USRE43432E1 - Polyurethane foam composition - Google Patents

Polyurethane foam composition Download PDF

Info

Publication number
USRE43432E1
USRE43432E1 US12/581,976 US58197601A USRE43432E US RE43432 E1 USRE43432 E1 US RE43432E1 US 58197601 A US58197601 A US 58197601A US RE43432 E USRE43432 E US RE43432E
Authority
US
United States
Prior art keywords
foam
composition
percent
polyol
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US12/581,976
Other languages
English (en)
Inventor
Robert G. Braun
Jess M. Garcia
Deborah A. Schutter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to US12/581,976 priority Critical patent/USRE43432E1/en
Assigned to THE DOW CHEMICAL COMPANY reassignment THE DOW CHEMICAL COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAUN, ROBERT G., GARCIA, JESS M., SCHUTTER, DEBORAH A.
Assigned to DOW GLOBAL TECHNOLOGIES LLC reassignment DOW GLOBAL TECHNOLOGIES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE DOW CHEMICAL COMPANY
Application granted granted Critical
Publication of USRE43432E1 publication Critical patent/USRE43432E1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1021Polyurethanes or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/20Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operated by manual action, e.g. button-type actuator or actuator caps
    • B65D83/207Actuators comprising a manually operated valve and being attachable to the aerosol container, e.g. downstream a valve fitted to the container; Actuators associated to container valves with valve seats located outside the aerosol container
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2081Heterocyclic amines; Salts thereof containing at least two non-condensed heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4816Two or more polyethers of different physical or chemical nature mixtures of two or more polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers

Definitions

  • the present invention relates generally to the field of foamable polyurethanes. More specifically, the invention relates to single component composition for producing a moisture cured polyurethane foam where the foam has from 60 percent to 95 percent open-cell content.
  • Polyurethane foams have been known for many years. These foams are useful and have found their way into many industries. Most polyurethane foams are inherently hydrophobic and therefore are useful as insulation in moist or wet environs. In addition, polyurethane foams are known to provide excellent air barriers and are often used as both sealants and adhesives.
  • foamable polyurethane systems particularly single-component systems, could easily be directed into the rough opening gap (void space between the wall and the inserted fenestration) to insulate and create airtight seals.
  • single-component systems are storage stable foamable mixtures, under pressure, of a polyurethane prepolymer, blowing agents and auxiliary components for producing a polyurethane foam.
  • the polyurethane composition As the polyurethane composition is dispensed from containers, it immediately expands to fill cavities, such as the gap formed between the window and the rough opening. The expansion of the composition exerts a force against the adjacent construction materials as it further expands and cures. So long as the construction materials are strong enough, the foaming pressures have virtually no perceptible effect.
  • problems have been reported when expandable polyurethane foams have been used to install fenestrations, particularly window assemblies made from aluminum and vinyl components. In these fenestration constructions, the foams have been known to exert enough foaming pressure (outward force) to cause extensive distortion of, for example, the window frames along their perimeters. Such distortion can also be called deflection.
  • Prior art foams have been shown to have foaming pressures in the range of from 11 to 23 kPa (1.6 to 3.4 psi) when measured in a simulated rough opening cavity, which can result in the deflection of a typical vinyl window beyond the manufacturer's recommendations.
  • the foam will expand an additional amount. It has been commonly believed that this “post dispensing expansion” is a type of foam expansion that produces enough force to cause fenestration frame deflection. Thus, the fenestration manufacturers have tended to prefer, and in some instances specify that only “minimally expanding” foam sealants are to be used to install windows and doors.
  • frame deflection is due to human error, as too much foam is applied to the cavity space between the wall and the frame interior. Properly applied, the foams should not cause excessive deflection. However, there is a tendency to overfill or completely fill cavities, which results in fenestration frame deflection.
  • Single component polyurethane foam sealants still offer the best option in terms of a cost-effective, easily applied insulation material that is moisture resistant and provides an excellent air barrier. Therefore a dispensable, polyurethane foam sealant that can exert a predictable, and relatively low force on adjacent surfaces regardless of how it is applied, and that also will not deform window frames, is highly desirable.
  • the invention is the use of a single component foam composition to produce open cell polyurethane foam wherein the foaming pressure is less than 11 kPa (1.6 psi) when measured in a simulated rough-opening cavity.
  • the invention is to a polyurethane foam produced from such a composition wherein the foam has an open cell content of from 60 to 90 percent.
  • the present invention is a single component foam forming composition comprising a mixture of
  • composition wherein the composition further contains from 0.5 to 4 percent by weight of a poly siloxane polyoxyalkylene surfactant.
  • the present invention is to a single component polyurethane foam composition
  • a polyisocyanate a polyisocyanate
  • a first and a second polyol triols and/or diols
  • An excess of isocyanate is reacted with the polyol blend (which also contains additional components, such as catalysts, surfactants, and fire retardants) in the presence of a blowing agent to form a polyurethane prepolymer.
  • the frothed prepolymer reacts with atmospheric moisture to form an open cell foam having 60 percent to 95 percent open cells.
  • the present invention relates to a single component polyurethane foam composition
  • a single component polyurethane foam composition comprising an aromatic polyisocyanate, preferably based on diphenylmethane diisocyanate (MDI) and most preferably a polymethylene polyphenyl isocyanate (PMDI), and a first and a second polyol provided in a ratio of from 1:6 to 1:2.
  • the first polyol preferably has a molecular weight range of from 500 to 3000.
  • the second polyol preferably has a molecular weight (MW) range of from 4000 to 12,000.
  • the composition makes an open cell foam having from 60 percent to 95 percent open cells.
  • first polyol is a triol and the second polyol is a diol.
  • first and second polyols are triols.
  • first polyol is a triol and the second polyol is a blend of diol and triol.
  • the present invention relates to a system and device for dispensing a composition for a moisture-cured single component polyurethane foam comprising a container containing a polyurethane prepolymer composition wherein the dispensed polyurethane prepolymer reacts with atmospheric moisture to form a polyurethane foam having from 60 percent to 95 percent open-cells.
  • the device of the present invention further comprises a dispenser of the straw-trigger/valve, or dispensing gun/valve type where the dispensing gun may include the addition of a straw tip extender.
  • the present invention also relates to a method for applying around a fenestration installation a polyurethane foam that expands, yet generates low forces on the fenestration assembly during foam application and curing.
  • a polyurethane prepolymer composition comprising a polyisocyanate and a polyol composition wherein the polyol has a functionality of from 2 to 4 and a molecular weight of 500 to 12,000 where the ratio of isocyanate to polyol is from 1:1.2 to 1:0.8 parts by weight based on reactive components in the foamable composition.
  • a polyurethane prepolymer composition comprising a polyisocyanate, a first polyol which is a 500 to 3000 MW triol; a second polyol which is a 4000 to 12000 MW diol or triol, said first and second polyol provided in a ratio of isocyanate to polyol blend of from 1:1.3 to 1:0.8, preferably from 1:1.2 to 1:0.7 parts by weight.
  • the isocyanate and polyol blends are introduced into a container that is then sealed with a valve in place.
  • the container is then charged with a blowing agent that dissolves into the mixture and acts to pressurize the container and form the cell structure of the moisture-cured foam.
  • An excess amount of isocyanate of the stoichiometric ratio of isocyanate-to-polyol (NCO:OH) is reacted to form a polyurethane prepolymer with from 12 percent to 17 percent free NCO, and preferably from 13 percent to 15 percent free NCO.
  • a dispenser is then attached to a valve on the container. Upon activating the valve the composition is released from the container and delivered through the dispenser.
  • the prepolymer reacts with atmospheric moisture to form an open-cell polyurethane foam structure of 60 percent to 95 percent open-cells.
  • FIG. 1 shows the foam of the present invention dispensed into a rough opening gap between a window frame and a wall via a container and trigger-straw/valve dispenser representing one preferred embodiment.
  • FIG. 2 is an enlarged view of one type of trigger-straw/valve dispenser of FIG. 1 .
  • FIG. 3 shows the foam of the present invention dispensed into a rough opening between a window frame and a wall via a container and dispenser representing another preferred embodiment.
  • FIG. 4 shows the foam of the present invention dispensed into a rough opening between a window frame and a wall via a container and dispenser representing a further preferred embodiment.
  • FIG. 5 shows a cut away view of the wall showing the foam of the present invention being applied to the rough opening gap between a window frame and a wall.
  • a moisture-cured single component polyurethane foam sealant independent of the dispensing mechanism, can be employed usefully as a window sealant, having all of the desirable characteristics normally associated with such foams.
  • the polyurethane foam of the present invention does not exert an excessive foaming force as it expands and cures.
  • foam expansion in polyurethane foams does not necessarily directly relate to the foam's foaming force during cure. So long as the foam maintains an open-cell structure of from 60 percent to 95 percent open-cell, the foam performs equivalently to, or better than, known single component polyurethane foam sealants, with respect to foam expansion and air barrier characteristics, while exerting a much lower foaming force.
  • This desirable combination of polyurethane foam properties results in greatly reduced fenestration frame deflection.
  • the high percentage open-cell character, along with the greater flexibility and resilience of the aerosol sealant foams of the present invention, are achieved by using surfactants normally associated with rigid form, high resilience molded foam or high resilience slab foam production and specifically structured polyols in specific proportions in combination with other components.
  • surfactants normally associated with rigid form, high resilience molded foam or high resilience slab foam production and specifically structured polyols in specific proportions in combination with other components.
  • it has been recognized in the art that manufacturing any type of foam with high open cells is difficult. Processing variables can often lead to too high or too low an open cell content. This leads either to foam shrinkage (open cell content too low) or foam collapse or coarse cells (open cell content too high).
  • the proper formulation ratio and polyol type to produce a 60 percent to 95 percent open-celled foam has been conclusively determined, and results in a foam that has an exceedingly low foaming pressure regardless of the selected dispensing method.
  • the selection of the proper surfactant in the formulation will produce the 60 to 95 percent open cell content required.
  • expandable polyurethane sealant foams have been produced by dispensing single component foam compositions using straw/trigger assemblies and gunlike attachments with trigger mechanisms.
  • the advantage of the gun mechanism is improved control of flow, greatly improved product “reuse”, and instant shut off effected at the tip. This instant shut off eliminates post foam dripping after shut off that occurs with both the straw/trigger dispenser and the gun dispenser with an attached straw tip extender.
  • Each of these dispensers is designed to attach to the aerosol valve of the container.
  • Straw extenders are often used with the gun-like attachments to reach into areas that are difficult to access with the regular dispenser tip. Such extenders for the gun mimic the ability of the trigger straw assemblies to reach more difficult areas, and can extend the tip by about 5 cm. (2 in.) or more.
  • extenders directly impacts the properties of the dispensed foam.
  • known single component compositions when released through an extender, result in a dispensed foam having a greater wet density, as compared to the same foam being dispensed without an extender.
  • the flow dynamics within the straw extender leads to a denser dispensed product. Therefore, the use of extenders causes more product to be dispensed into the same volume cavity.
  • known foams dispensed via straw extenders display significantly greater forces, resulting in fenestration frame deflection compared to the same foam dispensed directly from the gun tip.
  • the foams of the present invention exhibit foaming forces that remain relatively constant regardless of how they are dispensed; that is with or without straw tip extenders. This constancy is evidenced by the lack of resulting fenestration frame deflection. This predictable, low foaming force insures against the adverse effects of over filling cavities, for example, in the window/door industry, which avoids the fenestration distortion and deflection problems described above. Therefore, the ability to use dispensing extenders allows the user to reach into cavities and installation spaces as desired without worrying about fenestration frame deflection.
  • the process of the present invention uses variations of single component polyurethane chemistry.
  • the applicants recognized the relationship between the use of surfactants, and the molecular weights of polyols along with the required polyisocyanates, suitable catalysts, diluents, fire retardants and other additives, in controlling open cell formation to predictably achieve a foam useful for air barrier and sealant uses.
  • the foams of the present invention do not generate potentially damaging forces to a fenestration assembly.
  • the polyols are caused to react with an excess polyisocyanate such that the prepolymers contain free isocyanate groups.
  • the prepolymers have an isocyanate content of 12 to 17 percent by weight, based on reactive components in the foamable composition.
  • the prepolymers have an isocyanate content of 13 to 15 percent by weight of the prepolymer.
  • the reaction between the polyol and isocyanate is normally effected in the temperature range up to 100° C., preferably at normal temperature to only moderately elevated temperatures.
  • the isocyanates may be modified as would be readily understood by those skilled in the field of polyurethane foam chemistry, so long as the selected isocyanates react with the polyol mix (approximatelyl 1:4 ratio of triols to diols parts by weight) to create a final foam product that has 60 percent to 95 percent open cells.
  • the isocyanate is present in the final composition of the present invention in an amount of from 30 to 40 weight percent.
  • the isocyanate is present in a comparative ratio to the polyols in the range of from 7:1 to 14:1 NCO to OH equivalents, and preferably from 9:1 NCO to OH equivalents.
  • surfactants generally used for making rigid closed cell foam in a two-component system will give the desired open cell content produced from the single component system.
  • Useful surfactants include silicone type compounds commonly used in high resilience molded foam, high resilience slab stock foam and rigid type polyurethane foam formulations.
  • such surfactant are the reaction product of a poly(alkyl siloxane), preferably a poly(dimethyl siloxane) compound and a poly(alkylene oxide) copolymer, where the alkylene oxides are ethylene oxide, propylene oxide or butylene oxide.
  • Such surfactants are well known in the art, see for example Surfactant Science Ser. 86 (Silicone Surfactants), 137-158 (1999).
  • the useful surfactants have a molecular weight of less than 30,000.
  • the molecular weight is less than 20,000 and more preferably 15,000 or less.
  • surfactants suitable for use in the present invention include, those typically used in closed cell rigid foam applications such as DC 197, DC 193, B 8853, B 8462, B 8407, B 8404, L-5340, L-5420, L-6900; surfactants used for high resilience molded foam such as, DC 5164, DC 5169, B 8638, B 8681; and surfactants used for high resilience slab foam such as DC 5043, B 8707, and B 6881.
  • the DC series of surfactants is available from Air Products, the B series is available from Goldschmidt and the L-series is available from OSI Specialties. Most preferred are the commercially available rigid type silicone surfactants.
  • the polyol composition is a polyether and/or polyester known for the production polyurethane elastomeric adhesives and sealants, rigid, semi-rigid and froth foams.
  • the polyether/polyester polyols may also contain amine groups.
  • the molecular weight of the polyol is between 500 and 12,000 number average molecular weight and a functionality of from 2 to 4, preferably from 2 to 3.
  • polyesters are produced by techniques known in the art.
  • suitable polyesters are produced from polycarboxylic acids and polyfunctional alcohols having from 2 to 12 carbons atoms.
  • polycarboxylic acids include glutaric acid, succinic acid, adipic acid, sebacic acid, phthalic acid, isophthalic acid or terephtalic acid.
  • polyfinctional alcohols include ethylene glycol, propanediol, butane, and hexane diol.
  • Catalysts for the polymerization can be either anionic or cationic with catalysts such as KOH, CsOH, boron trifluoride, or a double cyanide complex (DMC) catalysts such as zinc hexacyanocobaltate.
  • catalysts such as KOH, CsOH, boron trifluoride, or a double cyanide complex (DMC) catalysts such as zinc hexacyanocobaltate.
  • DMC double cyanide complex
  • Preferred polyols are those obtained using propylene oxide or a combination of propylene and ethylene oxide.
  • the polyol is a blend of a first and second polyether polyol.
  • the first polyol is one or more triols and second polyol is one or more diols that, combined, preferably have a secondary hydroxy functionality of at least about 50 percent.
  • the triols preferably have molecular weight (MW) range of from 500 to 3000 MW, more preferably from 600 to 2500 MW, and most preferably from 800 to 1500 MW.
  • the diols preferably have a molecular weight range of from 4000 to 12,000 MW, preferably from 5000 to 10,000 MW, and most preferably from 6000 to 10,000 MW. Most preferably the triol is about a 1000 MW molecule and the diol is about an 8000 MW molecule.
  • the second polyol is combination of diol and triol as within the MW described above.
  • amine catalysts will be suitable, although tertiary amines are preferred including, but not limited to dimethylethanol amine (DMEA), tetramethyliminobispropyl amine (Polycat 15), N,N-dimethylcyclohexyl amine (DMCHA), tetraethylenediamine (Dabco/TEDA), etc.
  • DMEA dimethylethanol amine
  • Polycat 15 tetramethyliminobispropyl amine
  • DMCHA N,N-dimethylcyclohexyl amine
  • Dabco/TEDA tetraethylenediamine
  • organometallic compounds such as tin mercaptide, dibuyltin dilaurate (DBTDL), etc.
  • the amine catalyst is a dimorpholine compound such as dimorpholinopolyethylene glycol (PC Cat 1 KSC), 2,2′-dimorpholinodiethylether (DMDEE), with 2,2′-dimoipholinodiethylether being particularly preferred.
  • the dimorpholine catalysts are preferably present in the compound of the present invention in an amount of from 0.45 to 0.90 parts by weight, and most preferably 0.55 to 0.7 parts by weight.
  • flame retardants are incorporated.
  • Useful flame retardants include, without limitation, any compound with flame suppression properties that can be dissolved or dispersed in the polyurethane foam. These include compounds such as chlorinated or brominated phosphates, phosphonates, inorganic oxides and chlorides.
  • the flame retardant is a soluble liquid such as triethyl phosphonate, pentabromodiphenyl oxide, and most preferably is tri(1-methyl-2-chloroethyl) phospohate.
  • the flame retardants are preferably present in an amount of from 5 to 15 parts by weight.
  • composition mixture may be formulated such that the foamed product may be made to cure to any useful color or shade as would be readily apparent to one skilled in the field of polyurethane foam formulations.
  • colorants may be used to create foam with color.
  • compositions such as silyl-terminated substances, which are compatible yet do not react in the can with the prepolymer polyurethane product. These, however, will also moisture cure independently once dispensed from the container thus producing an interpenetrating polymeric network.
  • Such formulations have also been found to exhibit exceptional properties and suitable open cell contents.
  • a crosslinking agent or chain extender may be added, up to 5 percent by weight of the composition if necessary.
  • the crosslinking agent or the chain extender includes low-molecular polyhydric alcohols such as ethylene glycol, diethylene glycol, 1,4-butanediol, and glycerin; low-molecular weight amine polyol such as diethanolamine and triethanolamine; polyamines such as ethylene diamine, xylenediamine and methylene-bis(o-chloroaniline). Also small quantities (less than 5 percent by weight) of any convention rigid foam polyol can be added to the composition to increase crosslinking and to modify the foam modulus.
  • blowing agents examples include alkanes, such as heptane, hexane and n-and isopentane, preferably technical grade mixtures of n- and isopentanes and n- and iso butane and propane, cyclohexane, cyclopentane; ethers, such as furan, dimethyl ether and diethyl ether; ketones, such as acetone and methyl ethyl ketone; alkyl carboxylates, such as methyl formate, dimethyl oxalate and ethyl acetate; and halogenated hydrocarbons, such as methylene chloride, dichloromonofluoromethane, difluoromethane, chlorodifluoromethanes, difluoroethane, tetrafluoroethane, chlorofluoroethanes, 1,1 -dichloro-2,2,2-trifluoromethane, 2,2-dichloro2-flu
  • composition of the present invention is made by combining the polyols and additional compounds including an amine catalyst, a flame retardant, surfactants, and optional colorants into a premix. This polyol blend is added to the isocyanate. Finally an acceptable blowing agent is introduced to the mixture to aid in forming the cell structure of the foam
  • FIG. 1 shows the single component polyurethane formulation of the present invention contained within container 10 , toggle valve-type trigger 12 is fixedly attached to container 10 .
  • Trigger 12 comprises flanges 14 , 16 which allows finger pressure to actuate the trigger mechanism. The finger pressure causes the toggle valve (not pictured) to open and release the pressurized polyurethane foam.
  • the foam exits the container and proceeds through the dispenser 12 , through the extender straw 20 , and finally exits from the tip 22 of extender 20 as an expanding foam 24 .
  • the foam is shown directed into the fenestration rough opening gap 30 between window frame 32 and wall 34 .
  • FIG. 2 shows an enlarged view of one type of trigger/straw assembly that is used with a toggle valve.
  • FIG. 3 shows the single component polyurethane formulation of the present invention contained within container 10 attached to a gun-type dispenser 40 of the type that is the subject of U.S. Pat. No. 5,615,804.
  • Pressure exerted by the operator's trigger finger dislodges an internal mechanism from a rest position and allows the polyurethane composition to release from the container 10 , through a channel (not shown) in dispenser 40 , through the dispenser shaft 42 , finally exiting the tip 44 as an expanding foam 24 .
  • the foam is shown directed into the fenestration rough opening gap 30 between window frame 32 and wall 34 .
  • FIG. 4 shows the single component polyurethane formulation of the present invention contained within container 10 attached to a gun-type dispenser 50 of the type that is the subject of U.S. Pat. Nos. 5,549,228 and 5,887,756.
  • Pressure exerted by the operator's trigger finger (shown as being the thumb) 52 dislodges an internal mechanism (not shown) from a rest position and allows the polyurethane composition to release from the container 10 , through a channel (not shown) in dispenser 50 , through the dispenser shaft 54 , finally exiting the tip 56 as an expanding foam 24 .
  • the foam is shown directed into the fenestration rough opening gap 30 between window frame 32 and wall 34 .
  • the excellent air barrier characteristics coupled with the foams hydrophobicity makes the foams excellent candidates to be used wherever insulation is required in a moist or wet environment (for example, appliances, wherever condensation or exposure to environmental moisture could occur, marine engine and boat manufacturing industries, etc.).
  • the lack of attending foaming force in light of excellent expandability also makes the foams useful as insulation in the electronics industry.
  • the term electrical devices encompasses mechanical devices that, strictly speaking may not require electricity to run.
  • the foams would be useful as resilient joints in the building industry with the foams interposed between joints in wood, metal, stone facings, concrete or mixtures thereof and expansion joints contained in these materials.
  • the foam of the present invention has a greater resilience as compared with conventional moisture-cured single component foam sealants, the present foam exhibits a greater ability to expand and contract during joint movement without fracture or loss of adhesion.
  • the foams of the present invention made by the compositions of the present invention tolerate greater flexing and movement due to forces such as, for example, wind load cycling. Recent testing has demonstrated that certain window perimeter joints had to be redesigned due to this type of failure when a conventional foam sealant was used.
  • the polyurethane prepolymer prepared as described above had the following weight percentages:
  • the observed vinyl window frame deformation for a conventional one component foam (OCF) sealant, (Comparative 1) dispensed through a plastic dispensing gun without a straw extension tip was approximately 0.4 cm (0.16 inches) and approximately 0.54 cm (0.21 inch) using the plastic gun dispenser with a straw tip extension.
  • the open cell content was about 23 percent without the straw tip and 14 percent with the straw tip.
  • the amount of air passing through the foam was determined to be about 0.01 L/s (0.03 cfm).
  • Other conventional OCF sealant, comparatives 2 and 3 dispensed through a trigger/straw applicator had an observed vinyl window frame deformation of approximately 0.59 cm (0.23 inch).
  • the open cell content was about 15 percent.
  • the amount of air passing through the foam was determined to be about 0.01 L/s (0.02 cfm). Table 1 below lists the tabulated characteristics of various formulations listed as comparative examples.
  • the air flow meter was opened to the lowest range and the pressure was dialed down to 75 Pa on the manometer. Once the test conditions stabilized, the airflow through the sample was recorded in terms of cubic feet per minute (cfm).
  • the tested samples of the present invention recorded air leak values of from 0.01 to 0.10 cfm at room temperature. The airflow was calculated directly from the meter, and yielded the results shown in Table 2. Values for convention OCF's as well as a conventional latex foam sealant and a fiberglass chinking sealant are given by way of comparison.
  • This test consisted of measuring the extent of window frame deflection by measuring the force required to open the window.
  • a structure (buck) was created to support the window and simulate the rough opening.
  • the window was then installed per manufacturer instructions.
  • the buck was marked at three levels of the window.
  • the buck width was measured at three levels for initial outer buck width values. At the same mark, but within the window jamb, the distance between the inner window jambs is marked and measured to the nearest 0.158 cm ( 1/16′′).
  • the window was opened to a set height and the distance was measured.
  • a total of six (6) rough opening gap measurements were made (three each on the two longest sides of the window) at the three established levels.
  • the three levels are set at one-third, one-half, and two-thirds the length of the longest window side. Measurements were made to 0.01′′ (0.0254 cm); three along the right side and three along the left.
  • five (5) force measurements were made by pulling the window up to determine “breaking force” and the range of low and high “operating force”.
  • the window up the sash was pushed down five times with the breaking and operating forces recorded before and after the other test measurements to insure the buck is dimensionally stable throughout the test.
  • the product, lab book or batch, dispenser type, product, temperature and relative humidity are recorded.
  • the foam was dispensed in the following manner: up the left side and across the top, across the bottom and up the right side. After 24 hours, the buck width, inner window jamb, and operating force, both up and down, are re-measured to determine the deflection and operating force caused by the foam. The percent difference from “initial” and “final” values were determined. Note: differences greater than 0.1587 cm (0.0625′′), and force measurements greater than 133N (30 lbf) represent values considered to be minimum values above which determine failure. See Table 3.
  • the premix was provided in an amount of 48.2 percent by wt. (of the final formulation) to an aerosol can along with 38.6 percent polymethylene polyphenyl isocyanate (PMDI).
  • PMDI polymethylene polyphenyl isocyanate
  • a glass agitation ball was placed into the mixture in the can.
  • An aerosol type valve was crimped onto the can.
  • Isobutane/propane/dimethyl ether (IPDE) hydrocarbon blowing agent in an amount of 13.2 percent by wt. was charged to the can through the valve. The can was then thoroughly shaken and set into a box.
  • the open cell content was about 83 percent for foam dispensed through a trigger/straw applicator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
US12/581,976 2000-08-08 2001-08-08 Polyurethane foam composition Expired - Lifetime USRE43432E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/581,976 USRE43432E1 (en) 2000-08-08 2001-08-08 Polyurethane foam composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US22381700P 2000-08-08 2000-08-08
PCT/US2001/024903 WO2002012367A1 (fr) 2000-08-08 2001-08-08 Composition de mousse polyurethanne
US12/581,976 USRE43432E1 (en) 2000-08-08 2001-08-08 Polyurethane foam composition
US10/344,073 US6894083B2 (en) 2000-08-08 2001-08-08 Polyurethane foam composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10344073 Reissue 2001-08-08

Publications (1)

Publication Number Publication Date
USRE43432E1 true USRE43432E1 (en) 2012-05-29

Family

ID=22838085

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/581,976 Expired - Lifetime USRE43432E1 (en) 2000-08-08 2001-08-08 Polyurethane foam composition
US10/344,073 Ceased US6894083B2 (en) 2000-08-08 2001-08-08 Polyurethane foam composition
US11/001,967 Abandoned US20050165122A1 (en) 2000-08-08 2004-12-02 Polyurethane foam composition
US11/545,675 Active 2025-07-31 US9150764B2 (en) 2000-08-08 2006-10-10 Polyurethane foam composition

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/344,073 Ceased US6894083B2 (en) 2000-08-08 2001-08-08 Polyurethane foam composition
US11/001,967 Abandoned US20050165122A1 (en) 2000-08-08 2004-12-02 Polyurethane foam composition
US11/545,675 Active 2025-07-31 US9150764B2 (en) 2000-08-08 2006-10-10 Polyurethane foam composition

Country Status (12)

Country Link
US (4) USRE43432E1 (fr)
EP (1) EP1311573B1 (fr)
JP (1) JP5362939B2 (fr)
AT (1) ATE464335T1 (fr)
AU (1) AU2001281199A1 (fr)
CA (1) CA2419059C (fr)
DE (1) DE60141838D1 (fr)
ES (1) ES2340022T3 (fr)
MX (1) MXPA03001225A (fr)
NO (1) NO332274B1 (fr)
PL (1) PL213302B1 (fr)
WO (1) WO2002012367A1 (fr)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2340022T3 (es) * 2000-08-08 2010-05-28 Dow Global Technologies Inc. Composicion de espuma de poliuretano.
US7096995B2 (en) * 2001-08-06 2006-08-29 Harman International Industries, Incorporated Polyurethane foam cabinets
CN100404575C (zh) * 2003-12-12 2008-07-23 上海昊海化工有限公司 制备高阻燃聚氨酯泡沫的方法
US20050210824A1 (en) * 2004-03-29 2005-09-29 Burton Cordell R Method for installing a fenestration unit in a composite panel
US8309619B2 (en) 2004-09-03 2012-11-13 Pactiv LLC Reduced-VOC and non-VOC blowing agents for making expanded and extruded thermoplastic foams
US20060052466A1 (en) * 2004-09-03 2006-03-09 Handa Yash P Expanded and extruded thermoplastic foams made with methyl formate-based blowing agents
US7307105B2 (en) * 2004-09-03 2007-12-11 Pactiv Corporation Thermoplastic foams made with methyl formate-based blowing agents
US20060052465A1 (en) * 2004-09-03 2006-03-09 Handa Yash P Thermoplastic foams made with methyl formate-based blowing agents
US7312253B2 (en) * 2004-09-03 2007-12-25 Pactiv Corporation Insulating thermoplastic foams made with methyl formate-based blowing agents
US7669382B2 (en) * 2005-03-25 2010-03-02 Pella Corporation Window installation method
US8026291B2 (en) * 2006-02-22 2011-09-27 Pactiv Corporation Expanded and extruded polyolefin foams made with methyl formate-based blowing agents
US8006445B2 (en) * 2006-06-29 2011-08-30 Pella Corporation Self-sealing window installation and method
US20080127564A1 (en) * 2006-06-29 2008-06-05 Pella Corporation Pre-hung door assembly and method of installation
US7977397B2 (en) * 2006-12-14 2011-07-12 Pactiv Corporation Polymer blends of biodegradable or bio-based and synthetic polymers and foams thereof
JP2010513604A (ja) * 2006-12-14 2010-04-30 パクティヴ・コーポレーション ギ酸メチル系発泡剤を用いて得られた、生分解性および低排出性の膨張および押出発泡体
EP1944334A1 (fr) 2007-01-15 2008-07-16 Soudal Récipient sous pression contenant une composition moussante de mousse élastique
US20090292032A1 (en) * 2008-05-02 2009-11-26 Gupta Laxmi C Fire retardant foam and methods of use
US10316661B2 (en) 2008-11-20 2019-06-11 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US11180995B2 (en) 2008-11-20 2021-11-23 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US9637915B1 (en) 2008-11-20 2017-05-02 Emseal Joint Systems Ltd. Factory fabricated precompressed water and/or fire resistant expansion joint system transition
US9631362B2 (en) 2008-11-20 2017-04-25 Emseal Joint Systems Ltd. Precompressed water and/or fire resistant tunnel expansion joint systems, and transitions
US9670666B1 (en) 2008-11-20 2017-06-06 Emseal Joint Sytstems Ltd. Fire and water resistant expansion joint system
US8365495B1 (en) 2008-11-20 2013-02-05 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US10851542B2 (en) 2008-11-20 2020-12-01 Emseal Joint Systems Ltd. Fire and water resistant, integrated wall and roof expansion joint seal system
US8813450B1 (en) 2009-03-24 2014-08-26 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US8341908B1 (en) 2009-03-24 2013-01-01 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US8690064B2 (en) * 2009-04-30 2014-04-08 Abnote Usa, Inc. Transaction card assembly and methods of manufacture
EP2440608B1 (fr) * 2009-06-08 2013-07-17 Huntsman International LLC Composition thermoplastique ignifuge
US8196370B2 (en) * 2009-09-12 2012-06-12 Calmar Holdings Llc Masonry construction using single-component polyurethane foam
US8516775B2 (en) * 2009-09-12 2013-08-27 Calmar Holdings Llc Masonry construction using single-component polyurethane foam and foam-core blocks
US20110077316A1 (en) * 2009-09-30 2011-03-31 Collins William Davis Biosealant Protective Barrier for Surfaces
US9068088B2 (en) * 2009-09-30 2015-06-30 Sealanttech Protective air barrier sealant for conditioned and unconditioned building walls
KR101797448B1 (ko) * 2009-12-29 2017-12-12 다우 글로벌 테크놀로지스 엘엘씨 소음 및 진동 흡수용 저밀도 폴리우레탄 발포체의 제조 방법
US8833035B2 (en) 2011-01-26 2014-09-16 Pella Corporation Fenestration unit replacement method and system
DE102011007479A1 (de) * 2011-04-15 2012-10-18 Evonik Goldschmidt Gmbh Zusammensetzung, enthaltend spezielle Amide und organomodifizierte Siloxane, geeignet zur Herstellung von Polyurethanschäumen
SG11201403708PA (en) 2011-12-30 2014-07-30 Dow Global Technologies Llc Foam composition with olefin block copolymer gel particles
US9068297B2 (en) 2012-11-16 2015-06-30 Emseal Joint Systems Ltd. Expansion joint system
US9925753B2 (en) 2013-11-26 2018-03-27 Rohm And Haas Company Weather-resistive barriers from self collapsing polyurethane foams
PL235304B1 (pl) 2014-01-14 2020-06-29 Selena Labs Spolka Z Ograniczona Odpowiedzialnoscia Jednoskładnikowa mieszanina prepolimeru izocyjanianu oraz sposób wytwarzania pianki poliuretanowej w pojemniku dozującym w jednoetapowym procesie
US9622021B2 (en) 2014-07-06 2017-04-11 Dynamount, Llc Systems and methods for a robotic mount
US10035155B2 (en) 2014-09-15 2018-07-31 Dow Global Technologies Llc Dispenser for two-component spray polyurethane form that are free of gaseous blowing agents
WO2016069356A1 (fr) 2014-10-30 2016-05-06 Dow Global Technologies Llc Composition de mousse de polyuréthane monocomposant à pulvériser classée b2 pour ouvertures et fenêtres
CA2985703C (fr) 2015-05-27 2023-10-17 Pella Corporation Systemes de gestion d'eau destines aux produits de fenestration
HUE046833T2 (hu) 2015-09-30 2020-04-28 Dow Global Technologies Llc Egykomponensû kis kezdeti zsugorodású nyílászáró hab formuláció
US20180345059A1 (en) * 2015-11-25 2018-12-06 3M Innovative Properties Company Firestop system for marine or off-shore applications
US10350617B1 (en) * 2016-02-12 2019-07-16 Konstantin Dragan Composition of and nozzle for spraying a single-component polyurethane foam
JP2019517610A (ja) * 2016-05-31 2019-06-24 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag 1−kポリウレタンフォームの反応系
US10815353B1 (en) 2016-06-03 2020-10-27 Konstantin Dragan Composition of and nozzle for spraying a single-component polyurethane foam
US10702876B2 (en) * 2016-06-03 2020-07-07 Konstantin Dragan System, composition, and method for dispensing a sprayable foamable product
US20200079892A1 (en) 2016-12-26 2020-03-12 Sunstar Engineering Inc. Curable composition
US11919029B2 (en) * 2017-01-19 2024-03-05 Holcim Technology Ltd Pressurized construction adhesive applicator system
JP7285247B2 (ja) * 2018-03-30 2023-06-01 株式会社カネカ 反応性ケイ素基含有重合体、および硬化性組成物
US11332946B2 (en) 2018-07-25 2022-05-17 Pella Corporation Installation features for fenestration units and associated methods
US11591880B2 (en) 2020-07-30 2023-02-28 Saudi Arabian Oil Company Methods for deployment of expandable packers through slim production tubing

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204373A (en) 1978-09-08 1980-05-27 Davidson James D Compressed expandable insulation tape and method
US4258140A (en) * 1977-12-24 1981-03-24 Basf Aktiengesellschaft Storage-stable prepolymers sprayable from a pressure vessel
US4275172A (en) * 1980-01-28 1981-06-23 Union Carbide Corporation Frothable polyurethane composition and a cellular foam produced therefrom suitable for use in joints between wallboards
US4401769A (en) * 1982-06-23 1983-08-30 Sealed Air Corporation Foam, composition and method useful for retrofit insulation
US4430840A (en) * 1982-06-23 1984-02-14 Sealed Air Corporation Foam, composition and method useful for retrofit insulation
US4904428A (en) * 1985-06-11 1990-02-27 Bradford-White Corporation Method of making a foam insulated water heater
US5034422A (en) * 1990-12-19 1991-07-23 Foamex Lp Low density, high temperature resistant polymeric bodies
US5109031A (en) * 1989-03-13 1992-04-28 Jim Walter Research Corp. Rigid foam with improved "K" factor by reacting a polyisocyanate and polyester polyol containing low free glycol
US5284882A (en) * 1992-12-24 1994-02-08 Basf Corporation Energy absorbing, water blown, rigid polyurethane foam
US5549228A (en) 1995-08-11 1996-08-27 Insta-Foam Products, Inc. Attachment system for fluent product dispensers
US5615804A (en) 1994-06-23 1997-04-01 Insta-Foam Products, Inc. Gun for dispensing fluent sealants or the like
US5654344A (en) * 1994-04-08 1997-08-05 Basf Aktiengesellschaft Production of rigid to semirigid polyurethane foams having an increased proportion of open cells and reduced shrinkage
US5698609A (en) * 1996-11-14 1997-12-16 Imperial Chemical Industries Plc Energy absorbing polyurethane foams
CA2221015A1 (fr) 1996-12-23 1998-06-23 Hans-Juergen Reese Prepolymeres a terminaison isocyanate pressurises contenant des groupements oxazolidone et urethanne pour la formation de mousses a une composante
US5851458A (en) * 1995-12-11 1998-12-22 Imperial Chemical Industries Plc Method of forming a thermal insulating device
US5887756A (en) 1994-06-23 1999-03-30 Insta-Foam Products, Inc. Dispensing gun with valving rod and bellows-type seal
US5951796A (en) * 1997-06-23 1999-09-14 Polyfoam Products, Inc. Two component polyurethane construction adhesive and method of using same
US6051622A (en) * 1998-09-17 2000-04-18 Arco Chemical Technology, L.P. Low resilience, low frequency molded polyurethane foam
US6130268A (en) * 1997-06-23 2000-10-10 Polyfoam Products, Inc. Two component polyurethane construction adhesive
US6410609B1 (en) * 2000-07-27 2002-06-25 Fomo Products, Inc. Low pressure generating polyurethane foams

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920587A (en) * 1972-08-11 1975-11-18 Union Carbide Corp Open-cell rigid polyether polyurethane foam
US4038239A (en) * 1973-11-23 1977-07-26 Contech Inc. Moisture curable polyurethane systems
DE3217583A1 (de) * 1982-05-11 1983-11-17 Merck Patent Gmbh, 6100 Darmstadt 2-aryl-tetraazaindene
EP0160716A1 (fr) * 1984-05-04 1985-11-13 Henkel Kommanditgesellschaft auf Aktien Mousse isolante
JPS61250019A (ja) * 1985-04-27 1986-11-07 Bridgestone Corp 微小気泡質状ポリウレタンエラストマ−の製造方法
JPS62265383A (ja) * 1986-05-13 1987-11-18 Bridgestone Corp ポリウレタンフオ−ムシ−リング材
DE3630937A1 (de) * 1986-09-11 1988-03-24 Rehau Ag & Co Verwendung von natuerlichen cellulosefasern als beimischung zu polyvinylchlorid
US4904426A (en) * 1988-03-31 1990-02-27 The Dow Chemical Company Process for the production of fibers from poly(etheretherketone)-type polymers
DE59307082D1 (de) * 1993-11-25 1997-09-11 Rathor Ag Druckdose
PL318143A1 (en) * 1994-08-22 1997-05-12 Henkel Kgaa Polyurethane based composition of low content of monomeric diisocyanates as well as their application and method of obtaining them
DE4434604B4 (de) * 1994-09-28 2005-03-03 Basf Ag Verfahren zur Herstellung von fluorchlorkohlenwasserstofffreien, Urethangruppen enthaltenden Formkörpern mit einem zelligen Kern und einer verdichteten Randzone
JP3524635B2 (ja) * 1995-06-30 2004-05-10 東レ・ダウコーニング・シリコーン株式会社 シリコーン水性エマルジョン型離型剤およびその製造方法
ES2340022T3 (es) * 2000-08-08 2010-05-28 Dow Global Technologies Inc. Composicion de espuma de poliuretano.

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4258140A (en) * 1977-12-24 1981-03-24 Basf Aktiengesellschaft Storage-stable prepolymers sprayable from a pressure vessel
US4204373A (en) 1978-09-08 1980-05-27 Davidson James D Compressed expandable insulation tape and method
US4275172A (en) * 1980-01-28 1981-06-23 Union Carbide Corporation Frothable polyurethane composition and a cellular foam produced therefrom suitable for use in joints between wallboards
US4401769A (en) * 1982-06-23 1983-08-30 Sealed Air Corporation Foam, composition and method useful for retrofit insulation
US4430840A (en) * 1982-06-23 1984-02-14 Sealed Air Corporation Foam, composition and method useful for retrofit insulation
US4904428A (en) * 1985-06-11 1990-02-27 Bradford-White Corporation Method of making a foam insulated water heater
US5109031A (en) * 1989-03-13 1992-04-28 Jim Walter Research Corp. Rigid foam with improved "K" factor by reacting a polyisocyanate and polyester polyol containing low free glycol
US5034422A (en) * 1990-12-19 1991-07-23 Foamex Lp Low density, high temperature resistant polymeric bodies
US5284882A (en) * 1992-12-24 1994-02-08 Basf Corporation Energy absorbing, water blown, rigid polyurethane foam
US5654344A (en) * 1994-04-08 1997-08-05 Basf Aktiengesellschaft Production of rigid to semirigid polyurethane foams having an increased proportion of open cells and reduced shrinkage
US5615804A (en) 1994-06-23 1997-04-01 Insta-Foam Products, Inc. Gun for dispensing fluent sealants or the like
US5887756A (en) 1994-06-23 1999-03-30 Insta-Foam Products, Inc. Dispensing gun with valving rod and bellows-type seal
US6032830A (en) 1994-06-23 2000-03-07 Flexible Products Company Dispenser for fluent products
US5549228A (en) 1995-08-11 1996-08-27 Insta-Foam Products, Inc. Attachment system for fluent product dispensers
US5851458A (en) * 1995-12-11 1998-12-22 Imperial Chemical Industries Plc Method of forming a thermal insulating device
US5698609A (en) * 1996-11-14 1997-12-16 Imperial Chemical Industries Plc Energy absorbing polyurethane foams
CA2221015A1 (fr) 1996-12-23 1998-06-23 Hans-Juergen Reese Prepolymeres a terminaison isocyanate pressurises contenant des groupements oxazolidone et urethanne pour la formation de mousses a une composante
EP0850964A1 (fr) 1996-12-23 1998-07-01 Basf Aktiengesellschaft Prépolymères sous pression terminés par des groupes d'isocyanate et contenant des groups d'oxazolidone et uréthane, pour mousses à un composant
US5951796A (en) * 1997-06-23 1999-09-14 Polyfoam Products, Inc. Two component polyurethane construction adhesive and method of using same
US6130268A (en) * 1997-06-23 2000-10-10 Polyfoam Products, Inc. Two component polyurethane construction adhesive
US6051622A (en) * 1998-09-17 2000-04-18 Arco Chemical Technology, L.P. Low resilience, low frequency molded polyurethane foam
US6410609B1 (en) * 2000-07-27 2002-06-25 Fomo Products, Inc. Low pressure generating polyurethane foams

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
International Search Report (PCT/US01/24903), 2002.
Jorgenson, M.W., et al., Silicone Surfactant Structural Requirments in Rigid Polyurethane Foams, Proceedings of the Society of the Plastic Technology, 1983, pp. 474-478.
Snow, S.A., et al., The Science of Silicone Surfactant Application in the Formation of Polyurethane Foam, Surfactant Science, 1999, pp. 137-158.

Also Published As

Publication number Publication date
CA2419059C (fr) 2010-02-02
EP1311573B1 (fr) 2010-04-14
ES2340022T3 (es) 2010-05-28
US6894083B2 (en) 2005-05-17
CA2419059A1 (fr) 2002-02-14
JP2004506076A (ja) 2004-02-26
AU2001281199A1 (en) 2002-02-18
ATE464335T1 (de) 2010-04-15
DE60141838D1 (de) 2010-05-27
PL213302B1 (pl) 2013-02-28
JP5362939B2 (ja) 2013-12-11
WO2002012367A1 (fr) 2002-02-14
PL359869A1 (en) 2004-09-06
NO332274B1 (no) 2012-08-13
NO20030630D0 (no) 2003-02-07
US20040024077A1 (en) 2004-02-05
EP1311573A1 (fr) 2003-05-21
NO20030630L (no) 2003-02-07
US20050165122A1 (en) 2005-07-28
US20070054972A1 (en) 2007-03-08
MXPA03001225A (es) 2004-09-10
US9150764B2 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
USRE43432E1 (en) Polyurethane foam composition
US5631319A (en) Pressurized, blowing-agent-containing isocyanate semiprepolymer mixtures based on mixtures of polyhydroxyl compounds and monoalcohols and/or hydroxyketones, the use thereof for the production of polyurethane foams, and a process therefor
KR101865980B1 (ko) 난연성 가요성 폴리우레탄 발포체
US4892891A (en) Novel foam compositions
EP1519973B1 (fr) Mousse polyurethanne ignifuge, souple et procede de fabrication associe
JP2011505481A (ja) 一成分ポリウレタン接着剤
JP7182601B2 (ja) 反応性難燃剤を含む硬質ポリウレタン発泡体
US5834529A (en) Pressurized, blowing agent-containing isocyanate semiprepolymer mixtures based on lignin-polyether polyols and their use for producing polyurethane foams
US9925753B2 (en) Weather-resistive barriers from self collapsing polyurethane foams
JP6659813B2 (ja) B2評価された窓割り開口部用の一成分スプレーポリウレタンフォーム配合物
KR101909047B1 (ko) 창틀 하부 사춤용 폴리우레탄 조성물 및 이를 이용한 폴리우레탄 시공방법
RU2636015C2 (ru) Улучшенная оконная изоляция
KR102157741B1 (ko) 단열성 강화를 위한 창틀 시공방법
EP1944334A1 (fr) Récipient sous pression contenant une composition moussante de mousse élastique
JPH06330022A (ja) ポリウレタンフォームシーリング材
CN112154166B (zh) 聚氨酯-聚异氰脲酸酯泡沫
ES2753604T3 (es) Formulación de espumas de fenestración de un solo componente con bajo hinchamiento inicial
US20100068463A1 (en) Elastomeric Foam Product
CN115505095B (zh) 一种开孔型单组份聚氨酯泡沫填缝剂及其制备方法
JP3608363B2 (ja) 薄物パネル用ポリオール組成物、及び薄物パネル用ポリウレタンフォームの製造方法
JPH11124496A (ja) フォーム吸音材
EP3371408B1 (fr) Polyisocyanurate hautement résistant au feu, et son utilisation pour la fabrication de cadres de portes ou de fenêtres coupe-feu et/ou de profilés pour ceux-ci
BR102021016459A2 (pt) Composição e processo para produção de espuma de poliuretano e seu uso
JP2004244569A (ja) 水発泡硬質ポリウレタンフォーム一体成型品の製造方法
JP2002363238A (ja) 硬質ポリウレタンフォーム用ポリオール組成物及び硬質ポリウレタンフォームの製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE DOW CHEMICAL COMPANY, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAUN, ROBERT G.;GARCIA, JESS M.;SCHUTTER, DEBORAH A.;REEL/FRAME:028082/0419

Effective date: 20030226

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE DOW CHEMICAL COMPANY;REEL/FRAME:028082/0453

Effective date: 20030305

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12