US8088815B2 - Spiroindolinone pyrrolidines - Google Patents

Spiroindolinone pyrrolidines Download PDF

Info

Publication number
US8088815B2
US8088815B2 US12/939,234 US93923410A US8088815B2 US 8088815 B2 US8088815 B2 US 8088815B2 US 93923410 A US93923410 A US 93923410A US 8088815 B2 US8088815 B2 US 8088815B2
Authority
US
United States
Prior art keywords
chloro
phenyl
fluoro
oxo
dihydro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US12/939,234
Other languages
English (en)
Other versions
US20110130398A1 (en
Inventor
David Joseph Bartkovitz
Xin-Jie Chu
Qingjie Ding
Bradford James Graves
Nan Jiang
Jing Zhang
Zhuming Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoffmann La Roche Inc
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Priority to US12/939,234 priority Critical patent/US8088815B2/en
Publication of US20110130398A1 publication Critical patent/US20110130398A1/en
Application granted granted Critical
Publication of US8088815B2 publication Critical patent/US8088815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to spiroindolinone pyrrolidines I which act as antagonists of mdm2 interactions and hence are useful as potent and selective anticancer agents.
  • the present compounds are of the general formula
  • p53 is a tumor suppresser protein that plays a central role in protection against development of cancer. It guards cellular integrity and prevents the propagation of permanently damaged clones of cells by the induction of growth arrest or apoptosis.
  • p53 is a transcription factor that can activate a panel of genes implicated in the regulation of cell cycle and apoptosis:
  • p53 is a potent cell cycle inhibitor which is tightly regulated by MDM2 at the cellular level. MDM2 and p53 form a feedback control loop. MDM2 can bind p53 and inhibit its ability to transactivate p53-regulated genes. In addition, MDM2 mediates the ubiquitin-dependent degradation of p53.
  • MDM2 can activate the expression of the MDM2 gene, thus raising the cellular level of MDM2 protein.
  • This feedback control loop insures that both MDM2 and p53 are kept at a low level in normal proliferating cells.
  • MDM2 is also a cofactor for E2F, which plays a central role in cell cycle regulation.
  • MDM2 The ratio of MDM2 to p53 (E2F) is dysregulated in many cancers. Frequently occurring molecular defects in the p16INK4/p19ARF locus, for instance, have been shown to affect MDM2 protein degradation. Inhibition of MDM2-p53 interaction in tumor cells with wild-type p53 should lead to accumulation of p53, cell cycle arrest and/or apoptosis. MDM2 antagonists, therefore, can offer a novel approach to cancer therapy as single agents or in combination with a broad spectrum of other antitumor therapies. The feasibility of this strategy has been shown by the use of different macromolecular tools for inhibition of MDM2-p53 interaction (e.g. antibodies, antisense oligonucleotides, peptides). MDM2 also binds E2F through a conserved binding region as p53 and activates E2F-dependent transcription of cyclin A, suggesting that MDM2 antagonists might have effects in p53 mutant cells.
  • the present invention relates to pyrrolidine-2-carboxamide derivatives I which act as antagonists of mdm2 interactions and hence are useful as potent and selective anticancer agents.
  • the present compounds are of the general formula
  • a benzodioxyl group halogen, hydroxy, CN, CF 3 , NH 2 , N(H, lower-alkyl), N(lower-alkyl) 2 , aminocarbonyl, carboxy, NO 2 , lower-alkoxy, thio-lower-alkoxy, lower-alkylsulfonyl, aminosulfonyl, lower-alkylcarbonyl, lower-alkylcarbonyloxy, lower-alkoxycarbonyl, lower-alkyl-carbonyl-NH, fluoro-lower-alkyl, fluoro-lower-alkoxy, lower-alkoxy-carbonyl-lower-alkoxy, carboxy-lower-alkoxy, carbamoyl-lower-alkoxy, hydroxy-lower-alkoxy, NH 2 -lower-alkoxy, N(H, lower-alkyl)-lower-alkoxy, N(lower-alkyl) 2 -
  • Preferred substituents for the cycloalkyl, cycloalkenyl, aryl, heteroaryl and heterocycle rings are halogen, lower alkoxy, lower alkyl, hydroxycarbonyl, carboxy, carbamoyl, aminocarbonyl, carboxy lower alkoxy, oxo and CN.
  • Preferred substituents for alkyl are alkoxy and N(lower alkyl) 2 .
  • alkyl refers to straight- or branched-chain saturated hydrocarbon groups having from 1 to about 20 carbon atoms, including groups having from 1 to about 7 carbon atoms. In certain embodiments, alkyl substituents may be lower alkyl substituents.
  • lower alkyl refers to alkyl groups having from 1 to 6 carbon atoms, and in certain embodiments from 1 to 4 carbon atoms. Examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, n-pentyl, and s-pentyl.
  • cycloalkyl is intended to refer to any stable monocyclic or polycyclic system which consists of carbon atoms only, any ring of which being saturated
  • cycloalkenyl is intended to refer to any stable monocyclic or polycyclic system which consists of carbon atoms only, with at least one ring thereof being partially unsaturated.
  • cycloalkyls include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, bicycloalkyls, including bicyclooctanes such as [2.2.2]bicyclooctane or [3.3.0]bicyclooctane, bicyclononanes such as [4.3.0]bicyclononane, and bicyclodecanes such as [4.4.0]bicyclodecane (decalin), or spiro compounds.
  • cycloalkenyls include, but are not limited to, cyclopentenyl or cyclohexenyl.
  • alkenyl as used herein means an unsaturated straight-chain or branched aliphatic hydrocarbon group containing one double bond and having 2 to 6, preferably 2 to 4 carbon atoms.
  • alkenyl group examples include vinyl, ethenyl, allyl, isopropenyl, 1-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-ethyl-1-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl and 5-hexenyl.
  • alkynyl as used herein means an unsaturated straight-chain or branched aliphatic hydrocarbon group containing one triple bond and having 2 to 6, preferably 2 to 4 carbon atoms.
  • alkynyl group examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl and 5-hexynyl.
  • halogen as used in the definitions means fluorine, chlorine, bromine, or iodine, preferably, fluorine and chlorine.
  • Aryl means a monovalent, monocyclic or bicyclic, aromatic carbocyclic hydrocarbon preferably a 6-10 member aromatic ring system.
  • Preferred aryl groups include, but are not limited to, phenyl, naphthyl, tolyl, and xylyl.
  • Heteroaryl means an aromatic heterocyclic ring system containing up to two rings.
  • Preferred heteroaryl groups include, but are not limited to, thienyl, furyl, indolyl, pyrrolyl, pyridinyl, pyrazinyl, oxazolyl, thiaxolyl, quinolinyl, pyrimidinyl, imidazole and tetrazolyl.
  • aryl or heteroaryl which are bicyclic it should be understood that one ring may be aryl while the other is heteroaryl and both may be substituted or unsubstituted.
  • Heterocycle means a substituted or unsubstituted 5 to 8 membered, mono- or bicyclic, non-aromatic hydrocarbon, wherein 1 to 3 carbon atoms are replaced by a hetero atom selected from nitrogen, oxygen or sulfur atom. Examples include pyrrolidin-2-yl; pyrrolidin-3-yl; piperidinyl; morpholin-4-yl and the like.
  • Hetero atom means an atom selected from N, O and S.
  • Alkoxy, alkoxyl or lower alkoxy refers to any of the above lower alkyl groups attached to an oxygen atom.
  • Typical lower alkoxy groups include methoxy, ethoxy, isopropoxy or propoxy, butyloxy and the like.
  • Further included within the meaning of alkoxy are multiple alkoxy side chains, e.g. ethoxy ethoxy, methoxy ethoxy, methoxy ethoxy ethoxy and the like and substituted alkoxy side chains, e.g., dimethylamino ethoxy, diethylamino ethoxy, dimethoxy-phosphoryl methoxy and the like.
  • “Pharmaceutically acceptable,” such as pharmaceutically acceptable carrier, excipient, etc., means pharmacologically acceptable and substantially non-toxic to the subject to which the particular compound is administered.
  • “Pharmaceutically acceptable salt” refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of the present invention and are formed from suitable non-toxic organic or inorganic acids or organic or inorganic bases.
  • Sample acid-addition salts include those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, trifluoro acetic acid and the like.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid
  • organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, trifluoro acetic
  • Sample base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethylammonium hydroxide.
  • Chemical modification of a pharmaceutical compound (i.e. drug) into a salt is a technique well known to pharmaceutical chemists to obtain improved physical and chemical stability, hygroscopicity, flowability and solubility of compounds. See, e.g., Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems (6th Ed. 1995) at pp. 196 and 1456-1457.
  • the compounds of formulas I and II as well as their salts that have at least one asymmetric carbon atom may be present as racemic mixtures or different stereoisomers.
  • the various isomers can be isolated by known separation methods, e.g., chromatography.
  • the compounds of the present invention are useful in the treatment or control of cell proliferative disorders, in particular oncological disorders. These compounds and formulations containing said compounds may be particularly useful in the treatment or control of solid tumors, such as, for example, breast, colon, lung and prostate tumors.
  • a therapeutically effective amount of a compound in accordance with this invention means an amount of compound that is effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated. Determination of a therapeutically effective amount is within the skill in the art.
  • the therapeutically effective amount or dosage of a compound according to this invention can vary within wide limits and may be determined in a manner known in the art. Such dosage will be adjusted to the individual requirements in each particular case including the specific compound(s) being administered, the route of administration, the condition being treated, as well as the patient being treated. In general, in the case of oral or parenteral administration to adult humans weighing approximately 70 Kg, a daily dosage of about 10 mg to about 10,000 mg, preferably from about 200 mg to about 1,000 mg, should be appropriate, although the upper limit may be exceeded when indicated. The daily dosage can be administered as a single dose or in divided doses, or for parenteral administration; it may be given as continuous infusion.
  • Formulations of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, as well as the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of a formula I or II compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.
  • Methods of preparing these formulations or compositions include the step of bringing into association a compound of the present invention with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association a compound of the present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, sachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound of the present invention as an active ingredient.
  • a compound of the present invention may also be administered as a bolus, electuary or paste.
  • Effective amount means an amount that is effective to prevent, alleviate or ameliorate symptoms of disease or prolong the survival of the subject being treated.
  • IC50 refers to the concentration of a particular compound required to inhibit 50% of a specific measured activity. IC 50 can be measured, inter alia, as is described subsequently.
  • the present invention provides novel methods for the synthesis of spiroindolinones of formulas I and II.
  • Compounds of this invention can be synthesized according to the following general schemes. Suitable processes for synthesizing these compounds are provided in the examples.
  • An intermediate of formula III can be made from a base-catalyzed condensation reaction of appropriately selected substituted 2-oxindole and substituted benzaldehyde in methanol.
  • the choice of bases includes but is not limited to pyrrolidine or piperidine.
  • the reaction generates III as a mixture of Z- and E-isomers with E-isomer as the major product.
  • spiroindolinones of formula IV and its enantiomer IV′ as a racemic mixture can be made from intermediates II and III by the 1,3-dipolar cylcoaddition reaction mediated by lewis acid AgF and triethylamine, immediately followed by an isomerization reaction using DBU as the base in tert-butanol at an elevated temperature of 100° C. to 150° C.
  • the [2+3] cycloaddition reactions of azomethine ylides 1,3-dipoles with olefinic dipolarphiles to form pyrrolidine ring formation have been described in published procedures including Jorgensen, K. A. et at ( Org. Lett.
  • Racemic mixtures of compounds IV and IV′ are subsequently converted to racemic mixture of acid V and V′ by deprotection reaction using trifluoroacetic acid, followed by amide formation with various aryl or heteroaryl amines using diphenylphsphinic chloride as the coupling reagent to give the racemic mixture of compounds in formula I and I′.
  • the racemic mixture of compounds I and I′ can be chirally separated using chiral Super Fluid Chromatography (SFC) or chiral HPLC or chiral column chromatography to afford chirally pure
  • racemic mixture of intermediates pair IV and IV′, or V and V′ can also be chirally separated using chiral Super Fluid Chromatography (SFC) or chiral HPLC or chiral column chromatography to their corresponding optically pure or enriched form IV or V.
  • SFC Super Fluid Chromatography
  • Intermediates IV or V can be converted into analogues I in a similar manner by following the synthetic routes outlined in Scheme 3 without any further chiral separations.
  • the reaction mixture was stirred at room temperature for 1 h. The mixture was concentrated. The residue was partitioned between ethyl acetate and aqueous saturated NaHCO 3 solution. The organic layer was separated, washed with water, brine, dried over Na 2 SO 4 , then concentrated.
  • the reaction mixture was stirred at room temperature for 0.5 h. The mixture was concentrated. The residue was partitioned between ethyl acetate and aqueous saturated NaHCO 3 solution. The organic layer was separated, washed with water, brine, dried over Na 2 SO 4 , then concentrated.
  • the reaction mixture was stirred at room temperature for 0.5 h. The mixture was concentrated. The residue was partitioned between ethyl acetate and aqueous saturated NaHCO 3 solution. The organic layer was separated, washed with water, brine, dried over Na 2 SO 4 , then concentrated.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (30 mL), and DBU (4.0 g, 27 mmol) was added.
  • the reaction mixture was heated at 80° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (20 mL), and DBU (2.5 g, 16 mmol) was added.
  • the reaction mixture was heated at 120° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (30 mL), and DBU (33 g, 130 mmol) was added.
  • the reaction mixture was heated at 120° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (30 mL), and DBU (33 g, 130 mmol) was added.
  • the reaction mixture was heated at 120° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (30 mL), and DBU (34 g, 138 mmol) was added.
  • the reaction mixture was heated at 120° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (30 mL), and DBU (30 g, 120 mmol) was added.
  • the reaction mixture was heated at 120° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the mixture was stirred at room temperature for 18 h.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and brine.
  • the organic layer was separated, washed with water, dried over MgSO 4 , and concentrated.
  • the residue was dissolved into t-butanol (15 mL), and DBU (16 g, 65 mmol) was added.
  • the reaction mixture was heated at 120° C. for 2 h.
  • the mixture was then cooled to room temperature and concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate.
  • the organic layers were combined, washed with water, brine, dried over MgSO 4 , and concentrated.
  • the reaction mixture was stirred at room temperature for 18 h.
  • the mixture was concentrated, and the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and the aqueous layer was extracted with ethyl acetate twice.
  • the crude mixture was diluted with water (5 mL), and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • the crude mixture was diluted with water (5 mL), and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • the crude mixture was diluted with water (5 mL), and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • the crude mixture was diluted with water (5 mL), and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • Step A To a solution of methyl 3-hydroxy-4-nitrobenzoate (Aldrich) (3 g, 15.2 mmol) in anhydrous DMF (25 mL) were added NaH (Aldrich, 60%) (0.91 g, 22.8 mmol) and iodoethane (2.61 g, 16.7 mmol) sequentially. The reaction mixture was stirred at room temperature for 2 h. Water was added. The mixture was extracted with ethyl acetate. The organic extract was washed with water, brine, dried over MgSO 4 , and concentrated to give methyl 3-ethoxy-4-nitrobenzoate as a light yellow solid (1.0 g, 29%).
  • Step B A suspension of methyl 3-ethoxy-4-nitrobenzoate (1 g, 4.4 mmol) and Pd/C (Aldrich, 10%, 0.1 g) in ethyl acetate (25 mL) was vigorously shaken in a Parr under atmosphere of H 2 (50 psi) for 0.5 h. The mixture was filtered through a short pad of celite. The filtrate was concentrated to give 4-amino-3-ethoxy-benzoic acid methyl ester as a light yellow oil (0.8 g, 92%).
  • the crude mixture was diluted with water (5 mL), and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • the reaction mixture was heated at 80° C. for 1 h.
  • the mixture was cooled to room temperature, then partitioned between ethyl acetate and water.
  • the organic layer was separated, and aqueous layer was extracted with ethyl acetate twice.
  • the combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • Step A To a solution of 4-fluoro-2-methoxy-1-nitrobenzene (Combi-blocks, 3.4 g, 19.9 mmol) in DMSO (40 mL) was added an aqueous solution (1N) of NaOH (40 mL, 40 mmol). The reaction mixture was heated at 80° C. for 20 h. The mixture was cooled to room temperature, and the “pH” of the solution was adjusted to 5 by aqueous HCl solution. The mixture was extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated to give 3-methoxy-4-nitrophenol as a light yellow solid (3.2 g, 95%).
  • Step B To a solution of 3-methoxy-4-nitrophenol (1 g, 5.9 mmol) in anhydrous DMF (25 mL) were added K 2 CO 3 (2.45 g, 17.7 mmol) and (2-bromoethoxy)(tert-butyl)dimethylsilane (1.7 g, 7.1 mmol) sequentially.
  • the reaction mixture was heated at 70° C. for 20 h.
  • the mixture was cooled to room temperature, and diluted with water.
  • the mixture was extracted with ethyl acetate three times.
  • the combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • Step C A suspension of tert-butyl-[2-(3-methoxy-4-nitro-phenoxy)-ethoxy]-dimethyl-silane (1 g, 3.05 mmol) and Pd/C (Aldrich, 10%, 0.1 g) in ethyl acetate (25 mL) was vigorously shaken in a Parr under atmosphere of H 2 (50 psi) for 0.5 h. The mixture was filtered through a short pad of celite. The filtrate was concentrated to give 4-[2-(tert-butyl-dimethyl-silanyloxy)-ethoxy]-2-methoxy-phenylamine as a light yellow oil (0.9 g, 99%).
  • the reaction mixture was stirred at room temperature for 0.5 h.
  • the mixture was filtered through a short pad of celite.
  • the mixture was concentrated.
  • the residue was partitioned between ethyl acetate and water.
  • the organic layer was separated, and aqueous layer was extracted with ethyl acetate.
  • the combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • Step A To a solution of 3-butoxy-4-nitrobenzoic acid (City Chemicals) (2.5 g, 10.5 mmol) in methanol (10 mL) were added concentrated H 2 SO 4 (1 g, 10.5 mmol). The reaction mixture was heated at reluxing for 2 h. The mixture was concentrated. The residue was partitioned between ethyl acetate and water. The organic layer was separated, and aqueous layer was extracted with ethyl acetate twice. The combined organic extract was washed with water, aqueous saturated NaHCO 3 solution, brine, dried over MgSO 4 , and concentrated to give methyl 3-butoxy-4-nitrobenzoate as a brown oil (2.5 g, 95%).
  • 3-butoxy-4-nitrobenzoic acid City Chemicals
  • Step B A solution of methyl 3-butoxy-4-nitrobenzoate (2.5 g, 9.9 mmol) in methanol (100 mL) was added an aqueous solution (50 mL) of NH 4 Cl (5.3 g, 99 mmol), followed by activated zinc (Aldrich, 6.5 g, 99 mmol). The reaction mixture was stirred at room temperature for 1 h. The mixture was filtered through a short pad of celite. The mixture was concentrated. The residue was partitioned between ethyl acetate and water. The organic layer was separated, and aqueous layer was extracted with ethyl acetate. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated to give 4-amino-3-butoxy-benzoic acid methyl ester as a yellow solid (1.8 g, 82%).
  • the crude mixture was diluted with water (5 mL), and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • the reaction mixture was heated at 80° C. for 1 h.
  • the mixture was cooled to room temperature, then partitioned between ethyl acetate and water.
  • the organic layer was separated, and aqueous layer was extracted with ethyl acetate twice.
  • the combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • Step A To a solution of 4-hydroxytetrahydropyran (4.5 g, 44 mmol) (Aldrich) in dichloromethane (90 mL) at 0° C. was added triethylamine (5.4 g, 53 mmol), and methanesulfonyl chloride (3.73 mL, 48 mmol, Aldrich). The reaction mixture was stirred at 0° C. for 1 h, then at room temperature for 1.5 h. The mixture was poured into water, extracted with dichloromethane.
  • Step B To a solution of 3-methoxy-4-nitrophenol (0.5 g, 3 mmol) prepared in Example 132 Step A in anhydrous DMF (13 mL) were added Cs 2 CO 3 (2.9 g, 8.9 mmol) and methanesulfonic acid tetrahydropyran-4-yl ester (0.64 g, 3.6 mmol) sequentially. The reaction mixture was heated at 120° C. for 3 h. The mixture was cooled to room temperature, and diluted with water. The mixture was extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated. The residue was purified by chromatography (40-60% EtOAc in hexanes) to give 4-(3-methoxy-4-nitrophenoxy)tetrahydro-2H-pyran as a yellow oil (0.4 g, 53%).
  • Step C A suspension of 4-(3-methoxy-4-nitrophenoxy)tetrahydro-2H-pyran (0.4 g, 1.6 mmol) and Pd/C (Aldrich, 10%, 0.1 g) in ethyl acetate (10 mL) was vigorously shaken in a Parr under atmosphere of H 2 (50 psi) for 0.5 h. The mixture was filtered through a short pad of celite. The filtrate was concentrated to give 2-methoxy-4-(tetrahydro-pyran-4-yloxy)-phenylamine as a light yellow oil (0.3 g, 85%).
  • Step A To a solution of 3-methoxy-4-nitrobenzoic acid (Alfa) (10 g, 51 mmol) in toluene (75 mL) was added SOCl 2 (11.5 g, 97 mmol), and a catalytic amount of DMF. The mixture was heated at refluxing for 3 h, then cooled to room temperature. The mixture was concentrated. The residue was dissolved into tetrahydrofuran (125 mL) and triethylamine (8.4 g, 83 mmol), and the temperature of the mixture was lowered to 0° C.
  • Alfa 3-methoxy-4-nitrobenzoic acid
  • Step B To a reluxing solution of triethylamine (10.5 mL, 22.5 mmol) and silver benzoate (3.78 g, 22.5 mmol) in tert-butanol (100 mL) and toluene (100 mL) at 120° C. was added a tert-butanol solution (80 mL) of 2-diazo-1-(3-methoxy-4-nitro-phenyl)-ethanone (5 g, 22.5 mmol). The reaction mixture was heated at 120° C. for 1 h. The mixture was cooled to room temperature, and filtered through a short pad of celite.
  • Step C A suspension of (3-methoxy-4-nitro-phenyl)-acetic acid tert-butyl ester (3 g, 11.2 mmol) in methanol (100 mL) was added an aqueous solution (50 mL) of NH 4 Cl (6 g, 112 mmol), followed by activated zinc (Aldrich, 7.3 g, 112 mmol). The reaction mixture was stirred at room temperature for 0.5 h. The mixture was filtered through a short pad of celite. The mixture was concentrated. The residue was partitioned between ethyl acetate and water. The organic layer was separated, and aqueous layer was extracted with ethyl acetate.
  • the reaction mixture was heated at 80° C. for 3 h.
  • the mixture was cooled to room temperature, then partitioned between ethyl acetate and water.
  • the organic layer was separated, and aqueous layer was extracted with ethyl acetate twice.
  • the combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • the crude mixture was diluted with water, and acidified to “pH” 5-6 by dilute aqueous HCl solution. The mixture was then extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • Step A To a solution of 3-methoxy-4-nitrophenol (0.5 g, 3 mmol) prepared in Example 132 Step A in anhydrous DMF (13 mL) were added K 2 CO 3 (0.8 g, 5.9 mmol) and 1-Chloro-2-methylsulfanyl-ethane (Aldrich)(0.65 g, 5.9 mmol) sequentially. The reaction mixture was heated at 70° C. for 2 h. The mixture was cooled to room temperature, and diluted with water. The mixture was extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated.
  • K 2 CO 3 0.8 g, 5.9 mmol
  • 1-Chloro-2-methylsulfanyl-ethane Aldrich
  • Step B A suspension of 2-methoxy-4-(2-methylsulfanyl-ethoxy)-1-nitro-benzene (0.25 g, 1.0 mmol) in methanol (8 mL) was added an aqueous solution (4 mL) of NH 4 Cl (0.55 g, 10 mmol), followed by activated Zinc (Aldrich, 0.67 g, 10 mmol). The reaction mixture was stirred at room temperature for 0.5 h. The mixture was filtered through a short pad of celite. The mixture was concentrated. The residue was partitioned between ethyl acetate and water. The organic layer was separated, and aqueous layer was extracted with ethyl acetate. The combined organic extract was washed with water, brine, dried over MgSO 4 , and concentrated to give 2-methoxy-4-(2-methylsulfanyl-ethoxy)-phenylamine as a brown oil (0.2 g, 91%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Indole Compounds (AREA)
US12/939,234 2009-12-02 2010-11-04 Spiroindolinone pyrrolidines Expired - Fee Related US8088815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/939,234 US8088815B2 (en) 2009-12-02 2010-11-04 Spiroindolinone pyrrolidines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26579209P 2009-12-02 2009-12-02
US38805410P 2010-09-30 2010-09-30
US12/939,234 US8088815B2 (en) 2009-12-02 2010-11-04 Spiroindolinone pyrrolidines

Publications (2)

Publication Number Publication Date
US20110130398A1 US20110130398A1 (en) 2011-06-02
US8088815B2 true US8088815B2 (en) 2012-01-03

Family

ID=43608656

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/939,234 Expired - Fee Related US8088815B2 (en) 2009-12-02 2010-11-04 Spiroindolinone pyrrolidines

Country Status (26)

Country Link
US (1) US8088815B2 (es)
EP (1) EP2507243B1 (es)
JP (1) JP5647262B2 (es)
KR (1) KR101418191B1 (es)
CN (1) CN102741257B (es)
AR (1) AR079226A1 (es)
AU (1) AU2010326855B2 (es)
BR (1) BR112012012872A2 (es)
CA (1) CA2781823A1 (es)
CL (1) CL2012001405A1 (es)
CO (1) CO6541606A2 (es)
CR (1) CR20120259A (es)
EC (1) ECSP12011945A (es)
ES (1) ES2543468T3 (es)
HK (1) HK1173720A1 (es)
IL (1) IL220010A (es)
MA (1) MA33976B1 (es)
MX (1) MX2012006260A (es)
MY (1) MY160596A (es)
NZ (1) NZ600024A (es)
PE (1) PE20121334A1 (es)
RU (1) RU2571100C2 (es)
SG (1) SG181465A1 (es)
TW (1) TW201129571A (es)
WO (1) WO2011067185A1 (es)
ZA (1) ZA201204036B (es)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168388A1 (en) * 2007-01-31 2010-07-01 Federico Bernal Stabilized p53 peptides and uses thereof
US20110112052A1 (en) * 2009-11-12 2011-05-12 The Regents Of The University Of Michigan Spiro-oxindole mdm2 antagonists
US20110118283A1 (en) * 2009-11-17 2011-05-19 Qingjie Ding Substituted Pyrrolidine-2-Carboxamides
US20110201635A1 (en) * 2010-02-17 2011-08-18 Jin-Jun Liu Substituted spiroindolinones
US8629141B2 (en) 2011-05-11 2014-01-14 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US8680132B2 (en) 2010-11-12 2014-03-25 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US8846657B2 (en) 2012-12-20 2014-09-30 Merck Sharp & Dohme Corp. Substituted imidazopyridines as HDM2 inhibitors
US8859723B2 (en) 2010-08-13 2014-10-14 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8927500B2 (en) 2012-02-15 2015-01-06 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8987414B2 (en) 2012-02-15 2015-03-24 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US9096684B2 (en) 2011-10-18 2015-08-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9604919B2 (en) 2012-11-01 2017-03-28 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9701685B2 (en) 2014-08-18 2017-07-11 Hudson Biopharma Inc. Spiropyrrolidines as MDM2 inhibitors
US9745314B2 (en) 2014-04-17 2017-08-29 The Regents Of The University Of Michigan MDM2 inhibitors and therapeutic methods using the same
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
WO2023086400A1 (en) * 2021-11-12 2023-05-19 Enanta Pharmaceuticals, Inc. Novel spiropyrrolidine derived antiviral agents
US11993600B2 (en) 2021-12-08 2024-05-28 Enanta Pharmaceuticals, Inc. Saturated spirocyclics as antiviral agents

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO2998B1 (ar) 2010-06-04 2016-09-05 Amgen Inc مشتقات بيبيريدينون كمثبطات mdm2 لعلاج السرطان
US20120046306A1 (en) * 2010-08-18 2012-02-23 David Joseph Bartkovitz Substituted Heteroaryl Spiropyrrolidine MDM2 Antagonists
WO2012121361A1 (ja) * 2011-03-10 2012-09-13 第一三共株式会社 ジスピロピロリジン誘導体
MX352672B (es) 2011-09-27 2017-12-04 Amgen Inc Compuestos heterocíclicos como inhibidores de mdm2 para el tratamiento del cáncer.
TWI586668B (zh) 2012-09-06 2017-06-11 第一三共股份有限公司 二螺吡咯啶衍生物之結晶
US11407721B2 (en) 2013-02-19 2022-08-09 Amgen Inc. CIS-morpholinone and other compounds as MDM2 inhibitors for the treatment of cancer
EP2961735B1 (en) 2013-02-28 2017-09-27 Amgen Inc. A benzoic acid derivative mdm2 inhibitor for the treatment of cancer
US9758495B2 (en) 2013-03-14 2017-09-12 Amgen Inc. Heteroaryl acid morpholinone compounds as MDM2 inhibitors for the treatment of cancer
JOP20200296A1 (ar) 2013-06-10 2017-06-16 Amgen Inc عمليات صنع وأشكال بلورية من mdm2 مثبط
CN103342672B (zh) * 2013-07-02 2015-12-23 扬州大学 取代吡咯烷-2-酮的新合成方法
US10576064B2 (en) 2014-07-03 2020-03-03 Boehringer Ingelheim International Gmbh Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors
RU2629750C2 (ru) * 2015-04-09 2017-09-01 Ян Андреевич Иваненков НОВЫЕ ДИСПИРО-ИНДОЛИНОНЫ, ИНГИБИТОРЫ MDM2/p53 ВЗАИМОДЕЙСТВИЯ, СПОСОБ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ
EA036013B1 (ru) 2015-10-09 2020-09-14 Бёрингер Ингельхайм Интернациональ Гмбх Новые спиро[3h-индол-3,2'-пирролидин]-2(1h)-оновые соединения и производные в качестве ингибиторов mdm2-p53
GB201603779D0 (en) 2016-03-04 2016-04-20 Mission Therapeutics Ltd Novel compounds
CN113788818A (zh) * 2016-04-06 2021-12-14 密执安大学评议会 Mdm2蛋白质降解剂
CN105949221B (zh) * 2016-05-11 2017-08-25 湖南科技大学 一种含螺吲哚‑2‑酮衍生物及其制备方法和作为抗癌药物的应用
EP3458101B1 (en) 2016-05-20 2020-12-30 H. Hoffnabb-La Roche Ag Protac antibody conjugates and methods of use
JP6848047B2 (ja) * 2016-08-08 2021-03-24 フェイ シアオ, スピロインドロンポリエチレングリコールカーボネート系化合物及びその組成物、調製方法及びその使用
EP3511334A1 (en) * 2018-01-16 2019-07-17 Adamed sp. z o.o. 1,2,3',5'-tetrahydro-2'h-spiro[indole-3,1'-pyrrolo[3,4-c]pyrrole]-2,3'-dione compounds as therapeutic agents activating tp53
RU2730287C1 (ru) * 2019-08-30 2020-08-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Новые 2',5'-диарилспиро[индол-3,3'-пирролидин]-2(1н)-оны и способ их получения
GB201919219D0 (en) 2019-12-23 2020-02-05 Otsuka Pharma Co Ltd Cancer biomarkers
EP4204812A2 (en) 2020-08-27 2023-07-05 Otsuka Pharmaceutical Co., Ltd. Biomarkers for cancer therapy using mdm2 antagonists
WO2022159644A1 (en) * 2021-01-23 2022-07-28 Newave Pharmaceutical Inc. Spirocyclic mdm2 modulator and uses thereof
GB202103080D0 (en) 2021-03-04 2021-04-21 Otsuka Pharma Co Ltd Cancer biomarkers
CN115215872A (zh) * 2021-04-15 2022-10-21 中国科学院上海药物研究所 具有取代苯基螺[吲哚啉-3,3′-吡咯烷]结构的小分子化合物
CN113387957B (zh) * 2021-06-09 2022-08-09 江苏亚尧生物科技有限公司 螺环吲哚酮-吡咯烷碳酸酯化合物和其组合物、制备方法及用途
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
CN114773327B (zh) * 2022-04-18 2023-08-18 广东优康精细化工有限公司 一种吡噻菌胺中间体的制备方法

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759935A (en) 1953-02-18 1956-08-21 Bristol Lab Inc Substituted 3-phenyloxindoles
US3441570A (en) 1966-01-20 1969-04-29 Parke Davis & Co 3-tertiary aminoalkylamino-3-phenyl oxindole compounds
US3686210A (en) 1970-01-13 1972-08-22 American Home Prod 2-acylamido-3-aryl-3h-indol-3-ol esters and related compounds
US4020179A (en) 1975-05-15 1977-04-26 Richardson-Merrell Inc. 7-Substituted-2-indolinones
JPS55129284A (en) 1979-03-27 1980-10-06 Shionogi & Co Ltd 3-(1-imipazolyl)indolin-2-one
EP0288847A2 (de) 1987-04-30 1988-11-02 BASF Aktiengesellschaft Kontinuierliches Verfahren zur Epimerisierung von Zuckern, insbesondere von D-Arabinose zu D-Ribose
WO1997015556A1 (fr) 1995-10-24 1997-05-01 Sanofi Derives 3-spiro-indolin-2-one comme ligands des recepteurs de la vasopressine et/ou de l'ocytocine
WO1998054167A1 (fr) 1997-05-28 1998-12-03 Mitsubishi-Tokyo Pharmaceuticals, Inc. Composes d'indole
EP0947511A1 (en) 1998-03-30 1999-10-06 F. Hoffmann-La Roche Ag Derivatives of phenoxy acetic acid and of phenoxymethyl tetrazole having antitumor activity
WO2000015657A1 (en) 1998-09-12 2000-03-23 Astrazeneca Ab Piperizine-4-phenyl derivatives as inhibitors of the interaction between mdm2 and 53
JP2000191661A (ja) 1998-12-25 2000-07-11 Mitsubishi-Tokyo Pharmaceuticals Inc 環状アミド化合物
WO2000071129A1 (en) 1999-05-21 2000-11-30 Bristol-Myers Squibb Company Pyrrolotriazine inhibitors of kinases
WO2001005790A1 (en) 1999-07-21 2001-01-25 Astrazeneca Ab New compounds
US6511974B1 (en) 1997-07-30 2003-01-28 Wyeth Tricyclic vasopressin agonists
WO2003008407A2 (fr) 2001-07-17 2003-01-30 Sanofi-Synthelabo Derives de 1-phenylsulfonyl-1,3-dihydro-2h-indol-2-one, leur preparation et leur application en therapeutique
WO2003078394A1 (en) 2002-03-15 2003-09-25 Eli Lilly And Company Dihydroindol-2-one derivatives as steroid hormone nuclear receptor modulators
WO2006080574A1 (ja) 2005-01-28 2006-08-03 Taisho Pharmaceutical Co., Ltd. 1,3-ジヒドロ-2h-インドール-2-オン化合物、及び芳香族複素環が縮合したピロリジン-2-オン化合物
WO2006091646A2 (en) 2005-02-22 2006-08-31 The Regents Of The University Of Michigan Small molecule inhibitors of mdm2 and uses thereof
WO2006136606A2 (en) 2005-06-24 2006-12-28 F. Hoffmann-La Roche Ag Oxindole derivatives
WO2007104664A1 (en) 2006-03-13 2007-09-20 F. Hoffmann-La Roche Ag Spiroindolinone derivatives
WO2007104714A1 (en) 2006-03-13 2007-09-20 F. Hoffmann-La Roche Ag Spiroindolinone derivatives
WO2008005268A1 (en) 2006-06-30 2008-01-10 Schering Corporation Substituted piperidines that increase p53 activity and the uses thereof
US20080009486A1 (en) 2006-03-13 2008-01-10 Li Chen Spiroindolinone derivatives
WO2008036168A2 (en) 2006-08-30 2008-03-27 The Regents Of The University Of Michigan New small molecule inhibitors of mdm2 and the uses thereof
US20080114013A1 (en) 2006-11-09 2008-05-15 Jin-Jun Liu Spiroindolinone derivatives
WO2008080822A1 (en) 2006-12-29 2008-07-10 F. Hoffmann-La Roche Ag Epimerization methodologies for recovering stereo isomers in high yield and purity
US7553833B2 (en) 2007-05-17 2009-06-30 Hoffmann-La Roche Inc. 3,3-spiroindolinone derivatives
WO2009080488A1 (en) 2007-12-19 2009-07-02 F. Hoffmann-La Roche Ag Spiroindolinone derivatives as anticancer agents
US20100075948A1 (en) 2008-09-18 2010-03-25 Qingjie Ding Substituted Pyrrolidine-2-Carboxamides
US20110112052A1 (en) * 2009-11-12 2011-05-12 The Regents Of The University Of Michigan Spiro-oxindole mdm2 antagonists

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2084449C1 (ru) * 1994-03-02 1997-07-20 Всероссийский научный центр по безопасности биологически активных веществ 1-бензил-2-оксотриптамин гидрохлорид и его производные, обладающие гепатозащитной активностью
DE202004014849U1 (de) * 2004-09-23 2005-02-03 Trw Automotive Safety Systems Gmbh Vorrichtung zur Bestimmung eines absoluten Drehwinkels
US7737174B2 (en) * 2006-08-30 2010-06-15 The Regents Of The University Of Michigan Indole inhibitors of MDM2 and the uses thereof
US8258134B2 (en) 2008-04-16 2012-09-04 Hoffmann-La Roche Inc. Pyridazinone glucokinase activators
US8354444B2 (en) * 2008-09-18 2013-01-15 Hoffmann-La Roche Inc. Substituted pyrrolidine-2-carboxamides
SG184288A1 (en) * 2010-04-09 2012-11-29 Univ Michigan Biomarkers for mdm2 inhibitors for use in treating disease

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2759935A (en) 1953-02-18 1956-08-21 Bristol Lab Inc Substituted 3-phenyloxindoles
US3441570A (en) 1966-01-20 1969-04-29 Parke Davis & Co 3-tertiary aminoalkylamino-3-phenyl oxindole compounds
US3686210A (en) 1970-01-13 1972-08-22 American Home Prod 2-acylamido-3-aryl-3h-indol-3-ol esters and related compounds
US4020179A (en) 1975-05-15 1977-04-26 Richardson-Merrell Inc. 7-Substituted-2-indolinones
JPS55129284A (en) 1979-03-27 1980-10-06 Shionogi & Co Ltd 3-(1-imipazolyl)indolin-2-one
EP0288847A2 (de) 1987-04-30 1988-11-02 BASF Aktiengesellschaft Kontinuierliches Verfahren zur Epimerisierung von Zuckern, insbesondere von D-Arabinose zu D-Ribose
WO1997015556A1 (fr) 1995-10-24 1997-05-01 Sanofi Derives 3-spiro-indolin-2-one comme ligands des recepteurs de la vasopressine et/ou de l'ocytocine
WO1998054167A1 (fr) 1997-05-28 1998-12-03 Mitsubishi-Tokyo Pharmaceuticals, Inc. Composes d'indole
US6511974B1 (en) 1997-07-30 2003-01-28 Wyeth Tricyclic vasopressin agonists
EP0947511A1 (en) 1998-03-30 1999-10-06 F. Hoffmann-La Roche Ag Derivatives of phenoxy acetic acid and of phenoxymethyl tetrazole having antitumor activity
WO2000015657A1 (en) 1998-09-12 2000-03-23 Astrazeneca Ab Piperizine-4-phenyl derivatives as inhibitors of the interaction between mdm2 and 53
JP2000191661A (ja) 1998-12-25 2000-07-11 Mitsubishi-Tokyo Pharmaceuticals Inc 環状アミド化合物
WO2000071129A1 (en) 1999-05-21 2000-11-30 Bristol-Myers Squibb Company Pyrrolotriazine inhibitors of kinases
US6774132B1 (en) 1999-07-21 2004-08-10 Astrazeneca Ab Spirooxindole derivatives that act as analgesics
WO2001005790A1 (en) 1999-07-21 2001-01-25 Astrazeneca Ab New compounds
WO2003008407A2 (fr) 2001-07-17 2003-01-30 Sanofi-Synthelabo Derives de 1-phenylsulfonyl-1,3-dihydro-2h-indol-2-one, leur preparation et leur application en therapeutique
WO2003078394A1 (en) 2002-03-15 2003-09-25 Eli Lilly And Company Dihydroindol-2-one derivatives as steroid hormone nuclear receptor modulators
WO2006080574A1 (ja) 2005-01-28 2006-08-03 Taisho Pharmaceutical Co., Ltd. 1,3-ジヒドロ-2h-インドール-2-オン化合物、及び芳香族複素環が縮合したピロリジン-2-オン化合物
WO2006091646A2 (en) 2005-02-22 2006-08-31 The Regents Of The University Of Michigan Small molecule inhibitors of mdm2 and uses thereof
WO2006136606A2 (en) 2005-06-24 2006-12-28 F. Hoffmann-La Roche Ag Oxindole derivatives
US7495007B2 (en) 2006-03-13 2009-02-24 Hoffmann-La Roche Inc. Spiroindolinone derivatives
WO2007104664A1 (en) 2006-03-13 2007-09-20 F. Hoffmann-La Roche Ag Spiroindolinone derivatives
WO2007104714A1 (en) 2006-03-13 2007-09-20 F. Hoffmann-La Roche Ag Spiroindolinone derivatives
US20080009486A1 (en) 2006-03-13 2008-01-10 Li Chen Spiroindolinone derivatives
WO2008005268A1 (en) 2006-06-30 2008-01-10 Schering Corporation Substituted piperidines that increase p53 activity and the uses thereof
WO2008036168A2 (en) 2006-08-30 2008-03-27 The Regents Of The University Of Michigan New small molecule inhibitors of mdm2 and the uses thereof
WO2008055812A1 (en) 2006-11-09 2008-05-15 F. Hoffmann-La Roche Ag Spiroindolinone derivatives
US20080114013A1 (en) 2006-11-09 2008-05-15 Jin-Jun Liu Spiroindolinone derivatives
US7638548B2 (en) 2006-11-09 2009-12-29 Hoffmann-La Roche Inc. Spiroindolinone derivatives
WO2008080822A1 (en) 2006-12-29 2008-07-10 F. Hoffmann-La Roche Ag Epimerization methodologies for recovering stereo isomers in high yield and purity
US7553833B2 (en) 2007-05-17 2009-06-30 Hoffmann-La Roche Inc. 3,3-spiroindolinone derivatives
WO2009080488A1 (en) 2007-12-19 2009-07-02 F. Hoffmann-La Roche Ag Spiroindolinone derivatives as anticancer agents
US20100075948A1 (en) 2008-09-18 2010-03-25 Qingjie Ding Substituted Pyrrolidine-2-Carboxamides
US20110112052A1 (en) * 2009-11-12 2011-05-12 The Regents Of The University Of Michigan Spiro-oxindole mdm2 antagonists

Non-Patent Citations (58)

* Cited by examiner, † Cited by third party
Title
A. Walser, et al., J. Org. Chem., vol. 38, No. 3, pp. 449-456 (1973), XP002418418.
Alarcon-Vargas, D et al, Carcinogenesis, 23(4):541-547 (2002) XP002481521.
Alemparte, Organic Letters, 7:21 4569-4579 (2005).
Amarnath Natarajan, et al., J. Med. Chem., vol. 47, pp. 1882-1885 (2004), XP002405137.
Andreani, A.; et al., Eur. J. Med. Chem. 1990, 25, 187-190.
Andrew Fensome, et al., Bioorganic & Medicinal Chemistry Letters, vol. 12, pp. 3487-3490 (2002), XP002418428.
Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems (6th Ed. 1995) at p. 456-457.
Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery Systems (6th Ed. 1995) at pp. 196.
Arndt, Hans-Dieter, Kleine Molekule pp. 4664-4673-XP-002465843.
Arndt, Hans-Dieter, Kleine Molekule pp. 4664-4673—XP-002465843.
Ashimori A. Journal of American Chem Society 120 (1998) 6477-6477-6487 XP001038246.
Ashimori A. Journal of Organic Chem 57: 17 (2002) 4571-4572 XP002527583.
Audris Huang, et al., J. Am. Chem. Soc., vol. 126, pp. 14043-14053 (2004), XP002418411.
Balazs Volk, et al., Eur. J. Org. Chem., pp. 3991-3996 (2003), XP002418431.
Chosez, L., Tetrahedron, (1995) 11021-11042.
Christopher Hulme, et al., Bioorganic & Medicinal Chemistry Letters, vol. 8, pp. 175-178 (1998), XP002405133.
David W. Robertson, et al., J. Med. Chem., vol. 29, pp. 1832-1840 (1986), XP002418409.
Dhigemori, H. et al, Che. Abstracts Service XP002481522.
Ding, Journal of Medicinal Chemistry (2006), 49(12), 3432-3435.
Ding, Tetrahedron Letters (2005), 46 (35), 5949-5951SUN.
Elliott, I. W.; Rivers, P. J. Org. Chem. 1964, 29, 2438-2440.
F.D. Dopp, et al., J. Heterocyclic Chem., vol. 17, No. 9, pp. 1329-1330 (1980), XP002405134.
Gordon N. Walker, et al., J. Med. Chem., vol. 8, pp. 626-637 (1965), XP002405135.
H.E. Zaugg, et al., J. Am. Chem. Soc., vol. 84, pp. 4574-4578 (1962), XP002418406.
Hellmann, H. et al, Chemische Berichte, ISSN:009-2440, vol. 86, 1346-1361 (1953) XP002481520.
Hossein Pajouheish, et al., J. Pharm. Sci., vol. 72, No. 3, pp. 318-321 (1983), XP009078411.
International Search Report for PCT/EP210/068353 dated Mar. 25, 2011.
Istvan Moldvai, et al., Arch. Pharm. Pharm. Med. Chem., vol. 329, pp. 541-549 (1996), XP009078456.
J. Amer. Chem. Soc (2005) 127 PG. 10130.
James C. Powers, J. Org. Chem., vol. 30, pp. 2534-2540 (1965), XP002405138.
Javad Azizian, et al., Synthesis, vol. 2005, No. 7, pp. 1095-1098 (2005), XP 002418427.
Johnson R.S., Journal of American Chem Society (1900) 796-800 xp002156747.
Karnail S. Atwal, et al., J. Med. Chem., vol. 39, pp. 304-313 (1996), XP002418430.
Kazuo Takayama, et al., Tetrahedron Letters, vol. 5, pp. 365-368 (1973), XP002418410.
Keith Smith, et al., J. Chem. Soc. Perkin Trans. 1, vol. 1999, pp. 2299-2303 (1999), XP002418432.
Kraynack, E. A.; Dalgard, J. E.; Gaeta, F. C. A. Tetrahedron Letters, 1998, 39, 7679-7682.
Krishna C. Joshi, et al., Journal of Fluorine Chemistry, vol. 44, pp. 59-72 (1989), XP002418412.
Lippa,Blaise, Bioorganic & Medicinal Chemistry Letters 18, (2008) 3359-3363.
Masaru Ogata, et al., Eur. J. Med. Chem.-Chimica Therapeutica, vol. 16, No. 4, pp. 373-379 (1981), XP00907847.
Masaru Ogata, et al., Eur. J. Med. Chem.—Chimica Therapeutica, vol. 16, No. 4, pp. 373-379 (1981), XP00907847.
Paul Aeberli, et al., J. Org. Chem., vol. 33, No. 4 pp. 1640-1643 (1968), XP002418417.
Piyasena Hewawasam, et al., Bioorganic & Medicinal Chemistry Letters, vol. 12, pp. 1023-1026 (2002), XP002418413.
R.L. Hinman, et al., J. Org. Chem., vol. 29, pp. 2431-2437 (1964), XP002418433.
Rita Kapiller-Dezofi, et al., New J. Chem., vol. 28, pp. 1214-1220 (2004), XP002418408.
Saddler, Blood (2008), 111(3), 1584-1593.
Sairim, Carbohydrate Research 338-2003-303-306.
Sairim, Carbohydrate Research 338—2003—303-306.
Santiago Barroso, et al., J. Org., Chem., vol. 69, pp. 6821-6829 (2004), XP002418416.
Sengodagounder Muthusamy, et al., Synlett, vol. 2002, No. 11, pp. 1783-1786 (2002), XP002405139.
Shangary, Molecular Cancer Therapeutics (2008), 7(6) 1533-1542.
Shangary, Proceedings of National Academy of Science (2008) 105(10) 3933-3938.
Simplicio,Ana, Molecules 2008. 519-547.
Stanislav Kafka, et al., J. Org. Chem., vol. 66, pp. 6394-6399 (2001), XP002405136.
Steven P. Govek, et al., J. Am. Chem. Soc., vol. 123, pp. 9468-9469 (2001), XP002418407.
Sun, Cancer Biology & Therapy (2008) 7 (6), 845-852.
T.V. Rajanbabu, et al., J. Org. Chem., vol. 51, pp. 1704-1712 (1986), XP002418429.
Ward C. Sumpter, J. Am. Chem Soc., vol. 54, pp. 2917-2918 (1932), XP002405141.
Yu, J. Med. Chem. 52:24, 7970-7973 (2009).

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168388A1 (en) * 2007-01-31 2010-07-01 Federico Bernal Stabilized p53 peptides and uses thereof
US9527896B2 (en) 2007-01-31 2016-12-27 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
US8889632B2 (en) 2007-01-31 2014-11-18 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US8877796B2 (en) 2009-11-12 2014-11-04 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US20110112052A1 (en) * 2009-11-12 2011-05-12 The Regents Of The University Of Michigan Spiro-oxindole mdm2 antagonists
US9079913B2 (en) 2009-11-12 2015-07-14 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US8518984B2 (en) 2009-11-12 2013-08-27 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US20110118283A1 (en) * 2009-11-17 2011-05-19 Qingjie Ding Substituted Pyrrolidine-2-Carboxamides
US8288431B2 (en) * 2010-02-17 2012-10-16 Hoffmann-La Roche Inc. Substituted spiroindolinones
US20110201635A1 (en) * 2010-02-17 2011-08-18 Jin-Jun Liu Substituted spiroindolinones
US8859723B2 (en) 2010-08-13 2014-10-14 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9957299B2 (en) 2010-08-13 2018-05-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8680132B2 (en) 2010-11-12 2014-03-25 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US9302120B2 (en) 2010-11-12 2016-04-05 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US8629141B2 (en) 2011-05-11 2014-01-14 The Regents Of The University Of Michigan Spiro-oxindole MDM2 antagonists
US9522947B2 (en) 2011-10-18 2016-12-20 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9096684B2 (en) 2011-10-18 2015-08-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10308699B2 (en) 2011-10-18 2019-06-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8987414B2 (en) 2012-02-15 2015-03-24 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US9505804B2 (en) 2012-02-15 2016-11-29 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8927500B2 (en) 2012-02-15 2015-01-06 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10213477B2 (en) 2012-02-15 2019-02-26 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10227380B2 (en) 2012-02-15 2019-03-12 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US9604919B2 (en) 2012-11-01 2017-03-28 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9845287B2 (en) 2012-11-01 2017-12-19 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US10669230B2 (en) 2012-11-01 2020-06-02 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US8846657B2 (en) 2012-12-20 2014-09-30 Merck Sharp & Dohme Corp. Substituted imidazopyridines as HDM2 inhibitors
US9745314B2 (en) 2014-04-17 2017-08-29 The Regents Of The University Of Michigan MDM2 inhibitors and therapeutic methods using the same
US9701685B2 (en) 2014-08-18 2017-07-11 Hudson Biopharma Inc. Spiropyrrolidines as MDM2 inhibitors
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1
WO2023086400A1 (en) * 2021-11-12 2023-05-19 Enanta Pharmaceuticals, Inc. Novel spiropyrrolidine derived antiviral agents
US11993600B2 (en) 2021-12-08 2024-05-28 Enanta Pharmaceuticals, Inc. Saturated spirocyclics as antiviral agents

Also Published As

Publication number Publication date
HK1173720A1 (en) 2013-05-24
SG181465A1 (en) 2012-07-30
AU2010326855A1 (en) 2012-06-21
IL220010A0 (en) 2012-07-31
MA33976B1 (fr) 2013-02-01
CL2012001405A1 (es) 2012-09-28
CN102741257A (zh) 2012-10-17
JP5647262B2 (ja) 2014-12-24
PE20121334A1 (es) 2012-10-12
WO2011067185A1 (en) 2011-06-09
JP2013512869A (ja) 2013-04-18
RU2571100C2 (ru) 2015-12-20
RU2012125763A (ru) 2014-01-10
BR112012012872A2 (pt) 2017-10-10
NZ600024A (en) 2014-08-29
KR20120101481A (ko) 2012-09-13
TW201129571A (en) 2011-09-01
IL220010A (en) 2014-03-31
CO6541606A2 (es) 2012-10-16
EP2507243B1 (en) 2015-06-10
KR101418191B1 (ko) 2014-07-09
US20110130398A1 (en) 2011-06-02
CR20120259A (es) 2012-07-12
ES2543468T3 (es) 2015-08-19
MX2012006260A (es) 2012-06-19
CN102741257B (zh) 2015-03-04
EP2507243A1 (en) 2012-10-10
CA2781823A1 (en) 2011-06-09
ZA201204036B (en) 2013-02-27
AR079226A1 (es) 2012-01-04
ECSP12011945A (es) 2012-07-31
MY160596A (en) 2017-03-15
AU2010326855B2 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
US8088815B2 (en) Spiroindolinone pyrrolidines
US8217044B2 (en) Spiroindolinone pyrrolidines
US8288431B2 (en) Substituted spiroindolinones
US8354444B2 (en) Substituted pyrrolidine-2-carboxamides
US8017607B2 (en) N-substituted-pyrrolidines as inhibitors of MDM2-P-53 interactions
US20110118283A1 (en) Substituted Pyrrolidine-2-Carboxamides
US20100075948A1 (en) Substituted Pyrrolidine-2-Carboxamides
US20120071499A1 (en) Substituted Spiro[3H-Indole-3,6'(5'H)-[1H]Pyrrolo[1,2c]Imidazole-1',2(1H,2'H)-diones
US20120065210A1 (en) Substituted hexahydropyrrolo[1,2-c]imidazolones
US7776875B2 (en) Spiroindolinone derivatives
US20120149660A1 (en) Novel n-substituted 5-hydroxypyrollindes as inhibitors of mdm2-p53 interactions
US8134001B2 (en) Spiroindolinone derivatives
US20120046306A1 (en) Substituted Heteroaryl Spiropyrrolidine MDM2 Antagonists
US20120010235A1 (en) N-substituted pyrrolidines
US7834179B2 (en) Spiroindolinone derivatives
US7723372B2 (en) Spiroindolinone derivatives
US7928233B2 (en) Spiroindolinone pyridine derivatives
US20130053410A1 (en) Substituted heteroaryl 2',3',7',7a'-tetrahydrospiro[pyrrole-3,6'-pyrrolo[1,2-c]imidazole]-1',2(1h,5'h)-dione

Legal Events

Date Code Title Description
ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240103