WO1981002031A1 - A system for dry forming of paper or other sheet material of particles or fibres - Google Patents

A system for dry forming of paper or other sheet material of particles or fibres Download PDF

Info

Publication number
WO1981002031A1
WO1981002031A1 PCT/DK1981/000006 DK8100006W WO8102031A1 WO 1981002031 A1 WO1981002031 A1 WO 1981002031A1 DK 8100006 W DK8100006 W DK 8100006W WO 8102031 A1 WO8102031 A1 WO 8102031A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
screen
web
pipes
air
Prior art date
Application number
PCT/DK1981/000006
Other languages
English (en)
French (fr)
Inventor
E Jacobsen
T Persson
O Nielsen
Original Assignee
Scan Web Is
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/132,131 external-priority patent/US4352649A/en
Application filed by Scan Web Is filed Critical Scan Web Is
Priority to BR8106032A priority Critical patent/BR8106032A/pt
Publication of WO1981002031A1 publication Critical patent/WO1981002031A1/en
Priority to DK411681A priority patent/DK149979C/da
Priority to FI812929A priority patent/FI66948C/fi
Priority to NO813188A priority patent/NO156656C/no

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/04Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres having existing or potential cohesive properties, e.g. natural fibres, prestretched or fibrillated artificial fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F9/00Complete machines for making continuous webs of paper

Definitions

  • a system for dry forming of paper or other sheet material of particles or fibres is provided.
  • the present invention relates to a system for dry forming of paper or other sheet materials of particles or fibres and of the kind specified in the introductory clause of claim 1.
  • a system of this kind is known from . the USA Patent Specifiation No. 4,157 / 724, in which the distributor unit comprises an upwardly open container having lower side wall portions of a classification screen material which enables the fibre material in the container to be gradually let out through these wall portions / the outlet material then being moved down to the top surface of the moving, fora inous forming web by the downward directed air flow as caused by the suction means underneath the forming web.
  • impellers Inside the distributor container is mounted a row of impellers, the rotating wings of which serve to whip the fibre material in a recirculating flow one way along one side of the container and the opposite way along the oppo ⁇ site side.
  • the impeller wings also impart to the material flow a movement component outwardly towards the insides of the screen walls, whereby the material flow is gene ⁇ rally held against the respective walls, even though these project in a straight manner across the forming web, and by the same action the material output through the screen walls is generally promoted such that a high distributing capacity is achieved.
  • the said recirculation of the material in the con ⁇ tainer is highly advantageous partly as a means for providing an even distribution of the material inside the container, even if new material is supplied at one place only, and partly because the material flow as gene ⁇ rally passing across the forming web will prevent the
  • whipping wings serve not only to effect the recirculation, but also to whip the material for keeping it air flui- dized, to increase the distributor capacity by forcing material out through the classification screens, and to generally hold the material flow against the inside of the screens, such that it maintains its character of a well defined and confined flow, without individual fibres spreading all over the container space and depositing themselves whereever possible.
  • the impellers should be driven with considerable power for producing the desired effects, and besides it can be operationally inconvenient that the single parameter constituted by the speed of rotation of the whipping wings will thus determine several different functions of the distri ⁇ butor in an interrelated manner.
  • the outlet wall portion forms at least a part of a pipe which is used for guiding the flow of material along the respective. length or partial length of the recirculation path, the latter preferably being located entirely within a closed pipe circuit.
  • the technical main effect of the invention is that the recirculation flow of the material may be supported or maintained merely by way of' transportation air through the said pipe, because there is no longer any need to arrange for the material flow to be held monolaterally against a guiding wall.
  • the flow will be effectively confined by the pipe, and basically the recirculation movement as such will then be produceable by simple blower means in a very economical manner.
  • OMPI SUBSTITUTE 1 / WIPO ⁇ screen wall portions of the pipes crossing the forming web are extended to simply constitute the pipes entirely, i.e. all the way round, and these pipes or pipe portions are arranged so as to be rotating during the operation.
  • the fibres will leave the pipe through the lower portion thereof, and a tendency will exist to fibres sticking to the edge portions of the perforations, where ⁇ by the free area thereof may become reduced.
  • the same perforations will soon be located adjacent the top side of the pipe, and here the downwardly directed air flow will penetrate the perforations with opposite relative direction, whereby the perforations will be cleaned in a successive manner.
  • Topwise of the pipe may even be arranged for special cleaning means such as air nozzles blowing compressed air against a.restricted area of the outside of the pipe, whereby the perforations and the outside of the pipe may be cleaned most effectively.
  • cleaning here dis ⁇ cussed has a remarkable influence on the entire system not only because the screen perforations are kept open to maintain a high capacity of the system, but also be ⁇ cause the system as here described is able to handle a fibre material, in which the length of the fibres may substantially exceed the fibre lengths which have until now been considered as a maximum in connection with dry forming processes.
  • a conventionel fibre length maximum is some 3-4 mm, while experiments have shown that a system according to the embodiment of the inven ⁇ tion as here discussed can easily handle a material in which the fibre length is some 20-25 mm, perhaps even higher.
  • Fig. 1 is a perspective view of a system according to the invention.
  • Fig. 2 is a cross sectional view thereof.
  • Fig. 3 is a plan side view, partly in section, and
  • Fig. 4 is a cross sectional view of a modified de ⁇ tail.
  • the system shown in Figs. 1-3 comprises a foraminous forming web 2 which is moved continually through a closed path (not shown in full) so as to pass underneath a di- stributor unit 4. Underneath, this unit and the web 2 is mounted a suction box 6 having an exhaust pipe 8 con ⁇ nected to a suitable suction blower.
  • the distributor unit 4 comprises an outer housing 10, which is open down ⁇ wardly towards the web 2, and two horizontal pipes 12 extending through the housing across the web, these pipes being made of classification screen material, i.e. a net material or perforated sheet material.
  • the end portions of the pipes 12 are supported by rotation bearings 16 mounted in the opposed end walls 14 of the housing 10, and outside the walls 14 the respective pipe ends are interconnected through exterior, stationary U- pipes 18 and 20, of which the U-pipe 20 is provided with a tangential inlet pipe 22 projecting in line with one of the pipes 12.
  • the end portions of the pipes 12 are provided with non-perforated sleeves 24 cooperating with the bearings 16 and received in a sealed, rotary manner in or by the ends of the U-pipes 18 and 20.
  • the top side of the housing 10 is provided with slot openings 30, which may be width adjustable by means of valve plates 32.
  • the system already as described so far may be opera- tive in the manner that a flow of air fluidized fibre material is supplied through the tangential inlet pipe 22 from a blower (not shown) , whereby is created a re ⁇ circulating material flow in the pipe system 12,18,20. From this flow individual fibres will be let out through the screen pipe walls together with the surplus of trans ⁇ portation air as supplied through the inlet pipe 22. From the suction box 6 air is sucked down through the foramin- ous forming web 2 and down through the housing 10 from the upper slots 30. This generally vertical air flow will pass both across the screen pipes and along the outsides thereof thus promoting the outlet of fibres from the pipes and conveying the outlet material down to be deposited on the forming web 2.
  • OMPI r means of additional exterior cleaning means such as a rotary brush or - as shown in Fig. 2 - a nozzle system 44 .on a pipe 46 connected to a source of compressed air, whereby air jets are blown against the outside of the pipes 12 either continually or intermittently.
  • a very efficient cleaning is obtainable, and as a result it v/ill be possible to handle fibres of a con ⁇ siderable length and with a durably high capacity of the system.
  • the mere recir ⁇ culation of the ' material through the pipes by virtue of the air supply through the pipe 22 may be insufficient for ensuring that the material is kept properly air flui- dized.
  • each pipe 12 is arranged an axially oriented agitation cylinder 34 provided with radial agitation needles 36 all along the length thereof, the cylinders having shaft portions 38 mounted in bearings 40, these shafts at least at one end being extended out ⁇ wardly and provided with pulleys 42 or similar means enabling the cylinders 34 to be rotated relatively fast by suitable driving means (not shown) .
  • the external diameter of the needle cylinders 34,36 is pronounced smaller than the internal diameter of the pipes 12, and the cylinders are mounted eccentrically such that the needles 36 sweep closely over the lower inside portion of the screen pipe 12.
  • the needle tips will brush off any possible fibre col ⁇ lections at the inside of the pipe, and moreover the needles will show a pronounced desintegrating effect on the material, ⁇ should the same contain fibre lumps.
  • needles 36 will act to directly throw material out through the screen, such that a very high outlet capacity can be achieved.
  • the needles 36 are mounted on the cylinder with small mutual distance along a screw line on the surface thereof, and during their rapid rotation the needles will thus act as a conveyor worm, which will promote the general material flow through the pipe 12.
  • the recirculation flow may well be produced by conventional blower means, e.g. axial blower wings mounted direct on the cylinders near the ends thereof.
  • Another possibility is to cause transportation air to be injected into the system through nozzles located in- ' side the U-pipes 18 and/or 20--
  • the needles or some of them may be shaped slightly propeller formed for extra contribution to the main flow.
  • a stationary shield plate 48 supported endwise by means of brackets (not shown) inside the U-pipes 18 and 20. This plate serves to limit the direct downflow of air through the screen pipes to the forming web 2, as it may be desirable to effect an increase of the air flow down along the outsides of the screen pipes. How ⁇ ever, air from above can still enter the screen pipes through the side portions thereof.
  • the needle cylinder 35,36 shows a remarkable des- integration effect on fibre lumps, perhaps due to its eccentric location in the pipe 12, and in an extreme case it could be possible to supply the material to the pipe system solely as fibre lump material e.g. injected through a top or inner side opening in one of the U-pipes 18,20.
  • the supply pipe 22 may then be avoided or used solely for supply of extra air.
  • Fig. 4 it is illustrated that in stead of a needle cylinder in the screen pipes it is possible to use one or more throughgoing pipes 50 connected to a source of compressed air and provided with nozzle means 52 for directing an air jet towards the inside of the screen pipe, whereby an outthrowing and agitating effect on the fibre material is obtained.
  • the jets may have a velocity component downstream in the pipe.
  • the flow and pressure conditions inside the pipes 12 will vary somewhat along the length thereof, and if necessary it will be possible to cause some differentia ⁇ tion of these conditions, e.g. by arranging for the top shield plate 48 to be axially inclined or to have vary ⁇ ing width along the pipe.
  • the screw line of the needles 36 along the cylinder 34 may show a non-constant pitch, and the degree of perforation of the ' screen pipes may be graduated.
  • the rotation of the screen pipes which is very im- portant for the said cleaning of the perforations, may well take place at such speed that the associated centri ⁇ fugal forces hereby contribute to increase the outthrow- ing effect on the fibres located in or adjacent the per ⁇ forations.
  • the invention also comprises the described method of producing a web material by guiding a material flow through distributor pipes 12 and preferably rotating the pipes during the operation and cleaning them in a success ⁇ ive manner during the rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Paper (AREA)
PCT/DK1981/000006 1980-01-18 1981-01-15 A system for dry forming of paper or other sheet material of particles or fibres WO1981002031A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR8106032A BR8106032A (pt) 1980-01-18 1981-01-15 Sistema para conformacao a seco de papel ou outro material em folha de particulas ou fibras
DK411681A DK149979C (da) 1980-01-18 1981-09-16 Anlaeg til toerformning af papir eller andet banemateriale af partikler eller fibre
FI812929A FI66948C (fi) 1980-01-18 1981-09-18 System foer torrformning av papper eller annat arkmaterial av partiklar eller fibrer
NO813188A NO156656C (no) 1980-01-18 1981-09-18 Anordning for toerrforming av papir eller annet arkmateriale av partikler eller fibre.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB8001682 1980-01-18
GB8001682 1980-01-18
US06/132,131 US4352649A (en) 1980-03-20 1980-03-20 Apparatus for producing a non-woven web from particles and/or fibers

Publications (1)

Publication Number Publication Date
WO1981002031A1 true WO1981002031A1 (en) 1981-07-23

Family

ID=26274189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK1981/000006 WO1981002031A1 (en) 1980-01-18 1981-01-15 A system for dry forming of paper or other sheet material of particles or fibres

Country Status (8)

Country Link
EP (1) EP0032772B1 (enrdf_load_stackoverflow)
JP (1) JPH0322281B2 (enrdf_load_stackoverflow)
AU (1) AU547989B2 (enrdf_load_stackoverflow)
BR (1) BR8106032A (enrdf_load_stackoverflow)
DE (1) DE3160607D1 (enrdf_load_stackoverflow)
FI (1) FI66948C (enrdf_load_stackoverflow)
SU (1) SU1405709A3 (enrdf_load_stackoverflow)
WO (1) WO1981002031A1 (enrdf_load_stackoverflow)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000097A1 (en) * 1984-06-12 1986-01-03 Scan-Web I/S A dry forming system for fiber products
WO1987001403A1 (en) * 1985-08-30 1987-03-12 Scan-Web I/S V/H. Kongsted Og J. Mosgaard Christen A distributor unit for dry laying out of fibres, preferably for dry manufacturing of paper
EP0343139A3 (en) * 1988-05-20 1991-03-20 Yhtyneet Paperitehtaat Oy Walkisoft Engineering Method and aparatus for forming a dry web on the wire
WO2001054873A1 (en) * 2000-01-28 2001-08-02 Scan-Web I/S Apparatus for dry-distributing of fibrous materials
WO2003016622A1 (en) * 2001-08-20 2003-02-27 Dan-Web Holding A/S High speed former head
US6709613B2 (en) 2001-12-21 2004-03-23 Kimberly-Clark Worldwide, Inc. Particulate addition method and apparatus
WO2004038080A3 (de) * 2002-10-23 2004-11-25 Fleissner Gmbh Verfahren zum betreiben einer vorrichtung zum legen eines vlieses nach dem luftlegeverfahren und vorrichtung dazu

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE450256B (sv) * 1983-12-23 1987-06-15 Svenska Traeforskningsinst Sett och anordning for framstellning av skikt av torra fibrer pa en formyta
DE3561337D1 (en) * 1984-04-27 1988-02-11 Mira Lanza Spa Apparatus for uniformly distributing a disintegrated fibrous material on a fiber layer forming surface in plants for the dry forming of paper
FI81642C (fi) * 1988-05-20 1990-11-12 Yhyneet Paperitehtaat Oy Walki Matarsystem foer en former vid en torrpappersmaskin.
FI94967C (fi) * 1991-09-18 1995-11-27 Yhtyneet Paperitehtaat Oy Menetelmä ja laite aineradan kuivamuodostukseen pitkäkuituisesta materiaalista
FI105837B (fi) * 1999-04-09 2000-10-13 Bki Holding Corp Jakeluyksikkö käytettäväksi rainamateriaalin kuivamuodostuksessa
US6726461B2 (en) 1999-05-27 2004-04-27 Bki Holding Corporation Screen pipe for dry forming web material
DE60225727T2 (de) 2002-10-15 2009-04-30 A. Celli Nonwovens S.P.A., Porcari Vorrichtung zur trockenherstellung einer faserstoffbahn
DE50309587D1 (de) * 2003-10-17 2008-05-21 Reifenhaeuser Gmbh & Co Kg Faserlaminat und Verfahren zur Herstellung eines Faserlaminates
DK175987B1 (da) * 2004-08-05 2005-10-31 Dan Core Internat A S Formerhoved med roterende tromle
JP6248616B2 (ja) * 2013-12-25 2017-12-20 セイコーエプソン株式会社 シート製造装置
CN103741376A (zh) * 2014-01-10 2014-04-23 江苏省仪征市海润纺织机械有限公司 气流垂直崭叠铺网机
JP6492576B2 (ja) * 2014-11-26 2019-04-03 セイコーエプソン株式会社 シート製造装置
DE102022118800A1 (de) * 2022-07-27 2024-02-01 Voith Patent Gmbh Verfahren und Vorrichtung zur Herstellung einer Fasermatte

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489079A (en) * 1946-04-18 1949-11-22 Paper Chemistry Inst Apparatus for forming fibrous sheets or paperboard
GB668216A (en) * 1949-11-07 1952-03-12 Dick Co Ab Improvements in or relating to the production of fibrous structures and apparatus therefor
US2738557A (en) * 1952-10-24 1956-03-20 Dick Co Ab Apparatus for the air deposition of fibers in the manufacture of fibrous structures
US2743758A (en) * 1950-11-13 1956-05-01 Cascades Plywood Corp Fiber mat forming apparatus and methods
US2940133A (en) * 1950-04-14 1960-06-14 Weyerhaeuser Co Continuous deposition of dry felted structures
US2940134A (en) * 1950-09-02 1960-06-14 Weyerhaeuser Co Dry felting apparatus and process
GB1023722A (en) * 1962-09-01 1966-03-23 Cartiere Di Cairate S P A A process of and apparatus for producing sanitary towels
US3482287A (en) * 1967-10-10 1969-12-09 Domtar Ltd Method and apparatus for individualizing fibers preparatory to web forming
SE357399B (enrdf_load_stackoverflow) * 1967-01-06 1973-06-25 K Kroeyer
US3781150A (en) * 1971-12-29 1973-12-25 Honshu Paper Co Ltd Apparatus for producing multilayer fibrous structures
US4051576A (en) * 1975-12-18 1977-10-04 Sergei Vyacheslavovich Baburin Apparatus for aerodynamically forming a fibrous sheet material
US4060360A (en) * 1975-05-29 1977-11-29 Karl Kroyer St. Anne's Limited Apparatus for dry forming a layer of fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857657A (en) * 1973-11-12 1974-12-31 Riegel Textile Corp Fiberizing and pad forming apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489079A (en) * 1946-04-18 1949-11-22 Paper Chemistry Inst Apparatus for forming fibrous sheets or paperboard
GB668216A (en) * 1949-11-07 1952-03-12 Dick Co Ab Improvements in or relating to the production of fibrous structures and apparatus therefor
US2940133A (en) * 1950-04-14 1960-06-14 Weyerhaeuser Co Continuous deposition of dry felted structures
US2940134A (en) * 1950-09-02 1960-06-14 Weyerhaeuser Co Dry felting apparatus and process
US2743758A (en) * 1950-11-13 1956-05-01 Cascades Plywood Corp Fiber mat forming apparatus and methods
US2738557A (en) * 1952-10-24 1956-03-20 Dick Co Ab Apparatus for the air deposition of fibers in the manufacture of fibrous structures
GB1023722A (en) * 1962-09-01 1966-03-23 Cartiere Di Cairate S P A A process of and apparatus for producing sanitary towels
SE357399B (enrdf_load_stackoverflow) * 1967-01-06 1973-06-25 K Kroeyer
US3482287A (en) * 1967-10-10 1969-12-09 Domtar Ltd Method and apparatus for individualizing fibers preparatory to web forming
US3781150A (en) * 1971-12-29 1973-12-25 Honshu Paper Co Ltd Apparatus for producing multilayer fibrous structures
US4060360A (en) * 1975-05-29 1977-11-29 Karl Kroyer St. Anne's Limited Apparatus for dry forming a layer of fiber
US4051576A (en) * 1975-12-18 1977-10-04 Sergei Vyacheslavovich Baburin Apparatus for aerodynamically forming a fibrous sheet material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000097A1 (en) * 1984-06-12 1986-01-03 Scan-Web I/S A dry forming system for fiber products
US4640810A (en) * 1984-06-12 1987-02-03 Scan Web Of North America, Inc. System for producing an air laid web
AU582367B2 (en) * 1984-06-12 1989-03-23 John Mosgaard Christensen Dry forming paper sheets
WO1987001403A1 (en) * 1985-08-30 1987-03-12 Scan-Web I/S V/H. Kongsted Og J. Mosgaard Christen A distributor unit for dry laying out of fibres, preferably for dry manufacturing of paper
EP0343139A3 (en) * 1988-05-20 1991-03-20 Yhtyneet Paperitehtaat Oy Walkisoft Engineering Method and aparatus for forming a dry web on the wire
US5068079A (en) * 1988-05-20 1991-11-26 Yhtyneet Paperitehtaat Oy Walkisoft Engineering Method for forming a dry web on the wire
WO2001054873A1 (en) * 2000-01-28 2001-08-02 Scan-Web I/S Apparatus for dry-distributing of fibrous materials
US7597200B2 (en) 2000-01-28 2009-10-06 Scan-Web I/S Apparatus for dry-distributing of fibrous materials
WO2003016622A1 (en) * 2001-08-20 2003-02-27 Dan-Web Holding A/S High speed former head
US7107652B2 (en) 2001-08-20 2006-09-19 Dan-Web Holding A/S High speed former head
US6709613B2 (en) 2001-12-21 2004-03-23 Kimberly-Clark Worldwide, Inc. Particulate addition method and apparatus
WO2004038080A3 (de) * 2002-10-23 2004-11-25 Fleissner Gmbh Verfahren zum betreiben einer vorrichtung zum legen eines vlieses nach dem luftlegeverfahren und vorrichtung dazu

Also Published As

Publication number Publication date
JPS57500059A (enrdf_load_stackoverflow) 1982-01-14
FI66948C (fi) 1984-12-10
EP0032772A1 (en) 1981-07-29
AU547989B2 (en) 1985-11-14
JPH0322281B2 (enrdf_load_stackoverflow) 1991-03-26
BR8106032A (pt) 1981-11-24
AU6774981A (en) 1981-08-07
EP0032772B1 (en) 1983-07-20
DE3160607D1 (en) 1983-08-25
FI66948B (fi) 1984-08-31
SU1405709A3 (ru) 1988-06-23
FI812929L (fi) 1981-09-18

Similar Documents

Publication Publication Date Title
CA1150472A (en) System for dry forming of paper or other sheet material of particles or fibres
WO1981002031A1 (en) A system for dry forming of paper or other sheet material of particles or fibres
EP0188454B1 (en) A dry forming system for fiber products
CN100398283C (zh) 用于纤维产品干成型的纤维分布装置和方法
US4198725A (en) Cleaning and dust removal machine
US4157724A (en) Method and an apparatus for distributing a disintegrated material onto a layer forming surface
US3972092A (en) Machine for forming fiber webs
KR100573005B1 (ko) 섬유분배용 성형박스
CA1075422A (en) Web former
USRE31775E (en) Method and an apparatus for distributing a disintegrated material onto a layer forming surface
US4701294A (en) Eductor airforming apparatus
US20110174698A1 (en) Fractionating arrangement
US20050035155A1 (en) Dispersion system for dispersing material especially wood chips wood-fibre or similar on a dispersing conveyor belt
JPH01104870A (ja) 不織布繊維構造体
CN119617835A (zh) 烘干输送机构及微小颗粒烘干机
CN208542726U (zh) 自动清理分选机
CA1073624A (en) Method and an apparatus for distributing a disintegrated material onto a layer forming surface
US20060174452A1 (en) Alxing device for a head for dry-forming paper and associated method
EP0006696A1 (en) Apparatus and method for spreading fibres uniformly over a forming surface
CN211871374U (zh) 一种连接式海绵床垫定量充棉装置
US2815071A (en) Horizontal spray drier
JPH01298219A (ja) パッド製品形成装置及びパッドを形成する方法
JP2883666B2 (ja) カップ収容麺の飛出し防止装置
US3426729A (en) Apparatus for flocking articles
WO1987001403A1 (en) A distributor unit for dry laying out of fibres, preferably for dry manufacturing of paper

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR DK FI HU JP KP LU NO RO SU

WWE Wipo information: entry into national phase

Ref document number: 812929

Country of ref document: FI

WWG Wipo information: grant in national office

Ref document number: 812929

Country of ref document: FI