WO1980002552A1 - Graphite composition - Google Patents
Graphite composition Download PDFInfo
- Publication number
- WO1980002552A1 WO1980002552A1 PCT/GB1979/000071 GB7900071W WO8002552A1 WO 1980002552 A1 WO1980002552 A1 WO 1980002552A1 GB 7900071 W GB7900071 W GB 7900071W WO 8002552 A1 WO8002552 A1 WO 8002552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- composition
- graphite
- temperature
- proportion
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 125
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 91
- 239000010439 graphite Substances 0.000 title claims abstract description 91
- 239000000203 mixture Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 58
- 239000011159 matrix material Substances 0.000 claims abstract description 41
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 34
- 230000006835 compression Effects 0.000 claims abstract description 11
- 238000007906 compression Methods 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 235000011837 pasties Nutrition 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000006185 dispersion Substances 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 23
- 238000003763 carbonization Methods 0.000 claims description 21
- 229920003023 plastic Polymers 0.000 claims description 16
- 239000004033 plastic Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 7
- 229920000570 polyether Polymers 0.000 claims description 7
- 125000001174 sulfone group Chemical group 0.000 claims description 7
- -1 polyethylene Polymers 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 4
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 239000007858 starting material Substances 0.000 claims description 3
- QXAIDADUIMVTPS-UHFFFAOYSA-N 9-(9h-fluoren-9-yl)-9h-fluorene Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1C1C2=CC=CC=C2C2=CC=CC=C21 QXAIDADUIMVTPS-UHFFFAOYSA-N 0.000 claims description 2
- 239000004709 Chlorinated polyethylene Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 claims description 2
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 235000019239 indanthrene blue RS Nutrition 0.000 claims description 2
- UHOKSCJSTAHBSO-UHFFFAOYSA-N indanthrone blue Chemical compound C1=CC=C2C(=O)C3=CC=C4NC5=C6C(=O)C7=CC=CC=C7C(=O)C6=CC=C5NC4=C3C(=O)C2=C1 UHOKSCJSTAHBSO-UHFFFAOYSA-N 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000011118 polyvinyl acetate Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- LLBIOIRWAYBCKK-UHFFFAOYSA-N pyranthrene-8,16-dione Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C=C4C5=CC=CC=C5C(=O)C5=C4C4=C3C2=C1C=C4C=C5 LLBIOIRWAYBCKK-UHFFFAOYSA-N 0.000 claims description 2
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 claims description 2
- YKSGNOMLAIJTLT-UHFFFAOYSA-N violanthrone Chemical compound C12=C3C4=CC=C2C2=CC=CC=C2C(=O)C1=CC=C3C1=CC=C2C(=O)C3=CC=CC=C3C3=CC=C4C1=C32 YKSGNOMLAIJTLT-UHFFFAOYSA-N 0.000 claims description 2
- BSIHWSXXPBAGTC-UHFFFAOYSA-N isoviolanthrone Chemical compound C12=CC=CC=C2C(=O)C2=CC=C3C(C4=C56)=CC=C5C5=CC=CC=C5C(=O)C6=CC=C4C4=C3C2=C1C=C4 BSIHWSXXPBAGTC-UHFFFAOYSA-N 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 5
- 150000002739 metals Chemical class 0.000 abstract description 2
- 150000001721 carbon Chemical class 0.000 abstract 1
- 239000000047 product Substances 0.000 description 23
- 230000008569 process Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000006872 improvement Effects 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000005030 aluminium foil Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 241001235534 Graphis <ascomycete fungus> Species 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000181 anti-adherent effect Effects 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/524—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/522—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/528—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
- C04B35/532—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63408—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63436—Halogen-containing polymers, e.g. PVC
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/6344—Copolymers containing at least three different monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63444—Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/636—Polysaccharides or derivatives thereof
- C04B35/6365—Cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/605—Making or treating the green body or pre-form in a magnetic field
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Definitions
- This invention relates to improvements in graphite compositions and in particular to a method of producing graphite compositions of high and controlled density in which the graphite crystallites are well-oriented so as to exhibit a high degree of parallelism of their c-axes.
- Well-oriented graphite which exhibits a high degree of parallelism has in the past been produced by high temperature pyrolysis of carbonaceous material upon a solid surface maintained at a temperature of about 600°C to 2400°C.
- Products obtained in this way, the so-called pyrolytic graphite do contain a well-oriented graphite exhibiting a high degree of parallelism but the process is too expensive to be used for the production in bulk of commercially useful materials.
- it is difficult to produce graphite materials having complex shapes and the materials which are produced are difficult to work, e.g. by machining,
- Suitable viscous pasty or plastic media may be provided by thermoplastic organic polymers and the shear effect may be produced by passing the dispersion between heated rollers, or extruding it through a die, or by subjecting it to a tensile pull.
- the plastic or pasty medium may be decomposed and carbonised by heating the dispersion containing the well-oriented graphite crystallites to an elevated temperature, e.g. at a temperature up to 800°C, to produce a product comprising well-oriented graphite crystallites in a carbonaceous matrix.
- the carbonaceous matrix may be non-graphitic or at least partial graphitic depending on the nature of the viscous pasty or plastic medium and on the carbonisation temperature used.
- a method for the production of well-oriented graphite compositions which method comprises subjecting a dispersion of graphite crystallites in a matrix material to the ac ⁇ ion of a shear force alone or in combination with a compressive force, the matrix material being in a viscous pasty or plastic form at the temperature at which the shear force is applied and including a component A which is carbonisable to yield a substantial proportion of volatile products and leaving in the composition a relatively low proportion of a carbonaceous char and a component B which is carbonisable to yield a low proportion of volatile products and leaving in the composition a relatively high proportion of a carbonaceous char which includes a substantial proportion of carbon in the form of meso phase.
- meso phase By carbon in the form of the meso phase we mean the "liquid crystal" or plastic states of chars, such as are formed on progressive decomposition by heating of certain classes only of organic compounds. These states are termed meso phase (which means intermediate) to mark the fact that on still further heating they consolidate into non-plastic carbons .
- meso phase plastic chars are described , e . g . by J D Brooks and G H Taylor in 1968 Vol . 4 , p . 213 of Chemistry and Physics of Carbon , Ed . Philip L Walker (Arnold , New York) and their definition has been extensively discusse a . g .
- the method of the present invention is improvement over that described in the aforementioned British Patent Specification as the composition containing welloriented graphite which is produced by the method may subsequently be treated to produce products having an improved degree of orientation of the graphite crystallites and a greater anisotropy and density than may the compositions produced by the method described in the aforementioned specification .
- the ability to produce improved products is believed to be a function of the nature of the matrix materi al in the graphite dispersion used in the method.
- carbonisation of the composition gives a product containing graphite crystallites dispersed in a carbonaceous matrix , the matrix comprising a large proportion of pores or voids caused by volatilisation of a substantial proportion of component A and also comprising a proportion of mesophase carbon and any undecomposed residues derived from component B, the meso phase carbon being capable of being rendered plastic at elevated temperature.
- the pores left after volatilisation are themselves parallelised.
- the carbonised product by subjecting the carbonised product to an elevated pressure and temperature it is possible to compress it by expelling the pores or voids and by compressing the plastic meso phase carbon with the result that an improvement in the orientation of the graphite crystallites and in the anisotropy and density of the carbonised product may be obtained.
- the parallelism of the pores enables such compression, to remove the pores, of the partially carbonised composition containing meso phase carbon to be carried out under substantially less extreme conditions of pressure and temperature than are necessary with conventional graphites where the pores are oriented at random.
- the pores are well oriented (parallelised) means that higher degrees of parallelism i.e., anisotropy can be achieved in the final product.
- the components A and B are preferably compatible vith each other so as to form a homogeneous mixture.
- the components A and B may be mixed by conventional means.
- particulate forms of the components may be mixed in a suitable blender or when the components are polymeric materials they may be mixed and blended on rollers, e.g. on a pair of contra-rotating rollers.
- the mixing may be effected by dissolving the components in a common solvent and precipitating the components from the solvent.
- Dispersion of the graphite in the matrix material may suitably be effected in a ball-mill or on a pair of contrarotating rollers.
- the matrix material must also be thermally stable at the temperature at which the shea forces are applied and in particular this latter temperature should not be so high that rapid charring or decomposition the matrix takes place so that the lubricating effect of the material is lost. It is preferred that component A flows and has a suitable viscosity at a temperature which is lower than that at which component B flows and has a suitable viscosity with the resul that the processing of the dispersion is somewhat easier than is the case with the dispersions described in British Patent Specification No. 1 139 914.
- both of the components A and B are solid at room temperature so that when the shear forces are removed and the dispersion is cooled from the processing temperature the graphite crystallites in the composition are held in the same relative positions.
- Component A suitably flows, and has a relatively low viscosity, when heated at a temperature of to 150°C and component B suitably flows when heated at a temperature above 150°C, e.g. above 200°C and a suitable temperature at which to apply the shear forces to the dis
- the composition produced by the application of a shear force is ordinarily obtainable in thin sheets.
- a number of thin sheets can generally be superimposed one upon the other and can be united into a thicker sheet by the effect of heat and pressure.
- flat sheets of the composition may be united at 200oC under a pressure of 3001b/sq inch or greater.
- the composition may also be shaped or reshaped into shapes other than that of a sheet, for example, bowls, crucibles, rods or tubes, without loss in the degree of orientation of the graphite crystallites.
- the dispersion between thin sheets of material capable of withstanding the teu.oerature of .the hot rolling such as a metal, e.g. copper or aluminium of a thickness of about 0.025 to 0.25 mm, e.g. 0.04 mm, or thermally stable polymers or paper since, by so encasing the dispersion the disadvantage that the material might stick to the rollers is obviated.
- the thin metal or other sheet may readily be stripped from the finished product if desired.
- Such sheets may, if necessary, be coated with a variety of anti-adhesive materials such as silicones or other materials which facilitate the stripping of the sheets from the graphite-containing composition.
- the application of a suitably directed magnetic field can enhance the degree of parallelism obtained.
- a magnetic field will be of several kilogauss e.g. up to 10 KG, and in particular about 4KG.
- the magnetic field should be applied whilst the composition is subject to shear or shear compression forces e.g. during rolling, milling
- the method of the present invention may include a further step in which the composition containing the well-oriented graphite is heated to an elevated temperature to carbonise the matrix material.
- the matrix material comprise at least two components one of which A is carbonisable to yield a substantial proportion of volatile products and leaving in the composition a relatively low proportion of carbonaceous char and the other of which B is carbonisable to yield a low proportion of volatile products and leaving in the composition a relatively high proportion of carbonaceous char containing carbon in the form of meso phase.
- heating the composition containing well-oriented graphite to a temperature at which the components of the matrix material are converted to a carbonaceous material results in the production of a material containing well-oriented graphite in a carbonaceous matrix, the matrix comprising a substantial proportion of pores due to the volatilisation of a substantial proportion of the component A during carbonisation, and also comprising a proportion of meso phase carbon derived from component B.
- An important advantage is that the pores or voids formed by the partial carbonisation of matrix material, especially component A, generally lie between well parallel crystallites and are thus themselves well parallelised. Relatively large pores or voids may take the form of lamina lying parallel to the surrounding crystallites.
- any major shaping or reshaping of the composition that to be effected should be carried out before the matrix mate is carbonised and the carbonisation temperature used should sufficiently high to result in carbonisation of the matrix material at a reasonable rate.
- the precise temperature used will depend on the nature of the components A and B and in particular on the nature of component B. A temperature up to 600oC or even greater may suitably be used.
- the material containing well-oriented graphite in a carbonaceous matrix comprising in part pores and in part meso phase carbon and other residues from component B may be pressed, for example by application of hydraulic pressure, suitably a pressure in the range 1000 lb/sq in. to 30,000 lb/sq in. at a temperature above that at which the meso carbon produced from component B becomes plastic, e.g. at a temperature above 250oC, to collapse or otherwise remove the pores, or at least some of the pores, and to compress the meso phase carbon thereby increasing the degree of orientation of the graphite crystallites.
- hydraulic pressure suitably a pressure in the range 1000 lb/sq in. to 30,000 lb/sq in. at a temperature above that at which the meso carbon produced from component B becomes plastic, e.g. at a temperature above 250oC, to collapse or otherwise remove the pores, or at least some of the pores, and to compress the meso phase carbon thereby increasing the degree of orientation of the graph
- a further aspect of my invention provides a method of producing well-oriented graphite compositions according to the invention wherein the carbonisation reaction is carried to completion without compressing the composition at the intermediate stage at which mesophase carbon is present.
- the size of the pores in the product graphite compositio can be controlled by controlling the size of the graphite crystallites or agglomerates thereof used as a starting material. Using relatively large graphite crystallites such as graphite flakes gives correspondingly large pores, and using small crystallites gives small pores. Thus, the size of the pores can be controllably varied according to the crystallite or agglomerate size in the starting graphite, without altering the proportions of graphite and matrix prior to shearing. This is not possible in conventional graphites because the pores are randomised.
- the ability to produce well-oriented graphite compositions having pores of controlled size is of particular value where the . final product is intended for use in a flow of gases e.g. in chemical reaction vessels e.g. for catalyst support or in nuclear reactors especially where a gaseous coolant is used.
- Component A on carbonisation results in the formation of a substantial proportion of pores and it is preferred that this component carbonises to leave not more than 25% by weight of carbon, that is at least 75% by weight of the component is volatilised on carbonisation. More preferably component A carbonises to leave no more than 15% by weight of carbonaceous char.
- the temperature at which component A is carbonisable is preferably lower than that at which component B is carbonisable and the difference between the aforementioned temperatures is preferably at least 100oC.
- Component A suitably carbonises at a temperature above 250oC.
- Suitable materials which may be used as component A include polystyrene, polyethylene, polypropylene, chlorinated polyethylene, poly (vinyl chloride) and poly (vinyl acetate), cellulose acetate, or mixtures thereof. This list is exemplary but not limiting on the materials which can be used as component A.
- Component B is preferably carbonisable at a temperature higher than that at which component A is carbonisable and on carbonisation leaves a high proportion of carbonaceous residue.
- Component B preferably carbonises to leave at least 50% by weight of carbon and more preferably at least 75% by weight of carbon.
- the carbonaceous residue should also contain carbon in the form of meso phase.
- the temperature at which component B is carbonisable is suitably above 350oC, especially above 400oC, and suitable materials for component B which are carbonisable to produce a carbonaceous residue which contains the meso phase of carbon include polyacrylonitrile and copolymers of acrylonitrile, naphthacene, isodibenzathrone, pyranthrone, indanthrone, dibenzanthronyl, dibenzanthrone, 1,1-dianthrimide, acenaphthylene, chrysene, fluoranthrene and 9,9-bifluorene, polyether sulphones, and tarry extracts from coal.
- Suitable polyether sulphones include polymers whose units of structure include aromatic polyether sulphones having the formulae -(C 6 H 4 -SO 2 -C 6 H 4 -O)- or -(C 6 H 4 -C 6 H 4 -SO 2 -C 6 H 4 -O)-.
- the tarry extract from coal may be an extract having a softening point in the range 300oC to 400oC and produced by extracting coal with anthracene oil at about 400oC, followed by filtering off the extract and distilling the oil from the filtrate.
- the composition containing well-oriented graphite crystallites in a carbonaceous matrix after being subjected to pressure to orient yet further the graphite.
- crystallites and increase the density of the composition may be heated to high temperature e.g. to a temperature of 1000oC to 2000oC to more completely graphitise the. carbonaceous matrix and improve the electrical properties of the composition.
- the meso phase carbons formed from component B are known to graphitise readily and their contact with the well-oriented graphite crystallites originally present also helps to orient the newly graphitised material as well as to bind the crystallites strongly together.
- the carbonisation treatment should take place under either an inert or a reducing atmosphere since any oxygen present during the carbonisation reaction tends to react with the small graphite crystallites in their process of growth bringing about a degree of cross-linking which inhibits extensive graphitisation.
- cross-linking in the carbonaceous char may actually be desirable and well-oriented graphite crystallites separated by non-graphitic carbon as well as by any well-oriented pores may present a texture preferable to a wholly graphitic structure.
- the carbonisation treatment is carried out in an oxidising atmosphere or there is used as or as part of the matrix material compounds which are known not to graphitise at temperatures below about 3000°C.
- the graphite prior to use in the method of the present invention is preferably purified to free it from traces of metal compounds and other impurities by the use of any of the known purification methods.
- the natural Madagascar graphite (itself composed of a number of assemblies of small platelets of well-oriented graphite) may be ball-milled if required, and purified by extraction with hot hydrochloric acid in a Soxhlet extractor, after which it may be treated with cold hydrofluoric acid and finally traces of metal may then be removed by heating with carbon tetrachloride and dichlorodifluoromethane at temperatures which are progressively raised to a maximum of 2400oC.
- the proportions in which the graphite and the matrix material may be used may vary widely, the minimum proportion of the material is, of course, that amount which is required to allow slip to take place between the graphite crystallites.
- a suitable dispersion contains at least 5% by weight of the material. Larger proportions may be used, for example, a dispersion containing up to 95% by weight of the material. Thus, a suitable dispersion contains from 5 to 95% by weight
- the dispersion contains 20% to 90% by weight of graphite, more preferably 40% to 80% by weight of graphite.
- the proportions of components A and B in the dispersion may also vary over a wide range.
- the product comprising Oriented graphite crystallites in a carbonaceous matrix should contain an amount of meso phase carbon which allows the product to be pressed to a reasonable extent without requiring the use of excess ive pressures so as to result in further orientation of the graphite crystallites and increase in the density the composition it is preferred that the matrix material tains a reasonable amount of the component B from which the meso phase of carbon is produced, and in particular at least 10% of component B by weight of the matrix material.
- the matrix material may contain up to 90% by weight of component A preferred composition of the matrix material is 20 to 80% by weight of component A and correspondingly 80% to 20% by weight of component B. A more preferred composition is to 60% by weight ox component A and correspondingly 60% to 40% by weight of component B.
- the products obtained by the method of the present invention exhibit the anisotropic properties associated with the known well-oriented graphites.
- the products of this invention are particularly useful in those electrical, electrochemical and thermal applications where their anisotropic properties render them valuable.
- graphite containers or crucibles for use at high temperatures in which the transmission of heat through the side walls is reduced very considerably.
- thermocouples Another possible use is in the manufacture of synthetic metals, for example as is desribed in Comentarii (1972) Vol 2 pp 1 to 2 and in Carbon (1976) Vol 14 pp 1 to 6 in relation to well ordered graphite produced by prior art techniques.
- Other specific uses, such as the production of thermocouples, will suggest themselves to. persons skilled in the art.
- a homogeneous mixture was made from 79 parts by weight of purified natural graphite (Foliac, 2.17 g/ml, ash content less than 0.05%), 10 parts by weight of powdered polystyrene (as component A), 10 parts by weight of a polyether sulphone having a repeat unit of the structure -(C 6 H 4 -SO 2 -C 6 H 4 -O)- (as component B), and 1 part by weight of stearic acid.
- the thus formed graphite-containing polymer sandwich was then passed repeatedly through the nip between a pair of contra-rotating chromium plated rollers until the sheet was approximately 0.06 mm thick.
- the temperature at which the sandwich was passed between the rollers was approximately 400°C, to which temperature the sandwich was heated by means of hot plate and radiant heaters before each pass between the rollers.
- the rollers were steam heated to a temperature 140°C and after each pass between the rollers the sheet was turned through 90° before the next pass between the rollers.
- a thicker graphite-containing sheet was then formed stacking several sheets and heating the stacked sheets between plates at a temperature of 250°C and under an applied pressure of 1500 lb/s in
- the resultant thicker sheet was then heated in an oven at a temperature of 430°C and under an atmosphere of nitrogen for a time of 16 hours at which time weight loss of the sheet had teased.
- the density of the sheet was 1.6 g/ml.
- the sheet containing the carbonised polymer was compressed by heating it between plates at a temperature of 250°C and under an applied pressure of 15,000 lb/sq in.
- the density of the resultant sheet was 2.10 g/ml.
- the orientation of the crystallites of graphite in the sheet of density 2.10 g/ml was determined as follows. A sample of dimensions 10 ⁇ 1 ⁇ 1 mm was cut from the sheet and mounted on the Eulerian cradle of an X-ray diffractometer provided with an automatic counter and the position giving maximum diffraction intensity was located. The counter was then locked in the position corresponding to this maximum diffraction intensity and the sample was moved about its longitudinal axis through an angle of 45° in one direction and then through an angle of 45 ° in the opposite direction and the fraction of the graphite crystallites disposed within a given angle from the direction of maximum intensity was located.
- An estimate of the anisotropy of the sheet was also made by measuring the resistivity of the sample in the direction of the maximum X-ray 'diffraction intensity (the nominal C-axis) and in a direction at right angles to this direction.
- the respective resistivities were 40 microhm cm in the direction of maximum X-ray diffraction intensity and 0.2 microhm cm in a direction at right angles.
- the orientation of the graphite crystallites in the sheet was indicated by an angular width of 16° traversed at the position of half of the maximum X-ray intensity, a resistivity of 100 microhm cm in the direction of the maximum X-ray diffraction intensity and a resistivity of 6 microhm cm in a direction at right angles to this direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE7979900492T DE2966935D1 (en) | 1979-05-21 | 1979-05-21 | Graphite composition |
AT79900492T ATE7217T1 (de) | 1979-05-21 | 1979-05-21 | Graphit-zusammensetzung. |
EP79900492A EP0035011B1 (en) | 1979-05-21 | 1980-12-01 | Graphite composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB7900071A GB2023015B (en) | 1978-06-15 | 1979-01-02 | Device for switching power of active toy |
WOGB79/00071 | 1979-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1980002552A1 true WO1980002552A1 (en) | 1980-11-27 |
Family
ID=10502269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1979/000071 WO1980002552A1 (en) | 1979-01-02 | 1979-05-21 | Graphite composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6251205B2 (enrdf_load_stackoverflow) |
WO (1) | WO1980002552A1 (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582632A (en) * | 1983-04-11 | 1986-04-15 | Kabushiki Kaisha Kobe Seiko Sho | Non-permeable carbonaceous formed bodies and method for producing same |
US5382392A (en) * | 1993-02-05 | 1995-01-17 | Alliedsignal Inc. | Process for fabrication of carbon fiber-reinforced carbon composite material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013051678A1 (ja) * | 2011-10-06 | 2013-04-11 | 昭和電工株式会社 | 黒鉛材料、その製造方法、電池電極用炭素材料、及び電池 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1503602A (fr) * | 1965-08-17 | 1967-12-01 | Procédé de fabrication de compositions de graphite à orientation correcte | |
US3943213A (en) * | 1970-04-06 | 1976-03-09 | Great Lakes Carbon Corporation | Method for manufacturing high temperature graphite fiber-graphite composites |
FR2286107A1 (fr) * | 1974-09-27 | 1976-04-23 | Union Carbide Corp | Procede de realisation de corps en graphite ayant un faible coefficient longitudinal de dilatation thermique |
FR2286476A1 (fr) * | 1974-09-30 | 1976-04-23 | Gen Atomic Co | Perfectionnements a la preparation d'elements de combustible nucleaire avec addition d'un melange a mouler a des particules de combustible |
US3991170A (en) * | 1973-04-27 | 1976-11-09 | Union Carbide Corporation | Process for producing orientation in mesophase pitch by rotational motion relative to a magnetic field and carbonization of the oriented mesophase |
USRE29101E (en) * | 1972-09-30 | 1977-01-04 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for the preparation of carbon moldings and activated carbon moulding therefrom |
US4014980A (en) * | 1972-07-27 | 1977-03-29 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for manufacturing graphite whiskers using condensed polycyclic hydrocarbons |
US4025689A (en) * | 1971-09-01 | 1977-05-24 | Agency Of Industrial Science & Technology | Method for manufacture of graphitized hollow spheres and hollow spheres manufactured thereby |
US4039341A (en) * | 1970-02-23 | 1977-08-02 | National Research Development Corporation | Production of carbon articles |
US4042656A (en) * | 1975-04-21 | 1977-08-16 | Vladimir Petrovich Chviruk | Graphite-base filling material for the decomposition of alkali metal amalgams and method of producing same |
US4089934A (en) * | 1974-12-28 | 1978-05-16 | Mitsubishi Chemical Industries Ltd. | Process for preparing carbon products |
-
1979
- 1979-05-21 JP JP54500770A patent/JPS6251205B2/ja not_active Expired
- 1979-05-21 WO PCT/GB1979/000071 patent/WO1980002552A1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1503602A (fr) * | 1965-08-17 | 1967-12-01 | Procédé de fabrication de compositions de graphite à orientation correcte | |
US4039341A (en) * | 1970-02-23 | 1977-08-02 | National Research Development Corporation | Production of carbon articles |
US3943213A (en) * | 1970-04-06 | 1976-03-09 | Great Lakes Carbon Corporation | Method for manufacturing high temperature graphite fiber-graphite composites |
US4025689A (en) * | 1971-09-01 | 1977-05-24 | Agency Of Industrial Science & Technology | Method for manufacture of graphitized hollow spheres and hollow spheres manufactured thereby |
US4014980A (en) * | 1972-07-27 | 1977-03-29 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for manufacturing graphite whiskers using condensed polycyclic hydrocarbons |
USRE29101E (en) * | 1972-09-30 | 1977-01-04 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for the preparation of carbon moldings and activated carbon moulding therefrom |
US3991170A (en) * | 1973-04-27 | 1976-11-09 | Union Carbide Corporation | Process for producing orientation in mesophase pitch by rotational motion relative to a magnetic field and carbonization of the oriented mesophase |
FR2286107A1 (fr) * | 1974-09-27 | 1976-04-23 | Union Carbide Corp | Procede de realisation de corps en graphite ayant un faible coefficient longitudinal de dilatation thermique |
FR2286476A1 (fr) * | 1974-09-30 | 1976-04-23 | Gen Atomic Co | Perfectionnements a la preparation d'elements de combustible nucleaire avec addition d'un melange a mouler a des particules de combustible |
US4089934A (en) * | 1974-12-28 | 1978-05-16 | Mitsubishi Chemical Industries Ltd. | Process for preparing carbon products |
US4042656A (en) * | 1975-04-21 | 1977-08-16 | Vladimir Petrovich Chviruk | Graphite-base filling material for the decomposition of alkali metal amalgams and method of producing same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582632A (en) * | 1983-04-11 | 1986-04-15 | Kabushiki Kaisha Kobe Seiko Sho | Non-permeable carbonaceous formed bodies and method for producing same |
US5382392A (en) * | 1993-02-05 | 1995-01-17 | Alliedsignal Inc. | Process for fabrication of carbon fiber-reinforced carbon composite material |
US5556704A (en) * | 1993-02-05 | 1996-09-17 | Alliedsignal Inc. | Carbon fiber-reinforced carbon composite material |
Also Published As
Publication number | Publication date |
---|---|
JPS56500534A (enrdf_load_stackoverflow) | 1981-04-23 |
JPS6251205B2 (enrdf_load_stackoverflow) | 1987-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4213956A (en) | Granite composition | |
AU772094B2 (en) | Method of making a reinforced carbon foam material and related product | |
DE3650278T2 (de) | Verfahren zum Herstellen von Graphitfolien. | |
US5688155A (en) | Carbon--carbon composites containing poorly graphitizing pitch as a binder and/or impregnant | |
US5413738A (en) | Graphite electrodes and their production | |
US4042486A (en) | Process for the conversion of pitch into crystalloidal pitch | |
DE2612296B2 (de) | Verfahren zur Herstellung von Graphitmaterial | |
EP0364297B1 (en) | Porous carbon electrode substrates for fuel cells | |
Walker Jr | Carbon—An old but new nmaterial | |
WO2008079452A2 (en) | High purity nuclear graphite | |
US4883617A (en) | Method of forming binderless carbon materials | |
DE3876913T2 (de) | Herstellung von kohlenstoffhaltigen pulvern und ihre granulierung. | |
DE3871660T2 (de) | Verfahren zur herstellung eines graphitfilms oder -blatts und strahlungsoptische vorrichtung, in der das graphitblatt verwendet wird. | |
WO1980002552A1 (en) | Graphite composition | |
EP0035011B1 (en) | Graphite composition | |
DE69018923T2 (de) | VERFAHREN ZUR HERSTELLUNG EINES KOHLENSTOFFORMKöRPERS MIT EXZELLENTER KOMPRESSIONS ELASTIZITÄT. | |
CA1060161A (en) | Process for producing an improved graphite body having a low coefficient of thermal expansion | |
US5017358A (en) | Preparation of elastic graphite materials | |
GB1603426A (en) | Graphite composition | |
DE69417522T2 (de) | Verfahren zur Herstellung von hochdichten und hochfesten Gegenständen aus Kohlenstoff unter Verwendung selbsthaftender, körniger Kohlenstoffmaterialien | |
DE3726861A1 (de) | Hochkohlenstoffhaltiger verbundwerkstoff | |
US3809565A (en) | Method of forming micron-size,metal-carbide particle dispersions in carbon | |
Kamiya et al. | Preferred orientation of crystallite in carbons heat-treated under high pressure | |
JPS6096573A (ja) | 無ピツチ黒鉛製品とその製法 | |
DE3833611A1 (de) | Verfahren zur herstellung von siliciumcarbid-sinterkoerpern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP |
|
AL | Designated countries for regional patents |
Designated state(s): AT CH DE FR LU SE |