US8210777B2 - Cutting insert, milling tool and cutting method - Google Patents

Cutting insert, milling tool and cutting method Download PDF

Info

Publication number
US8210777B2
US8210777B2 US12/091,906 US9190606A US8210777B2 US 8210777 B2 US8210777 B2 US 8210777B2 US 9190606 A US9190606 A US 9190606A US 8210777 B2 US8210777 B2 US 8210777B2
Authority
US
United States
Prior art keywords
cutting edge
main cutting
projecting part
rake face
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/091,906
Other languages
English (en)
Other versions
US20090188356A1 (en
Inventor
Takuya Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Assigned to KYOCERA CORPORATION reassignment KYOCERA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIDA, TAKUYA
Publication of US20090188356A1 publication Critical patent/US20090188356A1/en
Application granted granted Critical
Publication of US8210777B2 publication Critical patent/US8210777B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/109Shank-type cutters, i.e. with an integral shaft with removable cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/06Face-milling cutters, i.e. having only or primarily a substantially flat cutting surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • B23C5/205Plate-like cutting inserts with special form characterised by chip-breakers of special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/08Rake or top surfaces
    • B23C2200/081Rake or top surfaces with projections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/12Side or flank surfaces
    • B23C2200/128Side or flank surfaces with one or more grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/205Discontinuous cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/32Chip breaking or chip evacuation
    • B23C2200/323Chip breaking or chip evacuation by chip-breaking projections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/32Chip breaking or chip evacuation
    • B23C2200/326Chip breaking or chip evacuation by chip-breaking grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1906Rotary cutting tool including holder [i.e., head] having seat for inserted tool
    • Y10T407/1908Face or end mill
    • Y10T407/1912Tool adjustable relative to holder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/22Cutters, for shaping including holder having seat for inserted tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/23Cutters, for shaping including tool having plural alternatively usable cutting edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/23Cutters, for shaping including tool having plural alternatively usable cutting edges
    • Y10T407/235Cutters, for shaping including tool having plural alternatively usable cutting edges with integral chip breaker, guide or deflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0591Cutting by direct application of fluent pressure to work

Definitions

  • the present invention relates to a cutting insert used for a milling tool such as a face mill and an endmill, a milling tool to which the same is mounted and a cutting method using the same.
  • Bending stress operates on a holder when a milling tool such as a face mill and an endmill, particularly, a milling tool used with a large number of long cutting edges is used in a cutting.
  • the holder has had specific stiffness for the purpose of preventing such bending stress from causing great flexure.
  • bending stress operating on the holder changes in size in accordance with a cutting condition. Accordingly, lack of stiffness of the holder causes great flexure. This results in a rise of chatter vibration in the cutting, in some cases.
  • great increase in cutting resistance easily causes chatter vibration.
  • widely used as means for reducing the cutting resistance in the cutting or the like has been a combination of plural cutting inserts having a flank face including a main cutting edge, the flank face being divided by a groove part.
  • a cutting insert in which a rake face continued from a main cutting edge includes a positive rake angle and a groove part is used for dividing a flank face including the main cutting edge (Japanese Unexamined Patent Publication JP-A 7-299636 (1995), for example).
  • a chip formed by the main cutting edge is divided into pieces having a small thickness by the groove part, so that the cutting resistance is reduced while a biting property for a workpiece becomes excellent. This allows an effect of suppressing the chatter vibration in the cutting to be achieved.
  • the invention is made to solve such a problem of the conventional art, and an object of the invention is to provide a cutting insert used for a milling tool, particularly, a milling tool used with a large number of long cutting edges that is a highly reliable and stable cutting insert capable of suppressing chatter vibration in a cutting or the like without reducing the strength of a cutting edge part.
  • the invention is a cutting insert comprising:
  • a main body part having an upper surface provided with a rake face and a side surface provided with a flank face;
  • main cutting edge is composed of a plurality of main cutting edge divisions divided by the groove part
  • a concave part depressed in the rake face is formed in a vicinity corresponding to each of the main cutting edge divisions in the rake face.
  • the invention is characterized in that the at least one projecting part includes a facing surface facing the corresponding main cutting edge division, and
  • the facing surface has a rising angle to the rake face, the rising angle gradually increasing as the facing surface goes away from the corresponding main cutting edge division.
  • the invention is a cutting insert comprising:
  • a main body part having an upper surface provided with a rake face and a side surface provided with a flank face;
  • main cutting edge is composed of a plurality of main cutting edge divisions divided by the groove part
  • a concave part depressed in the rake face and at least one projecting part are formed in a vicinity corresponding to each of the main cutting edge divisions in the rake face
  • the projecting part includes a first projecting part
  • a second projecting part formed on a side opposite to the corresponding main cutting edge division with respect to the first projecting part, the second projecting part being higher than the first projecting part.
  • the invention is a cutting method of cutting a workpiece by the milling tool, comprising:
  • a cutting step for rotating at least one of the milling tool and the workpiece and cutting a surface of the workpiece by contact of the main cutting edge division with the surface of the workpiece;
  • a retracting step for retracting the main cutting edge division from the workpiece.
  • the invention is a cutting method of cutting a workpiece by the cutting insert, comprising:
  • a mounting step for mounting the cutting insert to a holder for a milling tool to form the milling tool, the holder being capable of mounting and demounting a plurality of cutting inserts at outer circumferential positions thereof;
  • a cutting step for rotating at least one of the milling tool and the workpiece and cutting a surface of the workpiece by contact of the main cutting edge division with the surface of the workpiece;
  • a retracting step for retracting the main cutting edge division from the workpiece.
  • FIG. 1 is a perspective view showing a whole configuration of a cutting insert 1 in accordance with a first embodiment of the invention.
  • FIG. 2 is a perspective view of a milling tool 9 .
  • FIG. 3 is an enlarged perspective view showing the vicinity of the cutting insert 1 of the milling tool 9 .
  • FIG. 4 is a perspective view of a cutting insert 1 a in accordance with a second embodiment.
  • FIG. 5 is a front view of the milling toot 9 to which the insert 1 a in accordance with the second embodiment is mounted, which view shows a cutting state.
  • FIG. 6 is a front view of a milling tool to which a conventional insert is mounted, which view shows a cutting state.
  • FIG. 7 is a perspective view showing a whole configuration of a cutting insert 1 b in accordance with a third embodiment.
  • FIG. 8 is a perspective view of a cutting insert 1 c in accordance with a fourth embodiment.
  • FIG. 9 is a plan view of the cutting insert 1 c in accordance with the fourth embodiment.
  • FIG. 10 is a side view of a long side of the cutting insert 1 c in accordance with the fourth embodiment.
  • FIG. 11 is an enlarged view of the short side of the cutting insert 1 c , which view is a simplified side view showing a state of forming the chips 13 in cutting.
  • FIG. 12 is a perspective view of a cutting insert 1 d in accordance with a fifth embodiment.
  • FIG. 13 is a flat view of the cutting insert 1 d in accordance with the fifth embodiment.
  • FIG. 14 is a side view of a long side of the cutting insert 1 d in accordance with the fifth embodiment.
  • FIG. 15 is a side view of a short side of the cutting insert 1 d in accordance with the fifth embodiment.
  • FIG. 16 is a perspective view of a cutting insert 1 e in accordance with a sixth embodiment.
  • FIG. 17 is a view illustrating a stage of the cutting method, which view is a perspective view showing a preparation stage before cutting of a workpiece 15 starts.
  • FIG. 18 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage of cutting the workpiece 15 .
  • FIG. 19 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage where cutting of the workpiece 15 is completed.
  • FIG. 20 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage after the stage where cutting of the workpiece 15 is completed.
  • FIG. 21 is a flowchart showing a cutting method using the milling tool 9 .
  • FIG. 1 is a perspective view showing a whole configuration of a cutting insert 1 in accordance with a first embodiment of the invention.
  • FIG. 2 is a perspective view of a milling tool 9 .
  • FIG. 3 is an enlarged perspective view showing the vicinity of the cutting insert 1 of the milling tool 9 .
  • the milling tool 9 is formed of the cutting insert 1 mounted to a holder for a milling tool (referred to as a “holder” in some cases, hereinafter) 10 .
  • the cutting insert (referred to as an “insert” in some cases, hereinafter) 1 in accordance with the first embodiment of the invention is formed in a substantially polygonal plate shape, concretely, a substantially parallelogram plate shape.
  • the cutting insert has a rake face 2 in its upper surface, a bottom surface 3 in its lower surface and a flank face 4 in its side surface.
  • the rake face 2 is a basic surface for forming the upper surface of the cutting insert 1 .
  • a main cutting edge 5 is formed in an intersecting ridge line part of the rake face 2 and the flank face 4 .
  • the rake face 2 curves into the shape of a concave so as to form a concave toward the bottom surface 3 , as shown in FIG. 15 in the first embodiment.
  • flank face 4 formed are plural (three in the first embodiment) groove parts 6 , each of which has one end reaching the rake face 2 and the other end reaching the bottom surface 3 .
  • the main cutting edge 5 is formed of plural (four in the first embodiment) main cutting edge divisions 5 a divided by the groove parts 6 .
  • a corner cutting edge 12 is formed in an intersecting ridge line part of the flank face 4 and the rake face 2 .
  • the corner cutting edge 12 is connected to a main cutting edge division 5 a of the main cutting edge 5 , the main cutting edge division 5 a located most closely to the corner cutting edge 12 .
  • Concave parts 7 which are depressed in the rake face 2 , are formed in positions corresponding to the main cutting edge divisions 5 a in the vicinity of the main cutting edge divisions 5 a in the rake face 2 so as to correspond to the respective main cutting edge divisions 5 a .
  • Each of the concave parts 7 is formed so as to be further depressed in the rake face 2 curving into the shape of a concave toward the bottom surface 3 .
  • the concave part 7 is formed in the vicinity of an area between the groove parts 6 adjacent to each other.
  • the concave part 7 is provided so as to extend in a direction substantially vertical to each of the main cutting edge divisions 5 a .
  • the concave part 7 is formed so as to extend in a direction crossing at substantially right angles with the flank face 4 .
  • Such a concave part 7 is provided so that the strength of the cutting edge is maintained as much as possible.
  • a screw hole 16 passing through to the lower surface.
  • An annular protrusion part 15 which protrudes from the rake face 2 , is formed in the peripheral part of the screw hole 16 .
  • the milling tool 9 basically comprises the insert 1 , and a holder 10 which forms a substantial cylinder shape and to which the plural inserts 1 are detachable in outer circumferential positions, as shown in FIG. 2 .
  • a holder 10 which forms a substantial cylinder shape and to which the plural inserts 1 are detachable in outer circumferential positions, as shown in FIG. 2 .
  • mounting parts to which the inserts 1 are mounted and chip pockets 11 adjacent to the mounting parts.
  • the insert 1 is put in the mounting part so that its rake face 2 faces a direction of rotation and its main cutting edge 5 is located on the outer circumferential side.
  • the insert 1 is fixed to the holder 10 by clamp means 14 such as a screw member.
  • the main cutting edge 5 rotates together with the holder 10 to carry out cutting.
  • the groove parts 6 dividing the flank face 4 including the main cutting edge 5 are arranged so that the strength of the cutting edge is maintained while the concave parts 7 are provided.
  • the plural main cutting edge divisions 5 a divided by the groove parts 6 cut a surface of a workpiece.
  • Contact between chips 13 formed in cutting and the rake face 2 is reduced in ratio when the chips 13 pass on the rake face 2 since the rake face 2 is provided with the concave part 7 .
  • the reduction of the contact ratio causes frictional resistance to be reduced, so that the cutting resistance is reduced.
  • providing the concave part 7 causes the contact ratio of the chips 13 in passing on the rake face 2 to be reduced, so that the cutting resistance is reduced more than the conventional case that the full width of chips 13 contact with the rake face 2 . Accordingly, arranging that the structure of the main cutting edge 5 be maintained while the cutting resistance be reduced allows chatter vibration in the cutting or the like to be suppressed without reducing the strength of the cutting edge part. Further, suppressing the chatter vibration of the milling tool 9 allows a processed surface of a workpiece to be finished excellently and a shock (minute vibration) given to the cutting edge to be reduced. This allows the life of the tool to be prolonged, so that a cost can be reduced in total.
  • the concave part 7 is formed in the area between the adjacent groove parts 6 in the first embodiment. Accordingly, it is possible to increase the probability that the chips 13 formed by the main cutting edge division 5 a in the area between the adjacent groove parts 6 pass above the concave part 7 . This allows the concave part 7 to be formed only in a necessary position, so that deterioration in strength of the cutting edge due to the concave part 7 can be reduced as much as possible, and thereby, the chatter vibration can be suppressed.
  • the concave part 7 is formed so as to extend in a direction substantially vertical to each of the main cutting edge divisions 5 a , namely, a direction in which the chips formed by the respective main cutting edge divisions 5 a advance. This allows the contact ratio between the chips 13 passing on the rake face 2 and the rake face 2 to be effectively reduced. As a result, the cutting resistance can be effectively reduced.
  • forming the concave part 7 causes the surface area of the rake face 2 in the vicinity of the cutting edge to be increased, and thereby, more cutting heat to radiate. Accordingly, a rise in temperature of the cutting edge part is mitigated. This results in an effect of suppression of advance in wear of the insert. Moreover, forming plural concave parts 7 for the respective main cutting edge divisions 5 a is further preferable since the effect of the radiation of heat is enhanced more.
  • a head part of the clamp means 14 is behind the annular protrusion part 15 when the insert 1 is mounted to the holder 10 , as shown in FIG. 2 . That is to say, the head part of the clamp means 14 is lower than the annular protrusion part 15 . This allows wear of the head part of the clamp means 14 due to a collision with the chips 13 to be prevented.
  • FIG. 4 is a perspective view of a cutting insert 1 a in accordance with the second embodiment.
  • the insert 1 a in accordance with the second embodiment is provided with concave parts 7 in the vicinity of the main cutting edge division 5 a in the rake face 2 and at least one projecting part 8 in the rake face 2 so as to correspond to the main cutting edge division 5 a .
  • the concave part 7 is provided so as to extend between the projecting part 8 and the main cutting edge division 5 a corresponding to the concave part 7 .
  • the at least one projecting part 8 is provided for every corresponding dividing main cutting edge 5 a .
  • Two projecting parts 8 are provided in the second embodiment.
  • the projecting part 8 has a facing surface 17 facing the corresponding main cutting edge division 5 a .
  • the facing surface 17 is formed at a position where the chips 13 formed by cutting a workpiece by the corresponding main cutting edge division 5 a collide.
  • the facing surface 17 preferably has a part substantially parallel to each of the main cutting edge divisions 5 a since it is easy to receive the chips 13 .
  • the facing surface 17 is formed so as to gradually rise from the rake face 2 as it goes away from the faced main cutting edge division 5 a . In other words, the facing surface 17 is formed into the shape of a taper inclining with respect to the rake face 2 .
  • the concave part 7 contributes to reduction in cutting resistance, as described above, while collision of the chips formed by the main cutting edge division 5 a with the facing surface 17 of the projecting part 8 can cause the chips to certainly curl. This allows excellent chip removal to be achieved. Accordingly, the chips 13 collide with the facing surface 17 and this causes the chips 13 to curl into small size.
  • FIG. 5 is a front view of the milling tool 9 to which the insert 1 a in accordance with the second embodiment is mounted, which view shows a cutting state.
  • FIG. 6 is a front view of a milling tool to which a conventional insert is mounted, which view shows a cutting state.
  • the insert in accordance with the conventional art in which no projecting part 8 is formed in the rake face 2 is mounted to the holder as shown in FIG. 6 to be used as a milling tool for cutting general carbon steel, stainless steel or the like, the chips 13 formed by the main cutting edge go toward a center side of the holder on the rake face since the chips are thick and have high stiffness.
  • the projecting parts 8 be provided in the rake face 2 of the insert 1 so as to correspond to each of the main cutting edge divisions 5 a , as in the invention, allows the chips 13 formed by the main cutting edge divisions 5 a to be certainly curled by the projecting parts 8 .
  • the chips 13 can be removed to the outside with no collision with the holder wall surface 10 a . Accordingly, there is no problem that the holder wall surface 10 a of the holder 10 is damaged, so that an advantage in cost such as reduction in expense of tools can be achieved since the holder 10 can be used for a long period of time.
  • a small diameter of the curl of the chips 13 causes the respective chips 13 to be reduced in size, so that the chips 13 can be smoothly removed from the chip pocket 11 to the outside. This allows a problem such as a fracture of the main cutting edge 5 due to the chips 13 stuffed in the cutting edge to be suppressed and the life of the insert 1 a to be prolonged.
  • a workpiece such as carbon steel and stainless steel described above
  • effective is the insert 1 a having the projecting part 8 since the chips easily get longer.
  • even an insert having no projecting part 8 can be also sufficient since the chips are easily cut into small pieces.
  • the concave part 7 is provided so as to extend between the projecting part 8 and the main cutting edge division 5 a . This allows both of an effect of reducing the cutting resistance, the effect being achieved when the chips pass above the concave part 7 , and a chip removal effect achieved by collision of the chips with the projecting part 8 after the chips passed above the concave part 7 to be managed.
  • annular protrusion part 15 is formed in the peripheral part of the screw hole 16 at the center part of the rake face 2 . This allows the chips to certainly curl even in the case that a curling function of the projecting part 8 for the chips is insufficient.
  • FIG. 7 is a perspective view showing a whole configuration of a cutting insert 1 b in accordance with the third embodiment.
  • the insert 1 b in accordance with the third embodiment is characterized in that plural (two or three in the third embodiment) concave parts 7 are provided for the corresponding respective main cutting edge divisions 5 a .
  • plural (one or two in the third embodiment) projection parts 8 are provided for the corresponding respective main cutting edge divisions 5 a , similarly to the above.
  • the projecting part 8 adjacent to the protrusion part 15 and the protrusion part 15 are continuously and integrally formed in the insert 1 b in accordance with the third embodiment.
  • the protrusion part 15 is formed so as to be higher in height from the rake face 2 than the projecting part 8 .
  • “the projecting part 8 and the protrusion part 15 are continuously formed” means that a protrusion part- 15 -side end of the projecting part 8 is connected to a projecting-part- 8 -side end of the protrusion part 15 to arrange the connected part so as to be higher than the projecting part 8 . Accordingly, in the whole view of the projecting part 8 and the protrusion part 15 , the connected part is arranged not to be depressed in a surface of the projecting part 8 but to be higher than the surface of the projecting part 8 like the shape of a taper.
  • the concave part 7 is provided in plural numbers so as to extend in the direction substantially vertical to the respective main cutting edge divisions 5 a . Accordingly, the ratio of contact of the chips passing on the rake face 2 with the rake face 2 can be reduced to effectively reduce the cutting resistance.
  • an original part of the rake face 2 left in the shape of a rung between the plural concave parts 7 formed in an area of the rake face 2 in the vicinity of the respective main cutting edge divisions 5 a allows the strength of the cutting insert 1 b to be maintained.
  • the concave part 7 is provided in plural numbers for the respective main cutting edge divisions 5 a in the third embodiment. This allows the ratio of contact of the chips 13 passing on the rake face 2 with the rake face 2 to be reduced to effectively reduce the cutting resistance. Additionally, the rake face 2 is located between the adjacent concave parts 7 formed in the area of the rake face 2 in the vicinity of the respective main cutting edge divisions 5 a . This allows the strength of the cutting insert 1 b to be maintained.
  • the annular protrusion part 15 is formed in the peripheral part of the screw hole 16 at the center part of the rake face 2 while the projecting part 8 is formed continuously to the protrusion part 15 . Accordingly, the projecting part 8 is reinforced more than the case that the projecting part 8 is provided independently. Further, the protrusion part 15 is formed to be higher than the projecting part 8 , so that the protrusion part 15 plays a role of a chip guide for preventing the chips 13 from colliding the holder wall surface 10 a . Moreover, forming the projecting part 8 continuously to the protrusion part 15 allows no problem that the chips 13 are stuffed between the protrusion part 15 and the projecting part 8 to occur.
  • FIG. 8 is a perspective view of a cutting insert 1 c in accordance with the fourth embodiment.
  • FIG. 9 is a plan view of the insert 1 c in accordance with the fourth embodiment.
  • FIG. 10 is a side view of a long side of the insert 1 c in accordance with the fourth embodiment.
  • the insert 1 c in accordance with the fourth embodiment is characterized by the shape of the projecting part 8 .
  • the projecting part 8 comprises at least one first projecting part 8 a , which is located on a corresponding main cutting edge division side, and at least one second projecting part 8 b , which is continued from the first projecting part 8 a and formed on a side opposite to the main cutting edge division 5 a corresponding to the first projecting part 8 a and which is higher than the first projecting part 8 a . Accordingly, the first projecting part 8 a of each projecting part 8 is provided on a side closer to the corresponding main cutting edge division 5 a .
  • the second projecting part 8 b is continued from the first projecting part 8 a ” means a second-projecting-part- 8 b -side end of the first projecting part 8 a is connected to a first-projecting-part- 8 a -side end of the second projecting part 8 b to arrange the connected part so as to be higher than the first projecting part 8 a . Accordingly, in the whole view of the projecting part 8 , the connected part is arranged not to be depressed in a surface of the first projecting part 8 a but to be higher than the surface of the first projecting part 5 a like the shape of a taper.
  • the facing surface 17 described above is formed in the first projecting part 8 a .
  • the second projecting part 8 b has a chip guide surface 18 facing the corresponding main cutting edge division 5 a on a main cutting edge 5 side of the second projecting part 8 b.
  • the facing surface 17 comprises a curved concave surface or plural flat surfaces in which a rising angle from the rake face gradually increases as the curved concave surface or plural flat surfaces goes away from the corresponding main cutting edge division 5 a .
  • This causes the chips 13 to collide with plural places of the facing surface 17 , so that the stress operating on the first projecting part 8 a is dispersed. Accordingly, the stress operating on the projecting part 8 having the first projecting part 8 a can be dispersed.
  • the chips 13 first collide with a part having a small rising angle with respect to a bottom surface 10 of the facing surface 17 , and then, collide with a part having a large rising angle of the facing surface 17 .
  • the stress operating on the facing surface 17 by the chips 13 is largest in the first collision. Accordingly, the first projecting part 8 a receives large stress in the case that only the part having a large rising angle with respect to the bottom surface 10 of the facing surface 17 is formed in the first projecting part 8 a . This causes the projecting part 8 to receive large stress. That is to say, the insert receiving large stress from the chips 13 significantly deteriorates to shorten its life although the first projecting part 8 a is for preventing wear due to collision of the chips 13 with the holder wall surface 10 a .
  • the stress in first collision of the chips 13 with the first projecting part 8 a can be reduced while collision in other places can contribute to suppression of collision of the chips 13 with the holder wall surface 10 a.
  • FIG. 11 is an enlarged view of the short side of the insert 1 c , which view is a simplified side view showing a state of forming the chips 13 in cutting.
  • “A curved concave surface” or “plural flat surfaces” has a part where the rising angle gradually increases with respect to the bottom surface 3 as the part goes away from the corresponding main cutting edge division 5 a , as shown in FIG. 11 .
  • the facing surface 17 is the curved concave surface, determined is a point in the facing surface 17 to assume an angle between a tangent of the point and the bottom surface 10 to be ⁇ .
  • the facing surface 17 includes a part where the angles ⁇ and ⁇ increase as the part goes away from the corresponding main cutting edge division 5 a .
  • an angle between one flat surface of the plural flat surfaces and the bottom surface 10 is assumed to be ⁇ while an angle between another flat surface away from the main cutting edge division 5 a more than the former flat surface and the bottom surface 10 is assumed to be ⁇ . This is enough as long as it satisfies the above requirement.
  • an auxiliary line L parallel to the bottom surface 10 is drawn to show ⁇ and ⁇ .
  • curved concave surface in the above-described context is not specifically limited as long as it has a curved surface formed into the shape of a convex and may be only a curved surface or a combination of a flat surface and a curved surface so long as it satisfies the above requirement.
  • the two or more flat surfaces different in angle are provided more in numbers since it is highly possible for the chips 13 to be in contact with the facing surface 17 for plural times.
  • the most preferable case is a case of comprising the curved concave surface as shown in FIG. 11 .
  • the main-cutting-edge- 5 -side end of the facing surface 17 is formed on the main cutting edge 5 side of the first projecting part 8 a , and therefore, located at a position closest to the corresponding main cutting edge division 5 a of the projecting part 8 . This is preferable since it causes the probability of first collision of the chips 13 with a place other than the facing surface 17 to be reduced.
  • the first projecting part 8 a is narrowest at the end of the facing surface 17 and has a part increasing in width as the part goes away from the corresponding main cutting edge division 8 a .
  • the facing surface 17 is formed in a position with which the chips 13 collide. The stress of the chips 13 is so large that the holder wall surface 10 a is worn. Accordingly, forming the first projecting part 8 a so that the rear of the facing surface 17 is wider is preferable since this allows the projecting part 8 to be reinforced.
  • the main cutting edge 5 side of the first projecting part 8 a is formed so that it is gradually reduced in width and height as it approaches each of the corresponding main cutting edge divisions 5 a .
  • each projecting part 8 is arranged so that plural first projecting parts 8 a are formed integrally with one second projecting part 8 b in the fourth embodiment.
  • the first projecting part 8 a is formed in plural numbers for the facing main cutting edge division 5 a while the plural first projecting parts 8 a are formed continuously from the second projecting part 8 b at a position away from the corresponding main cutting edge divisions 5 a more than the facing surface 17 .
  • Such a structure allows the projecting parts 8 to reinforce each other, and thereby, the strength of the plural projecting parts 8 as a whole to be improved.
  • forming the second projecting part 8 b continuously to the two or more first projecting parts 8 a allows the stress of the chips 13 , which operates on the respective first projecting parts 8 a , to be dispersed.
  • each of the second projecting parts 8 b is formed on a side opposite to the corresponding main cutting edge division 5 a of each projecting part 8 so as to be higher than the first projecting part 8 a .
  • This allows the chips 13 to be effectively prevented from colliding with the holder wall surface 10 a .
  • the protrusion part 15 may be used for the second projecting part 8 b . In this case, it is not necessary to provide second projecting part 8 b separately. This is superior in productivity.
  • the corner cutting edge 12 is formed at a corner of the insert 1 c connected to the main cutting edge division 5 a , as described above.
  • the projecting part 8 corresponding to the main cutting edge division 5 a located on a corner cutting edge 12 side is formed so that the width and the height thereof are gradually reduced toward the corner cutting edge 12 . This allows the chips 13 having a part of the cross section, the part being formed into the shape of an arc by the corner cutting edge 12 , to be most efficiently curled in a fixed direction.
  • an angle ⁇ between a ridge line on a corner cutting edge 12 side of the projecting part 8 corresponding to the corner cutting edge 12 and the main cutting edge division 5 a is in a range of from 60° to 85°, as shown in FIG. 9 , from a point of view that the chips 13 formed by the corner cutting edge 12 can be more certainly curled into a small size.
  • the chips 13 are easily stuffed and the cutting resistance is likely to increase when ⁇ is smaller than 60°.
  • is larger than 85°, the chips 13 are difficult to curl.
  • the second projecting part 8 b has a chip guide surface 18 facing the corresponding main cutting edge division 5 a on the main cutting edge 5 side of the second projecting part 8 b .
  • the chip guide surface 18 is achieved in accordance with a structure similar to that of the facing surface 17 of the first projecting part 8 a .
  • the chip guide surface 18 gradually rises from the rake face 2 as it goes away from the facing main cutting edge division 5 a .
  • Such a cutting guide surface 18 suppresses advance of the chips 13 in a direction opposite to that of the facing main cutting edge division 8 a .
  • a direction of removing the chips 13 is fixed along the chip guide surface 18 . This allows the chip removing performance to be further improved, so that a damage of the holder wall surface 10 a due to the chips can be prevented.
  • FIG. 12 is a perspective view of a cutting insert 1 d in accordance with the fifth embodiment.
  • FIG. 13 is a flat view of the cutting insert 1 d in accordance with the fifth embodiment.
  • FIG. 14 is a side view of a long side of the cutting insert 1 d in accordance with the fifth embodiment.
  • FIG. 15 is a side view of a short side of the cutting insert 1 d in accordance with the fifth embodiment.
  • the cutting insert 1 d in accordance with the fifth embodiment is particularly similar to the insert 1 c in accordance with the fourth embodiment.
  • the cutting insert 1 d in accordance with the fifth embodiment is different from the insert 1 c in accordance with the fourth embodiment in a structure of the projecting part 8 c corresponding to the corner cutting edge 12 (merely referred to as “a corner projecting part” in some cases, hereinafter).
  • the corner projecting part 8 c of the insert 1 d in accordance with the fifth embodiment is arranged to have a structure similar to that of the other projecting parts 8 .
  • the corner projecting part 8 c is formed of two first projecting parts 8 a and one second projecting part 8 b , which are connected and formed integrally.
  • One first projecting part 8 a of the two first projecting parts 8 a on the outer side of the insert 1 d is set so that an angle ⁇ between a ridge line of the first projecting part 8 a and the main cutting edge division 5 a is in a range of from 60° to 85°, as described above.
  • the other first projecting part 8 a of the two first projecting parts 8 a on the inner side of the insert 1 d is set so that a ridge line thereof crosses at substantially right angles with a direction in which the main cutting edge division 5 a connected to the corner cutting edge 12 extends.
  • Forming the two first projecting parts 8 a as described above allows the chips 13 formed by the corner cutting edge 12 to be curled into a small size as well as allowing the chips 13 formed by the main cutting edge division 5 a connected to the corner cutting edge 12 to be also curled into a small size. This further improves the chip removing performance.
  • FIG. 16 is a perspective view of a cutting insert 1 e in accordance with the sixth embodiment.
  • the cutting insert 1 e in accordance with the sixth embodiment is particularly similar to the insert 1 d in accordance with the fifth embodiment.
  • the cutting insert 1 e in accordance with the sixth embodiment is different from the insert 1 d in accordance with the fifth embodiment in the number of the formed groove parts 6 .
  • flank face 4 formed in the flank face 4 are plural (three in the sixth embodiment) groove parts 6 , each of which has one end reaching the rake face 2 and the other end reaching the bottom surface 3 .
  • flank face 4 also formed are plural (two in the sixth embodiment) groove parts 6 a , each of which has one end reaching the rake face 2 and the other end not reaching the bottom surface 3 .
  • the groove parts 6 a not reaching the bottom surface 3 are formed on the both sides in the longitudinal direction. In other words, the groove part 6 a not reaching the bottom surface 3 is formed in a part adjacent to the corner cutting edge 12 .
  • the main cutting edge 5 is formed of plural (six in the sixth embodiment) main cutting edge divisions 5 a divided by the groove parts 6 and 6 a . Reducing the main cutting edge divisions 5 a in size as described above allows the chips 13 to be made small. Accordingly, the chip removing performance can be improved.
  • FIG. 17 is a view illustrating a stage of the cutting method, which view is a perspective view showing a preparation stage before cutting of a workpiece 15 starts.
  • FIG. 18 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage of cutting the workpiece 15 .
  • FIG. 17 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage of cutting the workpiece 15 .
  • FIG. 19 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage where cutting of the workpiece 15 is completed.
  • FIG. 20 is a view illustrating a stage of the cutting method, which view is a perspective view showing a stage after the stage where cutting of the workpiece 15 is completed.
  • FIG. 21 is a flowchart showing a cutting method using the milling tool 9 . The cutting method using the milling tool 9 will be described hereinafter along the flowchart shown in FIG. 21 . The process goes to Step a 1 when the cutting method starts.
  • Step a 1 is a mounting step.
  • the insert 1 is mounted to the holder 10 so that an axial rake of the main cutting edge division 5 a is positive, as shown in FIG. 17 , and then, the step goes to Step a 2 .
  • the milling tool 9 is formed in such a mounting step.
  • the insert 1 having the main cutting edge 5 provided with the groove part 6 like the embodiment no cutting is carried out in the groove part 6 . Accordingly, a belt-shaped part where cutting is left unfinished occurs in a wall surface of the workpiece 15 , the wall surface being to be processed, when only a single kind of plural inserts 1 are mounted to the holder. Therefore, the inserts 1 d and 1 e , which are the inserts described above and which have different arrangement of the groove parts 6 as shown in FIGS. 12 and 16 , are alternately provided on the same circumference of the holder 10 .
  • Step a 2 is an approaching step in which the milling tool 9 approaches the rectangular parallelepiped workpiece 15 , as shown in FIG. 17 .
  • the step goes to Step a 3 .
  • Step a 4 is a cutting step in which the milling tool 9 is rotated so that the main cutting edge division 5 a is in contact with a surface of the workpiece 15 , as shown in FIG. 18 , to cut the surface of the workpiece 15 .
  • the step goes to Step a 4 after the above. Accordingly, the workpiece 15 is processed into a desired shape in Step a 3 , as shown in FIG. 19 .
  • the milling tool 9 is rotated to carry out the cutting step in the embodiment.
  • the invention is not limited to the above.
  • Step a 4 is a retracting step in which the milling tool 9 is retracted from the workpiece 15 , as show in FIG. 20 . The flow is thus completed.
  • the milling tool 9 is mounted to a machine tool (not shown) such as a machining center, the milling tool 9 is rotated to be put on a side surface of the workpiece 15 and the main cutting edge 5 repeatedly cuts the workpiece 15 .
  • a machine tool such as a machining center
  • the milling tool 9 is rotated to be put on a side surface of the workpiece 15 and the main cutting edge 5 repeatedly cuts the workpiece 15 .
  • the inserts 1 d and 1 e different in arrangement of the groove parts 6 are alternately provided on the same circumference of the holder 10 as described in Step a 1 . This allows a part where cutting is left unfinished due to the groove part 6 of one insert 1 d to be cut by means of the main cutting edge division 5 a of the other insert 1 e .
  • the part where cutting is left unfinished due to the groove part 6 is prevented from occurring. Accordingly, suppressed can be a difference in step occurring in the wall surface of the workpiece 15 , the wall surface being to be processed, after the cutting.
  • the chips 13 which are formed in a process using the milling tool 9 to which the inserts 1 d and 1 e different in arrangement of the groove parts 6 are mounted as described above, have a cross section thickest in the vicinity of the center in the width direction. Accordingly, the contact area is smallest in an area where the chips are thickest when the concave part 7 is formed in a center position of each main cutting edge division 5 a . This allows an effect of reduction in cutting resistance to be achieved to the maximum.
  • the chips 13 are reduced in diameter of curl, and thereby, reduced in size in the case of using the cutting method for processing the workpiece 15 by means of the milling tool 9 to which the cutting insert 1 in accordance with the invention is mounted. Accordingly, the chips 13 are smoothly removed from the chip pocket 11 to the outside. This allows a problem such as a fracture of the main cutting edge due to the chips 13 stuffed in the cutting edge to be suppressed. The above case is thus effective.
  • a concave part which is depressed in a rake face, is formed in the vicinity corresponding to each of the main cutting edge divisions.
  • Forming such a concave part allows a contact ratio of the chips passing on the rake face, the chips being formed by plural main cutting edge divisions divided by a groove part, to the rake face to be reduced. Accordingly, the cutting resistance can be reduced.
  • Forming such a concave part causes no change in cutting edge arrangement of the main cutting edge. This allows chatter vibration in a cutting or the like to be suppressed with the cutting edge arrangement of the main cutting edge being maintained, in other words, without lowering the strength of the cutting edges.
  • the concave part is formed in an area between the adjacent groove parts. Accordingly, a probability that the chips formed by the main cutting edge division between the adjacent groove parts pass above the concave part can be increased. This allows the concave part to be formed only in a necessary place, so that deterioration in strength of the cutting edge due to the concave part can be reduced as much as possible, and thereby, the chatter vibration can be suppressed.
  • the concave part is formed in a direction substantially vertical to each of the main cutting edge divisions. Accordingly, the concave part is formed so as to extend along a direction in which the chips formed by the respective main cutting edge divisions advance. This allows the contact ratio between the chips passing on the rake face and the rake face to be effectively reduced. As a result, the cutting resistance can be effectively reduced.
  • the concave part is formed in plural numbers for each of the main cutting edge divisions. This allows the contact ratio between the chips passing on the rake face and the rake face to be reduced, and thereby, the cutting resistance can be effectively reduced.
  • the rake face exists between the adjacent concave parts formed in a rake face area in the vicinity of the respective main cutting edge divisions. Accordingly, the rake face allows the strength of the cutting insert to be maintained.
  • At least one projecting part is formed in an area facing the main cutting edge division in the rake face. Accordingly, the chips formed by the main cutting edge division can be made collide with the projecting part formed in the rake face. This allows the projecting part to contribute to curl of the chips, so that the chip removing performance can be improved. Further, the curl of the chips allows the chips to be prevented from contacting with a chip pocket wall surface of a holder main body to which the cutting insert is mounted. This allows the holder to be used for a long period of time without wearing the holder wall surface 10 a of the chip pocket 11 due to the chips. Accordingly, a cutting insert high in cost performance can be achieved.
  • the concave part is provided so as to extend between the projecting part and the main cutting edge division. This allows both of an effect of reducing the cutting resistance, the effect being achieved when the chips pass above the concave part, and a chip removal effect achieved by collision of the chips with the projecting part after the chips passed above the concave part to be managed.
  • the facing surface is formed so as to gradually rise from the rake face as it goes away from the facing main cutting edge division. Accordingly, the chips colliding the facing surface can be smoothly guided along the facing surface. This allows the chips to be prevented from damaging the projecting part, and thereby, the performance of removing chips to be improved.
  • the facing surface is formed so as to gradually rise from the rake face as it goes away from the facing main cutting edge division. Accordingly, the chips colliding the facing surface can be curled and smoothly guided along the facing surface. This allows the chips to be prevented from damaging the projecting part, and thereby, the performance of removing chips to be improved.
  • the facing surface is a curved concave surface. This allows the chips colliding the facing surface to be certainly curled and smoothly guided.
  • the facing surface includes plural flat surfaces different in rising angle. Accordingly, the probability of contact of the chips with the facing surface for plural times can be increased. This allows the chip removing performance to be improved.
  • the facing surface is formed so that the main-cutting-edge-side end of the facing surface is narrowest.
  • the chips first collide with the facing surface at the main-cutting-edge-side end. A part with which the chips first collide receives greatest stress from the chips. Accordingly, most reducing the part in width as described above can increase the pressure operating on the chips. This allows a direction of removing the chips to be guided along the facing surface.
  • the facing surface has a part where the width increases as the facing surface goes away from the corresponding main cutting edge division. This means that the strength of the facing surface increases as the facing surface goes away from the main cutting edge division. This allows the chips to be prevented from damaging the facing surface, so that the facing surface allowing the chip removing performance to be improved can be achieved.
  • providing plural projecting parts for the corresponding main cutting edge division allows the possibility of collision of the chips with the projecting parts to be increased. This allows the projecting parts to contribute to improvement in chip removing performance.
  • the plural projecting parts lie in a row at a position away from the facing main cutting edge division more than the facing surface. Lying in a row at a position away from the facing main cutting edge division allows the strength of the projecting parts to be improved more than the case that the respective projecting parts are independently provided. Accordingly, damage by the chips can be prevented even in the case of providing plural projecting parts.
  • a screw hole passing through to a lower surface is formed at a substantial center of the rake face. Accordingly, screwing a screw member in the screw hole as well as screwing a screw member on a holder main body to which the cutting insert is mounted allows the cutting insert to be certainly fixed to the holder main body. Moreover, providing the protrusion part on the periphery of the screw hole allows a head part of a screw member to be covered with the protrusion part with the screw member screwed in the screw hole. This can prevent the head part of the screw member from being damaged due to collision of the chips. In addition, continuously providing the projecting part and the protrusion part allows the strength of the projecting part to be improved more than the case of providing the projecting part independently.
  • the concave part depressed in the rake face is formed in the vicinity corresponding to each of the main cutting edge divisions. Forming such a concave part can reduce the contact ratio between the chips and the rake face when the chips formed by the plural main cutting edge divisions divided by the groove part pass on the rake face. This allows the cutting resistance to be reduced. Forming such a concave part causes no necessity of a change in cutting edge arrangement of the main cutting edge. Accordingly, chatter vibration in the cutting or the like can be suppressed with the cutting edge arrangement of the main cutting edge being maintained, in other words, without lowering the strength of the cutting edge.
  • At least one projecting part is formed in the vicinity and the projecting part includes a first projecting part and a second projecting part.
  • the first projecting part is formed closely to the main cutting edge division side more than the second projecting part. Accordingly, the chips formed by the main cutting edge division first collide with the first projecting part. This allows the chips to be removed along the first projecting part.
  • the second projecting part is higher than the first projecting part, so that the chips having collided with the first projecting part can be made further collide with the second projecting part. This allows the removing direction of the chips to be fixed by the second projecting part. Accordingly, the chip pocket wall surface of the holder main body to which the cutting insert is mounted can be prevented from being in contact with the chips. This allows the holder to be used for a long period of time without wearing the holder wall surface 10 a of the chip pocket 11 due to the chips. This results in achievement of a cutting insert excellent in cost performance.
  • the projecting part includes plural first projecting parts, so that the possibility of collision of the chips with the projecting part can be increased. Accordingly, the projecting part can contribute to improvement in performance of removing chips. Further, the plural first projecting parts are provided integrally with one second projecting part. Providing thus the plural first projecting parts integrally with the second projecting part allows the strength of the projecting part to be improved more than the case of separately providing plural projecting parts, which are formed of one first projecting part and one second projecting part so that the first projecting part is configured integrally with the second projecting part, and allows the plural first projecting parts to be provided. Accordingly, the chips can be prevented from giving damage even in the case that the first projecting part is provided into plural numbers.
  • the first projecting part is in the shape tapering off as the first projecting part approaches the main cutting edge division.
  • the chips first collide with the facing surface on the main cutting edge division side.
  • the part where the chips first collide receives greatest stress from the chips. Accordingly, forming the part into the shape tapering off as described above to be narrowest can cause the pressure on the chips to be increased. This allows the direction of removing the chips to be guided along the facing surface.
  • the strength of the first projecting part increases as the first projecting part goes away from the main cutting edge division since there is a part gradually widened as the part goes away from the corresponding main cutting edge division. This allows the chips to be prevented from damaging the first projecting part, so that the chip removing performance can be improved.
  • the facing surface is formed so as to gradually rise from the rake face as the facing surface goes away from the facing main cutting edge division. This allows the chips colliding with the facing surface to be smoothly guided along the facing surface. Accordingly, the chips can be prevented from damaging the first projecting part, so that the chip removing performance can be improved.
  • the facing surface is formed so as to have the rising angle gradually increasing as the facing surface goes away from the facing main cutting edge division. This allows the chips colliding with the facing surface to be curled and guided smoothly along the facing surface. Accordingly, the chips can be prevented from damaging the projecting part, so that the chip removing performance can be improved.
  • the facing surface is a curved concave surface. This allows the chips colliding with the facing surface to be certainly curled and smoothly guided.
  • the facing surface includes plural flat surfaces different in rising angle. Accordingly, the probability of contact of the chips with the facing surface for plural times can be increased. This allows the chip removing performance to be improved.
  • the chip guide surface is formed so as to gradually rise from the rake face as the chip guide surface goes away from the facing main cutting edge division. Accordingly, the chips guided from the facing surface of the first projecting part can be smoothly guided along the chip guide surface of the second projecting part. This allows the chips to be prevented from damaging the second projecting part, so that the chip removing performance can be further improved.
  • the chip guide surface suppresses an advance of the chips in a direction opposite to the facing main cutting edge division. Accordingly, the chips can be certainly prevented from being in contact with the chip pocket wall surface of the holder main body to which the cutting insert is mounted.
  • a screw hole passing through to a lower surface is formed at the substantial center of the rake face. Accordingly, screwing a screw member in the screw hole as well as screwing a screw member also on a holder main body to which the cutting insert is mounted allows the cutting insert to be certainly fixed to the holder main body. Moreover, providing the protrusion part on the periphery of the screw hole allows a head part of a screw member to be covered with the protrusion part with the screw member screwed in the screw hole. This can prevent the head part of the screw member from being damaged due to collision of the chips. In addition, continuously providing the second projecting part and the protrusion part allows the strength of the second projecting part to be improved more than the case of providing the second projecting part independently. Accordingly, the strength of the projecting part can be improved.
  • the cutting insert provided with a main cutting edge division and at least a concave part in the rake face adjacent to the main cutting edge division is mounted to the holder for a milling tool. This allows the cutting resistance, which occurs in a chip forming stage, to be reduced. Accordingly, occurrence of chatter vibration and the like can be suppressed even in the cutting in which a depth of cut is large and the like.
  • the cutting insert is mounted to the holder so that an axial rake of the main cutting edge division is positive. Accordingly, the cutting resistance, which occurs when each of the main cutting edge divisions bites a workpiece to be cut, can be reduced in cutting. This allows occurrence of chatter vibration or the like to be further suppressed.
  • the milling tool is used for cutting a surface of a workpiece to be cut. Accordingly, the cutting resistance, which occurs in a stage of forming chips, can be reduced. This allows occurrence of chatter vibration and the like to be suppressed even in the cutting in which a depth of cut is large and the like, so that a condition of a processed surface of the workpiece can be excellently finished, as a result. Moreover, suppression of chatter vibration of the milling tool per se causes reduction in shock (minute vibration) given to a cutting edge, and thereby, the life of the tool can be also prolonged.
  • the cutting insert is mounted to the holder for a milling tool to form the milling tool with which the workpiece is cut. Accordingly, the cutting resistance, which occurs in a stage of forming chips, can be reduced. This allows occurrence of chatter vibration and the like to be suppressed even in the cutting in which a depth of cut is large and the like, so that a condition of a processed surface of the workpiece can be excellently finished, as a result. Moreover, suppression of chatter vibration of the milling tool per se causes reduction in shock (minute vibration) given to a cutting edge, and thereby, the life of the tool can be also prolonged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
US12/091,906 2005-10-28 2006-10-24 Cutting insert, milling tool and cutting method Expired - Fee Related US8210777B2 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2005-314110 2005-10-28
JPP2005-314110 2005-10-28
JP2005314110 2005-10-28
JP2006-148580 2006-05-29
JP2006148580 2006-05-29
JP2006-148581 2006-05-29
JPP2006-148580 2006-05-29
JP2006148581 2006-05-29
JPP2006-148581 2006-05-29
PCT/JP2006/321168 WO2007049617A1 (fr) 2005-10-28 2006-10-24 Piece de coupe, fraise et procede de coupe

Publications (2)

Publication Number Publication Date
US20090188356A1 US20090188356A1 (en) 2009-07-30
US8210777B2 true US8210777B2 (en) 2012-07-03

Family

ID=37967727

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/091,906 Expired - Fee Related US8210777B2 (en) 2005-10-28 2006-10-24 Cutting insert, milling tool and cutting method

Country Status (6)

Country Link
US (1) US8210777B2 (fr)
EP (1) EP1949993B1 (fr)
JP (2) JP4814890B2 (fr)
KR (1) KR101309060B1 (fr)
CN (2) CN101791719A (fr)
WO (1) WO2007049617A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294686A1 (en) * 2009-11-27 2012-11-22 Takuya Ishida Cutting insert, cutting tool, and method of manufacturing machined product using the same
US20120308317A1 (en) * 2010-02-19 2012-12-06 Taegutec, Ltd. Cutting Insert Having Cutting Edges Divided By Recesses and a Milling Cutter Provided with the Same
US20130177360A1 (en) * 2012-01-09 2013-07-11 Iscar, Ltd. Cutting Insert Having Hole Orientation Indicia and Method for Making Thereof
US10357859B1 (en) 2014-03-06 2019-07-23 Daniel J Reed Clamping system for securing a work piece to a fixture
US11684980B2 (en) * 2018-06-15 2023-06-27 Ceratizit Luxembourg S.A.R.L. Thread cutting insert
US11986892B2 (en) * 2021-03-31 2024-05-21 Honda Motor Co., Ltd. Machining tool

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137035B2 (en) * 2006-10-31 2012-03-20 Kyocera Corporation Cutting insert
JP5072497B2 (ja) * 2007-09-11 2012-11-14 京セラ株式会社 切削工具およびそれを用いた切削方法
KR100985597B1 (ko) * 2008-08-20 2010-10-05 대구텍 유한회사 절삭 인서트 및 이러한 절삭 인서트가 적용된 밀링커터
CN102119067B (zh) * 2008-08-29 2013-07-10 京瓷株式会社 切削镶刀、切削工具以及使用该切削工具的切削方法
JP4597270B2 (ja) * 2008-09-29 2010-12-15 京セラ株式会社 切削インサートおよび切削工具並びにそれを用いた切削方法
WO2010035831A1 (fr) * 2008-09-29 2010-04-01 京セラ株式会社 Plaquette de coupe, outil de coupe et procédé de coupe utilisant la plaquette de coupe et l'outil de coupe
IL195984A0 (en) * 2008-12-16 2009-09-01 Iscar Ltd Cutting tool and cutting insert therefor
KR101059031B1 (ko) * 2009-01-06 2011-08-24 한국야금 주식회사 절삭 인서트를 적용한 밀링 절삭공구
JP5295271B2 (ja) * 2009-01-29 2013-09-18 京セラ株式会社 切削インサートおよび切削工具、並びにそれを用いた被削材の切削方法
JP4763855B2 (ja) 2009-02-26 2011-08-31 京セラ株式会社 切削インサート及び切削工具、並びにそれを用いた被削材の切削方法
EP2412462B1 (fr) * 2009-03-27 2015-05-13 Kyocera Corporation Plaquette de coupe, outil de coupe et procédé de découpe d'un matériau à couper au moyen de l'outil de coupe
CN102413976B (zh) * 2009-06-16 2014-05-07 株式会社钨钛合金 切削用刀片和端面铣刀
IL203283A (en) * 2010-01-13 2014-02-27 Iscar Ltd Cutting put
CN103958101B (zh) * 2011-11-30 2016-04-27 京瓷株式会社 切削镶刀及切削工具、以及使用其的切削加工物的制造方法
JP5952073B2 (ja) * 2012-04-27 2016-07-13 京セラ株式会社 切削インサート、切削工具および被削加工物の製造方法
KR101459062B1 (ko) * 2012-06-14 2014-11-07 한국야금 주식회사 절삭 인서트
US10155270B2 (en) * 2014-07-31 2018-12-18 Tungaloy Corporation Cutting insert having a variable-width land associated with grooves formed in the upper and side surfaces and indexable cutting tool
CN107427938B (zh) * 2015-04-06 2019-04-19 株式会社泰珂洛 切削刀片以及刀刃更换式切削工具
CN108115156B (zh) * 2016-11-29 2020-11-06 京瓷株式会社 切削刀具以及切削加工物的制造方法
JP2019038076A (ja) * 2017-08-25 2019-03-14 株式会社リプス・ワークス 切削工具及びその製造方法
EP3456450B1 (fr) * 2017-09-13 2022-12-21 Sandvik Intellectual Property AB Plaquette de coupe et outil de fraisage de vilebrequin
JP6744599B1 (ja) * 2019-03-01 2020-08-19 株式会社タンガロイ 切削インサート

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115024A (en) * 1976-03-04 1978-09-19 Amtel, Inc. Spade drill blade
US4447175A (en) * 1980-08-27 1984-05-08 Kennametal Inc. Cutting insert
US4572713A (en) * 1983-02-21 1986-02-25 Seco Tools Ab Cutting insert for thread cutting
US4681486A (en) * 1985-08-21 1987-07-21 General Electric Company Triangular cutting tool insert having cutting edges with recesses
US4867616A (en) 1987-01-16 1989-09-19 Michael Jakubowicz Cutting inserts and tools including same
US5221164A (en) * 1992-08-03 1993-06-22 Gte Valenite Corporation Positive rake insert having serrations for cutting
JPH07299636A (ja) 1994-04-28 1995-11-14 Kyocera Corp フライス工具用スローアウェイチップ
US5525016A (en) * 1991-06-01 1996-06-11 Widia Gmbh Cutting insert with grouped chip-forming ribs arranged symmetrically and having tapering cross sections
US5549424A (en) * 1994-11-25 1996-08-27 Valenite Inc. Indexable threading and turning insert with pressed-in chip breakers
JPH08257822A (ja) 1995-03-20 1996-10-08 Toshiba Tungaloy Co Ltd スローアウェイチップ
US5725334A (en) 1993-03-29 1998-03-10 Widia Gmbh Cutting insert
JPH10118810A (ja) 1996-10-25 1998-05-12 Mitsubishi Materials Corp スローアウェイチップ
US5779401A (en) * 1993-09-13 1998-07-14 Widia Gmbh Cutting insert
US5791833A (en) * 1994-12-29 1998-08-11 Kennametal Inc. Cutting insert having a chipbreaker for thin chips
WO1998040181A1 (fr) 1997-03-11 1998-09-17 Iscar Ltd. Plaquette de coupe
JPH11347826A (ja) 1998-06-10 1999-12-21 Toshiba Tungaloy Co Ltd スローアウェイチップ
JP2003025135A (ja) 2001-07-17 2003-01-29 Toshiba Tungaloy Co Ltd スローアウェイ式エンドミルおよび切刃チップ
US20100092253A1 (en) * 2007-04-26 2010-04-15 Kyocera Corporation Cutting Insert and Cutting Tool, and Cutting Method Using the Same
US20100316452A1 (en) * 2004-09-29 2010-12-16 Kyocera Corporation Throwaway Insert and Milling Tool Equipped With the Same
US7896586B2 (en) * 2006-06-12 2011-03-01 Vargus, Ltd. Indexable insert

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE452562B (sv) * 1983-03-15 1987-12-07 Santrade Ltd Gengsker
JPS619203U (ja) * 1984-06-21 1986-01-20 東芝タンガロイ株式会社 スロ−アウエイチツプ
SE502084C2 (sv) * 1993-04-05 1995-08-07 Sandvik Ab Skärplatta med konkavt krökta spånbrytare
IL109054A (en) * 1994-03-21 1998-07-15 Iscar Ltd Cutting insert
JPH08118135A (ja) * 1994-10-19 1996-05-14 Toshiba Tungaloy Co Ltd 回転切削工具用のスローアウェイチップ
JPH08174327A (ja) * 1994-12-27 1996-07-09 Toshiba Tungaloy Co Ltd 正面フライス用のスローアウェイチップ

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115024A (en) * 1976-03-04 1978-09-19 Amtel, Inc. Spade drill blade
US4447175A (en) * 1980-08-27 1984-05-08 Kennametal Inc. Cutting insert
US4572713A (en) * 1983-02-21 1986-02-25 Seco Tools Ab Cutting insert for thread cutting
US4681486A (en) * 1985-08-21 1987-07-21 General Electric Company Triangular cutting tool insert having cutting edges with recesses
US4867616A (en) 1987-01-16 1989-09-19 Michael Jakubowicz Cutting inserts and tools including same
US5525016A (en) * 1991-06-01 1996-06-11 Widia Gmbh Cutting insert with grouped chip-forming ribs arranged symmetrically and having tapering cross sections
US5221164A (en) * 1992-08-03 1993-06-22 Gte Valenite Corporation Positive rake insert having serrations for cutting
US5725334A (en) 1993-03-29 1998-03-10 Widia Gmbh Cutting insert
US5779401A (en) * 1993-09-13 1998-07-14 Widia Gmbh Cutting insert
JPH07299636A (ja) 1994-04-28 1995-11-14 Kyocera Corp フライス工具用スローアウェイチップ
US5791832A (en) * 1994-04-28 1998-08-11 Kyocera Corporation Throw-away tip for milling cutters
US5549424A (en) * 1994-11-25 1996-08-27 Valenite Inc. Indexable threading and turning insert with pressed-in chip breakers
US5791833A (en) * 1994-12-29 1998-08-11 Kennametal Inc. Cutting insert having a chipbreaker for thin chips
JPH08257822A (ja) 1995-03-20 1996-10-08 Toshiba Tungaloy Co Ltd スローアウェイチップ
JPH10118810A (ja) 1996-10-25 1998-05-12 Mitsubishi Materials Corp スローアウェイチップ
WO1998040181A1 (fr) 1997-03-11 1998-09-17 Iscar Ltd. Plaquette de coupe
US5975812A (en) 1997-03-11 1999-11-02 Iscar Ltd. Cutting insert
JPH11347826A (ja) 1998-06-10 1999-12-21 Toshiba Tungaloy Co Ltd スローアウェイチップ
JP2003025135A (ja) 2001-07-17 2003-01-29 Toshiba Tungaloy Co Ltd スローアウェイ式エンドミルおよび切刃チップ
US20100316452A1 (en) * 2004-09-29 2010-12-16 Kyocera Corporation Throwaway Insert and Milling Tool Equipped With the Same
US7896586B2 (en) * 2006-06-12 2011-03-01 Vargus, Ltd. Indexable insert
US20100092253A1 (en) * 2007-04-26 2010-04-15 Kyocera Corporation Cutting Insert and Cutting Tool, and Cutting Method Using the Same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Extended European search report dated Nov. 30, 2011 issued in corresponding European application 06822148.0 cites the U.S. patents above.
Japanese language office action dated Feb. 1, 2011 and its English language translation for corresponding Japanese application 2007542595.
Russian language office action and its English language translation for corresponding Russian application 2008121264/02 lists the references above.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120294686A1 (en) * 2009-11-27 2012-11-22 Takuya Ishida Cutting insert, cutting tool, and method of manufacturing machined product using the same
US8997610B2 (en) * 2009-11-27 2015-04-07 Kyocera Corporation Cutting insert, cutting tool, and method of manufacturing machined product using the same
US20120308317A1 (en) * 2010-02-19 2012-12-06 Taegutec, Ltd. Cutting Insert Having Cutting Edges Divided By Recesses and a Milling Cutter Provided with the Same
US8931979B2 (en) * 2010-02-19 2015-01-13 Taegutec, Ltd. Cutting insert having cutting edges divided by recesses and a milling cutter provided with the same
US20130177360A1 (en) * 2012-01-09 2013-07-11 Iscar, Ltd. Cutting Insert Having Hole Orientation Indicia and Method for Making Thereof
US8746115B2 (en) * 2012-01-09 2014-06-10 Iscar, Ltd. Cutting insert having hole orientation indicia and method for making thereof
US10357859B1 (en) 2014-03-06 2019-07-23 Daniel J Reed Clamping system for securing a work piece to a fixture
US11684980B2 (en) * 2018-06-15 2023-06-27 Ceratizit Luxembourg S.A.R.L. Thread cutting insert
US11986892B2 (en) * 2021-03-31 2024-05-21 Honda Motor Co., Ltd. Machining tool

Also Published As

Publication number Publication date
JP4814890B2 (ja) 2011-11-16
CN101296771B (zh) 2010-12-15
KR101309060B1 (ko) 2013-09-16
JPWO2007049617A1 (ja) 2009-04-30
JP2011131378A (ja) 2011-07-07
US20090188356A1 (en) 2009-07-30
CN101296771A (zh) 2008-10-29
EP1949993A4 (fr) 2011-12-28
EP1949993B1 (fr) 2016-03-30
CN101791719A (zh) 2010-08-04
EP1949993A1 (fr) 2008-07-30
JP5357202B2 (ja) 2013-12-04
WO2007049617A1 (fr) 2007-05-03
KR20080059263A (ko) 2008-06-26

Similar Documents

Publication Publication Date Title
US8210777B2 (en) Cutting insert, milling tool and cutting method
US5947649A (en) Reusable type end mill
JP5369185B2 (ja) 切削インサート及び切削工具、並びにそれを用いた切削加工物の製造方法
JP4888798B2 (ja) 切削用インサートおよび正面フライス
EP1808248B1 (fr) Plaquette amovible et outil de coupe rotatif en étant muni
JP4597270B2 (ja) 切削インサートおよび切削工具並びにそれを用いた切削方法
EP2431115B1 (fr) Plaquette de coupe et outil de fraisage à face amovible
JP2007030074A (ja) ラジアスエンドミル及び切削加工方法
WO2010110009A1 (fr) Outil rotatif de type à remplacement de pointe de coupe
WO2007142224A1 (fr) Outil de coupe et insert de coupe
JP2018506437A (ja) 切削インサート及びフライス切削工具
JP2007118178A (ja) 加工品荒削用のフライス削工具
JP6361948B2 (ja) 切削インサートおよび切削工具
JP4779864B2 (ja) スローアウェイチップおよびスローアウェイ式切削工具
JP5644084B2 (ja) 超硬合金製エンドミル
JP5295271B2 (ja) 切削インサートおよび切削工具、並びにそれを用いた被削材の切削方法
JP4859815B2 (ja) スローアウェイインサートおよびそれを装着した転削工具
JP4812537B2 (ja) 切削インサートおよび転削工具
JP2017154235A (ja) 切削インサートおよび刃先交換式切削工具
JP3734465B2 (ja) 高送り切削用ラジアスエンドミル
RU2411108C2 (ru) Режущая пластина, фреза и способ обработки
JP2007118136A (ja) スローアウェイインサート
JPH09225723A (ja) スローアウェイ式ボールエンドミル及びそれ用のチップ

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOCERA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISHIDA, TAKUYA;REEL/FRAME:022221/0245

Effective date: 20080508

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240703