾い
が、 核に比べて表面層がイ オン性或いは親水性を示すこ
とは確かである。 多くは表面層にイ オ ンが均一に'分布し
ている。 A型の粒子は核中に若干量のイ オ ン性基或いは
親水性基を含んでいてもかまわ ¾い。 水溶液中で乳化重
>, Y/IPO ' 合によ ]?合成したラ テ ン クス粒子は表面が自然に親水性 と ¾るから、 本発明の感湿材が簡単に得られるとい う利 点か る。
粒子の他の形態と して、 核が琼水性の粒子であ ])、 そ の表面にィ オン性或いは親水性の高分子化合物がグラフ ト化して表面層を成すものを挙げることができる (以下、 この形態を B型とい う。 ) 。 B型の粒子は高温高湿の雰 囲気下に長時間放置してもその形状が安定に保持され、 従って感湿材の感湿特性が安定に保持されるという利点
ある。
粒子の核を成す疎水性の部分の例は、 主に非イ オン性 のビニルモノマの重合物である。 力 かる ビュルモノマの
[|と してはエチ レン、 プロ ピレン、 酢酸ビニル、 スチレ ンヽ アク リ ル酸のエステル類ヽ メ タ ク リ ル酸のエステル 類ヽ ハロゲンィヒビ二ル類ヽ 並びにブタ ジエンやク ロ ロブ レン等のゴム用モ ノマを挙げることができる。 更に核は、
2種以上のビニ ルモノマの共重合锪であってもかまわ いし、 またビニル重合物に限らず例えばポリ エステル、 ポリ 了 ミ ド、 ポリ ウ レタ ン等の縮合重合物や他の付加重 合物、 或いは各種疎水性化合物の混合物であってもかま わ い。
表面層を成す部分は、 イ オン性或いは親水性の少く と も一方の性質を有する化合物であれば足 ]? るが、 感湿素
OMPI
■ " 1 00166
(7)
子における感湿材層の導電性を高める点ではィ才ン性基 が好ま しい。 イ オン化された状態は正, 負を問わな 。
また、 A型の粒子の場合には両性ラテックス粒子であつ てもかまわ い。 イ オ ン性基と しては、 ァニオ ン性の基、 カチ才ン性の基がある。
かかるイ オ ン性基の内、 ァニオ ン性基の例と してはス ルホ ン酸基、 カルボン酸基、 及びリ ン酸基から選ばれる 基、 或 はそれらの塩がある。 これらの基を有するモ ノ
マ 一と して、 よ ]?具体的には、 スチ レンス ルホ ン酸、 ァ ク リ ノレア ミ ドメチノレフ。 ロ ノ ンスルホ ン酸、 ァク リ ル酸、 メ タク リ ル酸、 或いはこれらの塩が挙げられる。
また力チ才ン性の基と しては、 ァミ ン及びそれらの塩、 4級アンモ - ゥ ム塩、 ピ リ ジニ ゥ 厶塩、 ホスホ ニ ゥ 厶塩、 第四級のアルソニゥ 厶塩、 同じく第四級のスチボニ ゥ ム 塩、 並びにスルホ ニ ゥ ム塩、 ョ 一 ドニ ゥ ム塩の以上から 選ばれる基を有するモノ マを挙げることができる'。 よ ]9 具体的には、 2 — メ タク リ ル才キ シェチル ト リ メ チルァ ンモ ニ ゥ ム塩、 ビニノレ べ ン ジノレ ト リ メ チノレアンモ ニ ゥ ム 塩、 ト リ メ チル ビ二ルア ンモニゥム塩、 メ タク リ ル才キ シェチル ト リ 一 n —ブチルア ンモ ニ ゥ 厶塩、 ビュル フ エ ネチ
OMPI WIPO — (s) ノレジ メ チノレエチル了ンモニ ゥ ム塩、 4 ― ビニノレー N—ェ チルピリ ジニゥ ム 塩 、 2 —ビニル一 N— メ チル ピ リ ジニ ゥ ム塩、 ビニル ト リ フ エニルホス ホニ ゥ ム
塩 、 ビニル ト リ ブ口 ビルホス ホニゥ ム塩、 ピニ ル ト リ フエニル了ル ソ ニ ゥ ム塩、 ビュル ト リ メ チルス チボニ ゥ ム塩ヽ ビニノレジェチノレスノレホニ ゥ ム塩ヽ ビニノレ フ エ二 ル ョ 一 ドニ ゥ ム塩が有効である。 これらのカチオンの対 イ オン と してはク ロ ルイ オン、 ブ ロ ム イ オ ン、 ョ一 ドィ オンの他に、 フッ素イ オ ン、 水酸イ オン、 硝酸イ オン、 酢羧イ オン、 或いは硫酸イ オン等が挙げられる。 表面層 は、 これらのイ オン性モノ マの重合物あるいは、 共重合 物を主成分と して構成される。
• 更には疎水性モ ノマと 2 —ジ メ チル了 ミ ノ エチル メ タ ク リ レイ トの如き第三級了ミ ンとを共重合させて得たラ テ ック ス粒子の表面との窒素原子を、 メ チルアイォダイ ド等のアルキル化剤によって第四級化して生成したカチ オン基も有効である。
—方、 親水性化合物の例と してはポリ ビニ ルアル コ 一 ルゃポリ 了ク リ ル了ミ ド等の高分子化合物を挙げること ができる。
本発明の感湿材の製法には前述の通 j? A法と B法とが あ 1) 、 A法によれば前記の A型の粒子が集合して成る感 湿材が得られ、 また B法によれば前記の B型の粒子が集
ΟΜΡΙ 合して成る感湿材が得られる。
A法は、 感湿材の感湿特性に重大 影響を及ぼす不純 物 (例えばイ オ ン性不純物は電気伝導度を左右する。 ) を透析やホ '了サイズの大きる フ ィ ルタによる濾過等で容 易に除去することができるという利点がある。
B法は、 核と して疎水性ラ テックス粒子を合成した場 合、 核形成の後でもまた表面層形成の後でも、 A法と同 様にして不純物を除去することができると う利点があ
o
いずれの製法も、 ラテックス粒子の合成には通常乳化 重合法や無乳化剤乳化重合法を利用する。
また、 ラテックス粒子の合成に際しては該粒子に架橋 処理を施すことができる。 架橋処理を施すことによって 粒子構造は長期にわた ]?不変と ¾る。 従って、 例えば各 粒子内においてィオン性基と疎水性基が互 の領域に乗 j?入れて感湿材の抵抗値が上がるという現象を防止する ことができる。
ラテックス粒子の架橋処理は次のよ うにして行う。 先 ず、 付加重合系のラテックス粒子の合成に際しては、 ジ ビニノレベンゼン、 エチ レング リ コ ーノレ ジ メ タ ク リ レイ ト 等、 重合性二重結合を同一分子内に少く と も 2個含むモ ノマを共重合することによって架橋する。 或いはダリ シ ジ ン メ タク リ レ イ ト 、 了 リ ルグ リ シ ジルェ一テル等のェ
O PI (10) ポキシ基を有するモノマと、 疎水性モノマとを共重合さ せた後に、 コハク酸等のジカルボン酸やエチレンジ了ミ ン等のジ了 ミ ンで架橋する。 次に、 縮合重合系のラテツ クス粒子の合成に際しては、 ト リ 力ルバ リ ル酸、 グ リ セ リ ン、 テ ト ラ了 ミ ノ ジフエニル メ タ ン等の多官能性モノ マを使用して架橋する。 その他に架橋処理と して、 r線 や電子線の照射や、 重ク ロ ム漦カ リ ゥ ム等の酸化剤で処 理した後の紫外線の照射も有劾である。
B法で、 疏水性高分子化合物で成る疎水性粒子へのィ オン性或いは親水性高分子化合物のグラ フ ト化は次のよ うにして行う。 先ず、 疎水性粒子をイ オン性或いは親水 性高分子化合物が溶解するよ うな、 またはイ オン性或い は親水性高分子化合物のモノマが溶解するよ う ¾極性溶 媒に分散させる。 このよ うな溶媒としては水、 了ル コ 一 ル等がある。 その後、 疎水性粒子表面に存在する水酸基 やイ ソプロ ピル基を硝酸第 2 セ リ ゥ ムアンモニ ゥムゃ酸 素で漦化することによ ]?該粒子表面に活性ラジカ ルを発 生させる。 そしてこの溶媒にイ オン性或いは親水性モノ マを溶解させて、 前記活性ラジカ ルをグラフ ト点と して ク'ラフ ト化を行う。 その他にグラフ ト点の生成と して、 r線、 電子線、 紫外線等の照射も有効である。
以上の各方法で得られた本発明の感湿材は、 後記する 実験結杲が示す如く、 相対湿度と電気抵抗値との関係が (ID 略直線と る感湿特性を有する。 .
図面の簡単な説明
第 1 図は本発明の 1実施例を示す感湿素子の平面図、
第 2図は第 1 図の II — II断面図、 第 3図は本発明の他の
実施例の感湿素子の平面図で、 第 4図は第 3図の 一 JV
断面図、 第 5図乃至第 1 3図は夫々本発明の実施例に
ける感湿素子の感湿特性図であ ]?、 第 5図乃至第 7図,
第 9図, 第 1 0図及び第 1 4図は相対湿度に対する感湿
素子の電気抵抗値の変化を説明する感湿特性図、 第 8図
は高温高湿雰囲気下の感湿素子放置時間に対する電気抵
抗値の変化を説明する感湿特性図、 第 1 1 図及び第 1 2
図は感湿素子の応答特性図である。
発明を実施するための最良の形態
本発明の感湿素子の実施例を図面を参照して説明する。
第 1 , 2図に於て、 平面が正方形の絶緣基板 1 Aの上
に、 互に一定の距離だけ離れて対向するよ うに 1対の櫛
型の電極 2 A , 3 Aが配置されている。 各電極 2 A ,
3 Aの 1端は、 接続端子 4 A , 5 Aに形成され、 リ ー ド
線 6 , 7が接続されている。 絶縁基板 1 A、 電極 2 A ,
3 Aは、 感湿材の皮膜 8 Aで覆われている。 この皮膜
8 Aは、 以下に述べる実施例のステツブ 1 4 と同様に形
成される。 絶縁基板 1 A及び電極 2 A , 3 Aは、 夫々、
酸化アル ミ ニ ウ ム 、 金でつぐ られている。
OMPI
、ヽ' 1 00166
(12) 次に、 小型化に好適な本発明の感湿素子の実旌例を説 明する。
第 3 , 4図に於て、 絶縁基板 1は、 シリ コン半導体基 板 1 0から ]? 、 その上に酸化シ リ コ ン ( S i 02) の第 1の絶縁層 1 1が形成されている。 この第 1 の絶 I層 1 1は、 電気的絶縁の機能の外に緩衝材と しての機能も 有する。 第 1の絶緣層 1 1の上には窒化シリ コン
( S i 3 N4 ) の第 2の絶緣層 1 2が形成されている。 絶籙 基板 1はこの 2つの絶緣層を含んでいる。 この第 2の絶 緣層 1 2上には、 リ ン イ オ ン又はホ'ロ ン イ オンが注入さ れたボリ シ リ コ ンの間隙の狭い一対の攆型電極 2 , 3配 置されている。 これらの電極 2 , 3の端部 4 , 5は、 チ タ ン、 パラジ ゥ ム、 金で接続端子と して形成されてい る。 この上に感湿材の皮膜即ち感湿層 8が形成されてい o
上記感湿素子の製造工程を説明する。
ステップ 1 : シ リ コ ン半導侔ウェハを洗淨して表面を 清浄にする。
ステップ 2 : 熱酸化によ 、 上記ウェハ表面に数百 k 厚さの酸化シリ コ ンの第 1の絶縁層を形成する。
ステップ 3 :第 1の絶縁層上に、 化学的気相成長法 (以下、 C V D法という ) によ ])窒化シ リ コ ンの数百 A の厚さの第 2の絶緣層を形成する。 ステッ プ 4 :第 2の絶縁層上に、 C V D法によ 数ミ ク ロンの厚さのポリ シリ コン層を形成する。
ステッ プ 5 : 前記ポ リ シ リ コ ン層にボロ ンイ オン又は リ ンイ オンを打込み、 電気抵抗値を低減して電極を形成 する。 イ オン打込みの代 に拡散法によってイ オン注入 を行う こともできる。
ステ ッ プ 6 : ホ ト エッチングによ ]?上記ボ リ シ リ コ ン 層の不要部分を除去して、 間隔の挟い一対の櫧形状のポ リ シ リ コ ン電極 2 , 3 を形成する。
ステップ 7 : ホ トエッチングによ ]?、 切離し部分の窒 化シリ コンが除去される。
上記ステッ プ 6 , 7 において、 ポ リ シ リ コ ン及び窒化 シ リ コ ンは、 ト エッチングによ ]3加工されているが、 他のエ ッチングでも よい。
ステップ 8 : 電極の端部に、 チタ ンが蒸着される。
ステッ プ 9 : 蒸着したチタ ンの上にパラ ジウ ムが蒸着 dれ O
ステ ッ プ 1 0 : 蒸着したパ ラ ジウ ムの上に金が蒸着さ れる。 ステッ プ 8 , 9, 1 0で表面が金の接続端子 4, 5が形成される。
ステップ 1 1 : ウェハから複数個のチップが切!)離さ れる。
ステッ プ 1 2 : 各チッ プはパッ ケージに装着される。
OMPI ステッ プ 1 3 :接続端子 4, 5にリ一ド線が付けられ ステッ プ 1 4 :感湿材が塗布され、 感湿層 8が形成さ れる o
窒化シリ コンは良好 電気絶籙物であると同時に、 耐 水性もよいので、 感湿素子に適する。 又、 酸化シリ コン は、 測定回路部も含めて 1チップにする時に必要になる が、 センサ部単体即ち感湿素子のみの時は除去すること ができる。
ポ リ シリ コ ンは、 ボロ ンイ オンまたはリ ンイ オンの -ィ オン打込みによ!)固有抵抗値を低減でき 、 しかも耐水性 があ ]9化学的に安定であるので、 感湿素子の電極に適す る。 電極の接続端子 4, 5は、 チタ ン、 パ ラ ジウ ム及び 金の蒸着層となっているが、 測定回路を 1チップ上に形 成し、 測定回路までボリ シ リ コ ンの電極を延長する場合 は、 この端子 4 , 5は不要である。
この製法に従えば、 1対のポリ シ リ コ ン電極間隔を約 1 0 ミクロンに、 素子全体の大きさを 2鹏角以下にする ことが可能である。 これは、 従来の素子と比較すると、 面積で約 2桁小さい。 それにもかかわらず、 電気抵抗は 従来とほ ^:同じである。 この小形化の程度を比較するた めにスルホ ン化したポリ スチ レン樹脂を感湿層にしたと きの相対湿度一電気抵抗特性の測定例を第 1 4図に示す c 嶋
(15) この実施例によれば、 狭い空間の湿度を検出できる効 杲がある。 また耐水性のあるポリ シ リ コ ン、 窒化シリ コ ンで夫々、、電極及び絶縁層を形成し、 耐蝕性のあるチタ ン、 パラ ジウム、 金で接続端子を形成するよ うに構成し たので、 長期安定性のある湿度センサが得られるという 効果がある。 更に半導体の測定回路を含めて 1チップに できるので、 外来の電気的雑音の影響を受けにくいとい う効果もある (シリ コン基板をそのために使用している) ( ステップ 1 4 の感湿材塗布は、 感湿材分散液の状態で 塗布する。 感湿材分散液は、 A型或いは B型の粒子が分 散したラテックスであ ]?、 例えば A法で粒子を合成した 後のラテックス粒子分散水溶液である。 このラテックス を塗布する方法は、 スプレー、 刷毛塗 、 浸漬、 ス ピン ナ塗]?等、 粘度や基板面積、 生産量等に応じて這宜選択 される。 ラテックスを塗布した後は該基侔を乾燥せしめ る。 乾燥によってラテックス粒子同士のゆ着が起と ]?違 続した膜と る。 乾燥は乾燥空気或いは窒素を用いて通 風乾燥とする。 この乾燥方法によればラテックス粒子自 体及び該粒子で形成された皮膜 8 は破壌され い。
これらの感湿素子は、 検出湿度の電気的信号への変換 が簡単でかつ信頼性が高いという効杲がある。
本発明の感湿材の抵抗値が低いので、 これを用いた感 湿素子はソィズを捨ぃ難い。 例えば塵の如く、 感湿材の
OMPI 導電性に影響を及ぼす物質が皮膜に付着したとしても、 湿度を精度良く検出することが可能である。
感湿材を構成する各粒子の核に吸湿性が少 いので、 皮膜が膨潤ゃ収縮をすることがなく、 それが基侔から剝 難するということが少なくなる。 従って感湿素子の長寿 命化を図ることができる
以下に本発明の感湿材のよ ]?具侔的 実旛例を比較例 と併せて挙げる。
実施例 1 ( A法)
5 0 0 c c の水に琼水性モノマとしてメ タクリ ル酸メ チル 0. 1 モ ル、 乳化剤を兼用する了二オ ン性モノマとし てスチ レン スルホ ン酸ナト リ ゥ ム 0. 0 1 モル、 及び重合 開始剤として過硫酸カ リ ウム 0.0 0 1モルを加え、 液温を 6 0 Cとし、 窒素雰囲気下で高速撩拌しながら轧化共重 合反応を行った。 その結果、 A型のラテッ クス粒子が分 散したラテックスを得た。 各粒子はメタク リル¾メチル が核を、 スチレンス ルホン酸ナ ト リ ウ ムカ表面層を形成 した。
このラテックスはセロ フ 了 ンの透析チュ一ブを用いて 2ヶ月間透析精製した。
精製後のラテックスを第 1 , 2図に示した 2 0職><
2 0 露の基体 (以下、 基体 I という。 ) に塗布し、 通風 乾燥して感湿素子^ 1を得た。 皮膜 8 Aの重量は約 3m g
O PI
画 - CT/JP81/00166
(17)
であった。
感湿素子^ 1の感湿特性は第 5図に実線 j で示すよ う に吸湿傾向も脱湿傾向も相対湿度と電気抵抗値とが略直 線の関係になってお 、 しかもヒ ステリ シス性が小であ る。
実施例 2 ( A法)
実施例 1 で合成したラテックスを陽ィオ ン交換樹脂で 処理して、 酸型のラテックスを得た。
このラテツクスを実施例 1 と同様にして透析精製した 後、 基体 I に塗布し、 通風乾燥して感湿素子 2を得た。 皮膜の重量は約 3 m g であった。
感湿素子^ 2の感湿特性は第 5図に実線 ϋで示すよ う に吸湿傾向も脱湿傾向も相対湿度と電気抵抗値とが略直 線の関係にるってお!)、 しかもヒ ステリ シス性が小であ る。
比較例 1 .
実施例 2で得たラテツクスから水分を揮発させた後、 残留物をジメ チルァセ トアミ ドに溶解させた。 その結杲、 ラテックス粒子の構造は破壌されてポリ マは溶媒中に均 一に溶解した。
この均一溶液を基体 Iに皮膜 8 Aの重量が約 3 mg と
¾るよ うに塗布し、 その後 1 0 0 Cで 5時間の乾燥を行 い、 感湿素子^ 3を得た。 感湿素子 3の感湿特性は第 5図に破線 iiiで示すよ う に吸湿傾向も脱湿傾向も相対湿度と電気抵抗値との関係 が直線とはならない。 しかも感湿素子 1及び 2 と比 較して明らかにヒ ステリシス性が大であ ]?、 また電気抵 抗値も大である。
実施例 3 ( _A_法)
5 0 0 c c の水に琼水性モ ノ マとしてス チ レン 0. 1 モ ル、 乳化剤を兼用する了二オ ン性モ ノマとしてス チ レン スルホ ン酸 0. 0 5 モル 、 及び重合開始剤と して過硫酸力 リ ウム 0. 0 1 モルを加え、 液温を 6 0 Cとし、 窒素雰囲 気下で高速攪拌し ¾がら乳化共重合反応を行った。 その 結果、 A型のラテックス粒子が分散したラテックスを得 た。 各粒子はス チ レンが核を、 スチ レ ンス ルホ ン酸が表 面層を形成した。
このラテックスはセロ ファンの透析チューブを いて
2ヶ月間透析精製した。
精製後のラテックスを第 3 , 4図に示した 5 ^ X 5腿 の基体 (以下、 基侓 IIという。 ) に塗布し、 通風乾燥し て感湿素子 4を得た。 皮膜 8の重量は約 0. 2 m g であ つた。
感湿素子 4の感湿特性は第 S図に実線 jVで示すよう に吸湿傾向も脱湿傾向も、 相対湿度と電気抵抗値との関 係が略直線となって ]?、 しかもヒ ステリ シス性が小で
. WIPO , ^ JP81/00166
(19) ある o
比較例 2
実施例 3で得た感湿素子 ¾ 4をジメ チルァセ ト ア ミ ド と水との 9 0 Cの飽和混合蒸気圧下に 1 ヶ月間放置する ことによって、 ラテックス粒子の構造をほぼ破壊した。 この処理によ 感湿素子 5 を得た。
感湿素子 5の感湿特性は第 6図に破線 Vで示すよ う に吸湿傾向も脱湿傾向も相対湿度と電気抵抗値との関係 が略直線とはな らない。 しかも感湿素子^ . 4 と比較して 明らかにヒステ リ シス性が大であ ])、 また電気抵抗値も 大て ¾> 。
感湿素子^ 1 及び^ 2 と , 3 との比敦、 並びに感湿素 子 · 4 と · 5 との比較から明らか よ うに、 本発明の感 湿材は、 本発明の感湿材と同一素材の均一重合侔で成る 感湿材に比べて電気抵抗値が低い。 これは該均一重合体 で成る感湿材の場合、 イ オ ン性基の吸湿、 解離作用が疎 水性基の影響によって抑制されて雩気抵抗値が高く る ことに起因する。 該均一重合体で成る感湿材の場合、 若 し電気抵抗値を低くする為にィ オ ン性基の濃度を高めよ う とするるらば、 吸湿 ·脱湿時の膨潤ゃ収縮によって基 体から感湿材が剝離することに ¾る。
実施例 4 ( A法)
エタ ノ ール 2 5 0 c c と水 2 5 0 C C とから成る溶媒
OMPI 。 中に疎水性モノマとして ^ —ヒ ドロキ シ ェ チル メ タク リ レ一 ト 0. 1 モル、 乳化剤を兼用する了二オ ン性モノマと してアク リ ル酸ナ ト リ ゥム 0. 0 4 モル、 及び重合開始剤 として亜硫酸水素ナ ト リ ウム 0.0 0 1 モルを加え、 液温を 6 0 Cとし、 窒素雰囲気下で高速撩捽しるがら乳化共重 合反応を行った。 その結果、 A型のラテックス粒子が分 散したラテックスを得た。 各粒子は^ —ヒ ドロキシェチ ルメ タク リ レー トが核を、 アク リ ル酸ナ ト リ ゥムが表面 層を形成した。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 Iに塗布し、 通風乾燥して皮膜 8 Aの重量が約 3 mg の感湿素子^ 6を得た。 この感湿特性を第 7図に 実線 viで示す。
実施例 5 ( A法)
5 0 0 c c の水に竦水性モノマとしてアク リ ル酸メ チ ル 0. 1 モル、 乳化剤を兼用する了二オ ン性モノマとして メ タクリル酸カリ ゥム 0. 0 2 モル、 及び重合開始剤と し て亜硫酸水素ナ ト リ ウム 0.0 0 1 モルを加え、 他は実施例 4と同条件にして乳化共重合反応を行い、 得られたラテ ックスを更に実施例 4 と同条件で透析して精製した。
このラテックスを基体 I に塗布し、 他は実 ¾例 4と同 条件にして感湿素子 ¾ 7を得た。 その感湿特性を第 7図 に実線 viiで示す。 T JP81/00166
(21) 実施例 6 ( A法)
5 0 0 c c の水に疎水性モノマとしてス チ レ ン 0. 0 6 モル、 及びブタ ジエン 0. 0 4 モル、 乳化剤を兼用する親 水性モノマとして 9 —アク リ ル了 ミ ドステアリ ン酸ナト リ ウム 0.0 0 5 モ ル、 並びに重合開始剤と して過硫酸ナト リ ゥ ム 0.0 0 0 1 モル、 及び炭酸ナ ト リ ウ ム 0.0 0 0 0 8 モ ルを加え、 他は実施例 4 と同条件にして乳化共重合反応 を行い、 得られたラテックスを更に実施例 4 と同条件で 透析し、 精製した。
このラテックスを基体 IIに塗布し、 他は実施例 4 と同 条件にして感湿素,子 8を得た。 その感湿特性を第 7図 に実線 viiiで示す。
実施例 7 ( A法)
5 0 0 c c の水に疎水性モノマとしてメ タクリ ル漦ェ チル 0. 1 モ ル、 乳化剤を兼用する親水性モ ノマと して 2 —了ク リ ル了 ミ ド一 2 — メ チルプロ パンス ルホン酸リ千 ゥ ム 0. 0 3 モル、 及び重合開始剤と して亜硫酸水素ナ ト リ ウム 0.0 0 1 モルを加え、 他は実施例 4 と同条件-にして 乳化共重合反応を行い、 得られたラテックスを更に実施 例 4 と同条件で透析し精製した。
このラテックスを基体 IIに塗布し、 他は実施例 4 と同 条件にして感湿素子■¾ 9を得た。 その感湿特性を第 7図 に実線 'IXで示す。
OMPI 実施例 8 ( A法)
5 0 0 cc の水に疏水性モノマとしてスチ レン 0. 1 モ ルヽ 及び N , N ' —ジェチル了 ミ ノ ェチノレ メ タク リ レイ ト 0. 0 1 モル、 乳化剤を兼用するァ-オン性モノマとし てメ タクリル漦 0. 0 1 モル、 及び重合開始剤として過硫 羧カ リ ゥ ム 0.0 1 5モルを加え、 他は実施例 4と同条件に して乳化共重合反応を行い、 得られたラテックスは更に 実施例 4と同条件で透析精製を作った。
このラテックスを基体 IIに塗布し、 他は実施例 4と同 条件にして感湿素子 1 0を得た。 その感湿特性を第 7 図に実線 Xで示す。 .
実施例 9 ( A法)
5 0 0 c c の水に疎水性モノマと してスチ レン 0. 1 モ ル、 乳化剤を兼用するカチオン性モノマとして N—メチ ノレ一ビュル ピ リ ジニゥム ブロ マイ ド 0.0 0 5モノレ、 及び重 合開始剤として了ゾビスイ ソブチル了 ミ ジン塩酸塩
0.0 0 1モルを加え、 他は実施例 4と同条件にして乳化共 重合反応を行い、 得られたラテックスは更に実施例 4と 同条件で透析し、 精製した。
このラテックスを基板]!に塗布し、 他は実施例 4と同 条件にして感湿素子 1 1を得た。 その感湿特性を第 7 図に実線 Χίで示す。
実施例 1 0 ( A法)
一 O PI 5 0 0 c c の水に鍊水性モノマと してアク リ ル酸メ チ ル 0. 1 モル、 乳化剤を兼用するカチオ ン性モノマと して メ タ ク リ ノレ才キシェチノレ ト リ メ チノレ了 ンモ - ゥ ム ク ロ ラ ィ ド 0. 0 5 モル 、 及び重合開始剤と して了ゾビスイ ソブ チルア ミ ジン塩酸塩 0.0 0 2モルを加え、 他は実施例 4 と 同条件にして乳化共重合反応を行い、 得られたラテック スを更に実施例 4 と同条件で透析し精製した。
このラテックスを基板 IIに塗布し、 他は実施例 4 と同 条件にして感湿素子^ 1 2を得た。 その感湿特性を第 7 図に実線 xiiで示す。
実施例 1 1 ( A法)
5 0 0 c c の水に疎水性モノマと してメ タク リ ル酸メ チル 0. 2 モル、 ァ -オン性モノマと してアク リ ル了 ミ ド
一 2 — メ チルブ 'ンスルホ ン酸ナ ト リ ゥ ム 0. 1 モル、 及び重合開始剤と して過硫酸力 リ ウ ム 0.0 0 1モ ルを加え、 液温を 7 0 Cと し、 窒素雰囲気下で 8時間高速攪拌し ¾ がら乳化共重合反応を行った。 その結果、 A型のラテツ クスを得た。 各粒子はメ タク リ ル酸メ チルが核を、 ァク リ ル了 ミ ド一 2 — メ チノレブ ンスノレホ ン酸ナ ト リ ゥ 厶 が表面層を形成した。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 I に塗布し、 通風乾燥して皮膜 8 Aの重量が約
5 m g の感湿素子^ 1 3 を得た。
OMPI
W1PO ' この感湿素子 1 3を 5 0 C、 相対湿度 9 0 %の高温 高湿の雰囲気中に放置した時の電気抵抗値の経時変化を 第 8図に実線 xijj で示す。
実施例 1 2 ( B法)
5 0 0 c c の水に琼水性モノマと してメ タクリ ル酸メ チル 0. 2 モル、 架橋剤としてエチレングリ コールジメタ ク リ レイ ト 0. 0 1 モル、 グラフ ト点を与えるモノマとし て ヒ ドロ キシェチル メ タク リ レイ ト 0. 0 2 モル、 及び重 合開始剤として亜硫酸 0. 0 1 モルを加え、 液温を 6 0 C とし、 空気雰囲気下で 1 0時間、 高速攙拌しるがら共重 合反応を行った。 その結杲、 得られたラテックスには、 エチレングリ コ一ルジメ タク リ レイ トで架橋された、 メ タク リ ル酸メチルと ヒ ドロキシェチルメ タク リ レイ ト と の共重合体ラテックス粒'子が分散していた。 このラテツ クスに更にグラフ ト重合開始剤として硝酸第 2 セ リ ウム アンモ-ゥム 0. 0 1 モル、 及びグラフ ト ί匕せしめる了二 オン性モノマとして了クリ ル了 ミ ド一 2 — メ チルブロパ ンスルホン羧ナト リ ゥム 0. 1 モルを加え、 液温を 5 0 ϋ とし、 窒素雰囲気下で 6時間高速攪拌しながらグラフ ト 重合を行った。 その結杲、 Β型のラテックスを得た。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 Iに塗布し、 通風乾燥して皮膜 8 Αの重量が約 5 mg の感湿素子 1 4を得た。 1 00166
(25) この感湿素子^ 1 4を 5 0 C、 相対湿度 9 0 %の高温 高湿の雰囲気中に放置した時の電気抵抗値の絰時変化を 第 8図に実線 xiv で示す。
本感湿素子^ 1 4は、 A法による感湿素子 y¾ l 3に比 ベて、 長時間高温高湿の雰囲気中に放置しても電気抵抗 値がほぼ一定値である。
実施例 1 3 ( B法)
5 0 0 c c の水に疎水性モノマと して了ク リ ロ - ト リ ル 0. 2 モル、 架橋剤と して了 リ ルグ リ シジルェ一テル 0. 0 2 モル及びア ミ ノ エチル メタク リ レイ ト 0. 0 2 モル、 グラ フ ト点を与えるモノマと してヒ ドロ キシェチル メ タ ク リ レイ ト 0. 0 1 モ ル、 並びに重合開始剤と して了ゾビ ス ィ ンプチル了 ミ ジン塩酸塩 0.0 0 1モルを加え、 液温を 7 0 Cと し、 窒素雰囲気下で 1 0時間高速攪拌しながら 共重合反応と架橋反応とを同時に行った。 次にこ う して 得られたラテックスにグラフ ト重合開始剤と して硝酸第 2 セ リ ウ ム了ン モニ ゥ ム 0. 0 1 モル、 及びグラ フ 卜化せ しめるカチオン性モノ マと してメ タク リ ルォキシェチル ト リ メ チルア ンモ - ゥ ム ブロマイ ド 0. 1 モルをカロえ、 液 温を 5 0 1:と し、 窒素雰囲気下 6時間高速攙拌しるがら グラフ ト重合反応を行った。 その結果、 B型のラテック ス粒子が分散したラ テックスを得た。 この ラテ ックス粒 子の表面層はカチォン性ポリ マで形成された。 このラテックスを実施例 1 と同様にして透析精製した 後、 基体 Iに塗布し、 通風乾燥して皮膜 8 Aの重量が約 5 mg の感湿素子^ 1 5を得た。
この感湿素子 ·¾ 1 5を 5 0 C、 相対湿度 9 0 %の高温 高湿の雰囲気中に 2 0時間放置した後の感湿特性を第 9 図に実線 XV で示す。 尙、 実線 xvi は放置前の感湿素子
l 5の感湿特性である。
実施例 1 4 ( B法)
5 0 0 cc の水に疎水性モノマとしてアク リ ル酸メ チ ル 0. 2 モル、 架橋剤としてグリ シジル メ タク リ レイ ト
0. 0 2 モル及びメ タク リ ル酸 0. 0 2 モ ル、 グラフ ト点を 与えるモノマとしてヒ ドロキシェチルメタク リ レイ ト
0. 0 1 モル、 並びに重合開始剤として亜硫酸水素ナ ト リ ゥム 0. 0 1 モル及び水酸化第 2鉄 0.0 0 1 モルを加え、 液 温を 5 0 Cとし、 窒素雰囲気下で 8時間高速攪捽しなが ら共重合反応を行った。 次に得られたラテックスに架橋 触媒として ト リェチルァ ミ ン 0.0 0 1 モルを添加して 8 0 Cで 1 0時間、 架橋反応を行った。 その後、 グラ フ ト開 始剤として硝酸第 2 セ リ ゥムア ンモ - ゥ ム 0. 0 1 モル及 びグラ フ ト化せしめる了 -オン性モノマとしてメ タクリ ル駿ナ ト リ ウ ム 0. 1 モルを加え、 液温を 5 0 Cとし、 窒 素雰囲気下で 6時間高速攙拌しながらグラフ ト重合反応 を行った。 その結果、 B型のラテックス粒子が分散した
_ OMPI _ ~ T JP81/00166
(27) ラテックスを得た。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 I に塗布し、 通風乾燥して皮膜 8 Aの重量が約 5 mg の感湿素子^ 1 6を得た。
この感湿素子^ 1 6を 5 o :、 相対湿度 9 0 %の高温 高湿の雰囲気中に 2 0時間放置した後の感湿特性を第 9 図に実線 xvii で示す。 実線 xviiiは放置前の感湿素子
1 6の感湿特性である。
図から明らかなよ うに、 感湿素子 1 6は感湿素子 1 5に比べて高温高湿下に放置しても非常に安定である。 実施例 1 5 ( B法)
5 0 0 c c の水に疎水性モノマとしてス チ レ ン 0. 1 モ ル、 架橋剤と してジビュルベンゼン 0. 0 1 モル、 グラフ ト点を与えるモノマと して P —ィ ソプロ ピルスチレン 0. 1 モル、 並びに重合開始剤と して亜硫酸水素ナ ト リ ゥ ム 0.0 02モル及び過硫酸力リ ウム 0.0 0 1 モルを加え、 液 温を 5 0 Cと し、 窒素雰囲気下で 1 0時間高速攪拌しる がら共重合反応を行った。 その結杲、 得られたラテック スには、 ジ ビュルベンゼンで架橋された、 スチレンと P —ィ ソ プロ ビルスチレンとの共重合体ラテックス粒子が 分散していた。 このラテックスを更に 8 0 Cに加温して から酸素を 1 0時間吹き込み、 ラテックス粒子の表面の イ ソブロ ピル基にヒ ドロペルォキシド基を付与した。 そ J雌 0166
(28) の後ラテックス中に、 ク ラフ ト化せしめる了二オン性モ ノマと してスチ レンスルホン酸ナ ト リ ゥ 厶 0. 1 モル、 及 び重合促進剤と してジメチルァ二 リ ン 0. 0 1 モルを加え、 液温を 6 0 Cと し、 窒素雰囲気下で 1 0時間高速撩捽し ながらクラフ ト重合反応を行った。 その結果、 B型のラ テックス粒子が分散したラテックスを得た。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 I に塗布し、 通風乾燥して皮膜 8 Aの重量が約
5 mg の感湿素子 τ¾ 1 7を得た。
この感湿素子^ 1 7を 5 0 C、 相対湿度 9 0 %の高温 高湿の雰囲気中に 2 0時間放置した後の感湿特性を第 9 図に実線 ΧΪΧ で示す。 尙、 実線 XX は放置前の感湿素子
l 7の感湿特拴である。
図から明らかなよ うに本感湿素子 1 7 も高葸高湿雰 囲気下に放置しても非常に安定である。
実施例 1 6 ( A法)
3 0 0 c c の水に蔬水性モノマと してメタク リ ル駿メ チル 0. 2 モル、 乳化剤を兼用するカチオン性モノマと し て 2 —メ タク リ ノレオキシェチノレ ト リ メ チノレ了ンモニ ゥ ム 了ィ オダイ ド 0. 1 モル、 及び重合開始剤と して了ゾビス ィ ソブチルア ミ ジン塩駿塩 0.0 0 1モルを加え、 液温を
6 0 Cと し、 窒素雰囲気下で 1 0時間高速攪拌し がら 乳化共重合反応を行った。 その結果、 A型のラテックス
OMPI 0 粒子が分散したラ テックスを得た。 各粒子はメタ ク リ ル 酸メ チルが核を、 カチオン基である ト リ メ チル了ンモ - ゥ ム基を含む 2 — メタク リ ルォキシェチル ト リ メ チル了 ンモ - ゥム了ィ ォダイ ドが表面層を形成した。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 I に塗布し、 通風乾燥して皮膜 8 Aの重量が約 5 m g の感湿素子^ 1 8を得た。
感湿素子^ 1 8の感湿特性は第 1 0図に実線 xxi で示 す。
比較例 3
3 0 0 c c の メ タ ノ ールに実施例 1 6 と同じ琼水性モ ノ マ、 カチオン性モノマ及び重合開始剤を各実旖例 1 6 と同量加え、 他の条件も実施例 1 6 と同様にしてメ タ ノ —ル溶媒中で溶液共重合反応を行った。 その結杲、 カチ オン高分子電解質の均一溶液が得られた。
との均一溶液を基体 Iに皮膜 8 Aの重量が 5 m g と ¾ るよ うに塗布し、 通風乾燥して感湿素子^ 1 9を得た。 感湿素子 1 9の感湿特性は第 1 0図に破線 xxiiで示 すよ うに吸湿傾向も脱湿傾向も相対湿度と抵抗直との関 係が略直線とはなら ¾い。 また感湿素子^ 1 8に比べて 電気抵抗値は全体に約 1 ケタ以上高い。
実施例 1 7 ( A法)
3 0 0 c c の水に疎水性モ ノマとしてス チ レン 0. 2 モ
wir ル、 乳化剤を兼用する了 -オ ン性モ ノマとしてス チ レン ス ルホ ン酸ナト リ ゥ ム 0. 1 モル、 及び重合開始剤として
過硫漦カリ ウ ム 0.0 0 1 モルを加え、 液温を 6 0 Cとし、
窒素雰囲気下で 1 0時間高速攪拌しながら乳化共重合反
応を行った。 その結果、 A型のラテック 粒子が分散し たラテックスを得た。 各粒子はス チ レンを核と し、 表面
層には了 二オ ン基であるスルホ ン酸基を含んでいる。
このラテックスを実施例 1 と同様にして透析精製した
後、 基体 I に塗布し、 通風乾燥して皮膜 8 Aの重量が約
5 mg の感湿素子 2 0を得た。
感湿素子 2 0の応答特性を第 1 1図に示す。 図中、
実線 xxiii は相対湿度を 4 0 %から 6 0 %に変化させた
時の吸湿方向の応答特性を、 また実線 xxjvは相対湿度を
6 0 %から 4 0 %に変化させた時の脱湿方向の応答特性
を示す。
実施例 1 8 ( A法)
3 0 0 c c の水に疎水性モノマとしてスチ レン 0. 2 モ ル、 乳化剤を兼用するカチオ ン性モ ノマとしてビニ ルベ ン ジノレ ト リ メ チノレ了 ンモニ ゥ ムクロ ライ ド 0· 1 モノレ 、 及 び重合開始剤として了ゾビスィ ソ ブチル了ミ ジン塩酸塩
0.0 0 1 モルを加え、 乳化共重合反応を行った。 他の重合 条件は実施例 1 7 と同様にした。 その結杲得られたラテ ックスに分散する Α型の各ラテックス粒子は、 ス チ レン
OMPI
WIPO S>j I6
(31) を核とし、 表面層にはカチオン基である ト リ メチルア ン モニゥム基を含んでいる。
このラテックスを実施例 1 と同様にして透析精製した 後、 基体 I に塗布し、 通風乾燥して皮膜 8 Aの重量が約 5 mg の感湿素子^ 2 1を得た。
感湿特性 2 1の応答特性を第 1 1図及び第 1 2図に 示す。 各図中、 実線 XXV は相対湿度を 4 0 %から 6 0 %に変化させた時の吸湿方向の応答特性を、 また実線 XXVI は相対湿度を 6 0 %から 4 0 %に変化させた時の 脱湿方向の応答特性を示す。
各図から明らかるよ うに、 感湿素子^ 2 1は、 電気抵 抗値が平衡値に達するまでに吸湿方向で約 3分、 脱湿方 向で約 5分しか経過しておらず、 応答速度が非常に早い。 また、 脱湿後の電気抵抗値の平衡値は吸湿前の初期値と —致してお]?、 このことから感湿素子^ 2 1 にはヒ ステ リ シスが い とがわかる。
実施例 1 9 ( A法)
実施例 2で作成した透析精製済みのラテックスを皮膜 8 Aの重量が約 l mg となるよ うに基体 I に塗布して感 湿素子^ 2 2を得た。
感湿特性^ 2 2の応答特性を第 1 2図に示す。 図中、 実線 XXVjjは相対湿度を 4 0 %から 6 0 %に変化させた時 の吸湿方向の応答特性を、 また実線 XXゾ iii は相対湿度を 6 0 %から 4 0 %に変化させた時の の応答特性 を示す。
感湿素子 2 1の傾向と比較して !よ うに、 ラ テックスの塗布量が少 と電気抵おくなる。 反 5 面、 応答速度は吸湿方向で約 1. 5分、向で約 2. 5 分とよ ]5—層速くるる。
実施例 2 0 ( A法)
3 0 0 c c の水に疎水性モノマと Lビニルビリ ジン 0. 2 モル、 カチオン性モ ノマと ίビニ ル— N 10 —ェチルビリ ジ -ゥムブロマイ ド 0.】架橋剤とし てジビュルベン ゼ ン 0· 0 2 モル、 及乙始剤として 了ゾビスィ ソ プチルアミ ジン塩酸塩(ルを加え、 乳化共重合反応を行った。 他の重合 施例 1 7と 同様にした。 その結果得られたラテ、:子は、 架橋 15 された 4ービ-ル ビリ ジンが核と ¾ j層にはカチ オン基である ピリ ジニゥム基を含ん .
このラテックスを実施例 1 と同様 析精製した 後、 基体 Iに塗布し、 通風乾燥して £の重量が約 5 mg の感湿素子 2 3を得た。
20 感湿素子^ 2 3の感湿特性は第 1 :線 XXiX で 示す。 尙、 各湿度で平衡値に達する 8ずれも 5分 以内であった。 感湿素子 2 3は電 が低く、 直 鎳性も良好であ ])、 ヒ ステリシス性;れ¾い。 実施例 2 1 ( A法)
3 0 0 c c の水に疎水性モノマとして了ク リ ロ二 ト リ ル 0. 2 モル、 乳化剤を兼用するカチオン性モノマとして ビニノレ 卜 リ フエ二 ノレホスホ - ゥ 厶 ブ口 マ イ ド 0. 1 モノレ、 及び重合開始剤と して了ゾビスィ ソ ブチル了 ミ ジン塩酸 塩 0.0 0 1モルを加え、 液温を 6 0 Cと し、 窒素雰囲気下 で 1 0時間高速攪拌し ¾がら乳化共重合反応を行った。 その結果得られたラ テックス粒子は、 アク リ ロニ ト リ ル を核とし、 表面層にはカチオン基である 卜 リ フエニルホ スホニゥム基を含んでいる。
この ラテックスを実施例 1 と同様に透析精製した後、 基体 Iに塗布し、 通風乾燥して皮膜 8 Aの重量が約 5 m g の感湿素子 2 4を'得た。
感湿素子 2 4の感湿特性は第 1 3図に実線 XXXで示 す。
実施例 2 2 ( B法)
3 0 0 c c の水に疎水性モノマと してメ チルァク リ レ イ ト 0. 2 モル、 架橋剤と してエチレングリ コールジメ タ クリ レイ ト 0. 0 1 モル、 グラ フ ト点を与えるモノマとし て ヒ ドロキシェチル メ タクリ レイ ト 0. 0 2 モル、 及び重 合開始剤として了ゾビスィ ソプチル了 ミ ジン塩漦塩 0.0 2 モルを加え、 液温を 6 0 Cと し、 窒素雰囲気下で 1 0時 間高速攪拌し ¾がら乳化共重合反応を行った。 その結果
OMPI 100166
(34) 得られたラテックスには、 架橋された、 メ チル了ク リ レ ィ ト と ヒ ドロキシェチルメ タク リ レイ ト との琼水性共重 合体ラテックス粒子が分散していた。 このラテックスに、 更にグラ フ ト重合開始剤として硝酸第 2セ リ ゥム了ンモ - ゥ厶 0.0 1モル、 及びカチオン性モノマと して ト リ メ チル ビ - ルア ンモ ニ ゥムブロマ イ ド 0.1モ ルを力 Πえ、 液 温を 5 0 Cと し、 窒素雰囲気下で 6時間高速攙捽しなが らグラ フ ト重合反応を行った。 その結果得られたラテツ クスには、 疎水性ラ テックス表面に ト リ メ チル ビ -ル了 ン モ-ゥ ムブ口 マ イ ドのポ リ マ力 グラ フ ト した B型のラ テックス粒子が分散していた。
このラテックスを実施例 1 と同様に透析精製した後、 基体 Iに塗布し、 通風乾燥して皮膜 8 Aの重量が約 5mg の感湿素子^ 2 5を得た。
感湿素子 2 5の感湿特性は第 1 3図に実線 ΧΧ 'Ιで示 す。 感湿素子 2 5は感湿素子 2 3及び^ 2 4 よ j?も 更に電気抵抗値が低い。
O PI

Claims

請求の範囲
1 . 絶縁基板と、 この上に所定の距離だけ離れて形成さ れた一対の電極と、 該両電極を覆うよ うに形成され、 雰 囲気中の水分量によって電気抵抗値が変化する感湿材皮 膜とからる ]?、 該感湿材皮膜が疎水性の核と、 該核を覆 い且つィォン性の基あるいは親水性の基を有する表面層 とから ¾る微粒子でつく られていることを特徵とする感 湿素子。
2 . 前記微粒子がラテックス粒子であることを特徵とす る請求の範囲第 1項記載の感湿素子。
3 . 前記核は琼水性粒子で、 前記表面層は該疎水性粒子 の表面にグラフ ト化された親水性の基を有する化.合物で あることを特徵とする請求の範囲第 1項記載の感湿素子。
4 . 前記絶縁基板はシ リ コ ン半導体基板とこの上に設け られた電気的絶緑層とからなることを特徵とする請求の 範囲第 1 , 2又は 3項記載の感湿素子。
5 . 前記電極は、 前記電気的絶縁層上に狭い間隔をもつ て対向するよ うに形成された 1対の導電性ボリシ リ コ ン であることを特徵とする請求の範囲第 4項記載の感湿素 子。
6 . 前記絶緣基板は、 シ リ コ ン半導体基板上に酸化シ リ コ ンによ ]?形成された第 1の電気的絶縁層と、 第 1の電 気的絶縁層の上に窒化シリ コ ンで形成された第 2 の電気 的絶緣層とから !)、 そして前記 1対の電極は、 第 2の 電気的絶縁層上にリ ンイ オン又はボロ ンィオンの注入に よ!)、 狭い間隙をもって対向するように形成された 1対 の導電性のポリ シ リ コ ンであることを特徵とする請求の 範囲第 1 , 2又は 3項記載の感湿素子。
7 . 前記導電性ポリシリコン電極の端部は、 チタ ン、 パ ラジウム、 金の順に蒸着され、 接続端子が形成されてい ることを特徵とする請求の範囲第 6項記載の感湿素子。
8 . 絶緣基板を形成するステッ プ、 絶縁基板上に互に対 向する 1対の電極を設けるステッ プ、 及び前記電極を覆 う よ うに、 疎水性基 有す核と該核を覆い親水性基を有 する有機化合物の表面層からなる微粒子でできた感湿材 を設けるステッ プとから ¾ることを特徵とする感湿素子 の製法。
9 . 前記絶緣基板形成のステップと前記電極形成のステ ッ ブほ、 シ リ コ ン半導体ウェハを洗浄する第 1の工程と、 前記シリ コン半導体ウェハを洗浄した後に化学的気相成 長法によ ]?シリ コン半導体ゥヱハ表面上に窒化シリ コン 層を形成する第 2の工程と、 前記窒化シ リ コ ン層の上に 化学的気相成長法によ ポリシリ コ ン層を形成する第 3 の工程と、 前記ポ リ シリ コン層にボロ ン イ オ ン又はリ ン イ オンを注入する第 4の工程と、 前記ポリシ リ コ ン層の 不要部分をエッチングによ り除去して一対の電極を形成 する第 5の工程と、 前記窒化シ リ コ ン層の切]?離し部分 をエ ッチングによ 1?除去する第 6の工程とを含むことを 特徵とする請求の範囲第 8項記載の感湿素子。
10. 前記第 2工程に於て前記シ リ コ ン半導体ウェハを洗 淨した後、 熱酸化によ 1)前記シ リ コン半導体ゥェハ表面 上に酸化シリ コン層を形成する工程と該駿化シリ コン層 の表面に化学的気相成長法によ 1?窒化シリ コン層を形成 する工程が含まれることを特徵とする請求の範囲第 9項 記載の感湿素子。
11. 疎水性の核と、 該核を覆うものであってかつイ オン 性の基或いは親水性の基を有する表面層とから成る微粒 子でからるることを特徵とする感湿材。
12. 前記微粒子はラテックス粒子であることを特徵とす る請求の範囲第 1 1項記載の感湿材。
13. 前記核は疎水性粒子であ ]?、 前記表面層は該疎水性 粒子の表面にグラフ ト化されたものであってかつイ オン 性の基或いは親水性の基を有する化合物で形成されてい ることを特徵とする請求の範囲第 1 1項記載の感湿材。
14. 疎水性を示す化合物の核と、 該核を覆うも のであつ てかつィ オン性の基或いは親水性の基を有する表面層と から成るラテッ クス粒子を水溶液中で合成した後に該水 溶液を乾燥させてラテックス皮膜を得ることを特徵とす る感湿材の製法。
15. 竦水性高分子化合物微粒子を合成した後、 イ オン性 基を有し或いは親水性の基を有する有機化合物を各前記 微粒子の表面にグラフト化せしめることを特徵とする感 湿材の製法。
16. 前記疎水性高分子化合物微粒子は疎水性モノ マを乳 化重合してラテックス粒子として合成することを特徵と する請求の範囲第 1 5項記載の感湿材の製法。
O PI
PCT/JP1981/000166 1980-07-21 1981-07-20 Moisture-sensitive element,moisture-sensitive material and manufacturing method for same WO1982000362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8181902028T DE3174710D1 (en) 1980-07-21 1981-07-20 Moisture-sensitive element, moisture-sensitive material and manufacturing method for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9881580A JPS5723848A (en) 1980-07-21 1980-07-21 Electronic resistance type moisture sensor and its manufacture
JP80/98815 1980-07-21
JP80/172054801208 1980-12-08
JP55172054A JPS5796246A (en) 1980-12-08 1980-12-08 Humidity-sensitive substance, preparation thereof and humidity-sensitive element

Publications (1)

Publication Number Publication Date
WO1982000362A1 true WO1982000362A1 (en) 1982-02-04

Family

ID=26439922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1981/000166 WO1982000362A1 (en) 1980-07-21 1981-07-20 Moisture-sensitive element,moisture-sensitive material and manufacturing method for same

Country Status (3)

Country Link
US (1) US4642601A (ja)
EP (1) EP0057728B1 (ja)
WO (1) WO1982000362A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999703A (ja) * 1982-11-30 1984-06-08 株式会社東芝 感湿素子
GB8322418D0 (en) * 1983-08-19 1983-09-21 Emi Ltd Humidity sensor
US4793175A (en) * 1986-04-05 1988-12-27 Robert Bosch Gmbh Humidity sensor, sensor material, method of manufacture and humidity sensing system, especially for automotive use
GB2204408A (en) * 1987-03-04 1988-11-09 Plessey Co Plc Biosensor device
EP0332934A3 (de) * 1988-03-14 1992-05-20 Siemens Aktiengesellschaft Anordnung zur Messung des Partialdruckes von Gasen oder Dämpfen
US5248617A (en) * 1988-03-21 1993-09-28 Haan Andre P De Processes and apparatus for detecting the nature of combustion gases
JPH02150754A (ja) * 1988-11-30 1990-06-11 Toshiba Corp 感応素子の製造方法
US5018380A (en) * 1989-02-06 1991-05-28 Allied-Signal Inc. Dielectric sensors
DE3911812C2 (de) * 1989-04-11 1996-09-19 Siemens Ag Schneller Feuchtesensor auf Polymerbasis
DE69021925T3 (de) * 1989-04-26 2000-01-20 Yamatake Corp Feuchtigkeitsempfindliches Element.
US5648400A (en) * 1992-08-04 1997-07-15 Japan Atomic Energy Research Inst. Process for producing polymeric electrolyte complex and ion-exchange resin
FR2720161B1 (fr) * 1994-05-20 1996-08-02 Isen Rech Procédé de fabrication d'un capteur de mesure de vapeur, capteur de mesure obtenu par le procédé et procédé d'utilisation de ce capteur.
US5533393A (en) * 1995-01-13 1996-07-09 Honeywell Inc. Determination of dew point or absolute humidity
US6566893B2 (en) 1997-02-28 2003-05-20 Ust Umweltsensortechnik Gmbh Method and arrangement for monitoring surfaces for the presence of dew
AT3295U1 (de) * 1998-11-06 1999-12-27 E & E Elektronik Gmbh Anordnung zur feuchtemessung
US7073246B2 (en) * 1999-10-04 2006-07-11 Roche Diagnostics Operations, Inc. Method of making a biosensor
JP2002216566A (ja) * 2001-01-22 2002-08-02 Sony Corp 冠水電気スイッチおよびその製造方法
JP2003270189A (ja) * 2002-03-20 2003-09-25 Denso Corp 容量式湿度センサ
TW573119B (en) * 2002-08-28 2004-01-21 Nanya Technology Corp A moisture detecting method, a moisture detecting device and method of fabricating the same
US6868350B2 (en) * 2003-04-11 2005-03-15 Therm-O-Disc, Incorporated Method and apparatus for the detection of the response of a sensing device
WO2004113901A1 (en) 2003-06-20 2004-12-29 Roche Diagnostics Gmbh Test strip with slot vent opening
ITTO20040411A1 (it) * 2004-06-21 2004-09-21 Olivetti Jet S P A Dispositivo di rilevamento di grandezze fisiche, particolarmente di umidita', e relativo metodo di rilevamento.
JP2006250579A (ja) * 2005-03-08 2006-09-21 Denso Corp 湿度センサの検査装置及び特性調整方法
TWI314989B (en) * 2006-06-23 2009-09-21 Fego Prec Ind Co Ltd Humidity sensor having temperature compensation self-comparing and manufacturing method therefore
GB0614314D0 (en) 2006-07-19 2006-08-30 Croda Int Plc Co-polymers in hair styling applications
US9568445B2 (en) 2014-04-09 2017-02-14 International Business Machines Corporation Salt-based device and a circuit to monitor and log the times a data center air goes above a predefined limit
US10241021B2 (en) * 2015-07-22 2019-03-26 International Business Machines Corporation Measurement of particulate matter deliquescence relative humidity
CN105366626B (zh) * 2015-10-21 2017-12-12 苏州工业园区纳米产业技术研究院有限公司 Mems电容式湿度传感器及其制备方法
DE102016207260B3 (de) * 2016-04-28 2017-01-12 Robert Bosch Gmbh Mikromechanische Feuchtesensorvorrichtung und entsprechendes Herstellungsverfahren
CN109631651B (zh) * 2018-12-06 2020-07-07 华北电力大学 一种局部自适应可控浸润性耦合微结构强化沸腾换热方法
CN113640169A (zh) * 2021-06-23 2021-11-12 南方医科大学皮肤病医院(广东省皮肤病医院、广东省皮肤性病防治中心、中国麻风防治研究中心) 基于掺杂Sb的WO3纳米晶QCM传感器及其在呼吸、皮肤创面湿度监测中的应用
CN113999442B (zh) * 2021-10-12 2023-04-14 广西大学 一种高度灵敏的湿度传感导电橡胶膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520781A (ja) * 1991-07-16 1993-01-29 Matsushita Electric Ind Co Ltd 光デイスク装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728831A (en) * 1951-11-09 1955-12-27 Phys Chemical Res Corp Electric hygrometer
US2937524A (en) * 1956-09-17 1960-05-24 Polytechnic Inst Brooklyn Polyelectrolyte water-indicating devices
US3073161A (en) * 1959-11-27 1963-01-15 Gen Motors Corp Humidity sensing element
US3167734A (en) * 1959-11-27 1965-01-26 Gen Motors Corp Humidity sensing element
FR1413021A (fr) * 1963-11-07 1965-10-01 Wayne Kerr Lab Ltd Améliorations aux appareils de mesure de l'humidité et à leurs procédés de fabrication
US3458845A (en) * 1967-11-08 1969-07-29 Johnson Service Co Crosslinked electrical resistance humidity sensing element
US3671913A (en) * 1969-03-19 1972-06-20 Saginomiya Seisakusho Inc Aging-proof humidity sensing element and method for the production thereof
US3686606A (en) * 1970-08-24 1972-08-22 Johnson Service Co Electrical humidity sensing element
SU381012A1 (ru) * 1971-07-09 1973-05-15 М. Ярыгин, М. Алексеев, Н. И. Волынкин , О. К. Николаев Ленинградский институт кииоинженеров Бмслиотека 1
AU5805873A (en) * 1972-07-25 1975-01-16 Koichi Sugaya Humidity sensor electrode assembly
JPS5431715B2 (ja) * 1972-09-20 1979-10-09
JPS5431714B2 (ja) * 1972-09-20 1979-10-09
JPS5020781A (ja) * 1973-06-20 1975-03-05
GB1464605A (en) * 1973-08-14 1977-02-16 Nippon Sheet Glass Co Ltd Humidity-sensitive sensor
JPS5334221B2 (ja) * 1974-03-29 1978-09-19
FR2273275B1 (ja) * 1974-05-27 1977-03-11 Radiotechnique Compelec
US4057823A (en) * 1976-07-02 1977-11-08 International Business Machines Corporation Porous silicon dioxide moisture sensor and method for manufacture of a moisture sensor
JPS5334221A (en) * 1976-09-08 1978-03-30 Nippon Denso Co Ltd Wiper control device
JPS5426911A (en) * 1977-08-02 1979-02-28 Nippon Furnace Kogyo Kaisha Ltd Method and apparatud for combustion in soaking pit
JPS5816467B2 (ja) * 1977-12-08 1983-03-31 神栄株式会社 感湿素子
JPS5529774A (en) * 1978-08-24 1980-03-03 Shinei Kk Relative humidity detector
US4263576A (en) * 1978-07-10 1981-04-21 Murata Manufacturing Co., Ltd. Humidity sensitive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520781A (ja) * 1991-07-16 1993-01-29 Matsushita Electric Ind Co Ltd 光デイスク装置

Also Published As

Publication number Publication date
US4642601A (en) 1987-02-10
EP0057728A1 (en) 1982-08-18
EP0057728B1 (en) 1986-05-28
EP0057728A4 (en) 1982-12-09

Similar Documents

Publication Publication Date Title
WO1982000362A1 (en) Moisture-sensitive element,moisture-sensitive material and manufacturing method for same
KR101126407B1 (ko) 고체 고분자 전해질막과 그 제조 방법, 및 연료 전지
CN102388098A (zh) 聚合物官能化碳纳米管、其制备方法及其用途
US20080116138A1 (en) Packing Material for Ion Chromatography
JPS6154176B2 (ja)
Ebata et al. Self formed anisotropic proton conductive polymer film by nanophase separation
JP2007329069A (ja) 固体高分子電解質膜及び燃料電池
JP2023073265A (ja) 導電性組成物及びその製造方法と、導電体及びその製造方法
JP4645196B2 (ja) 有機−無機複合イオン伝導膜
JP2004146164A (ja) プロトン伝導膜及びその製造方法
JP2004164857A (ja) プロトン伝導材料
SAKAI et al. Humidity sensors using chemically modified polymer thin films
CA2516729A1 (en) Mixed conductive carbon and electrode
JP2004301766A (ja) 感湿材用組成物、感湿材料および湿度センサ素子
JPH0649213A (ja) イオン導電性材料
JP7443722B2 (ja) 導電性組成物、帯電防止膜の製造方法及びパターンの形成方法
JPS58193445A (ja) 湿度センサ
JP2002340833A (ja) 湿度センサ素子およびその製造方法
JP2874021B2 (ja) 湿度センサ
JPH0718832B2 (ja) 感湿素子
JP2002181755A (ja) 湿度センサ素子およびその製造方法
JP3465723B2 (ja) 弱酸性陽イオン交換樹脂の製造法
JPS6291847A (ja) 感湿素子
JPS60177254A (ja) 感湿素子
CN117209826A (zh) 一种基于碳纳米管/橡胶的复合薄膜及其制备方法和柔性传感器

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE GB

WWE Wipo information: entry into national phase

Ref document number: 1981902028

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1981902028

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1981902028

Country of ref document: EP