USRE47886E1 - Tire with improved grip on wet ground - Google Patents

Tire with improved grip on wet ground Download PDF

Info

Publication number
USRE47886E1
USRE47886E1 US16/043,208 US201316043208A USRE47886E US RE47886 E1 USRE47886 E1 US RE47886E1 US 201316043208 A US201316043208 A US 201316043208A US RE47886 E USRE47886 E US RE47886E
Authority
US
United States
Prior art keywords
phr
tire according
content
sbr
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/043,208
Other languages
English (en)
Inventor
Olivier MATHEY
Olivier Durel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46852281&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE47886(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA filed Critical Michelin Recherche et Technique SA Switzerland
Priority to US16/043,208 priority Critical patent/USRE47886E1/en
Application granted granted Critical
Publication of USRE47886E1 publication Critical patent/USRE47886E1/en
Assigned to COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN reassignment COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICHELIN RECHERCHE ET TECHNIQUE S.A.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the disclosure relates to a rubber composition, especially for a tire tread, and more particularly for a tire intended to be fitted onto vehicles carrying heavy loads and running at a sustained speed, such as, for example, lorries, tractors, trailers or buses, aircraft, etc.
  • One subject of the invention is therefore a tire comprising at least a rubber composition based on at least a blend of natural rubber, NR, or synthetic polyisoprene, and a styrene-butadiene copolymer, SBR, the SBR having a content greater than or equal to 20 parts per hundred parts of elastomer, phr, a reinforcing filler comprising carbon black, characterized in that the composition comprises a plasticizing resin having a glass transition temperature, Tg, greater than or equal to 20° C., preferably greater than or equal to 30° C., and that the SBR has a Tg greater than or equal to ⁇ 65° C.
  • the invention also relates, in an embodiment to a tire comprising a tread having a rubber composition based on at least a blend of natural rubber, NR, or synthetic polyisoprene, and of a styrene-butadiene copolymer, SBR, the SBR having a content greater than or equal to 20 parts per hundred parts of elastomer, phr, a reinforcing filler comprising carbon black, characterized in that the composition comprises a plasticizing resin having a glass transition temperature, Tg, greater than or equal to 20° C., and that the SBR has a Tg greater than or equal to ⁇ 65° C.
  • the rubber compositions are characterized, after curing, as indicated below.
  • the dynamic properties tan( ⁇ ) max and tan( ⁇ ) ⁇ 20° C. are measured on a viscosity analyser (Metravib VA4000), according, to the standard ASTM D 5992-96.
  • the response of a sample of vulcanized composition (cylindrical test specimen with a thickness of 4 mm and with a cross section 400 mm 2 ), subjected to a simple alternating sinusoidal shear stress, at a frequency of 10 Hz, is recorded.
  • the rubber composition according to an embodiment of the invention which can be used for the manufacture of tire tread, comprises at least a blend of natural rubber or synthetic polyisoprene, and a styrene-butadiene copolymer (SBR) having a high Tg (greater than or equal to ⁇ 65° C.) and having a content greater than or equal to 20 parts per hundred parts of elastomer, phr, a reinforcing filler comprising carbon black and a plasticizing resin having a glass transition temperature, Tg, greater than or equal to 20° C.
  • SBR styrene-butadiene copolymer
  • any range of values denoted by the expression “between a and b” represents the field of values ranging from more than a to less than b (that is to say limits a and b excluded) whereas any range of values denoted by the expression “from a to b” means the field of values ranging from a up to b (that is to say including, the strict limits a and b).
  • a “diene” elastomer (or interchangeably rubber) whether it is natural or synthetic, is, in a known manner, an elastomer consisting at least in part (i.e., a homopolymer or a copolymer) of diene monomer units (monomers bearing two conjugated or non-conjugated carbon-carbon double bonds).
  • the elastomeric matrix may comprise a polybutadiene, BR, preferably in a content ranging from 5 to 40 phr, and more preferably from 10 to 30 phr.
  • the aforementioned elastomers may have any microstructure which depends on the polymerization conditions used, in particular on the presence or absence of a modifying and/or randomizing agent and on the amounts of modifying and/or randomizing agent employed.
  • the elastomers can, for example, be block, statistical, sequential or microsequential elastomers and can be prepared in dispersion or in solution; they can be coupled and/or star-branched or else functionalized with a coupling and/or star-branching or functionalization agent.
  • a reinforcing inorganic filler such as silica, of silanol or polysiloxane functional groups having a silanol end (such as described, for example, in FR 2 740 778, U.S. Pat. No. 6,013,718 and WO 2008/141702), alkoxysi
  • elastomers such as SBR, BR, NR or IR
  • SBR may be prepared in emulsion (“ESBR”) or in solution (“SSBR”).
  • an SBR having a moderate styrene content, for example of between 10% and 35% by weight, or a high styrene content, for example from 35% to 55%, a content of vinyl bonds of the butadiene part of between 15% and 70%, a content (mol %) of trans-1,4-bonds of between 15% and 75% and a Tg of between ⁇ 10° C. and ⁇ 65° C., preferably greater than or equal to ⁇ 50° C.
  • a moderate styrene content for example of between 10% and 35% by weight, or a high styrene content, for example from 35% to 55%
  • a content of vinyl bonds of the butadiene part of between 15% and 70%
  • a content (mol %) of trans-1,4-bonds of between 15% and 75%
  • a Tg of between ⁇ 10° C. and ⁇ 65° C., preferably greater than or equal to ⁇ 50° C.
  • those BRS having a content (mol %) of cis-1,4-linkages of greater than 90% are suitable.
  • the composition according to an embodiment of the invention may contain another diene elastomer. It being possible for the diene elastomers of the composition to be used in combination with any type of synthetic elastomer other than a diene elastomer, or even with polymers other than elastomers, for example thermoplastic polymers.
  • the BET specific surface area is determined in a known manner by gas adsorption using the Brunauer-Emmett-Teller method described in “The journal of the American Chemical Society”, Vol. 60, page 309, February 1938, more specifically according to the French standard NF ISO 9277 of December 1996 (multipoint (5 points) volumetric method—gas: nitrogen—degassing: 1 hour at 160° C.—relative pressure range p/po: 0.05 to 0.17).
  • the CTAB specific surface area is the external surface area determined according to the French standard NF T 45-007 of November 1987 (method B).
  • composition of an embodiment of the invention comprises any type of reinforcing filler known for its abilities to reinforce a rubber composition that can be used for the manufacture of tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica, combined with which is, in a known manner, a coupling, agent, or else a mixture of these two types of filler.
  • an organic filler such as carbon black
  • a reinforcing inorganic filler such as silica
  • Suitable as carbon blacks are all carbon blacks, especially the blacks conventionally used in tires or the treads thereof (tire-grade blacks). Among the latter, mention will more particularly be made of the reinforcing blacks of the 100, 200 or 300 series, or the blacks of 500, 600 or 700 series (ASTM grades), such as for example the N115, N134, N234, N326, N330, N339, N347, N375, N550, N683 and N772 blacks. These carbon blacks may be used in the isolated state, as available commercially, or in any other form, for example as a support for some of the rubber additives used.
  • the carbon blacks might, for example, be already incorporated into the diene elastomer, in particular isoprene elastomer in the form of a masterbatch (see, for example, applications WO 97/36724 or WO 99/16600).
  • Also suitable as carbon blacks are the carbon blacks partially or completely covered with silica via a post-treatment, or the carbon blacks modified in situ by silica such as, non-limitingly, the fillers sold by Cabot Corporation under the name EcoblackTM “CRX 2000” or “CRX4000”.
  • the carbon blacks having a CTAB specific surface area of between 75 and 200 m 2 /g, and more particularly the carbon blacks having a CTAB specific surface area of between 100 and 150 m 2 /g, such as the carbon blacks of 100 or 200 series, are suitable.
  • organic fillers other than carbon blacks mention may be made of functionalized polyvinyl organic fillers as described in applications WO-A-2006/069792, WO-A-2006/069793, WO-A-2008/003434 and WO-A-2008/003435.
  • filler should be understood here to mean any inorganic or mineral filler, whatever its colour and its origin (natural or synthetic), also known as “white filler”, “clear filler” or even “non-black filler”, in contrast to carbon black, capable of reinforcing by itself alone, without means other than an intermediate coupling agent, a rubber composition intended for the manufacture of pneumatic tires, in other words capable of replacing, in its reinforcing role, a conventional tire-grade carbon black; such a filler is generally characterized, in a known manner, by the presence of hydroxyl (—OH) groups at its surface.
  • —OH hydroxyl
  • Mineral fillers of the siliceous type are suitable in particular as reinforcing inorganic fillers.
  • the silica used may be any reinforcing silica known to a person skilled in the art.
  • any precipitated or fumed silica having a BET surface area and also a CTAB specific surface area that are both less than 450 m 2 /g, preferably from 30 to 400 m 2 /g, in particular between 60 and 300 m 2 /g.
  • HDSs highly dispersible precipitated silicas
  • the “Ultrasil” 7000 and “Ultrasil” 7005 silicas from Degussa the “Zeosil” 1165MP, 1135MP and 1115MP silicas from Rhodia
  • the “Hi-Sil” EZ150G silica from PPG the “Zeopol” 8715, 8745 and 8755 silicas from Huber or the silicas with a high specific surface area as described in application WO 03/016387.
  • the mineral fillers of the aluminous type in particular alumina (Al 2 O 3 ) or aluminium (oxide)hydroxides, or else reinforcing, titanium oxides, for example described in U.S. Pat. Nos. 6,610,261 and 6,747,087.
  • reinforcing inorganic filler is also understood to mean mixtures of various reinforcing inorganic fillers, in particular of highly dispersible silicas as described, above.
  • a reinforcing :tiller of another nature in particular organic nature such as carbon black
  • this reinforcing filler is covered with an inorganic layer such as silica, or else comprises functional sites, in particular hydroxyl sites, at its surface that require the use of a coupling agent in order to form the bond between the filler and the elastomer.
  • an inorganic layer such as silica
  • functional sites in particular hydroxyl sites, at its surface that require the use of a coupling agent in order to form the bond between the filler and the elastomer.
  • tire-grade carbon blacks as described, for example, in patent documents WO 96/37547 and WO 99/28380.
  • the content of total reinforcing filler is preferably between 20 and 200 phr, more preferably between 30 and 150 phr. More preferably still, the content of reinforcing filler ranges from 40 to 70 phr, in particular from 45 to 65 phr.
  • the composition comprises, besides the carbon black, an inorganic reinforcing filler with a preferential content of at least 10% of the total reinforcing filler and more preferably of at most 50% of the total reinforcing filler.
  • the inorganic filler comprises silica and preferably it consists preferably of silica.
  • an at least bifunctional coupling agent intended to provide a satisfactory connection, of chemical and/or physical nature, between the inorganic filler (surface of its particles) and the diene elastomer.
  • Use is made, in particular, of at least bifunctional organosilanes or polyorganosiloxanes.
  • the content of coupling agent is advantageously less than 20 phr, it being understood that it is in general desirable to use the least amount possible thereof.
  • the content of coupling agent represents from 0.5% to 15% by weight relative to the amount of inorganic filler. Its content is preferably between 0.5 and 12 phr, more preferably within a range extending from 3 to 10 phr. This content is easily adjusted by a person skilled in the art according to the content of inorganic filler used in the composition.
  • the rubber compositions may also contain coupling activators when a coupling agent is used, agents for covering the inorganic filler when an inorganic filler is used, or more generally processing aids capable, in a known manner, by virtue of an improvement in the dispersion of the filler in the rubber matrix and of a lowering of the viscosity of the compositions, of improving their ability to be processed in the uncured state.
  • hydroxysilanes or hydrolysable silanes such as hydroxysilanes (see for example WO 2009/062733), alkylalkoxysilanes, in particular alkyltriethoxysilanes such as for example 1-octyltriethoxysilane, polyols (for example diols or triols), polyethers (for example polyethylene glycols), primary, secondary or tertiary amines (for example trialkanolamines), hydroxylated or hydrolysable polyorganosiloxanes (for example ⁇ , ⁇ -dihydroxypolyorganosilanes (in particular ⁇ , ⁇ -dihydroxypolydimethylsiloxanes) (see for example EP 0 784 072) and fatty acids such as for example stearic acid.
  • hydroxysilanes or hydrolysable silanes such as hydroxysilanes (see for example WO 2009/062733), alkylalkoxysilane
  • the rubber compositions of an embodiment of the invention use a hydrocarbon plasticizing resin, the Tg, glass transition temperature, of which is above 20° C. and the softening point of which is below 170° C., as explained in detail below.
  • plasticizing resin is reserved in the present application, by definition, for a compound that is, on the one hand, solid at ambient temperature (23° C.) (in contrast to a liquid plasticizing compound such as an oil), and, on the other hand, compatible (that is to say, miscible at the level used, typically greater than 5 phr) with the rubber composition for which it is intended, so as to act as a true diluent.
  • Hydrocarbon resins are polymers well known to a person skilled in the art, which are therefore miscible by nature in the elastomer compositions when they are additionally described as “plasticizing”.
  • They may be aliphatic, naphthenic, aromatic or else of aliphatic/naphthenic/aromatic type, that is to say based on aliphatic and/or naphthenic and/or aromatic monomers, They may be natural or synthetic, and may or may not be petroleum-based (if such is the case, also known under the name of petroleum resins). They are preferably exclusively hydrocarbon-based, that is to say that they comprise only carbon and hydrogen atoms.
  • the hydrocarbon plasticizing resin has at least one, more preferably all, of the following characteristics:
  • this hydrocarbon plasticizing resin has at least one, more preferably still all, of the following characteristics:
  • the glass transition temperature Tg is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the standard ASTM D3418 (1999), and the softening point is measured according to the standard ASTM E-28.
  • the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by size exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35° C.; concentration 1 g/l; flow rate 1 ml/min; solution filtered through a filter with a porosity of 0.45 ⁇ m before injection; Moore calibration with polystyrene standards; set of 3 “WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); detection by differential refractometer (“WATERS 2410”) and its associated operating software (“WATERS EMPOWER”).
  • SEC size exclusion chromatography
  • the hydrocarbon plasticizing resin is selected from the group consisting of cyclopentadiene (abbreviated to CPD) or dicyclopentadiene (abbreviated to DCPD) homopolymer or copolymer resins, terpene homopolymer or copolymer resins, C 5 -cut homopolymer or copolymer resins and the mixtures of these resins.
  • CPD cyclopentadiene
  • DCPD dicyclopentadiene
  • copolymer resins use is preferably made of those selected from the group consisting of (D)CPD/vinylaromatic copolymer resins, (D)CPD/terpene copolymer resins, (D)CPD/C 5 -cut copolymer resins, terpene/vinylaromatic copolymer resins, C 5 -cut/vinylaromatic copolymer resins, and the mixtures of these resins.
  • pene encompasses here, in a known manner, ⁇ -pinene, ⁇ -pinene and limonene monomers; use is preferably made of a limonene monomer, which compound exists, in a known manner, in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or else dipentene, racemate of the dextrorotatory and laevorotatory enantiomers.
  • Suitable vinylaromatic monomers are, for example, styrene, ⁇ -methylstyrene, ortho-, meta- and para-methylstyrene, vinyltoluene, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene, any vinylaromatic monomer derived from a C 9 -cut (or more generally from a C 8 - to C 10 -cut).
  • the vinylaromatic compound is styrene or a vinylaromatic monomer derived from a C 9 -cut (or more generally from a C 8 - to C 10 -cut).
  • the vinylaromatic compound is the minority monomer, expressed as a mole fraction, in the copolymer in question.
  • the hydrocarbon plasticizing resin is selected from the group consisting of (D)CPD homopolymer resins, (D)CPD/styrene copolymer resins, polylimonene resins, limonene/styrene copolymer resins, limonene/D(CPD) copolymer resins, C 5 -cut/styrene copolymer resins, C 5 -cut/C 9 -cut copolymer resins, and the mixtures of these resins.
  • the content of hydrocarbon resin preferably ranges from 1 to 20 phr.
  • the content of hydrocarbon resin is more preferably still less than or equal to 10 phr.
  • the crosslinking system is preferably a vulcanization system, that is to say a system based on sulphur (or on a sulphur donor) and on a primary vulcanization accelerator.
  • a vulcanization system that is to say a system based on sulphur (or on a sulphur donor) and on a primary vulcanization accelerator.
  • secondary vulcanization accelerators or vulcanization activators such as zinc oxide, stearic acid or equivalent compounds, and guanidine derivatives (in particular dipheny lguanidine).
  • the sulphur is used at a preferred content of between 0.5 and 10 phr, more preferably between 1 and 8 phr, in particular between 1 and 6 phr when the composition of the invention is intended, according to a preferred embodiment of the invention, to constitute an inner “liner” (or rubber composition) of a tire.
  • the primary vulcanization accelerator is used in a preferred content of between 0.5 and 10 phr, more preferably of between 0.5 and 5.0 phr.
  • Use may be made, as accelerator, of any compound capable of acting as an accelerator of the vulcanization of diene elastomers in the presence of sulphur, in particular accelerators of the thiazole type and also derivatives thereof, and accelerators of thiuram and zinc dithiocarbamate types.
  • These primary accelerators are more preferably selected from the group consisting of 2-mercaptobenzothiazyl disulphide (abbreviated to “MBTS”), N-cyclohexyl-2-benzothiazyl sulphenamide (abbreviated to “CBS”), N,N-dicyclohexyl-2-benzothiazyl sulphenamide (abbreviated to “DCBS”), N-tert-butyl-2-benzothiazyl sulphenamide (abbreviated to “TBBS”), N-tert-butyl-2-benzothiazyl sulphenimide (abbreviated to “TBSI”) and mixtures of these compounds.
  • MBTS 2-mercaptobenzothiazyl disulphide
  • CBS N-cyclohexyl-2-benzothiazyl sulphenamide
  • DCBS N,N-dicyclohexyl-2-benzothiazyl sulphenamide
  • TBBS
  • the rubber matrices of the composites in accordance with the invention also comprise all or some of the additives customarily used in the rubber compositions intended for the manufacture of motor vehicle ground-contact systems, in particular tires, such as for example anti-ageing agents, antioxidants, plasticizers or extending oils, whether the latter are of aromatic or non-aromatic nature, in particular oils that are very slightly aromatic or non-aromatic (e.g.
  • naphthenic or paraffinic oils MES or TDAE oils
  • agents that improve the processability of the compositions in the uncured state a crosslinking system based either on sulphur, or on sulphur donors and/or peroxide, vulcanization accelerators, activators or retarders, anti-reversion agents such as for example sodium hexathiosulphonate or N,N′-m-phenylene-biscitraconimide, methylene acceptors and donors (for example resorcinol, HMT or H-3M) or other reinforcing resins, bismaleimides, other systems for promoting adhesion with respect to metallic reinforcers, especially brass reinforcers, such as for example those of “RFS” (resorcinol-formaldehyde-silica) type, or else other metal salts such as for example organic salts of cobalt or nickel.
  • RFS resorcinol-formaldehyde-silica
  • other metal salts such as for
  • compositions are manufactured in appropriate mixers, using two successive preparation phases well known to a person skilled in the art: a first phase of thermomechanical working or kneading (referred to as a “non-productive” phase) at high temperature, up to a maximum temperature of between 110° C. and 190° C., preferably between 130° C. and 180° C., followed by a second phase of mechanical working (referred to as a “productive” phase) up to a lower temperature, typically below 110° C., finishing phase during which the crosslinking system is incorporated.
  • a first phase of thermomechanical working or kneading referred to as a “non-productive” phase
  • a second phase of mechanical working referred to as a “productive” phase
  • the non-productive phase is carried out in a single thermomechanical step of a few minutes (for example between 2 and 10 min) during which all the necessary base constituents and other additives, with the exception of the crosslinking or vulcanization system, are introduced into an appropriate mixer such as a standard internal mixer. After cooling the mixture thus obtained, the vulcanization system is then incorporated in an external mixer such as an open mill, maintained at low temperature (for example between 30° C. and 100° C.). Everything is then mixed (productive phase) for a few minutes (for example between 5 and 15 min).
  • the final composition thus obtained may then be calendered, for example in the form of a sheet or a slab, or else extruded, for example in order to form a robber profiled element used for the manufacture of a composite or a semi-finished product, such as for example plies, treads, sublayers, and other blocks of rubber reinforced by metallic reinforcers, intended to form for example a part of the structure of a tire.
  • the vulcanization (or curing) may then be carried out in a known manner at a temperature generally between 130° C. and 200° C., preferably under pressure, for a sufficient time that may vary for example between 5 and 90 min depending in particular on the curing temperature, the vulcanization system used and the vulcanization kinetics of the composition in question.
  • the invention relates to rubber compositions previously described as both in the “uncured” state (i.e. before curing) and in the “cured” or vulcanized state (i.e. after vulcanization).
  • compositions thus obtained are then calendered either in the form of slabs (thickness of 2 to 3 mm) or thin sheets of rubber, for the measurement of their physical or mechanical properties, or in the form of profiled elements that can be used directly, after cutting and/or assembling to the desired dimensions, for example as semi-finished products for tires, in. particular as tire treads.
  • compositions based ono 40/20/40 phr NR/BR/SBR blend reinforced by carbon black were prepared.
  • compositions differ essentially by the following technical features:
  • Tables 1 and 2 give, respectively, the formulation of the various compositions (Table 1—content of the various products expressed in phr) and the properties after curing (around 30 min at 140° C.).
  • compositions C2 and C3 show that the addition of an aliphatic or terpenic high Tg resin (compositions C2 and C3) to a conventional control formulation (C1) makes it possible to obtain an improvement in the wet grip properties (improved value of tan( ⁇ ) ⁇ 20° with a slight increase in the roiling resistance (value of tan( ⁇ ) max ).
  • composition C4 having a high Tg SBR but without high Tg plasticizing resin
  • composition C1 also exhibits an improvement in the wet grip properties (improved value of tan( ⁇ ) ⁇ 20° with a slight increase in the roiling resistance.
  • compositions C5 and C6 in accordance with the invention comprising both a high Tg SBR and a high Tg resin, permit, with respect to the composition C1, a very significant improvement in the wet grip properties accompanied by a degradation of the rolling resistance performance, but that remains small.
  • These results for the compositions C5 and C6 in accordance with the invention go well beyond a simple additivity of the effect of the high Tg SBR and of the high Tg resin (effect obtained for composition C2 or C3 added to the effect obtained for composition C4) and demonstrate a true synergy between these constituents in the compositions in accordance with the invention.
  • compositions were prepared, two compositions based on a 60/20/20 NR/BR/SBR elastomeric blend reinforced by carbon black, two compositions based on a 60/15/25 NR/BR/SBR elastomeric blend reinforced by carbon black and silica and two compositions based on an 80/20 NR/SBR elastomeric blend reinforced by carbon black.
  • compositions differ essentially by the following technical features:
  • Tables 3 and 4 give, respectively, the formulation of the various compositions (Table 3—content of the various products expressed in phr) and the properties after curing (around 30 minutes at 140° C.).
  • the accelerator content of the various compositions is adjusted with respect to the presence of resin as a person skilled in the art knows how to do, so that these compositions can be comparable with identical curing conditions (time and temperature).
  • compositions C8, C1.0 and C12 in accordance with an embodiment of the invention comprising both a high Tg SBR and a high Tg resin, permit, with respect to the control compositions C7, C9 and C11, respectively a very significant improvement in the wet grip properties although accompanied by a slight degradation of the rolling resistance performance.
  • This test is to demonstrate the improved properties of compositions in accordance with the invention with formulations different from those of tests 1 and 2, compared to control compositions conventionally used in road tire treads.
  • compositions based on a 60/10/30 phr NR/BR/SBR blend reinforced by carbon black were prepared.
  • compositions differ essentially by the following technical features:
  • Tables 5 and 6 give, respectively, the formulation of the various compositions (Table 5—content of the various products expressed in phr) and the properties after curing (around. 30 min at 140° C.).
  • the accelerator content of the various compositions is adjusted with respect to the presence of resin as a person skilled in the art knows how to do, so that these compositions can be comparable with identical curing, conditions (time and temperature).
  • composition C16 in accordance with the invention comprising both a high Tg SBR and a high Tg resin, permits, with respect to the control composition C13, a very significant improvement in the wet grip properties accompanied by a degradation of the rolling resistance performance, but that remains small.
  • compositions in accordance with the invention comprising both high Tg SBRs and high Tg reinforcing resins, with various elastomeric blends and various reinforcing fillers, a surprising effect is observed on the wet grip properties without too great a degradation of the rolling resistance properties.
US16/043,208 2012-07-25 2013-07-24 Tire with improved grip on wet ground Active USRE47886E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/043,208 USRE47886E1 (en) 2012-07-25 2013-07-24 Tire with improved grip on wet ground

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR1257194 2012-07-25
FR1257194A FR2995609B1 (fr) 2012-07-25 2012-07-25 Pneumatique ayant une adherence sur sol mouille amelioree
PCT/EP2013/065626 WO2014016340A1 (fr) 2012-07-25 2013-07-24 Pneumatique ayant une adherence sur sol mouille amelioree
US16/043,208 USRE47886E1 (en) 2012-07-25 2013-07-24 Tire with improved grip on wet ground
US14/416,776 US9416259B2 (en) 2012-07-25 2013-07-24 Tire with improved grip on wet ground

Publications (1)

Publication Number Publication Date
USRE47886E1 true USRE47886E1 (en) 2020-03-03

Family

ID=46852281

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/416,776 Ceased US9416259B2 (en) 2012-07-25 2013-07-24 Tire with improved grip on wet ground
US16/043,208 Active USRE47886E1 (en) 2012-07-25 2013-07-24 Tire with improved grip on wet ground

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/416,776 Ceased US9416259B2 (en) 2012-07-25 2013-07-24 Tire with improved grip on wet ground

Country Status (8)

Country Link
US (2) US9416259B2 (fr)
EP (1) EP2877529B1 (fr)
JP (1) JP6886240B2 (fr)
CN (1) CN104487505A (fr)
BR (1) BR112015001450B1 (fr)
FR (1) FR2995609B1 (fr)
IN (1) IN2015DN00513A (fr)
WO (1) WO2014016340A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017871B1 (fr) * 2014-02-21 2016-02-19 Michelin & Cie Composition de caoutchouc comprenant un systeme plastifiant a base de resine hydrocarbonee de faible temperature de transition vitreuse
FR3019548B1 (fr) * 2014-04-03 2016-04-01 Michelin & Cie Composition de caoutchouc comprenant une resine dicyclopentadiene aromatique
CN104710802A (zh) * 2015-04-03 2015-06-17 浙江巍翔科技集团有限公司 一种橡胶抗疲劳助剂及其制备方法
KR102341868B1 (ko) * 2015-05-01 2021-12-22 요코하마 고무 가부시키가이샤 고무 조성물 및 공기입 타이어
FR3039556A1 (fr) * 2015-07-29 2017-02-03 Michelin & Cie Pneumatique d'avion
FR3042199B1 (fr) * 2015-10-08 2017-11-03 Michelin & Cie Pneumatique pour vehicule a usage agricole
CN108350231A (zh) * 2015-11-05 2018-07-31 株式会社普利司通 橡胶组合物和轮胎
BR112018068597B1 (pt) 2016-03-23 2022-10-11 Bridgestone Americas Tire Operations, Llc Processo para preparar uma borracha estendida com resina
EP3467019A4 (fr) * 2016-06-01 2019-06-19 Bridgestone Corporation Composition de caoutchouc, procédé de production d'une composition de caoutchouc, et pneumatique
FR3060452A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
EP3674357A4 (fr) * 2017-08-25 2021-05-05 Bridgestone Corporation Composition de caoutchouc et pneumatique
WO2019045061A1 (fr) 2017-08-31 2019-03-07 株式会社ブリヂストン Bandage pneumatique
US20200377696A1 (en) * 2017-10-31 2020-12-03 Bridgestone Corporation Rubber composition and tire
WO2019199866A1 (fr) * 2018-04-10 2019-10-17 Kraton Polymers Llc Compositions pour pneus et leurs procédés de fabrication
US11680157B2 (en) 2018-04-10 2023-06-20 Kraton Corporation Tire compositions and methods for making thereof
EP3788101A4 (fr) * 2018-05-04 2022-01-12 Bridgestone Americas Tire Operations, LLC Composition de caoutchouc pour bande de roulement de pneumatique
WO2019213185A1 (fr) * 2018-05-04 2019-11-07 Bridgestone Americas Tire Operations, Llc Composition de caoutchouc pour bande de roulement de pneumatique
WO2019213229A1 (fr) * 2018-05-04 2019-11-07 Bridgestone Americas Tire Operations, Llc Composition de caoutchouc pour bande de roulement de pneumatique
CN112384098B (zh) * 2018-07-10 2022-08-02 迪热克塔普拉斯股份公司 包含石墨烯的鞋底
BR112021023752A2 (pt) * 2019-05-29 2022-02-01 Bridgestone Americas Tire Operations Llc Composição de borracha para banda de rodagem de pneu, pneu, e, método para fornecer uma banda de rodagem para pneu
US11214667B2 (en) 2019-07-29 2022-01-04 The Goodyear Tire & Rubber Company Pneumatic tire
US11441021B2 (en) 2019-07-29 2022-09-13 The Goodyear Tire & Rubber Company Pneumatic tire
US11441018B2 (en) * 2019-09-12 2022-09-13 The Goodyear Tire & Rubber Company Pneumatic tire having tread with three elastomers
CN114616273A (zh) * 2019-11-01 2022-06-10 株式会社普利司通 轮胎胎面橡胶组合物
CN115651281A (zh) * 2022-11-07 2023-01-31 中策橡胶集团股份有限公司 一种具有高湿抓性能轮胎胎面胶、制备方法、应用和高湿抓性能轮胎

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183436A1 (en) * 2000-05-26 2002-12-05 Pierre Robert Rubber composition usable as a tire tread
US20030078335A1 (en) * 2001-10-11 2003-04-24 Hogan Terrence E. Synthesis and use of chain-coupled polymeric sulfide compounds in rubber formulations
US20030080618A1 (en) 2001-09-12 2003-05-01 Krishnan Ram Murthy Cold environment endless rubber track and vehicle containing such track
US20050148713A1 (en) 2002-09-04 2005-07-07 Michelin Recherche Et Technique S.A. Rubber composition for a tire tread
US7259205B1 (en) 2006-09-21 2007-08-21 The Goodyear Tire & Rubber Company Pneumatic tire
US20100130664A1 (en) * 2008-11-24 2010-05-27 The Goodyear Tire & Rubber Company Terminating compounds, polymers, and their uses in rubber compositions and tires
US7825183B2 (en) * 2004-10-28 2010-11-02 Michelin Recherche Et Technique S.A. Plasticizing system for a rubber composition
US7834074B2 (en) * 2004-02-11 2010-11-16 Michelin Recherche Et Technique S.A. Plasticizing system for rubber composition
WO2012069585A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique a adherence amelioree sur sol mouille
US8324310B2 (en) * 2005-08-08 2012-12-04 Michelin Recherche Et Technique S.A. Plasticizing system for a rubber composition
US8499805B2 (en) * 2008-07-24 2013-08-06 Compagnie Generale Des Etablissements Michelin Rubber composition for a winter tire tread

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3816541B2 (ja) * 1993-03-04 2006-08-30 東海カーボン株式会社 ゴム組成物
WO1996037547A2 (fr) 1995-05-22 1996-11-28 Cabot Corporation Composes elastomeres incorporant des noirs de carbone traites au silicium
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
FR2743564A1 (fr) 1996-01-11 1997-07-18 Michelin & Cie Compositions de caoutchouc pour enveloppes de pneumatiques a base de silices contenant un additif de renforcement a base d'un polyorganosiloxane fonctionnalise et d'un compose organosilane .
DE69739057D1 (de) 1996-04-01 2008-12-04 Cabot Corp Neue elastomere verbundwerkstoffe, verfahren und vorrichtung zur herstellung derselben
FR2765882B1 (fr) 1997-07-11 1999-09-03 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
CA2305702C (fr) 1997-09-30 2008-02-05 Cabot Corporation Melanges composites a base d'elastomere et procedes d'elaboration
EP1595847B1 (fr) 1997-11-28 2009-11-11 Compagnie Generale Des Etablissements Michelin Charge alumineuse renforcante et composition de caoutchouc comportant une telle charge
CN1284099A (zh) 1997-11-28 2001-02-14 米什兰集团总公司 用涂覆有含铝层的炭黑补强的轮胎用橡胶组合物
JP4991063B2 (ja) 1999-05-28 2012-08-01 ソシエテ ド テクノロジー ミシュラン ジエンエラストマー及び強化酸化チタンに基づくタイヤ用ゴム組成物
ATE290565T1 (de) 2000-02-24 2005-03-15 Michelin Soc Tech Vulkanisierbare kautschukmischung zur herstellung eines luftreifens und luftreifen, der eine solche zusammensetzung enthält
FR2821849A1 (fr) * 2001-03-12 2002-09-13 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique et enveloppe de pneumatique l'incorporant
EP1423459B1 (fr) 2001-08-13 2008-02-27 Société de Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
FR2854404B1 (fr) 2003-04-29 2005-07-01 Michelin Soc Tech Procede d'obtention d'un elastomere greffe a groupes fonctionnels le long de la chaine et compositions de caoutchouc
FR2880354B1 (fr) 2004-12-31 2007-03-02 Michelin Soc Tech Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
FR2880349B1 (fr) 2004-12-31 2009-03-06 Michelin Soc Tech Nanoparticules de polyvinylaromatique fonctionnalise
FR2886305B1 (fr) 2005-05-26 2007-08-10 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
FR2888243B1 (fr) 2005-07-06 2007-09-14 Michelin Soc Tech Composition de caoutchouc pour pneumatique renforcee de plaquettes d'hydroxyde de magnesium.
JP2007321046A (ja) * 2006-05-31 2007-12-13 Yokohama Rubber Co Ltd:The ゴム組成物及び空気入りタイヤ
FR2903416B1 (fr) 2006-07-06 2008-09-05 Michelin Soc Tech Composition elastomerique renforcee d'une charge de polymere vinylique non aromatique fonctionnalise
FR2903411B1 (fr) 2006-07-06 2012-11-02 Soc Tech Michelin Nanoparticules de polymere vinylique fonctionnalise
US7594528B2 (en) * 2007-03-08 2009-09-29 The Goodyear Tire & Rubber Company Tire with sidewall comprised of emulsion styrene/butadiene rubber, cis 1,4-polyisoprene rubber and cis 1,4-polybutadiene rubber
FR2915202B1 (fr) 2007-04-18 2009-07-17 Michelin Soc Tech Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant.
FR2918064B1 (fr) 2007-06-28 2010-11-05 Michelin Soc Tech Procede de preparation d'un copolymere dienique a bloc polyether, composition de caoutchouc renforcee et enveloppe de pneumatique.
FR2918065B1 (fr) 2007-06-28 2011-04-15 Michelin Soc Tech Procede de preparation d'un copolymere dienique a bloc polyether, composition de caoutchouc renforcee et enveloppe de pneumatique.
FR2923831B1 (fr) 2007-11-15 2010-04-09 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de recouvrement hydroxysilane
JP5493298B2 (ja) * 2008-06-12 2014-05-14 横浜ゴム株式会社 キャップトレッド用ゴム組成物
JP2010126672A (ja) * 2008-11-28 2010-06-10 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
FR2940294B1 (fr) 2008-12-23 2011-02-18 Michelin Soc Tech Nouveau systeme d'amorcage pour polymerisation anionique de dienes conjugues, procede de preparation d'elastomeres dieniques.
JP5415813B2 (ja) * 2009-04-21 2014-02-12 株式会社ブリヂストン ゴム組成物及びそれを用いた空気入りタイヤ
JP4883172B2 (ja) * 2009-12-10 2012-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物
JP4875757B2 (ja) * 2010-01-13 2012-02-15 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP5499769B2 (ja) * 2010-02-26 2014-05-21 横浜ゴム株式会社 タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP2012052028A (ja) * 2010-09-01 2012-03-15 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
WO2013015368A1 (fr) * 2011-07-28 2013-01-31 株式会社ブリヂストン Noir de carbone, composition de caoutchouc, et pneumatique
JP5900036B2 (ja) * 2012-03-08 2016-04-06 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5376008B2 (ja) * 2012-04-24 2013-12-25 横浜ゴム株式会社 タイヤ用ゴム組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183436A1 (en) * 2000-05-26 2002-12-05 Pierre Robert Rubber composition usable as a tire tread
US20030080618A1 (en) 2001-09-12 2003-05-01 Krishnan Ram Murthy Cold environment endless rubber track and vehicle containing such track
US20030078335A1 (en) * 2001-10-11 2003-04-24 Hogan Terrence E. Synthesis and use of chain-coupled polymeric sulfide compounds in rubber formulations
US20050148713A1 (en) 2002-09-04 2005-07-07 Michelin Recherche Et Technique S.A. Rubber composition for a tire tread
US7834074B2 (en) * 2004-02-11 2010-11-16 Michelin Recherche Et Technique S.A. Plasticizing system for rubber composition
US7825183B2 (en) * 2004-10-28 2010-11-02 Michelin Recherche Et Technique S.A. Plasticizing system for a rubber composition
US8324310B2 (en) * 2005-08-08 2012-12-04 Michelin Recherche Et Technique S.A. Plasticizing system for a rubber composition
US7259205B1 (en) 2006-09-21 2007-08-21 The Goodyear Tire & Rubber Company Pneumatic tire
US8499805B2 (en) * 2008-07-24 2013-08-06 Compagnie Generale Des Etablissements Michelin Rubber composition for a winter tire tread
US20100130664A1 (en) * 2008-11-24 2010-05-27 The Goodyear Tire & Rubber Company Terminating compounds, polymers, and their uses in rubber compositions and tires
WO2012069585A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique a adherence amelioree sur sol mouille
US20130274404A1 (en) * 2010-11-26 2013-10-17 Michelin Recherche Et Technique S.A. Tread of a tyre with improved grip on wet ground

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Int'l Search Report for PCT/EP2013/065626, dated Oct. 23, 2013.

Also Published As

Publication number Publication date
WO2014016340A1 (fr) 2014-01-30
BR112015001450B1 (pt) 2021-06-08
JP6886240B2 (ja) 2021-06-16
BR112015001450A2 (pt) 2017-07-04
CN104487505A (zh) 2015-04-01
US20150259516A1 (en) 2015-09-17
FR2995609B1 (fr) 2014-11-28
EP2877529A1 (fr) 2015-06-03
FR2995609A1 (fr) 2014-03-21
IN2015DN00513A (fr) 2015-06-26
JP2015528844A (ja) 2015-10-01
EP2877529B1 (fr) 2019-09-11
US9416259B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
USRE47886E1 (en) Tire with improved grip on wet ground
CN107912044B (zh) 包含具有低玻璃化转变温度的苯乙烯-丁二烯共聚物以及高含量的填料和增塑剂的橡胶组合物
US8759438B2 (en) Tire, the tread of which comprises a saturated thermoplastic elastomer
CN106414590B (zh) 具有低滚动阻力的轮胎
JP5873558B2 (ja) タイヤトレッド
JP5909756B2 (ja) タイヤトレッド
US20120309865A1 (en) Tire, the Tread of Which Comprises a Hydrogenated Thermoplastic Elastomer
CN108026329B (zh) 包含具有低玻璃化转变温度的烃类树脂的橡胶组合物
US20130203889A1 (en) Tire the Tread of which Comprises a Thermoplastic Elastomer
JP2016504466A (ja) 非相溶性ゴムを含むタイヤトレッド
US20160319116A1 (en) Tire tread
US20180223082A1 (en) Rubber composition including a hydrocarbon resin with a low glass transition temperature
CN115850827A (zh) 用于承载重负荷型车辆的包括新型胎面的轮胎
US9267014B2 (en) Tire comprising a composition essentially free of guanidine derivative and comprising an alkali metal hydroxide or alkaline-earth metal hydroxide
US11390117B2 (en) Tire comprising a rubber composition
US10227475B2 (en) Tire comprising a composition essentially free of guanidine derivative and comprising a primary amine
US20150119492A1 (en) Tire tread
US11685803B2 (en) Resin-extended elastomer
US9522571B2 (en) Tire comprising a composition essentially free of guanidine derivative and comprising a hydroxyalkylpiperazine
US9260588B2 (en) Tire comprising a composition essentially devoid of guanidine derivative and comprising an amino ether alcohol
US10035904B2 (en) Bicycle tire
EP3793842B1 (fr) Composition pour une bande de roulement de pneu
CN111094427B (zh) 具有包括橡胶组合物的胎面的轮胎

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICHELIN RECHERCHE ET TECHNIQUE S.A.;REEL/FRAME:052863/0624

Effective date: 20170101

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8