US9447216B2 - Comb polymers which can be used in cosmetics and detergents - Google Patents

Comb polymers which can be used in cosmetics and detergents Download PDF

Info

Publication number
US9447216B2
US9447216B2 US14/368,664 US201314368664A US9447216B2 US 9447216 B2 US9447216 B2 US 9447216B2 US 201314368664 A US201314368664 A US 201314368664A US 9447216 B2 US9447216 B2 US 9447216B2
Authority
US
United States
Prior art keywords
monomer
copolymer
meth
poly
ethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/368,664
Other languages
English (en)
Other versions
US20140378639A1 (en
Inventor
Frédéric Blondel
Antonin SANNA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPCM SA
Original Assignee
SPCM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47741164&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US9447216(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SPCM SA filed Critical SPCM SA
Assigned to S.P.C.M. SA reassignment S.P.C.M. SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLONDEL, FREDERIC, SANNA, Antonin
Publication of US20140378639A1 publication Critical patent/US20140378639A1/en
Application granted granted Critical
Publication of US9447216B2 publication Critical patent/US9447216B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • C08F226/04Diallylamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F2220/282
    • C08F2220/285

Definitions

  • a “comb” polymer has a structure similar to that of a comb.
  • it comprises a principal chain to which side chains are attached which may be different in nature and of variable length.
  • these side chains may have hydrophilic and/or hydrophobic properties. They may in particular be of the ethylene oxide, propylene oxide and alkyl type, and the like, with lengths of 2 to 500 units and preferably 5 to 200 units in the case of a pendant chain of the polyethylene oxide type.
  • the document EP372546 describes copolymers based on PEGMA, monomers of the C 1 -C 8 alkyl(meth)acrylamide type, and optionally cationic monomers.
  • the document JP2002-322219 describes polymers containing PEGMA units in association with hydrophobic monomers based on polypropylene glycol (PPO) or poly(tetramethylene oxide), and cationic monomers.
  • the document JP07-285831 describes hair compositions containing a polymer based on PEGMA-type monomers combined with ionic, cationic or amphoteric monomers, and additional monomers of the C 1 -C 24 alkyl(meth)acrylate type, which are mainly hydrophobic.
  • EP1769011 and EP1765893 describe polymers mainly consisting of cationic units and PEGMA units.
  • the document WO2006/013268 describes polymers comprising at least one monomer of the PEG (meth)acrylate type combined with a monomer having a cationic (cationic, amphoteric or cationic and anionic) character.
  • the document AU 2004 200 189 describes a polymer which may comprise a monomer of the PEG acrylate type combined with a monomer which may be cationic but which does not comprise a quaternary ammonium functional group.
  • the document FR 2 962 034 describes a polymer containing a monomer of the PEG methacrylate type combined with a monomer not comprising a quaternary ammonium functional group.
  • comb polymers are in particular cosmetics and detergents. They may therefore be present as a conditioner in compositions of body and hair products, or as an agent for promoting deposition in laundry detergents.
  • the applicant has developed polymers which make it possible in particular to overcome the drawbacks associated with incompatibilities between anionic species and cationic polymers.
  • the present invention thus relates to polymers which, once incorporated into a cosmetic or detergent composition, make it possible to prevent the formation of precipitates resulting from the ionic attraction between two compounds of opposite charge.
  • n is between 7 and 45.
  • the cationicity of the copolymer is advantageously between 0.3 and 2.6 meq/g, preferably between 0.5 and 1.5 meq/g.
  • water-soluble denotes a copolymer which may be dissolved in an aqueous solution, in an amount of at least 50 g/L at 25° C., without leaving insoluble particles.
  • the copolymer comprises a cationic monomer A, and a noncationic monomer B
  • cationicity(meq/g) (100 ⁇ % A )/(% A ⁇ Mw A +% B ⁇ Mw B ) in which:
  • the cationic charge density therefore depends on the proportions of monomers and their respective molar masses. Consequently, at equivalent monomer ratio, two polymers do not necessarily have the same cationic charge density considering the molar mass of each of the monomers.
  • the copolymer consists of, as percentage by mass relative to the total mass of the copolymer:
  • the copolymer has cationic charges which come solely from quaternary ammonium functional groups.
  • the cationicity of the cationic monomer(s) contained in the copolymer is exclusively due to the presence of quaternary ammonium functional groups.
  • all of the cationic charges of the copolymer come from quaternary ammonium functional groups.
  • R 2 is either a hydrogen atom; a benzyl radical; a phenyl radical optionally substituted with at least one C 1 -C 12 alkyl; a linear or branched C 1 -C 30 alkyl radical, optionally comprising at least one cyclic group, and optionally at least one aromatic group, in particular as C 1 -C 22 , or even as C 2 -C 16 , optionally comprising 1 to 4 heteroatoms chosen from O, N and S. Mention may be made in particular of the methyl, ethyl, propyl, benzyl, ethylhexyl, lauryl, stearyl and behenyl radicals.
  • the monomers of formula (I) which are quite particularly preferred may be chosen from the group comprising poly(ethylene glycol)(meth)acrylates and methylpoly(ethylene glycol)(meth)acrylates, preferably those having a molar mass of between 80 and 8000 g/mol, in particular between 300 and 2000 g/mol.
  • the cationic monomer(s) which have a quaternary ammonium functional group and which may be used in the context of the invention may be chosen in particular from monomers of the acrylamide, acrylic, vinyl, allyl or maleic type having a quaternary ammonium functional group. Mention may be made, in particular and without limitation, of quaternized dimethylaminoethyl acrylate (ADAME), quaternized dimethylaminoethyl methacrylate (MADAME), dimethyldiallylammonium chloride (DADMAC), acrylamidopropyltrimethylammonium chloride (APTAC) and methacrylamidopropyltrimethylammonium chloride (MAPTAC).
  • ADAME quaternized dimethylaminoethyl acrylate
  • MADAME quaternized dimethylaminoethyl methacrylate
  • DADMAC dimethyldiallylammonium chloride
  • ATAC acrylamidopropyl
  • the copolymer which is the subject of the present invention also comprises at least one nonionic monomer distinct from that corresponding to formula (I) above.
  • this additional nonionic monomer represents less than 25% by mass of the copolymer, advantageously from 5 to 25%.
  • the copolymer which is the subject of the invention may consist of, as percentage by mass relative to the total mass of the copolymer:
  • the nonionic monomer(s) which may be used in the context of the invention may be chosen in particular from the group comprising water-soluble vinyl monomers.
  • Preferred monomers belonging to this class are, for example, acrylamide, methacrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide and N-methylolacrylamide.
  • use may be made of N-vinylformamide, N-vinylacetamide, N-vinylpyridine and N-vinylpyrrolidone, acryloylmorpholine (ACMO) and diacetone acrylamide.
  • a preferred nonionic monomer is acrylamide.
  • the water-soluble copolymer(s) may also comprise one or more hydrophobic monomers chosen in particular from monomers of the acrylamide, acrylic, vinyl, allyl or maleic type having a pendant hydrophobic functional group preferably chosen from acrylamide derivatives such as N-alkylacrylamides, for example, diacetone acrylamide, N-tert-butylacrylamide, octylacrylamide, and N,N-dialkylacrylamides such as N,N-dihexylacrylamide and acrylic acid derivatives such as alkyl acrylates and methacrylates.
  • acrylamide derivatives such as N-alkylacrylamides, for example, diacetone acrylamide, N-tert-butylacrylamide, octylacrylamide, and N,N-dialkylacrylamides such as N,N-dihexylacrylamide and acrylic acid derivatives such as alkyl acrylates and methacrylates.
  • vinyl monomers such as N-vinylformamide
  • the polymers of the invention do not require the development of a specific polymerization process. Indeed, they may be obtained according to all the polymerization techniques well known to a person skilled in the art. These may be in particular solution polymerization; gel polymerization; precipitation polymerization; (aqueous or inverse) emulsion polymerization; suspension polymerization; or micellar polymerization.
  • the polymer may be provided in liquid or solid form when its preparation includes a drying step such as spray-drying, drying on a drum or alternatively microwave drying.
  • the polymer developed by the applicant exhibits improved compatibility with anionic species.
  • anionic species is understood to mean all the macromolecular elements having an anionic character which are commonly present in cosmetic or detergent type formulations and the like.
  • the present invention also relates to the use of the copolymer described above in a cosmetic or detergent formulation.
  • these ionic species may be:
  • Anionic surfactants among which there may be mentioned, alone or mixed, salts (in particular alkali metal salts, in particular sodium salts, ammonium salts, amino salts, salts of amino alcohols or magnesium salts) of the following compounds: alkyl sulfates, alkyl ether sulfates, alkyl amido ether sulfates, alkyl aryl polyether sulfates, monoglyceride sulfates, alkyl sulfonates, alkyl phosphates, alkyl amide sulfonates, alkyl aryl sulfonates, alpha-olefin sulfonates, paraffin sulfonates, alkyl sulfosuccinates, alkyl ether sulfosuccinates, alkyl amide sulfosuccinates, alkyl sulfosuccinamates; alkyl sulfoacetate
  • the salts of fatty acids such as the salts of oleic, ricinoleic, palmitic and stearic
  • Anionic polyelectrolytes comprising at least one monomer having an acrylic, vinyl, maleic, fumaric or allyl functionality and containing a carboxy, phosphonate or sulfonate group, or another group having an anionic charge.
  • silicone-based polyelectrolytes comprising one or more carboxylate, sulfate, sulfonate, phosphate or phosphonate groups, or derivatives thereof.
  • Natural polymers having an anionic character which may be chosen from the group comprising polysaccharides such as cellulose, starch, guar gum, guar gum hemicellulose, gum arabic, glucomannan, carob gum, pullulan, curdlan, xanthan gum, gellan gum, carrageenan gum, dextran gum, tragacanth gum, welan gum, rhamsan gum, hyaluronic acid, inulin, pectin, lignin, chitin, alginate, agar agar or derivatives thereof.
  • polysaccharides such as cellulose, starch, guar gum, guar gum hemicellulose, gum arabic, glucomannan, carob gum, pullulan, curdlan, xanthan gum, gellan gum, carrageenan gum, dextran gum, tragacanth gum, welan gum, rhamsan gum, hyaluronic acid, inulin, pectin,
  • Polymer A comprises 75 mol % of DADMAC monomer and 25 mol % of polyethylene glycol methacrylate, i.e. 20% by mass of DADMAC and 80% by mass of polyethylene glycol methacrylate.
  • PEG 2000 MA Polyglykol® MA 2000, Clariant. It is a polyethylene glycol methacrylate whose molar mass is 2000 g/mol.
  • EDTA ethylenediaminetetraacetic acid
  • an initiator solution is prepared by introducing 0.35 g of 2,2′-azobis(2-amidinopropane)dihydrochloride (V50, Wako) in 30 g of water.
  • the temperature of the medium has reached 80° C.
  • gradual addition of the initiator solution is started.
  • the solution is added for 180 minutes and then the medium is kept at 80° C. for 120 additional minutes in order to complete the polymerization.
  • the mixture is allowed to return to room temperature and then the pH is adjusted to between 5 and 7 using an aqueous NaOH or citric acid solution at 50% by mass.
  • the product obtained is a liquid solution whose polymer concentration is 40% by mass relative to the mass of the solution.
  • the solution has a viscosity of 300 cps (Brookfield LVT, spindle 3, 30 rpm).
  • Polymer A has a comb structure. Its cationic charge density is 1.15 meq/g.
  • Polymer B comprises 98 mol % of DADMAC monomer and 2 mol % of polyethylene glycol methacrylate, i.e. 80% by mass of DADMAC and 20% by mass of polyethylene glycol methacrylate.
  • the product obtained is a liquid having a polymer concentration of 40% by mass relative to the mass of the product, and a viscosity of 1700 cps (Brookfield LVT, spindle 3, 30 rpm).
  • the polymer has a comb structure. Its cationic charge density is 4.26 meq/g.
  • the product obtained is a liquid solution whose polymer concentration is 40% by mass relative to the mass of the solution.
  • the solution has a viscosity of 200 cps (Brookfield LVT, spindle 3, 30 rpm).
  • Polymer B has a comb structure. Its cationic charge density is 6.1 meq/g.
  • the maximum mass of cationic product that can be added before the appearance of a precipitate or of a cloudiness reflecting precipitation is determined.
  • the quantity of cationic polymer introduced is then linked to a cationic charge introduced into the system.
  • the solutions containing polymer A according to the invention have a translucent appearance, whereas the solutions comprising polymers B and C contain insoluble polymer particles.
  • Polyquaternium 7 has a charge density which is included in the range claimed. However, after 2 g of polymer have been added to the solution, insoluble particles appear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
US14/368,664 2012-01-16 2013-01-14 Comb polymers which can be used in cosmetics and detergents Active 2033-03-14 US9447216B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1250380A FR2985727B1 (fr) 2012-01-16 2012-01-16 Nouveaux polymeres peignes utilisables en cosmetique et detergence
FR1250380 2012-01-16
PCT/FR2013/050087 WO2013107976A1 (fr) 2012-01-16 2013-01-14 Nouveaux polymeres peignes utilisables en cosmetique et detergence

Publications (2)

Publication Number Publication Date
US20140378639A1 US20140378639A1 (en) 2014-12-25
US9447216B2 true US9447216B2 (en) 2016-09-20

Family

ID=47741164

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/368,664 Active 2033-03-14 US9447216B2 (en) 2012-01-16 2013-01-14 Comb polymers which can be used in cosmetics and detergents

Country Status (7)

Country Link
US (1) US9447216B2 (es)
EP (1) EP2804880B1 (es)
CN (1) CN104039849B (es)
ES (1) ES2584386T3 (es)
FR (1) FR2985727B1 (es)
MX (1) MX2014007802A (es)
WO (1) WO2013107976A1 (es)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001457B1 (fr) * 2013-01-31 2015-02-06 Snf Sas Nouveaux polymeres peignes utilisables en cosmetique et detergence
WO2016014733A1 (en) 2014-07-23 2016-01-28 The Procter & Gamble Company Fabric and home care treatment compositions
EP3172307A1 (en) 2014-07-23 2017-05-31 The Procter and Gamble Company Treatment compositions
WO2016014802A1 (en) 2014-07-23 2016-01-28 The Procter & Gamble Company Fabric and home care treatment compositions
EP3172303B1 (en) 2014-07-23 2019-01-02 The Procter and Gamble Company Fabric and home care treatment compositions
JP6542351B2 (ja) 2014-07-23 2019-07-10 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 布地ケア及びホームケア処理組成物
US10519402B2 (en) 2014-07-23 2019-12-31 The Procter & Gamble Company Treatment compositions
EP3172300B1 (en) 2014-07-23 2018-12-26 The Procter and Gamble Company Fabric and home care treatment composition
CA2967001A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Patterned apertured webs, laminates, and methods for making the same
EP3078720A1 (fr) 2015-04-10 2016-10-12 Snf Sas Procede de deviation d'une formation souterraine
CN105037644A (zh) * 2015-07-01 2015-11-11 广东灵捷制造化工有限公司 一种高分子阳离子表面活性剂、其制备方法及用途
US11261402B2 (en) 2016-01-25 2022-03-01 The Procter & Gamble Company Treatment compositions
JP6738900B2 (ja) 2016-01-25 2020-08-12 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company 処理組成物
MX2018012317A (es) * 2016-04-08 2019-02-20 Basf Se Copolimeros que comprenden grupos oxido de polialquileno y atomos de nitrogeno cuaternarios.
DE102016223588A1 (de) * 2016-11-28 2018-05-30 Clariant International Ltd Copolymere und deren verwendung in reinigungsmittel-zusammensetzungen
DE102016223590A1 (de) * 2016-11-28 2018-05-30 Clariant International Ltd Copolymer enthaltende reinigungsmittelzusammensetzungen
DE102016223586A1 (de) 2016-11-28 2018-05-30 Clariant International Ltd Copolymere und deren verwendung in reinigungsmittel-zusammensetzungen
DE102016223585A1 (de) * 2016-11-28 2018-05-30 Clariant International Ltd Copolymere und deren verwendung in waschmittel-zusammensetzungen
CN110234405B (zh) * 2016-11-28 2022-10-25 科莱恩国际有限公司 包含阳离子共聚物的化妆品组合物
EP3582733B1 (en) 2017-02-16 2022-08-17 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
US12127925B2 (en) 2018-04-17 2024-10-29 The Procter & Gamble Company Webs for absorbent articles and methods of making the same
FR3096580B1 (fr) * 2019-05-27 2021-07-02 Oreal Composition cosmétique comprenant une phase aqueuse et des particules solides
EP3789359A1 (en) * 2019-09-03 2021-03-10 Sika Technology AG Use of comb polymers as inerting agents for non-swelling layer-silicates

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372546A2 (en) 1988-12-09 1990-06-13 Kao Corporation Film-forming resin and hair dressing composition containing the same
JPH07285831A (ja) 1994-04-18 1995-10-31 Mitsubishi Chem Corp 毛髪化粧料組成物
JP2000302649A (ja) 1999-04-26 2000-10-31 Mitsubishi Chemicals Corp 毛髪化粧料
JP2002284627A (ja) * 2001-03-27 2002-10-03 Lion Corp 外用組成物
JP2002322219A (ja) 2001-04-25 2002-11-08 Lion Corp 両親媒性高分子化合物及び毛髪化粧料
JP2003055164A (ja) 2001-08-10 2003-02-26 Osaka Organic Chem Ind Ltd 毛髪用樹脂組成物およびそれからなる毛髪用化粧料
WO2006013268A2 (fr) 2004-07-02 2006-02-09 L'oreal Nouveaux copolymeres ethyleniques, compositions les comprenant et procede de traitement
AU2004200189B2 (en) 1999-05-26 2006-11-02 Rhodia Inc. Polymers, Compositions and Methods of use for Foams, Laundry Detergents, Shower Rinses, and Coagulants
FR2962034A1 (fr) 2010-07-01 2012-01-06 Oreal Compositions cosmetiques contenant un tensioactif anionique ou non ionique et un copolymere ethylenique a greffons polyethyleneglycol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181354A (ja) 1999-12-28 2001-07-03 Lion Corp カチオン性ポリマー
JP4147067B2 (ja) * 2002-08-09 2008-09-10 花王株式会社 洗浄剤組成物
ES2314493T3 (es) 2003-11-21 2009-03-16 Basf Se Copolimeros que incluyen grupos oxido de polialquileno y atomos de nitrogeno cuaternario.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372546A2 (en) 1988-12-09 1990-06-13 Kao Corporation Film-forming resin and hair dressing composition containing the same
JPH07285831A (ja) 1994-04-18 1995-10-31 Mitsubishi Chem Corp 毛髪化粧料組成物
JP2000302649A (ja) 1999-04-26 2000-10-31 Mitsubishi Chemicals Corp 毛髪化粧料
AU2004200189B2 (en) 1999-05-26 2006-11-02 Rhodia Inc. Polymers, Compositions and Methods of use for Foams, Laundry Detergents, Shower Rinses, and Coagulants
JP2002284627A (ja) * 2001-03-27 2002-10-03 Lion Corp 外用組成物
JP2002322219A (ja) 2001-04-25 2002-11-08 Lion Corp 両親媒性高分子化合物及び毛髪化粧料
JP2003055164A (ja) 2001-08-10 2003-02-26 Osaka Organic Chem Ind Ltd 毛髪用樹脂組成物およびそれからなる毛髪用化粧料
WO2006013268A2 (fr) 2004-07-02 2006-02-09 L'oreal Nouveaux copolymeres ethyleniques, compositions les comprenant et procede de traitement
EP1765893A2 (fr) 2004-07-02 2007-03-28 L'Oréal Nouveaux copolymeres ethyleniques, compositions les comprenant et procedes de preparation et de traitement
EP1769011A2 (fr) 2004-07-02 2007-04-04 L'Oréal Nouveaux copolymeres ethyleniques, compositions les comprenant et procede de traitement
US20080292577A1 (en) * 2004-07-02 2008-11-27 L'oreal Novel Ethylene Copolymers, Compositions Comprising Same and Preparation and Treatment Methods
FR2962034A1 (fr) 2010-07-01 2012-01-06 Oreal Compositions cosmetiques contenant un tensioactif anionique ou non ionique et un copolymere ethylenique a greffons polyethyleneglycol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report for PCT/FR2013/050087 dated Mar. 20, 2013.

Also Published As

Publication number Publication date
EP2804880A1 (fr) 2014-11-26
MX2014007802A (es) 2015-03-05
WO2013107976A1 (fr) 2013-07-25
EP2804880B1 (fr) 2016-07-06
CN104039849A (zh) 2014-09-10
US20140378639A1 (en) 2014-12-25
CN104039849B (zh) 2017-03-22
FR2985727B1 (fr) 2014-05-09
FR2985727A1 (fr) 2013-07-19
ES2584386T3 (es) 2016-09-27

Similar Documents

Publication Publication Date Title
US9447216B2 (en) Comb polymers which can be used in cosmetics and detergents
US9499648B2 (en) Comb polymers which can be used in cosmetics and detergents
ES2314493T3 (es) Copolimeros que incluyen grupos oxido de polialquileno y atomos de nitrogeno cuaternario.
EP1396508A1 (en) The production of aqueous dispersions of cationic homo- and copolymers using amphoteric protective colloids
CN100400026C (zh) 交联的阳离子聚合物在化妆品中的用途
EP2953979A1 (en) Alkaline-swellable emulsion polymers
EP0911018B1 (de) Verwendung von kationischen Copolymerisaten aus ungesättigten Säuren und N-Vinylimidazoliumsalzen in haarkosmetischen Zubereitungen
CA2626572C (en) Aqueous dispersions of water-soluble polymers with comblike stabilizers
ES2909917T3 (es) Polímero en polvo seco de bajo peso molecular para uso como agente de resistencia en seco para la fabricación de papel
US20160017096A1 (en) Polymers Prepared From Alkoxylated Polyamines
US9243094B2 (en) Thickening polymer for ionic oil phases free of monomers
CN116102693A (zh) 一种调理性丙烯酸悬浮增稠剂、制备方法及含其的组合物、制备方法及应用
CN113811365A (zh) 个人洗涤组合物和实现改善的调理效益的方法
WO2024133773A1 (en) Hybrid polymer and uses thereof
CN117980356A (zh) 包含包封在另一种聚合物内的水溶性聚合物的聚合物组合物的美容品和洗涤剂组合物
BR112018075340B1 (pt) Polímero associativo, pó, e, processo para preparar um pó

Legal Events

Date Code Title Description
AS Assignment

Owner name: S.P.C.M. SA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLONDEL, FREDERIC;SANNA, ANTONIN;SIGNING DATES FROM 20140606 TO 20140620;REEL/FRAME:033177/0423

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8