US8022314B2 - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
US8022314B2
US8022314B2 US12/622,049 US62204909A US8022314B2 US 8022314 B2 US8022314 B2 US 8022314B2 US 62204909 A US62204909 A US 62204909A US 8022314 B2 US8022314 B2 US 8022314B2
Authority
US
United States
Prior art keywords
solder
printed wiring
diameter
wiring board
solder resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US12/622,049
Other versions
US20100065323A1 (en
Inventor
Yoichiro Kawamura
Shigeki Sawa
Katsuhiko Tanno
Hironori Tanaka
Naoaki Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to US12/622,049 priority Critical patent/US8022314B2/en
Publication of US20100065323A1 publication Critical patent/US20100065323A1/en
Application granted granted Critical
Publication of US8022314B2 publication Critical patent/US8022314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/0623Solder feeding devices for shaped solder piece feeding, e.g. preforms, bumps, balls, pellets, droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81192Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8121Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/099Coating over pads, e.g. solder resist partly over pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/041Solder preforms in the shape of solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0557Non-printed masks

Definitions

  • the invention relates to a printed wiring board for mounting electronic parts such as capacitors, ICs and the like on the surface layer, and more particularly relates to a printed wiring board adaptable for narrow pitching of solder bumps for mounting electronic parts.
  • solder bumps are formed for semiconductor element mounting pads (hereinafter, merely referred to as “conductor pad”) formed on the printed wiring board. A part of the conductor pad is covered with a solder resist layer, and the center portion of the conductor pad is only exposed.
  • the printed wiring board is set in a solder paste printer, then a solder printing mask such as metal mask, plastic mask and the like (provided with an opening for printing corresponding to the conductor pad formed in the printed wiring board) is laminated on the printed wiring board, and alignment of an alignment mark formed in the printed wiring board and an alignment mark of the mask for printing is carried out.
  • solder bump is formed on the conductor pad by carrying out a reflow treatment by setting the printed wiring board on a reflow device (refer to as Japanese unexamined patent publication No. H11-40908).
  • a printed wiring board comprising a wiring substrate formed with a conductor circuit, a solder resist layer provided on the surface thereof, a conductor pad formed from a part of the conductor circuit exposed from an opening provided in the solder resist layer for mounting electronic parts and a solder pad formed on the conductor pad, wherein the conductor pad is aligned with a pitch of about 200 ⁇ m or less, and the ratio (W/D) of a solder bump diameter W to an opening diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.7.
  • a printed wiring board comprising a wiring substrate formed with a conductor circuit, a solder resist layer provided on the surface thereof, a conductor pad formed from a part of the conductor circuit exposed from an opening provided in the solder resist layer for mounting electronic parts, a solder pad formed on the conductor pad and an under fill for mounting electronic parts through the solder bump and resin sealing between the electronic parts and the solder resist layer, wherein the conductor pad is aligned with a pitch of about 200 ⁇ M or less, and the ratio (W/D) of the solder bump diameter W to the opening diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.7.
  • the ratio (W/D) of the solder bump diameter W to the opening diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.5.
  • an opening is formed into a tapered form in which an opening diameter D 1 at the top face of the opening provided in the solder resist layer is larger than an opening diameter D 2 at the bottom face.
  • the flattened surface preferably has maximum surface roughness of about 0.8 ⁇ m to about 3.0 ⁇ m.
  • the surface of the flattened solder resist layer can be applied a roughening treatment, and the surface of the roughened solder resist layer is preferably smaller than the maximum surface roughness of the flattened surface and about 0.2 ⁇ m to about 0.5 ⁇ m at an arithmetic mean roughness (Ra).
  • the conductor pad defined as a part of the conductor circuit exposed from the opening provided in the solder resist layer is formed into a filled via completely filled within an opening provided in an interlayer resin insulating layer where a plated conductor is positioned at an outermost layer, and that an uneven amount of the filled via surface exposed from the interlayer resin insulating layer surface is about ⁇ 5 ⁇ m to about +5 ⁇ m in relation to the thickness of the conductor circuit formed on the interlayer resin insulating layer.
  • conductor pad defined as a part of the conductor circuit exposed from the opening provided in the solder resist layer, its conductor circuit is formed into, for instance, connecting pad, via hole (including filled via completely filling a plated conductor within the opening provided in the resin insulating layer) or a conductor circuit connected to the via hole, so that in a wide sense, it is defined as apart of the conductor circuit including the connecting pad and the via hole.
  • solder bump diameter means the maximum value among a length of the circle or a length of the oval appeared in case of cutting the solder bump protruded from the solder resist layer surface crosswise at horizontal section.
  • opening diameter (D) of the opening provided in the solder resist layer means “diameter” when an opening side wall is not tapered and means opening diameter (of the upper part) appeared on the solder resist layer surface when the opening side wall is tapered.
  • “maximum surface roughness” means, as schematically shown in FIG. 8 , the maximum value among differences X 1 , X 2 , X 3 , X 4 , X 5 . . . between a height of the solder resist layer on the adjacent conductor pad or conductor circuit and that of the solder resist layer of the adjacent conductor pad non-forming portion or conductor circuit non-forming portion.
  • arithmetic mean roughness means an arithmetic mean roughness (Ra) defined by JIS 80601.
  • JIS 80601 is incorporated herein by reference in its entirety.
  • FIG. 1 is a sectional view of a printed wiring board according to the invention.
  • FIG. 2 is a sectional view showing the state of mounting IC chip on the printed wiring board shown in FIG. 1 and placing them on a daughter board.
  • FIGS. 3A to 3C are views explaining a process of forming solder bumps on the printed wiring board.
  • FIGS. 4A and 4B are schematic views showing the construction of a solder ball mounting device.
  • FIG. 5A is a schematic view explaining alignment of the printed wiring board
  • FIG. 5B is a schematic view explaining supply of the solder balls to mounting cylinders.
  • FIG. 6A is a schematic view explaining assembly of the solder balls by the mounting cylinders
  • FIG. 6B is a schematic view explaining assembly and guide of the solder balls by the mounting cylinders.
  • FIG. 7A is a schematic view explaining dropping of the solder balls to connection pads
  • FIG. 7B is a schematic view explaining removal of the solder balls by adsorbed ball removing cylinders.
  • FIG. 8 is a schematic view explaining maximum roughness of the solder resist layer surface.
  • FIG. 9 is a schematic view explaining relation between the solder bump diameter (W) and the solder resist layer opening diameter (D) in the invention.
  • FIG. 10A is a schematic view explaining the bump form around a boundary between the solder bump and the solder resist layer surface when the solder resist layer opening is rectangular in section
  • FIG. 10B is a schematic view explaining the bump form around a boundary between the solder bump and the solder resist layer surface when the solder resist layer opening is trapezoidal in section.
  • FIGS. 11A and 11B are schematic views explaining unevenness of the filled via as a connecting pad.
  • FIGS. 12A and 12B are schematic views explaining a connecting pad region.
  • the printed wiring board of the present invention will be described hereinafter.
  • a solder resist layer (SR layer) formed in the outermost layer of a wiring substrate
  • a part of a conductor circuit exposed from the at least one opening is formed as conductor pads for mounting electronic parts
  • the conductor pads are arranged with a pitch of about 200 ⁇ m or less
  • solder bumps are formed on the respective conductor pads in the form of filled viaholes each completely filled in the opening, and further the ratio (W/D) of a solder bump diameter W to a diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.7.
  • solder bumps in the corresponding openings provided in the solder resist layer it is desirable to use a novel method and a device for dropping solder balls having very fine particle diameter on the connecting pads through the corresponding openings of a ball aligning mask as described below, without employing a printing method with the use of a conventional mask.
  • a novel solder ball mounting method and a device thereof are used for manufacturing.
  • the construction of one embodiment is explained by referring to FIGS. 1 and 2 .
  • FIG. 1 shows a sectional view of a printed wiring board 10
  • FIG. 2 shows a state in which an IC chip 90 is mounted on the printed wiring board 10 and the printed wiring board 10 is mounted on a daughter board 94 .
  • the printed wiring board 10 has a conductor circuit 34 formed on both surfaces of a core substrate 30 , and the respective conductor circuits are electrically connected through a plated through hole 36 .
  • a conductor circuit 58 forming a conductor circuit layer through an interlaminar insulative resin layer 50 .
  • the conductor circuit 58 is connected to the conductor circuit 34 through via hole 60 .
  • a conductor circuit 158 is formed through an interlaminar insulative resin layer 150 .
  • the conductor circuit 158 is connected to the conductor circuit 58 through a via hole 160 formed in an interlaminar insulative resin layer 150 .
  • a solder resist layer 70 is formed by covering the conductor circuit 158 and the via hole 160 , and a connecting pad 75 is formed by forming a nickel plated layer 72 and a gold plated layer 74 on an opening 71 provided in the solder resist layer 71 .
  • a solder bump 78 U On the connecting pad 75 of the top face is formed a solder bump 78 U and on the connecting pad 75 of the bottom face is formed a BGA (ball grid array) 78 D.
  • the solder bump 78 U on the upper side of the printed wiring board 10 is connected to an electrode 92 of the IC chip 90 to form an IC mounted printed wiring board, and the IC mounted printed wiring board is connected to a land 96 of a daughter board 94 through the BGA 78 D.
  • the conductor pad is provided with a pitch of about 200 ⁇ m or less, and the ratio (W/D) of a solder bump diameter W to an opening diameter D of the opening provided in the solder resist layer is made within a range of about 1.05 to about 1.7, preferably about 1.05 to about 1.5, thereby making a gap difficult to be formed between the solder bump and the opening side wall of the solder resist layer, so as to make flux residue and clearing solution residue difficult to remain between the solder bump and the solder resist layer.
  • W/D the ratio of a solder bump diameter W to an opening diameter D of the opening provided in the solder resist layer
  • solder resist layer surface it is desirable to flatten the solder resist layer surface to secure flatness to some extent.
  • Such flattened surface can increase the volume of the solder resist layer to which large stress is applied, and decrease the bending portion on which stress tends to concentrate. As a result, heat cycle resistance can easily be improved.
  • the surface of the solder resist layer corresponding to at least electronic parts mounting region is flattened.
  • the solder resist layer and the solder bump are different in thermal expansion coefficient, so that there are produced repeatedly contraction and expansion at the boundary vicinity between the solder bump and the solder resist layer.
  • the volume of the solder resist layer in the bump vicinity is small to be easily broken. Therefore, by making flatness of the solder resist layer surface small to some extent, the volume of the solder resist layer where large stress is applied to is increased, bending portion where stress tends to concentrate is lessened, and heat cycle resistance can easily be improved.
  • solder resist layer surface is desirably applied flattening treatment in, for instance, at least electronic parts mounting region.
  • thermal expansion coefficient of the solder resist layer and the solder bump are different, contraction and expansion are repeated in the vicinity of the solder bump and the solder resist layer by thermal change.
  • large unevenness is existent on the solder resist layer surface, that is, small flatness, the volume of the solder resist layer in the vicinity of the solder bump is less, breakdown tends to occur. Therefore, the volume of largely stressed portion of the solder resist layer is increased by lessening flatness of the solder resist layer surface to some extent and the stress-concentrating bent portion is lessened, so as to improve heat cycle resistance.
  • the flattened surface of the solder resist layer is desirably about 0.8 to about 3.0 ⁇ m in maximum surface roughness.
  • the reason is that when the maximum surface roughness is within a range of about 0.8 to about 3.0 ⁇ m, crack is hardly generated in the solder resist in the vicinity of the conductor pad, and air (void) is hard to enter into the under fill resin. As a result, insulation reliability and connection reliability are easily improved.
  • Wettability of the under fill resin is easily improved by applying the roughening treatment to the surface of the solder resist layer flattened to some extent, so that under fill resin can be filled in a narrow gap portion in the boundary vicinity between the solder resist layer and the solder bump so as to improve connection reliability.
  • the roughened surface of the solder resist layer is smaller than the maximum surface roughness of the flattened surface and about 0.2 to about 0.5 ⁇ m at an arithmetic mean roughness (Ra).
  • the reason is that when the arithmetic mean roughness Ra is made within a range of about 0.2 to about 0.5 ⁇ m, adhesion to the under fill resin can be increased, and flux residue and cleaning residue are hardly remained on the solder resist surface. As a result, insulation reliability and connection reliability are easily improved.
  • an opening side wall of the solder resist layer is tapered, thereby hardly concentrating stress because a form of the solder bump is not extremely changed at the opening periphery. As a result, connection reliability is improved.
  • An opening provided in the solder resist layer may be, as shown in FIGS. 10A to 10B for instance, rectangular or trapezoidal in section.
  • the solder bump portion filled in the opening and that exposed to the outside are smoothly continued, and the bent portion of the solder bump becomes small in the boundary with the solder resist layer, that is, the form of the solder bump is not extremely changed at the boundary portion with the solder resist layer so as not to concentrate stress.
  • the solder bump is hard to be broken and connection reliability is improved.
  • the shape of the opening may be a trapezoid in section wherein the difference between the opening diameters D 1 -D 2 is about 5 ⁇ m to about 20 ⁇ m.
  • the difference D 1 -D 2 is within such range, stress by thermal expansion coefficient difference between IC chip and print wiring board is hardly concentrated, so that connection reliability tends to be improved, and insulation performance between adjacent solder bumps can be secured. Further, migration is scarcely generated.
  • two connecting pads positioned at center among connecting pads 75 provided on the top face are formed into the form of a land just above a via hole 160 , and two connecting pads adjacent thereto are formed into the form of a pad adjacent to the land of the via hole 160 , further, two connecting pads positioned at both ends are formed into the form of a pad consisting of a part of a wiring pattern of the conductor circuit 158 , and solder bumps are formed on these connecting pads.
  • connecting pads among connecting pads 75 on the bottom face are formed into a land just above the via hole 160 , and four connecting pads positioned at center are formed into a pad adjacent to the via hole 160 .
  • the viahole 160 as a connecting pad formed by the solder bump 78 U is preferably a filled-via, and the uneven amount of the filled-via surface exposed from the surface of the interlaminar insulative resin layer 150 is, as shown in FIGS. 11A to 11B , desirably within a range of about ⁇ 5 ⁇ m to about +5 ⁇ m in relation to the surface thickness of the conductor circuit 158 .
  • the reason why the depressed or protruded amount of the filled-via surface is restricted to a mentioned above is due to the fact that when the depressed amount is about 5 ⁇ m ( ⁇ 5 ⁇ m) or less, the number of contact point defined by the solder ball and the connecting pad consisting of the filled-via is secured, and wettability in case of forming the solder bump is easily improved, and entanglement of voids within the bump and missing bump can be controlled, while when the protruded amount of the filled-via surface is about 5 ⁇ m (+5 ⁇ m) or less, the thickness of the conductor circuit 158 is controlled not to become large but easily adaptable for micro-patterning.
  • the “electronic parts mounting region” in the embodiment of the invention substantially corresponds to a region (hereinafter, simply called as “connecting pad region”) where conductor pads such as filled-via and the like for mounting electronic parts are provided.
  • FIG. 12A shows a state of aligning all of the outermost peripheral connecting pads along each side of a rectangle among grid-like aligned connecting pads
  • FIG. 12B shows a state of not aligning a part of the outermost peripheral connecting pads along each side of the rectangle, however, in either case, when the connecting pad region is made rectangle, a rectangle region determined to minimize an area of the region enclosing all connecting pads is called as “connecting pad region”.
  • FIGS. 3A to 3C are views explaining the steps for forming the solder bumps on the printed wiring board 10 according to the present invention.
  • a flux layer 80 is formed for covering conductor pads formed in the openings 71 provided in the solder resist layer 70 on the top face side of the printed wiring board, i.e. the connecting pads 75 by a printing method (see FIG. 3A ).
  • solder balls 78 s for example, made by Hitachi Metals or Tamura
  • solder ball loader described later on (see FIG. 3B ).
  • solder ball is desirable about 40 ⁇ m or more and less than about 200 ⁇ m in diameter.
  • each solder ball easily drops on the corresponding connecting pad because it is not too light in weight, and the solder balls are easily assembled in a cylinder member, thereby to control the presence of connecting pads with no solder balls mounted thereon.
  • the solder ball having a diameter of about 80 ⁇ m or less is desirable.
  • solder balls 78 L of a usual diameter (250 ⁇ m) are adsorbed and placed on the connecting pads 75 on the bottom face side of the printed wiring board with the use of an adsorption head as described in Japanese Patent No. 1975429, for instance (see FIG. 3C ).
  • the pitch of the solder bumps corresponds to a pitch of the connecting pads, and when the pitch of the connecting pads is about 60 ⁇ m or more, manufacture of solder balls suitable for the pitch becomes possible. When the pitch of the connecting pads is about 200 ⁇ m or less, it becomes possible to obtain a printed wiring board adaptable for fine patterning or narrow pitching.
  • an IC mounted printed wiring board 10 is formed by mounting the IC chip 90 through the solder bumps 78 U by reflowing, and this IC mounted printed wiring board 10 is mounted on the daughter board 94 through BGA 78 D.
  • solder ball loader for mounting the very small solder balls 78 s on the corresponding connecting pads of the above-described printed wiring board is explained by referring to FIGS. 4A to 4B .
  • FIG. 4A is an illustration showing the structure of the solder ball loader
  • FIG. 4B is a view taken from an arrow B of the solder ball loader of FIG. 4A .
  • the solder ball loader 20 comprises an XY ⁇ suction table 14 for positioning and holding the printed wiring board 10 , a shaft 12 for moving the XY ⁇ suction table 14 up and down, a ball aligning mask 16 with an opening corresponding to the connecting pad 75 of the printed wiring board, a mounting cylinder (cylinder member) 24 for guiding the solder balls moving on the ball aligning mask 16 , a suction box 26 for giving negative pressure to the mounting cylinder 24 , a solder ball removing cylinder 61 for recovering excessive solder balls, a suction box 66 for giving negative pressure to the solder ball removing cylinder 61 , an adsorbed ball removing and adsorbing device 68 for holding the collected solder balls, a mask clamp 44 for clamping the ball aligning mask 16 , an X-axis direction moving shaft 40 for sending the mounting cylinder 24 and the solder ball removing cylinder 61 to the X-axis direction, a moving shaft supporting guide 42 for supporting the X-axis direction moving shaft 40
  • a plurality of the mounting cylinders 24 and the solder ball removing cylinder 61 are arranged in the Y-axis direction by corresponding to size of the connecting pad regions. Further, the size may correspond to a plurality of the connecting pad areas.
  • the Y-axis direction is expedient and may be aligned in the X-axis direction.
  • the XY ⁇ suction table 14 functions as positioning, adsorption, maintenance and correction of the solder ball mounted printed wiring board 10 .
  • the alignment camera 46 detects an alignment mark of the printed wiring board 10 on the XY ⁇ suction table 14 to regulate a position between the printed wiring board and the ball aligning mask 16 based on the detected position.
  • the residue detecting sensor 18 detects the residue of the solder balls by an optical method.
  • an alignment mark 34 M of the printed wiring board 10 is recognized by the alignment camera 46 , and the position of the printed wiring board 10 in relation to the ball aligning mask 16 is corrected by the suction table 14 . That is, openings 16 a of the ball aligning mask 16 are adjusted for corresponding to the connecting pads 75 of the printed wiring board 10 in position, respectively.
  • the printed wiring board 10 for one is only shown, but actually, solder balls are mounted to a printed wiring board of worksheet size for constructing a plurality of wiring boards, and after forming solder bumps, the worksheet size board is cut into respective multilayer printed wiring boards.
  • solder balls 78 s are quantitatively supplied from a solder ball supplying device 22 to the side of the mounting cylinder 24 .
  • solder ball use may be made of any commercial item (for example, made by Hitachi Metals) or, for example, solder balls may be manufactured according to the manufacturing device and method described in Japanese unexamined patent application No. 2001-226705.
  • solder balls are placed on a metal plate (e.g. nickel plate of about 25 ⁇ m thick) having a square slit (opening) which length and breadth are smaller than a desired diameter of the solder ball by about 1 ⁇ m, and the solder balls are rolled thereon and dropped from the slit. Then, small balls having smaller diameters than the desired ones are removed. Thereafter, the solder balls remained on the metal plate are classified by a metal plate having a square slit which length and breadth are larger than the desired diameter of the solder ball by about 1 ⁇ m, and solder balls dropped from the slit are collected so as to obtain the solder balls each having a diameter substantially equal to the desired diameter.
  • a metal plate e.g. nickel plate of about 25 ⁇ m thick
  • solder balls are rolled thereon and dropped from the slit.
  • small balls having smaller diameters than the desired ones are removed.
  • solder balls remained on the metal plate are classified by a metal plate having a square slit
  • solder balls 78 s are assembled on the ball aligning mask 16 right under the opening 24 A of the mounting cylinder 24 by adsorbing air from the suction portion 24 B at a running speed of about 5 m/sec to about 35 m/sec in a gap between the mounting cylinder and the printed wiring board.
  • the mounting cylinders 24 aligned along the Y-axis direction of the printed wiring board 10 are sent to the horizontal direction along the X-axis direction by means of the X-axis moving shaft 40 .
  • the solder balls 78 s assembled on the ball aligning mask 16 are moved with the movement of the mounting cylinder 24 , dropped to the corresponding connecting pads 75 of the printed wiring board 10 through the openings 16 a of the ball aligning mask 16 and loaded.
  • the solder balls 78 s are successively aligned on the whole connecting pads on the side of the printed wiring board 10 .
  • the excessive solder balls 78 s are guided to a place where no opening 16 a is provided on the ball aligning mask 16 , then adsorbed and removed by the solder ball removing cylinder 61 .
  • the printed wiring board 10 is removed from the suction table 14 .
  • the solder balls 78 s are assembled by positioning the mounting cylinder 24 on the upper part of the ball aligning mask 16 and adsorbing air from the suction portion 24 B on the top of the mounting cylinder 24 , the assembled solder balls 78 s are moved on the ball aligning mask 16 by moving the mounting cylinder 24 in the horizontal direction, and the solder balls 78 s can be dropped to the respective connecting pads 75 of the printed wiring board 10 through the respective openings 16 a of the ball aligning mask 16 .
  • solder balls 78 s can certainly be mounted on the whole of the connecting pads 75 of the printed wiring board 10 . Further, since the solder balls 78 s can be moved with no contact, the solder balls can be mounted on the connecting pads 75 without injury, which is different from a printing method with the use of a conventional squeeze, and the solder bumps 78 U can be made having an equal height.
  • the fine solder balls could certainly be placed on the connecting pads, even in the printed wiring board having such pitch alignment that the connecting pad pitch is about 60 to about 200 ⁇ m and the solder resist opening diameter is about 40 to about 150 ⁇ m, in the whole of bumps, stable bumps having substantially uniform heights ca be formed.
  • solder balls are guided by suction force so as to prevent aggregation and adhesion of solder balls.
  • works multilayer printed wiring board of work sheet size
  • having various sizes can be used by adjusting number of the mounting cylinder 24 so as to be applied to many forms and small production.
  • the mounting cylinders 24 are aligned in the Y-axis direction by corresponding to width of the work (printed wiring board of work sheet size), so that the solder balls can positively be mounted on the whole of connecting pads 75 of the printed wiring boards by simply sending a plurality of mounting cylinders 24 to the vertical direction (X direction) in relation to the row direction.
  • solder balls 78 s remained on the ball aligning mask 16 can be collected by the solder ball removing cylinder 61 , so that there are no problem such that excessive solder ball are remained to cause any trouble and the like.
  • solder balls mounted on the connecting pads of the wiring substrate become solder bumps having predetermined height by means of a reflow treatment, IC chips are mounted on the substrate through such solder bumps, and the printed wiring board according to the present invention is manufactured.
  • a double sided copper-clad laminate e.g. “MCL-E-67” made by Hitachi Chemical
  • MCL-E-67 a double sided copper-clad laminate
  • insulating layers and conductor circuit layers are alternately laminated by a known method (e.g. described in a book entitled “Build-up multilayer printed wiring board” (Kiyoshi Takagi) published by Nikkan Kogyo Shinbunsha on Jun.
  • a group of connecting pads for mounting IC chips consisting a grid-like arrangement having thickness: 20 ⁇ m, diameter (conductor pad diameter): 120 ⁇ m, pitch: 150 ⁇ m, number: 50 ⁇ 40 (pieces) is formed within a connecting pad region of 150 mm 2 .
  • Such connecting pad are formed by a method similar to that described in Japanese unexamined patent application No. 2000-357762.
  • the disclosure of Japanese unexamined patent application No. 2000-357762 is incorporated herein by reference in its entirety.
  • the pattern (opening diameter, pitch, arrangement, etc.) of a plated resist is changed.
  • solder resist layer Formation of a solder resist layer is that screen printing is carried out under the following printing condition with the use of a commercial solder resist to form a solder resist layer having a thickness of about 15 to about 25 ⁇ m (on the connecting pad) for covering the connecting pad.
  • Solder resist ink “RPZ-1” made by Hitachi Kogyo
  • solder resist layer having a thickness of 16 ⁇ m.
  • a photo mask depicted the pattern (mask pattern) of a solder resist opening is exposed to ultraviolet rays of about 100 to 1000 mJ under the state of adhering to the solder resist layer, development treatment is carried out with the use of a horizontal type developer under the following developing condition, thereby forming an opening of about 40 to 150 ⁇ m in diameter on the connecting pad.
  • a horizontal developing device comprising a conveyor for bringing the substrate in a developing treatment zone and conveying the developing treatment zone and a plurality of spray nozzles positioned at top and bottom of the substrate for adjusting spray pressure.
  • Spray face used Top or bottom face (in case of developing with a spray positioned at the top face of the substrate, the substrate is brought in the developing device by upwardly facing a solder resist face for forming an opening. In case of developing with a spray positioned at the lower part of the substrate, the substrate is brought in the developing device by downwardly facing the solder resist face for forming the opening.)
  • Spray pressure 0.05 to 0.3 MPa
  • Developing solution Sodium carbonate (Na 2 CO 3 ) solution of 5 to 15 g/L (6)
  • Developing time 10 to 300 seconds
  • an opening (diameter of an opening of the solder resist layer surface is equal to diameter of an opening of the connecting pad) of about 80 ⁇ m in diameter is formed by facing the solder resist face downwardly under the state of not oscillating the slit nozzle positioned at the lower part and by developing with the use of a sodium carbonate (Na 2 CO 3 ) solution of 10 g/L in concentration.
  • ball aligning mask use is made of a metal mask made of Ni having an opening of about 100 ⁇ m in diameter at the position corresponding to the connecting pad of the printed wiring board. It is also possible to use ball aligning masks of SUS and polyimide.
  • an opening diameter formed in the ball aligning mask is preferably about 1.1 to about 1.5 times the ball diameter used, and a thickness of the ball aligning mask is preferably about 1 ⁇ 2 to about 3 ⁇ 4 of the diameter of the solder ball used.
  • Sn/Pb is used for the solder ball
  • air is adsorbed from the top of the mounting cylinder, and the air speed in a gap between the mounting cylinder and the printed wiring board is regulated to about 5 to about 35 msec for assembling the solder balls within the mounting cylinder.
  • the mounting cylinder is moved at about 10 to about 40 mm/sec to roll the solder balls, and the solder balls are dropped from the respective openings of the ball aligning mask and mounted on the corresponding connection pads.
  • solder ball aligning mask and the printed wiring board are separately taken out of the solder ball loader, and finally, the printed wiring board is put in the reflow furnace set at 230 ⁇ to form a solder bump.
  • a diameter of the solder bump protruded from the solder resist surface is measured by a laser microscope (“WYKO NT-2000” made by Veeco). As a result, the diameter is 84 ⁇ m.
  • an IC chip is mounted through the solder bumps, and the IC chip mounted printed wiring board is manufactured by filling a commercial under fill resin between the IC chip and the solder resist.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 100 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 120 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 135 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, there is formed a trapezoidal opening such as 85 ⁇ of the top opening diameter and 80 ⁇ m of the bottom opening diameter, but the solder bump diameter becomes the same 84 ⁇ m as in Example 1.
  • the solder resist layer opening is made a trapezoid in section as shown in FIG. 10B , that is, it is understood that the form (circled with a dotted line) of the boundary portion of the solder bump and the solder resist layer surface is different by tapering.
  • the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 105 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 128 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 145 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 5. As a result, there is formed a trapezoidal opening which top opening diameter is 90 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 94 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 6. As a result, there is formed a trapezoidal opening which top opening diameter is 90 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 113 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 7. As a result, there is formed a trapezoidal opening which top opening diameter is 90 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 135 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 8. As a result, there is formed a trapezoidal opening which top opening diameter is 90 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 155 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 9. As a result, there is formed a trapezoidal opening which top opening diameter is 100 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 105 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 10. As a result, there is formed a trapezoidal opening which top opening diameter is 100 ⁇ and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 125 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 11. As a result, there is formed a trapezoidal opening which top opening diameter is 100 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 150 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 12. As a result, there is formed a trapezoidal opening which top opening diameter is 100 ⁇ m and bottom opening diameter is 80 ⁇ m, and the solder bump diameter becomes 170 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 63 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 17. As a result, the solder bump diameter becomes 75 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 17. As a result, the solder bump diameter becomes 90 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 17. As a result, the solder bump diameter becomes 102 ⁇ m.
  • the connecting pad of 70 ⁇ m in diameter is formed at 100 ⁇ m pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter is formed, and the solder bump of 63 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 68 ⁇ m.
  • the connecting pad of 70 ⁇ m in diameter is formed at 100 ⁇ m pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter is formed, and the solder bump of 70 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 80 ⁇ m.
  • the connecting pad of 70 ⁇ m in diameter is formed at 100 ⁇ m pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter is formed, and the solder bump of 80 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 96 ⁇ m.
  • the connecting pad of 70 ⁇ m in diameter is formed at 100 ⁇ m pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter is formed, and the solder bump of 95 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 110 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 21. As a result, there is formed a trapezoidal opening of 70 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 73 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 22. As a result, there is formed a trapezoidal opening of 70 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 88 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 23. As a result, there is formed a trapezoidal opening of 70 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 105 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 24. As a result, there is formed a trapezoidal opening of 70 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 120 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 25. As a result, there is formed a trapezoidal opening of 80 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 84 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 26. As a result, there is formed a trapezoidal opening of 80 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 100 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 27. As a result, there is formed a trapezoidal opening of 80 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 120 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 28. As a result, there is formed a trapezoidal opening of 80 ⁇ m in top opening diameter and 60 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 135 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 108 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 130 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 155 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 175 ⁇ m.
  • the connecting pad of 150 ⁇ m in diameter is formed at 190 ⁇ m pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter is formed, and the solder bump of 105 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 113 ⁇ m.
  • the connecting pad of 150 ⁇ m in diameter is formed at 190 ⁇ m pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter is formed, and the solder bump of 125 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 135 ⁇ m.
  • the connecting pad of 150 ⁇ m in diameter is formed at 190 ⁇ m pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter is formed, and the solder bump of 155 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 162 ⁇ m.
  • the connecting pad of 150 ⁇ m in diameter is formed at 190 ⁇ m pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter is formed, and the solder bump of 180 ⁇ m in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 185 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 37. As a result, the solder bump diameter becomes 118 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 38. As a result, the solder bump diameter becomes 140 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 39. As a result, the solder bump diameter becomes 170 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 40. As a result, the solder bump diameter becomes 192 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 41. As a result, there is formed a trapezoidal opening of 123 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 129 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 42. As a result, there is formed a trapezoidal opening of 123 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 153 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 43. As a result, there is formed a trapezoidal opening of 123 pin in top opening diameter and 103 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 185 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 44. As a result, there is formed a trapezoidal opening of 123 ⁇ m in top opening diameter and 103 ⁇ m in bottom opening diameter, and the solder bump diameter becomes 210 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 160 ⁇ m.
  • the printed wiring board is manufactured in the same manner as in Examples 1 to 48.
  • the printed wiring board is manufactured in the same manner as in Example 1. As a result, solder could not completely be filled in the solder resist opening.
  • the rate of change is within ⁇ 10, it is evaluated as “good” and shown with 0, and the other cases are evaluated as “no good” and shown with x.
  • Reference Examples 2 to 49 are not shown in Tables, but are the same as those of Examples 1 to 48 corresponding to each Reference Examples.
  • Examples 1 to 48 and Reference Example 1 completely filling the solder bump in the opening of the solder resist are liable to improve connection reliability as compared with Comparative Example. This is because volume of the solder bump is large and stress owing to thermal expansion difference between IC chips and printed wiring boards is more mitigated, or because of no gap between solder resists and solder bumps, voids are difficult to generate within under fill, or no residuum of flux and clearing solution.
  • connection reliability is liable to improve in order of (1) when the ratio (W/D) of a solder bump diameter W to a solder resist opening diameter D is within a range of about 1.05 to 1.7, (2) when the solder resist opening is a tapered form wherein the top opening diameter is larger than the bottom opening diameter, and the ratio (W/D) is within a range of about 1.05 to 1.5, and (3) when the solder resist opening is a tapered form wherein the top opening diameter is larger than the bottom opening diameter, and the ratio (W/D) is within a range of about 1.05 to 1.25.
  • the solder bump tends to bend at the boundary with the solder resist layer surface (the portion of solder bump exposed from the surface of solder resist layer to the outside, which is circled with a dotted line in FIG. 10A ), and stress tends to concentrate in this bent portion, so that connection reliability is improved when a bending degree is made small.
  • the bending degree is correlated to the ratio (W/D), and it is assumed that connection reliability is easily improved when the ratio (W/D) is about 1.7 or less.
  • solder volume is large, so that significance of applying to the printed wiring board having a large connecting pad region such as about 2000 to 30000 solder bumps is large.
  • connecting pad region rectangular region including outermost connecting pad
  • shearing stress due to thermal expansion coefficient difference between IC chips and printed wiring boards becomes large.
  • the IC mounting printed wiring board is manufactured in the same manner as in each example, and described as Examples 49 to 66.
  • an uneven amount of the solder resist surface is measured at the same spot by means of a surface roughness measuring instrument (e.g. “SURFCOM 480A” made by Tokyo Seimitsu or “WYKO N-2500” by Veeco).
  • a surface roughness measuring instrument e.g. “SURFCOM 480A” made by Tokyo Seimitsu or “WYKO N-2500” by Veeco.
  • the measured spots are the solder resist layer surface positioned at the upper part of the connecting pad and the solder resist layer surface of the adjacent connecting pad non-forming portion (see FIG. 8 ). That is, the uneven amount of the solder resist layer surface due to presence of the connecting pad is measured, and the maximum value (max) and the minimum value (min) of the 5-point measured results are described. These measurement results are shown in Table 3 (before flattening treatment) and Table 4 (after flattening treatment).
  • the IC mounting printed wiring board is manufactured in the same manner as in each example, and described here as Examples 67 to 84.
  • surface roughness of the solder resist surface is measured at 10 spots at random with reference length 5 ⁇ m by means of a surface roughness measuring instrument (e.g. “SURFCOM 480A” made by Tokyo Seimitsu or “WYKO N-2500” by Veeco).
  • a surface roughness measuring instrument e.g. “SURFCOM 480A” made by Tokyo Seimitsu or “WYKO N-2500” by Veeco.
  • surface roughness Ra means “arithmetic mean roughness Ra” prescribed by JIS B0601. The reason why Ra has a range in the above measured result is because that among respective Ra at the measured 10 spots, there are described the most minimum Ra as Ra(min) and the most maximum Ra as Ra(max).
  • surface roughening measurement is carried out at random 10 spots in the solder resist layer surface corresponding to the conductor circuit (pad) forming region and the conductor circuit non-forming region, but not in the boundary vicinity of the conductor circuit forming region and the conductor circuit non-forming region.
  • a heat cycle test is carried out for the IC mounting printed wiring board manufactured according to Examples 5, 6, 9, 10, 13, 14, 21, 22, 25, 26, 29, 30, 37, 38, 41, 42, 45 and 46, Examples 49 to 66, and Examples 67 to 84 by repeating 2500 times of 1 cycle of ⁇ 55° C. ⁇ 30 min and 125° C. ⁇ 30 min after leaving in an atmosphere such as temperature of 85° C. and humidity of 85% for 24 hours. Electric resistances after 1750 cycles and 2000 cycles are measured, and the rate (100 ⁇ (measured value-initial value)/initial value)(%) of change with the initial value is sought. The case of the rate of change within ⁇ 10 is evaluated as “good” and shown by O, and other cases are evaluated as “no good” and shown by x.
  • connection reliability is easily improved when the uneven amount of the solder resist layer surface is preferably about 0.8 ⁇ m to 3.0 ⁇ m and further, the arithmetic mean roughness Ra thereof is about 0.2 ⁇ m to 0.5 ⁇ m.
  • the solder bump in the invention is large in bump diameter so as to increase bump height for its degree. Therefore, as the space between the solder resist layer surface and the IC chip becomes large, under fill is difficult to be filled and void tends to generate in the under fill.
  • the moving speed of the under fill is liable to depend on the space between the solder resist layer surface and the IC chip, it is considered that unevenness of the solder resist layer surface is about 2 ⁇ m or less.
  • the IC mounting printed wiring board manufactured according to Examples 1 to 84 and Comparative Example are left in an atmosphere of 85° C. in temperature and 85% in humidity for 100 hours by applying voltage of 3.3V between dependent solder bumps (electrically not connected solder bumps). After leaving as they are, insulation resistance between voltage-applied solder bumps is measured. The value of more than or equal to 10 7 ⁇ is evaluated as good and the value of less than 10 7 ⁇ is evaluated as no good. As a result, Examples 1 to 8 are recognized as good, while Comparative Example is as no good.
  • the invention proposes a printed wiring board having excellent insulation reliability and insulation reliability by making the ratio (W/D) of a solder bump diameter W to an opening diameter D provided in the opening of a solder resist layer about 1.05 to about 1.7 even with such narrow pitch structure that a pitch of the solder bump is about 200 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A printed wiring board including a wiring substrate provided with at least one conductor circuit, a solder resist layer provided on the surface of the wiring substrate, at least one conductor pad formed from a part of the conductor circuit exposed from an opening provided in the solder resist layer, and at least one solder bump for mounting electronic parts on the conductor pad. In the printed wiring board, since the at least one conductor pad is aligned at a pitch of about 200 μm or less, and a ratio (W/D) of a diameter W of the solder bump to an opening diameter D of the opening formed in the solder resist layer is about 1.05 to about 1.7, connection reliability and insulation reliability can be easily improved.

Description

CROSS REFERENCE TO RELATED APPLICATION
The present application is a continuation of U.S. application Ser. No. 11/476,559, filed Jun. 29, 2006, which claims the benefit of priority to JP No. 2005-192863, filed of Jun. 30, 2005. The contents of these applications are incorporated herein by reference in their entirety.
TECHNICAL FIELD
The invention relates to a printed wiring board for mounting electronic parts such as capacitors, ICs and the like on the surface layer, and more particularly relates to a printed wiring board adaptable for narrow pitching of solder bumps for mounting electronic parts.
BACKGROUND ART
First, in case of mounting semiconductor elements such as IC chips and the like on printed wiring board, first, solder bumps are formed for semiconductor element mounting pads (hereinafter, merely referred to as “conductor pad”) formed on the printed wiring board. A part of the conductor pad is covered with a solder resist layer, and the center portion of the conductor pad is only exposed. In order to form a solder bump for such conductor pad, first, the printed wiring board is set in a solder paste printer, then a solder printing mask such as metal mask, plastic mask and the like (provided with an opening for printing corresponding to the conductor pad formed in the printed wiring board) is laminated on the printed wiring board, and alignment of an alignment mark formed in the printed wiring board and an alignment mark of the mask for printing is carried out.
And, after printing solder paste on the conductor pad and removing the mask for printing from the printed wiring board, a solder bump is formed on the conductor pad by carrying out a reflow treatment by setting the printed wiring board on a reflow device (refer to as Japanese unexamined patent publication No. H11-40908).
BRIEF SUMMARY OF THE INVENTION
According to one embodiment of the present invention, there is provided a printed wiring board comprising a wiring substrate formed with a conductor circuit, a solder resist layer provided on the surface thereof, a conductor pad formed from a part of the conductor circuit exposed from an opening provided in the solder resist layer for mounting electronic parts and a solder pad formed on the conductor pad, wherein the conductor pad is aligned with a pitch of about 200 μm or less, and the ratio (W/D) of a solder bump diameter W to an opening diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.7.
Further, according to other embodiment of the present invention, there is provided a printed wiring board comprising a wiring substrate formed with a conductor circuit, a solder resist layer provided on the surface thereof, a conductor pad formed from a part of the conductor circuit exposed from an opening provided in the solder resist layer for mounting electronic parts, a solder pad formed on the conductor pad and an under fill for mounting electronic parts through the solder bump and resin sealing between the electronic parts and the solder resist layer, wherein the conductor pad is aligned with a pitch of about 200 μM or less, and the ratio (W/D) of the solder bump diameter W to the opening diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.7.
In the embodiment of the present invention, it is preferable that the ratio (W/D) of the solder bump diameter W to the opening diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.5.
Further, in the embodiment of the present invention, it is preferable that an opening is formed into a tapered form in which an opening diameter D1 at the top face of the opening provided in the solder resist layer is larger than an opening diameter D2 at the bottom face.
Further, in the embodiment of the present invention, to the surface of the solder resist layer can be applied a flattening treatment in at least an electronic parts mounting region, and the flattened surface preferably has maximum surface roughness of about 0.8 μm to about 3.0 μm.
Further, in the embodiment of the present invention, to the surface of the flattened solder resist layer can be applied a roughening treatment, and the surface of the roughened solder resist layer is preferably smaller than the maximum surface roughness of the flattened surface and about 0.2 μm to about 0.5 μm at an arithmetic mean roughness (Ra).
Further, in the embodiment of the present invention, it is preferable that the conductor pad defined as a part of the conductor circuit exposed from the opening provided in the solder resist layer is formed into a filled via completely filled within an opening provided in an interlayer resin insulating layer where a plated conductor is positioned at an outermost layer, and that an uneven amount of the filled via surface exposed from the interlayer resin insulating layer surface is about −5 μm to about +5 μm in relation to the thickness of the conductor circuit formed on the interlayer resin insulating layer.
Further, in the embodiment of the present invention, “conductor pad” defined as a part of the conductor circuit exposed from the opening provided in the solder resist layer, its conductor circuit is formed into, for instance, connecting pad, via hole (including filled via completely filling a plated conductor within the opening provided in the resin insulating layer) or a conductor circuit connected to the via hole, so that in a wide sense, it is defined as apart of the conductor circuit including the connecting pad and the via hole.
Further, in the embodiment of the present invention, “solder bump diameter” means the maximum value among a length of the circle or a length of the oval appeared in case of cutting the solder bump protruded from the solder resist layer surface crosswise at horizontal section.
Further, in the embodiment of the present invention, “opening diameter (D)” of the opening provided in the solder resist layer means “diameter” when an opening side wall is not tapered and means opening diameter (of the upper part) appeared on the solder resist layer surface when the opening side wall is tapered.
Further, in the embodiment of the present invention, “maximum surface roughness” means, as schematically shown in FIG. 8, the maximum value among differences X1, X2, X3, X4, X5 . . . between a height of the solder resist layer on the adjacent conductor pad or conductor circuit and that of the solder resist layer of the adjacent conductor pad non-forming portion or conductor circuit non-forming portion.
Further, “arithmetic mean roughness” means an arithmetic mean roughness (Ra) defined by JIS 80601.
Further, the disclosure of JIS 80601 is incorporated herein by reference in its entirety.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a sectional view of a printed wiring board according to the invention.
FIG. 2 is a sectional view showing the state of mounting IC chip on the printed wiring board shown in FIG. 1 and placing them on a daughter board.
FIGS. 3A to 3C are views explaining a process of forming solder bumps on the printed wiring board.
FIGS. 4A and 4B are schematic views showing the construction of a solder ball mounting device.
FIG. 5A is a schematic view explaining alignment of the printed wiring board, and FIG. 5B is a schematic view explaining supply of the solder balls to mounting cylinders.
FIG. 6A is a schematic view explaining assembly of the solder balls by the mounting cylinders, and FIG. 6B is a schematic view explaining assembly and guide of the solder balls by the mounting cylinders.
FIG. 7A is a schematic view explaining dropping of the solder balls to connection pads, and FIG. 7B is a schematic view explaining removal of the solder balls by adsorbed ball removing cylinders.
FIG. 8 is a schematic view explaining maximum roughness of the solder resist layer surface.
FIG. 9 is a schematic view explaining relation between the solder bump diameter (W) and the solder resist layer opening diameter (D) in the invention.
FIG. 10A is a schematic view explaining the bump form around a boundary between the solder bump and the solder resist layer surface when the solder resist layer opening is rectangular in section, and FIG. 10B is a schematic view explaining the bump form around a boundary between the solder bump and the solder resist layer surface when the solder resist layer opening is trapezoidal in section.
FIGS. 11A and 11B are schematic views explaining unevenness of the filled via as a connecting pad.
FIGS. 12A and 12B are schematic views explaining a connecting pad region.
DETAILED DESCRIPTION OF EMBODIMENTS
One embodiment of the printed wiring board of the present invention will be described hereinafter. In the printed wiring board, as shown in FIG. 9, at least one opening is provided in a solder resist layer (SR layer) formed in the outermost layer of a wiring substrate, a part of a conductor circuit exposed from the at least one opening is formed as conductor pads for mounting electronic parts, the conductor pads are arranged with a pitch of about 200 μm or less, and solder bumps are formed on the respective conductor pads in the form of filled viaholes each completely filled in the opening, and further the ratio (W/D) of a solder bump diameter W to a diameter D of the opening provided in the solder resist layer is about 1.05 to about 1.7.
In the embodiment of the present invention, for forming the respective solder bumps in the corresponding openings provided in the solder resist layer, it is desirable to use a novel method and a device for dropping solder balls having very fine particle diameter on the connecting pads through the corresponding openings of a ball aligning mask as described below, without employing a printing method with the use of a conventional mask.
First, a novel solder ball mounting method and a device thereof are used for manufacturing. As to the printed wiring board of the present invention, the construction of one embodiment is explained by referring to FIGS. 1 and 2.
FIG. 1 shows a sectional view of a printed wiring board 10, and FIG. 2 shows a state in which an IC chip 90 is mounted on the printed wiring board 10 and the printed wiring board 10 is mounted on a daughter board 94. As shown in FIG. 1, the printed wiring board 10 has a conductor circuit 34 formed on both surfaces of a core substrate 30, and the respective conductor circuits are electrically connected through a plated through hole 36.
Further, on the conductor circuit 34 of the core substrate 30 is formed a conductor circuit 58 forming a conductor circuit layer through an interlaminar insulative resin layer 50. The conductor circuit 58 is connected to the conductor circuit 34 through via hole 60. On the conductor circuit 58 is formed a conductor circuit 158 through an interlaminar insulative resin layer 150. The conductor circuit 158 is connected to the conductor circuit 58 through a via hole 160 formed in an interlaminar insulative resin layer 150.
A solder resist layer 70 is formed by covering the conductor circuit 158 and the via hole 160, and a connecting pad 75 is formed by forming a nickel plated layer 72 and a gold plated layer 74 on an opening 71 provided in the solder resist layer 71. On the connecting pad 75 of the top face is formed a solder bump 78U and on the connecting pad 75 of the bottom face is formed a BGA (ball grid array) 78D.
As shown in FIG. 2, the solder bump 78U on the upper side of the printed wiring board 10 is connected to an electrode 92 of the IC chip 90 to form an IC mounted printed wiring board, and the IC mounted printed wiring board is connected to a land 96 of a daughter board 94 through the BGA 78D.
In the embodiment of the invention, it is desirable that the conductor pad is provided with a pitch of about 200 μm or less, and the ratio (W/D) of a solder bump diameter W to an opening diameter D of the opening provided in the solder resist layer is made within a range of about 1.05 to about 1.7, preferably about 1.05 to about 1.5, thereby making a gap difficult to be formed between the solder bump and the opening side wall of the solder resist layer, so as to make flux residue and clearing solution residue difficult to remain between the solder bump and the solder resist layer. As a result, it becomes possible to prevent lowering of insulation resistance and peeling of the under fill caused by residue, thereby insulation reliability and connection reliability are easily improved.
Further, in the embodiment of the invention, it is desirable to flatten the solder resist layer surface to secure flatness to some extent. Such flattened surface can increase the volume of the solder resist layer to which large stress is applied, and decrease the bending portion on which stress tends to concentrate. As a result, heat cycle resistance can easily be improved.
It is desirable that the surface of the solder resist layer corresponding to at least electronic parts mounting region is flattened. The solder resist layer and the solder bump are different in thermal expansion coefficient, so that there are produced repeatedly contraction and expansion at the boundary vicinity between the solder bump and the solder resist layer. And, when large unevenness is existent on the solder resist layer surface, i.e. small flatness, the volume of the solder resist layer in the bump vicinity is small to be easily broken. Therefore, by making flatness of the solder resist layer surface small to some extent, the volume of the solder resist layer where large stress is applied to is increased, bending portion where stress tends to concentrate is lessened, and heat cycle resistance can easily be improved.
To the solder resist layer surface is desirably applied flattening treatment in, for instance, at least electronic parts mounting region. As thermal expansion coefficient of the solder resist layer and the solder bump are different, contraction and expansion are repeated in the vicinity of the solder bump and the solder resist layer by thermal change. When large unevenness is existent on the solder resist layer surface, that is, small flatness, the volume of the solder resist layer in the vicinity of the solder bump is less, breakdown tends to occur. Therefore, the volume of largely stressed portion of the solder resist layer is increased by lessening flatness of the solder resist layer surface to some extent and the stress-concentrating bent portion is lessened, so as to improve heat cycle resistance.
The flattened surface of the solder resist layer is desirably about 0.8 to about 3.0 μm in maximum surface roughness. The reason is that when the maximum surface roughness is within a range of about 0.8 to about 3.0 μm, crack is hardly generated in the solder resist in the vicinity of the conductor pad, and air (void) is hard to enter into the under fill resin. As a result, insulation reliability and connection reliability are easily improved.
Further, in the embodiment of the present invention, it is desirable to further apply a roughening treatment to the flattened surface of the solder resist layer.
Wettability of the under fill resin is easily improved by applying the roughening treatment to the surface of the solder resist layer flattened to some extent, so that under fill resin can be filled in a narrow gap portion in the boundary vicinity between the solder resist layer and the solder bump so as to improve connection reliability.
It is desirable that the roughened surface of the solder resist layer is smaller than the maximum surface roughness of the flattened surface and about 0.2 to about 0.5 μm at an arithmetic mean roughness (Ra).
The reason is that when the arithmetic mean roughness Ra is made within a range of about 0.2 to about 0.5 μm, adhesion to the under fill resin can be increased, and flux residue and cleaning residue are hardly remained on the solder resist surface. As a result, insulation reliability and connection reliability are easily improved.
Further, in the embodiment of the invention, an opening side wall of the solder resist layer is tapered, thereby hardly concentrating stress because a form of the solder bump is not extremely changed at the opening periphery. As a result, connection reliability is improved.
An opening provided in the solder resist layer may be, as shown in FIGS. 10A to 10B for instance, rectangular or trapezoidal in section. Particularly, in case of the trapezoidal section, the solder bump portion filled in the opening and that exposed to the outside are smoothly continued, and the bent portion of the solder bump becomes small in the boundary with the solder resist layer, that is, the form of the solder bump is not extremely changed at the boundary portion with the solder resist layer so as not to concentrate stress. As a result, the solder bump is hard to be broken and connection reliability is improved.
Further, when an opening diameter at the top face is made D1 and that at the bottom face is made D2, it is desirable that the shape of the opening may be a trapezoid in section wherein the difference between the opening diameters D1-D2 is about 5 μm to about 20 μm. When the difference D1-D2 is within such range, stress by thermal expansion coefficient difference between IC chip and print wiring board is hardly concentrated, so that connection reliability tends to be improved, and insulation performance between adjacent solder bumps can be secured. Further, migration is scarcely generated.
Further, as understood from FIGS. 1 and 2, two connecting pads positioned at center among connecting pads 75 provided on the top face are formed into the form of a land just above a via hole 160, and two connecting pads adjacent thereto are formed into the form of a pad adjacent to the land of the via hole 160, further, two connecting pads positioned at both ends are formed into the form of a pad consisting of a part of a wiring pattern of the conductor circuit 158, and solder bumps are formed on these connecting pads.
In like manner, two connecting pads among connecting pads 75 on the bottom face are formed into a land just above the via hole 160, and four connecting pads positioned at center are formed into a pad adjacent to the via hole 160.
The viahole 160 as a connecting pad formed by the solder bump 78U is preferably a filled-via, and the uneven amount of the filled-via surface exposed from the surface of the interlaminar insulative resin layer 150 is, as shown in FIGS. 11A to 11B, desirably within a range of about −5 μm to about +5 μm in relation to the surface thickness of the conductor circuit 158. The reason why the depressed or protruded amount of the filled-via surface is restricted to a mentioned above is due to the fact that when the depressed amount is about 5 μm (−5 μm) or less, the number of contact point defined by the solder ball and the connecting pad consisting of the filled-via is secured, and wettability in case of forming the solder bump is easily improved, and entanglement of voids within the bump and missing bump can be controlled, while when the protruded amount of the filled-via surface is about 5 μm (+5 μm) or less, the thickness of the conductor circuit 158 is controlled not to become large but easily adaptable for micro-patterning.
Further, the “electronic parts mounting region” in the embodiment of the invention substantially corresponds to a region (hereinafter, simply called as “connecting pad region”) where conductor pads such as filled-via and the like for mounting electronic parts are provided.
For example, FIG. 12A shows a state of aligning all of the outermost peripheral connecting pads along each side of a rectangle among grid-like aligned connecting pads, and FIG. 12B shows a state of not aligning a part of the outermost peripheral connecting pads along each side of the rectangle, however, in either case, when the connecting pad region is made rectangle, a rectangle region determined to minimize an area of the region enclosing all connecting pads is called as “connecting pad region”.
FIGS. 3A to 3C are views explaining the steps for forming the solder bumps on the printed wiring board 10 according to the present invention.
First, a flux layer 80 is formed for covering conductor pads formed in the openings 71 provided in the solder resist layer 70 on the top face side of the printed wiring board, i.e. the connecting pads 75 by a printing method (see FIG. 3A). Next, on the connecting pads 75 on the top face side of the printed wiring board are mounted very small solder balls 78 s (for example, made by Hitachi Metals or Tamura) with the use of a solder ball loader described later on (see FIG. 3B). Such solder ball is desirable about 40 μm or more and less than about 200 μm in diameter. When the diameter is made within such range, each solder ball easily drops on the corresponding connecting pad because it is not too light in weight, and the solder balls are easily assembled in a cylinder member, thereby to control the presence of connecting pads with no solder balls mounted thereon. In order to match for the fine patterning, the solder ball having a diameter of about 80 μm or less is desirable.
Thereafter, solder balls 78L of a usual diameter (250 μm) are adsorbed and placed on the connecting pads 75 on the bottom face side of the printed wiring board with the use of an adsorption head as described in Japanese Patent No. 1975429, for instance (see FIG. 3C).
Next, by heating in a reflow furnace to form, 500 pieces to 30,000 pieces of the solder bumps 78U are formed with a pitch of about 60 to about 200 μm on the top face side of the printed wiring board 10 as shown in FIG. 1, and 250 pieces of BGA 78D are formed with a pitch of about 2 mm on the bottom face side, for instance.
The pitch of the solder bumps corresponds to a pitch of the connecting pads, and when the pitch of the connecting pads is about 60 μm or more, manufacture of solder balls suitable for the pitch becomes possible. When the pitch of the connecting pads is about 200 μm or less, it becomes possible to obtain a printed wiring board adaptable for fine patterning or narrow pitching.
Further, as shown in FIG. 2, an IC mounted printed wiring board 10 is formed by mounting the IC chip 90 through the solder bumps 78U by reflowing, and this IC mounted printed wiring board 10 is mounted on the daughter board 94 through BGA 78D.
Next, the solder ball loader for mounting the very small solder balls 78 s on the corresponding connecting pads of the above-described printed wiring board is explained by referring to FIGS. 4A to 4B.
FIG. 4A is an illustration showing the structure of the solder ball loader, and FIG. 4B is a view taken from an arrow B of the solder ball loader of FIG. 4A.
The solder ball loader 20 comprises an XYθ suction table 14 for positioning and holding the printed wiring board 10, a shaft 12 for moving the XYθ suction table 14 up and down, a ball aligning mask 16 with an opening corresponding to the connecting pad 75 of the printed wiring board, a mounting cylinder (cylinder member) 24 for guiding the solder balls moving on the ball aligning mask 16, a suction box 26 for giving negative pressure to the mounting cylinder 24, a solder ball removing cylinder 61 for recovering excessive solder balls, a suction box 66 for giving negative pressure to the solder ball removing cylinder 61, an adsorbed ball removing and adsorbing device 68 for holding the collected solder balls, a mask clamp 44 for clamping the ball aligning mask 16, an X-axis direction moving shaft 40 for sending the mounting cylinder 24 and the solder ball removing cylinder 61 to the X-axis direction, a moving shaft supporting guide 42 for supporting the X-axis direction moving shaft 40, an alignment camera 46 for taking an image of the multilayer printed wiring board 10, a residue detecting sensor 18 for detecting residual amount of the solder balls under the mounting cylinder 24 and a solder ball supplier 22 for supplying solder balls to the side of the mounting cylinder 24 based on the residue detected by the residue detecting sensor 18.
A plurality of the mounting cylinders 24 and the solder ball removing cylinder 61 are arranged in the Y-axis direction by corresponding to size of the connecting pad regions. Further, the size may correspond to a plurality of the connecting pad areas. Here, the Y-axis direction is expedient and may be aligned in the X-axis direction. The XYθ suction table 14 functions as positioning, adsorption, maintenance and correction of the solder ball mounted printed wiring board 10. The alignment camera 46 detects an alignment mark of the printed wiring board 10 on the XYθ suction table 14 to regulate a position between the printed wiring board and the ball aligning mask 16 based on the detected position. The residue detecting sensor 18 detects the residue of the solder balls by an optical method.
Next, a process for mounting the solder balls by the solder ball loader 20 will be explained by referring to FIGS. 5 to 7.
(1) Position Recognition and Correction of the PWB
As shown in FIG. 5A, an alignment mark 34M of the printed wiring board 10 is recognized by the alignment camera 46, and the position of the printed wiring board 10 in relation to the ball aligning mask 16 is corrected by the suction table 14. That is, openings 16 a of the ball aligning mask 16 are adjusted for corresponding to the connecting pads 75 of the printed wiring board 10 in position, respectively. In addition, here, for illustrating convenience' sake, the printed wiring board 10 for one is only shown, but actually, solder balls are mounted to a printed wiring board of worksheet size for constructing a plurality of wiring boards, and after forming solder bumps, the worksheet size board is cut into respective multilayer printed wiring boards.
(2) Solder Balls and Supply Thereof
As shown in FIG. 5B, the solder balls 78 s are quantitatively supplied from a solder ball supplying device 22 to the side of the mounting cylinder 24. Here, as the solder ball, use may be made of any commercial item (for example, made by Hitachi Metals) or, for example, solder balls may be manufactured according to the manufacturing device and method described in Japanese unexamined patent application No. 2001-226705.
After manufactured, such solder balls are placed on a metal plate (e.g. nickel plate of about 25 μm thick) having a square slit (opening) which length and breadth are smaller than a desired diameter of the solder ball by about 1 μm, and the solder balls are rolled thereon and dropped from the slit. Then, small balls having smaller diameters than the desired ones are removed. Thereafter, the solder balls remained on the metal plate are classified by a metal plate having a square slit which length and breadth are larger than the desired diameter of the solder ball by about 1 μm, and solder balls dropped from the slit are collected so as to obtain the solder balls each having a diameter substantially equal to the desired diameter.
The disclosure of Japanese unexamined patent application No. 2001-226705 is incorporated herein by reference in its entirety.
(3) Loading of Solder Balls
As shown in FIG. 6A, on the upper part of the ball aligning mask 16 is positioned the mounting cylinder 24 by keeping predetermined clearance (e.g. about 50% to about 300% of a ball diameter), solder balls 78 s are assembled on the ball aligning mask 16 right under the opening 24A of the mounting cylinder 24 by adsorbing air from the suction portion 24B at a running speed of about 5 m/sec to about 35 m/sec in a gap between the mounting cylinder and the printed wiring board.
Thereafter, as shown in FIG. 6B and FIG. 7A, the mounting cylinders 24 aligned along the Y-axis direction of the printed wiring board 10 are sent to the horizontal direction along the X-axis direction by means of the X-axis moving shaft 40. Thereby, the solder balls 78 s assembled on the ball aligning mask 16 are moved with the movement of the mounting cylinder 24, dropped to the corresponding connecting pads 75 of the printed wiring board 10 through the openings 16 a of the ball aligning mask 16 and loaded. Thereby, the solder balls 78 s are successively aligned on the whole connecting pads on the side of the printed wiring board 10.
(4) Removal of the Solder Ball
As shown in FIG. 7B, the excessive solder balls 78 s are guided to a place where no opening 16 a is provided on the ball aligning mask 16, then adsorbed and removed by the solder ball removing cylinder 61.
(5) Removal of Wiring Board
Then, the printed wiring board 10 is removed from the suction table 14.
According to the solder ball loading method and the solder ball loader as explained in the above, the solder balls 78 s are assembled by positioning the mounting cylinder 24 on the upper part of the ball aligning mask 16 and adsorbing air from the suction portion 24B on the top of the mounting cylinder 24, the assembled solder balls 78 s are moved on the ball aligning mask 16 by moving the mounting cylinder 24 in the horizontal direction, and the solder balls 78 s can be dropped to the respective connecting pads 75 of the printed wiring board 10 through the respective openings 16 a of the ball aligning mask 16.
Therefore, fine solder balls 78 s can certainly be mounted on the whole of the connecting pads 75 of the printed wiring board 10. Further, since the solder balls 78 s can be moved with no contact, the solder balls can be mounted on the connecting pads 75 without injury, which is different from a printing method with the use of a conventional squeeze, and the solder bumps 78U can be made having an equal height.
Therefore, according to the above-described method, there are provided excellent mountability of electronic parts such as ICs and the like, heat cycle test after the mounting and environment resistance test such as high temperature-high humidity test and the like.
Further, without depending on flatness of products, even printed wiring board having much undulated surface can place solder balls on the connecting pads.
Further, as the fine solder balls could certainly be placed on the connecting pads, even in the printed wiring board having such pitch alignment that the connecting pad pitch is about 60 to about 200 μm and the solder resist opening diameter is about 40 to about 150 μm, in the whole of bumps, stable bumps having substantially uniform heights ca be formed.
Further, the solder balls are guided by suction force so as to prevent aggregation and adhesion of solder balls. Further, works (multilayer printed wiring board of work sheet size) having various sizes can be used by adjusting number of the mounting cylinder 24 so as to be applied to many forms and small production.
In the solder ball loader as described above, the mounting cylinders 24 are aligned in the Y-axis direction by corresponding to width of the work (printed wiring board of work sheet size), so that the solder balls can positively be mounted on the whole of connecting pads 75 of the printed wiring boards by simply sending a plurality of mounting cylinders 24 to the vertical direction (X direction) in relation to the row direction.
Further, the solder balls 78 s remained on the ball aligning mask 16 can be collected by the solder ball removing cylinder 61, so that there are no problem such that excessive solder ball are remained to cause any trouble and the like.
With the use of the above-described solder ball loading method and device, the solder balls mounted on the connecting pads of the wiring substrate become solder bumps having predetermined height by means of a reflow treatment, IC chips are mounted on the substrate through such solder bumps, and the printed wiring board according to the present invention is manufactured.
Example 1 (1) Manufacture of Printed Wiring Board
As starting material, a double sided copper-clad laminate (e.g. “MCL-E-67” made by Hitachi Chemical) is used, and on this substrate are formed a through-hole conductor and a conductor circuit by a known method. Thereafter, insulating layers and conductor circuit layers are alternately laminated by a known method (e.g. described in a book entitled “Build-up multilayer printed wiring board” (Kiyoshi Takagi) published by Nikkan Kogyo Shinbunsha on Jun. 20, 2000, and the content of this book is incorporated herein by reference in its entirety.), and in the outermost conductor circuit layer, a group of connecting pads for mounting IC chips consisting a grid-like arrangement having thickness: 20 μm, diameter (conductor pad diameter): 120 μm, pitch: 150 μm, number: 50×40 (pieces) is formed within a connecting pad region of 150 mm2.
Such connecting pad are formed by a method similar to that described in Japanese unexamined patent application No. 2000-357762. The disclosure of Japanese unexamined patent application No. 2000-357762 is incorporated herein by reference in its entirety.
Further, in case of changing size, pitch, number and arrangement of connecting pad, the pattern (opening diameter, pitch, arrangement, etc.) of a plated resist is changed.
Formation of a solder resist layer is that screen printing is carried out under the following printing condition with the use of a commercial solder resist to form a solder resist layer having a thickness of about 15 to about 25 μm (on the connecting pad) for covering the connecting pad.
(Printing Condition)
Solder resist ink: “RPZ-1” made by Hitachi Kogyo
Ink viscosity: 45±15 Pa·s
Screen print: polyester fiber (130 to 300 mesh)
Speed of squeeze: 100 to 200 mm/seconds
In this embodiment, there is formed a solder resist layer having a thickness of 16 μm.
Thereafter, a photo mask depicted the pattern (mask pattern) of a solder resist opening is exposed to ultraviolet rays of about 100 to 1000 mJ under the state of adhering to the solder resist layer, development treatment is carried out with the use of a horizontal type developer under the following developing condition, thereby forming an opening of about 40 to 150 μm in diameter on the connecting pad.
(Horizontal Type Developer)
As the horizontal developing device, use is made of a horizontal developing device comprising a conveyor for bringing the substrate in a developing treatment zone and conveying the developing treatment zone and a plurality of spray nozzles positioned at top and bottom of the substrate for adjusting spray pressure.
(Development Condition)
(1) Kind of spray: slit nozzle (linearly spraying a solution) or full cone nozzle (radially spraying a solution) is used.
(2) Oscillation of spray: presence or absence
(3) Spray face used: Top or bottom face (in case of developing with a spray positioned at the top face of the substrate, the substrate is brought in the developing device by upwardly facing a solder resist face for forming an opening. In case of developing with a spray positioned at the lower part of the substrate, the substrate is brought in the developing device by downwardly facing the solder resist face for forming the opening.)
(4) Spray pressure: 0.05 to 0.3 MPa
(5) Developing solution: Sodium carbonate (Na2CO3) solution of 5 to 15 g/L
(6) Developing time: 10 to 300 seconds
In this embodiment, an opening (diameter of an opening of the solder resist layer surface is equal to diameter of an opening of the connecting pad) of about 80 μm in diameter is formed by facing the solder resist face downwardly under the state of not oscillating the slit nozzle positioned at the lower part and by developing with the use of a sodium carbonate (Na2CO3) solution of 10 g/L in concentration.
(2) Loading of Solder Ball
To the surface (IC mounting face) of the printed wiring board manufactured in (1) is applied commercial rosin flux, then loaded on an adsorption table of a solder ball loading device, an alignment mark of the printed wiring board and the ball aligning mask is recognized by using a CCD camera, and alignment of the printed wiring board and the ball aligning mask is carried out.
Here, as the ball aligning mask, use is made of a metal mask made of Ni having an opening of about 100 μm in diameter at the position corresponding to the connecting pad of the printed wiring board. It is also possible to use ball aligning masks of SUS and polyimide.
Further, an opening diameter formed in the ball aligning mask is preferably about 1.1 to about 1.5 times the ball diameter used, and a thickness of the ball aligning mask is preferably about ½ to about ¾ of the diameter of the solder ball used.
Next, the mounting cylinder of about 200 mm in height with a size (about 1.2 to about 3 times to the connecting pad region) corresponding to the connecting pad region is positioned on the metal mask (ball aligning mask) by keeping clearance of about 2 times the solder ball diameter, and solder balls (made by Hitachi Metals) of about 85 μm in diameter consisting of Sn/Pb solder (Sn/Pb=63:37) are mounted on the peripheral vicinity of the mask.
In this example, Sn/Pb is used for the solder ball, use may be made of Pb free solder consisting of at least one metal and Sn selected from the group of Ag, Co, In, Bi, Zn and the like. And, air is adsorbed from the top of the mounting cylinder, and the air speed in a gap between the mounting cylinder and the printed wiring board is regulated to about 5 to about 35 msec for assembling the solder balls within the mounting cylinder.
Thereafter, the mounting cylinder is moved at about 10 to about 40 mm/sec to roll the solder balls, and the solder balls are dropped from the respective openings of the ball aligning mask and mounted on the corresponding connection pads.
(3) Formation of Solder Bump
Further, after removing excessive solder balls on the ball aligning mask, the solder ball aligning mask and the printed wiring board are separately taken out of the solder ball loader, and finally, the printed wiring board is put in the reflow furnace set at 230□ to form a solder bump.
After forming the solder bump, a diameter of the solder bump protruded from the solder resist surface is measured by a laser microscope (“WYKO NT-2000” made by Veeco). As a result, the diameter is 84 μm.
(4) Mounting of IC Chip
After measuring the height of each solder bump, an IC chip is mounted through the solder bumps, and the IC chip mounted printed wiring board is manufactured by filling a commercial under fill resin between the IC chip and the solder resist.
Example 2
Except that the solder ball of 100 μm in diameter is loaded, the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 100 μm.
Example 3
Except that the solder ball of 120 μm in diameter is loaded, the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 120 μm.
Example 4
Except that the solder ball of 140 μm in diameter is loaded, the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 135 μm.
Example 5
Except that the full cone nozzle is used without oscillation, the printed wiring board is manufactured in the same manner as in Example 1. As a result, there is formed a trapezoidal opening such as 85μ of the top opening diameter and 80 μm of the bottom opening diameter, but the solder bump diameter becomes the same 84 μm as in Example 1.
This is because the portion protruded on the solder resist occupies most part as understood from FIG. 10B, so that it is assumed that volume of the solder bump is not influenced by the form of the solder resist opening.
Further, in this example, in comparison with the case that the solder resist layer opening as shown in FIG. 10A is a rectangle in section, the solder resist layer opening is made a trapezoid in section as shown in FIG. 10B, that is, it is understood that the form (circled with a dotted line) of the boundary portion of the solder bump and the solder resist layer surface is different by tapering.
Example 6
Except that the solder ball of 100 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 105 μm.
Example 7
Except that the solder ball of 120 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 128 μm.
Example 8
Except that the solder ball of 140 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 145 μm.
Example 9
Except that the full cone nozzle is used under the oscillating condition and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, there is formed a trapezoidal opening which top opening diameter is 90 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 94 μm.
Example 10
Except that the full cone nozzle is used under the oscillating condition and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 6. As a result, there is formed a trapezoidal opening which top opening diameter is 90 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 113 μm.
Example 11
Except that the full cone nozzle is used under the oscillating condition and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 7. As a result, there is formed a trapezoidal opening which top opening diameter is 90 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 135 μm.
Example 12
Except that the full cone nozzle is used under the oscillating condition and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 8. As a result, there is formed a trapezoidal opening which top opening diameter is 90 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 155 μm.
Example 13
Except that the full cone nozzle positioned at the upper part is oscillated by facing the solder resist face upwardly and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 9. As a result, there is formed a trapezoidal opening which top opening diameter is 100 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 105 μm.
Example 14
Except that the full cone nozzle positioned at the upper part is oscillated by facing the solder resist face upwardly and the solder ball having a 2μ larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 10. As a result, there is formed a trapezoidal opening which top opening diameter is 100μ and bottom opening diameter is 80 μm, and the solder bump diameter becomes 125 μm.
Except 15
Except that the full cone nozzle positioned at the upper part is oscillated by facing the solder resist face upwardly and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 11. As a result, there is formed a trapezoidal opening which top opening diameter is 100 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 150 μm.
Example 16
Except that the full cone nozzle positioned at the upper part is oscillated by facing the solder resist face upwardly and the solder ball having a 2 μm larger diameter is used, the printed wiring board is manufactured in the same manner as in Example 12. As a result, there is formed a trapezoidal opening which top opening diameter is 100 μm and bottom opening diameter is 80 μm, and the solder bump diameter becomes 170 μm.
Example 17
Except that the pattern of the plated resist for forming a connecting pad is changed so that the connecting pad of 70 μm in diameter is formed at 100 μm pitch, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening (top opening diameter=bottom opening diameter) of 60 μm in opening diameter is formed, and the solder ball of 63 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 63 μm.
Example 18
Except that the solder ball of 70 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 17. As a result, the solder bump diameter becomes 75 μm.
Example 19
Except that the solder ball of 80 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 17. As a result, the solder bump diameter becomes 90 μm.
Example 20
Except that the solder ball of 95 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 17. As a result, the solder bump diameter becomes 102 μm.
Example 21
Except that the connecting pad of 70 μm in diameter is formed at 100 μm pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 μm in top opening diameter and 60 μm in bottom opening diameter is formed, and the solder bump of 63 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 68 μm.
Example 22
Except that the connecting pad of 70 μm in diameter is formed at 100 μm pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 μm in top opening diameter and 60 μm in bottom opening diameter is formed, and the solder bump of 70 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 80 μm.
Example 23
Except that the connecting pad of 70 μm in diameter is formed at 100 μm pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 μm in top opening diameter and 60 μm in bottom opening diameter is formed, and the solder bump of 80 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 96 μm.
Example 24
Except that the connecting pad of 70 μm in diameter is formed at 100 μm pitch in the same manner as in Example 17, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 65 μm in top opening diameter and 60 μm in bottom opening diameter is formed, and the solder bump of 95 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 5. As a result, the solder bump diameter becomes 110 μm.
Example 25
Except the use of a full cone nozzle under the oscillating state and the use of a solder ball of a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 21. As a result, there is formed a trapezoidal opening of 70 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 73 μm.
Example 26
Except the use of a full cone nozzle under the oscillating state and the use of a solder ball of a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 22. As a result, there is formed a trapezoidal opening of 70 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 88 μm.
Example 27
Except the use of a full cone nozzle under the oscillating state and the use of a solder ball of a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 23. As a result, there is formed a trapezoidal opening of 70 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 105 μm.
Example 28
Except the use of a full cone nozzle under the oscillating state and the use of a solder ball of a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 24. As a result, there is formed a trapezoidal opening of 70 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 120 μm.
Example 29
Except the use of a solder ball of a 2 μm larger in diameter by turning the solder resist face toward the upper part and oscillating the full cone nozzle positioned at the upper part, the printed wiring board is manufactured in the same manner as in Example 25. As a result, there is formed a trapezoidal opening of 80 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 84 μm.
Example 30
Except the use of a solder ball of a 2 μm larger in diameter by turning the solder resist face toward the upper part and oscillating the full cone nozzle positioned at the upper part, the printed wiring board is manufactured in the same manner as in Example 26. As a result, there is formed a trapezoidal opening of 80 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 100 μm.
Example 31
Except the use of a solder ball of a 2 μm larger in diameter by turning the solder resist face toward the upper part and oscillating the full cone nozzle positioned at the upper part, the printed wiring board is manufactured in the same manner as in Example 27. As a result, there is formed a trapezoidal opening of 80 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 120 μm.
Example 32
Except the use of a solder ball of a 2 μm larger in diameter by turning the solder resist face toward the upper part and oscillating the full cone nozzle positioned at the upper part, the printed wiring board is manufactured in the same manner as in Example 28. As a result, there is formed a trapezoidal opening of 80 μm in top opening diameter and 60 μm in bottom opening diameter, and the solder bump diameter becomes 135 μm.
Example 33
Except that the pattern of the plated resist for forming a connecting pad is changed so that the connecting pad of 150 μm in diameter is formed at 190 μm pitch, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening (top opening diameter=bottom opening diameter) of 103 μm in opening diameter is formed, and the solder ball of 105 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 108 μm.
Example 34
Except that the pattern of the plated resist for forming a connecting pad is changed so that the connecting pad of 70 μm in diameter is formed at 100 μm pitch, and the solder ball of 125 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 130 μm.
Example 35
Except the use of a solder ball of 155 μm in diameter, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 155 μm.
Example 36
Except the use of a solder ball of 180 μm in diameter, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 175 μm.
Example 37
Except that the connecting pad of 150 μm in diameter is formed at 190 μm pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 μm in top opening diameter and 103 μm in bottom opening diameter is formed, and the solder bump of 105 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 113 μm.
Example 38
Except that the connecting pad of 150 μm in diameter is formed at 190 μm pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 μm in top opening diameter and 103 μm in bottom opening diameter is formed, and the solder bump of 125 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 135 μm.
Example 39
Except that the connecting pad of 150 μm in diameter is formed at 190 μm pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 μm in top opening diameter and 103 μm in bottom opening diameter is formed, and the solder bump of 155 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 162 μm.
Example 40
Except that the connecting pad of 150 μm in diameter is formed at 190 μm pitch in the same manner as in Example 33, and the diameter of the mask for forming the opening of the solder resist layer is changed so that an opening of 108 μm in top opening diameter and 103 μm in bottom opening diameter is formed, and the solder bump of 180 μm in diameter is used, the printed wiring board is manufactured in the same manner as in Example 33. As a result, the solder bump diameter becomes 185 μm.
Example 41
Except the formation of an opening of 113 in top opening diameter and 103 μm in bottom opening diameter by oscillating the full cone nozzle, and the use of a solder ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 37. As a result, the solder bump diameter becomes 118 μm.
Example 42
Except the formation of an opening of 113 μm in top opening diameter and 103 μm in bottom opening diameter by oscillating the full cone nozzle, and the use of a solder ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 38. As a result, the solder bump diameter becomes 140 μm.
Example 43
Except the formation of an opening of 113 μm in top opening diameter and 103 μm in bottom opening diameter by oscillating the full cone nozzle, and the use of a solder ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 39. As a result, the solder bump diameter becomes 170 μm.
Example 44
Except the formation of an opening of 113 μm in top opening diameter and 103 μm in bottom opening diameter by oscillating the full cone nozzle, and the use of a solder ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 40. As a result, the solder bump diameter becomes 192 μm.
Example 45
Except the turning of the solder resist face toward the upper part, oscillating the full cone nozzle positioned at the upper part, and the use of a sold ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 41. As a result, there is formed a trapezoidal opening of 123 μm in top opening diameter and 103 μm in bottom opening diameter, and the solder bump diameter becomes 129 μm.
Example 46
Except the turning of the solder resist face toward the upper part, oscillating the full cone nozzle positioned at the upper part, and the use of a sold ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 42. As a result, there is formed a trapezoidal opening of 123 μm in top opening diameter and 103 μm in bottom opening diameter, and the solder bump diameter becomes 153 μm.
Example 47
Except the turning of the solder resist face toward the upper part, oscillating the full cone nozzle positioned at the upper part, and the use of a sold ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 43. As a result, there is formed a trapezoidal opening of 123 pin in top opening diameter and 103 μm in bottom opening diameter, and the solder bump diameter becomes 185 μm.
Example 48
Except the turning of the solder resist face toward the upper part, oscillating the full cone nozzle positioned at the upper part, and the use of a sold ball having a 2 μm larger diameter, the printed wiring board is manufactured in the same manner as in Example 44. As a result, there is formed a trapezoidal opening of 123 μm in top opening diameter and 103 μm in bottom opening diameter, and the solder bump diameter becomes 210 μm.
Reference Example 1
Except the use of a solder ball of 160 μm in diameter, the printed wiring board is manufactured in the same manner as in Example 1. As a result, the solder bump diameter becomes 160 μm.
Reference Examples 2 to 49
Except that number of conductor pad is changed to 30,000 (connecting pad region 1,200 mm2), the printed wiring board is manufactured in the same manner as in Examples 1 to 48.
Comparative Example
Except the use of a solder ball of 60 μm in diameter, the printed wiring board is manufactured in the same manner as in Example 1. As a result, solder could not completely be filled in the solder resist opening.
(Heat Cycle Test)
In the IC mounting printed boards manufacture according to Examples 1 to 48, Reference Example 1 and Comparative Example, electric resistance of the specific circuits through IC chips, that is, electric resistance between a pair of connecting pads exposed to the faces opposite to IC chip loading faces of the IC chip mounting printed wiring boards and conducted to the IC chips is measured and the values thereof are made as initial values. Thereafter, these IC mounting printed wiring boards are left in 85° C.×85% atmosphere for 24 hours, then a heat cycle test using −55° C.×30 min and 125° C.×30 min as one cycle and repeating the cycle 2500 times is carried out. Electric resistances after 500 cycles, 1000 cycles, 1250 cycles and 1500 cycles are measured, respectively, and rates of change with the initial values (100×(measured values-initial values)/initial values) (%) are obtained. The test results are shown in Tables 1 and 2.
Further, in case that the rate of change is within ±10, it is evaluated as “good” and shown with 0, and the other cases are evaluated as “no good” and shown with x.
The evaluation results of Reference Examples 2 to 49 are not shown in Tables, but are the same as those of Examples 1 to 48 corresponding to each Reference Examples.
From such test results, Examples 1 to 48 and Reference Example 1 completely filling the solder bump in the opening of the solder resist are liable to improve connection reliability as compared with Comparative Example. This is because volume of the solder bump is large and stress owing to thermal expansion difference between IC chips and printed wiring boards is more mitigated, or because of no gap between solder resists and solder bumps, voids are difficult to generate within under fill, or no residuum of flux and clearing solution.
Further, connection reliability is liable to improve in order of (1) when the ratio (W/D) of a solder bump diameter W to a solder resist opening diameter D is within a range of about 1.05 to 1.7, (2) when the solder resist opening is a tapered form wherein the top opening diameter is larger than the bottom opening diameter, and the ratio (W/D) is within a range of about 1.05 to 1.5, and (3) when the solder resist opening is a tapered form wherein the top opening diameter is larger than the bottom opening diameter, and the ratio (W/D) is within a range of about 1.05 to 1.25.
It is considered that if the ratio (W/D) exceeds about 1, the solder bump tends to bend at the boundary with the solder resist layer surface (the portion of solder bump exposed from the surface of solder resist layer to the outside, which is circled with a dotted line in FIG. 10A), and stress tends to concentrate in this bent portion, so that connection reliability is improved when a bending degree is made small. The bending degree is correlated to the ratio (W/D), and it is assumed that connection reliability is easily improved when the ratio (W/D) is about 1.7 or less.
In the solder bump completely filled in the solder resist layer opening as described above, solder volume is large, so that significance of applying to the printed wiring board having a large connecting pad region such as about 2000 to 30000 solder bumps is large. When the connecting pad region (rectangular region including outermost connecting pad) is large, shearing stress due to thermal expansion coefficient difference between IC chips and printed wiring boards becomes large.
Examples 49 to 66
Next, in the Examples 5, 6, 9, 10, 13, 14, 21, 22, 25, 26, 29, 30, 37, 38, 41, 42, 45 and 46, except that flattening treatment for minimizing unevenness of the solder resist layer surface due to presence of the connecting pad by heat pressing the solder resist layer surface under the following condition after forming the solder resist layer, the IC mounting printed wiring board is manufactured in the same manner as in each example, and described as Examples 49 to 66.
(Press Condition)
Press temperature: 80° C.
Press pressure:  5 MPa
Press time:  2 minutes
Here, before and after the flattening treatment, an uneven amount of the solder resist surface is measured at the same spot by means of a surface roughness measuring instrument (e.g. “SURFCOM 480A” made by Tokyo Seimitsu or “WYKO N-2500” by Veeco).
The measured spots (measured numbers are 5) are the solder resist layer surface positioned at the upper part of the connecting pad and the solder resist layer surface of the adjacent connecting pad non-forming portion (see FIG. 8). That is, the uneven amount of the solder resist layer surface due to presence of the connecting pad is measured, and the maximum value (max) and the minimum value (min) of the 5-point measured results are described. These measurement results are shown in Table 3 (before flattening treatment) and Table 4 (after flattening treatment).
Examples 67 to 84
Further, except that roughening treatment is applied to the solder resist layer surface under the following condition and uniformly fine unevenness is formed on the surface after flattening in Examples 49 to 66, the IC mounting printed wiring board is manufactured in the same manner as in each example, and described here as Examples 67 to 84.
(Roughening Condition)
Roughening solution: potassium permanganate (KMnO4) solution
Concentration: 60 g/l
Temperature: 60° C.
Immersion time: 60 seconds
Further, after the roughening treatment, surface roughness of the solder resist surface is measured at 10 spots at random with reference length 5 μm by means of a surface roughness measuring instrument (e.g. “SURFCOM 480A” made by Tokyo Seimitsu or “WYKO N-2500” by Veeco). As a result, surface roughness of the roughening treated solder resist layer becomes a small uneven face of about 0.1 μm to 0.6 μm at Ra.
Now, “surface roughness Ra” mentioned here means “arithmetic mean roughness Ra” prescribed by JIS B0601. The reason why Ra has a range in the above measured result is because that among respective Ra at the measured 10 spots, there are described the most minimum Ra as Ra(min) and the most maximum Ra as Ra(max).
Further, at each measurement point of 10 spots, when a distance between the highest top and the lowest bottom measured from the mean line to the uneven direction based on 5 μm of reference length is made A, a mean value of 10Δ is described as Rmax.
However, surface roughening measurement is carried out at random 10 spots in the solder resist layer surface corresponding to the conductor circuit (pad) forming region and the conductor circuit non-forming region, but not in the boundary vicinity of the conductor circuit forming region and the conductor circuit non-forming region.
(Heat Cycle Test)
A heat cycle test is carried out for the IC mounting printed wiring board manufactured according to Examples 5, 6, 9, 10, 13, 14, 21, 22, 25, 26, 29, 30, 37, 38, 41, 42, 45 and 46, Examples 49 to 66, and Examples 67 to 84 by repeating 2500 times of 1 cycle of −55° C.×30 min and 125° C.×30 min after leaving in an atmosphere such as temperature of 85° C. and humidity of 85% for 24 hours. Electric resistances after 1750 cycles and 2000 cycles are measured, and the rate (100×(measured value-initial value)/initial value)(%) of change with the initial value is sought. The case of the rate of change within ±10 is evaluated as “good” and shown by O, and other cases are evaluated as “no good” and shown by x.
These test results are shown in Tables 3 to 5, respectively.
TABLE 3
Unevenness of solder resist
layer surface (μm)
Maximum amount Heat cycle test
Minimum amount of of unevenness (repetitions)
unevenness (min) (max) 1750 2000
Example 13 5 6.5 X X
Example 14 5.3 6 X X
Example 17 5.8 6.5 X X
Example 18 5.3 6 X X
Example 21 4.8 6.1 X X
Example 22 5.2 6 X X
Example 25 5.5 6.3 X X
Example 26 5.4 6.1 X X
Example 29 5.5 6.1 X X
Example 30 5.8 6.2 X X
Example 33 5.1 6 X X
Example 34 5 6.2 X X
Example 37 5.2 6.3 X X
Example 38 5.2 6.4 X X
Example 41 5.8 6.1 X X
Example 42 5.4 6.5 X X
Example 45 5.5 6.1 X X
Example 46 5.4 6.1 X X
TABLE 4
Unevenness of flattened surface of
solder resist layer (μm)
Minimum amount Maximum amount Heat cycle test
of unevenness of unevenness (repetitions)
(min) (max) 1750 2000
Example 49 0.8 3.0 X
Example 50 0.8 3.2 X
Example 51 0.7 3.1 X
Example 52 0.7 3.0 X
Example 53 0.7 3.0 X
Example 54 0.8 3.2 X
Example 55 0.8 3.1 X
Example 56 0.7 3.0 X
Example 57 0.8 3.0 X
Example 58 0.7 3.0 X
Example 59 0.8 3.2 X
Example 60 0.8 3.1 X
Example 61 0.8 3.0 X
Example 62 0.8 3.2 X
Example 63 0.7 3.1 X
Example 64 0.8 3.0 X
Example 65 0.7 3.0 X
Example 66 0.8 3.2 X
TABLE 5
Unevenness of
flattened surface Roughness of
of solder resist roughened surface
layer (μm) of solder resist
Minimum Maximum layer (μm)
amount of amount of Maximum Heat cycle test
unevenness unevenness Ra roughness (repetitions)
(min) (max) min max (max) 1750 2000
Example 67 0.8 3.1 0.2 0.5 0.7
Example 68 0.7 3.1 0.2 0.5 0.6
Example 69 0.8 3.0 0.2 0.6 0.7
Example 70 0.7 3.0 0.1 0.5 0.6
Example 71 0.8 3.2 0.2 0.5 0.7
Example 72 0.8 3.2 0.2 0.5 0.7
Example 73 0.7 3.0 0.1 0.5 0.6
Example 74 0.7 3.0 0.1 0.5 0.6
Example 75 0.8 3.2 0.2 0.5 0.7
Example 76 0.8 3.1 0.2 0.5 0.7
Example 77 0.8 3.0 0.2 0.6 0.7
Example 78 0.8 3.2 0.2 0.6 0.7
Example 79 0.7 3.1 0.1 0.5 0.6
Example 80 0.8 3.0 0.1 0.5 0.6
Example 81 0.7 3.0 0.2 0.5 0.7
Example 82 0.8 3.2 0.1 0.5 0.6
Example 83 0.8 3.2 0.1 0.5 0.6
Example 84 0.7 3.0 0.1 0.5 0.6
It is understood from the results of this evaluation test that connection reliability is easily improved when the uneven amount of the solder resist layer surface is preferably about 0.8 μm to 3.0 μm and further, the arithmetic mean roughness Ra thereof is about 0.2 μm to 0.5 μm.
The solder bump in the invention is large in bump diameter so as to increase bump height for its degree. Therefore, as the space between the solder resist layer surface and the IC chip becomes large, under fill is difficult to be filled and void tends to generate in the under fill. Here, as the moving speed of the under fill is liable to depend on the space between the solder resist layer surface and the IC chip, it is considered that unevenness of the solder resist layer surface is about 2 μm or less. On the other hand, if uneven amount and surface roughness (Ra) of the solder resist layer surface are small, adhesion of the solder resist to the under fill becomes weakened, so that it is assumed that the uneven amount of about 0.8 μm or more and further the surface roughness of about 0.2 μm to 0.5 μm are required. Further, the surface roughness of about 0.2 μm to 0.5 μm improves wettability of the under fill, so that it is considered that even in the bent solder bump is completely filled the under fill.
(Insulation Reliability Test)
The IC mounting printed wiring board manufactured according to Examples 1 to 84 and Comparative Example are left in an atmosphere of 85° C. in temperature and 85% in humidity for 100 hours by applying voltage of 3.3V between dependent solder bumps (electrically not connected solder bumps). After leaving as they are, insulation resistance between voltage-applied solder bumps is measured. The value of more than or equal to 107Ω is evaluated as good and the value of less than 107Ω is evaluated as no good. As a result, Examples 1 to 8 are recognized as good, while Comparative Example is as no good.
INDUSTRIAL APPLICABILITY
As explained above. the invention proposes a printed wiring board having excellent insulation reliability and insulation reliability by making the ratio (W/D) of a solder bump diameter W to an opening diameter D provided in the opening of a solder resist layer about 1.05 to about 1.7 even with such narrow pitch structure that a pitch of the solder bump is about 200 μm or less.

Claims (6)

1. A printed wiring board comprising:
a wiring substrate provided with a conductor circuit;
a solder resist layer provided on a surface of the wiring substrate;
a plurality of conductor pads configured to mount electronic parts and formed from a part of the conductor circuit exposed from an opening formed in the solder resist layer, and
a solder bump formed on the conductor pad, wherein:
the conductor pad being aligned at a pitch of 200 μm or less,
a ratio (W/D) of a diameter W of the solder bump to an opening diameter D of the opening formed in the solder resist layer is 1.05 to 1.7, and
the opening of the solder resist layer is formed in a tapered fashion such that an opening diameter D 1 at the top surface thereof is larger than an opening diameter D2 at the bottom surface thereof,
further comprising a flattened surface formed on the surface of the solder resist layer by conducting a flattening treatment in at least a region for mounting the electronic parts, and
the flattened surface of the solder resist layer includes a roughened surface formed by conducting a roughening treatment, wherein
the flattened surface of the solder resist layer has a maximum surface roughness of 0.8 μm to 3.0 μm, and
roughness of the roughened surface of the solder resist layer is smaller than the maximum surface roughness of the flattened surface, and has an arithmetic mean roughness (Ra) of 0.2 μm to 0.5 μm.
2. The printed wiring board according to claim 1, further comprising an under fill resin sealing between the electronic parts and the solder resist layer.
3. The printed wiring board according to claim 1, wherein the ratio W/D is 1.05 to 1.5.
4. The printed wiring board according to claim 1, wherein the difference between the opening diameters D1−D2 is 5 μm to 20 μm.
5. The printed wiring board according to claim 1, wherein:
the conductor pad is formed in a filled via comprising a plated conductor within an opening provided in an interlayer resin insulating layer positioned as an outermost layer of the printed wiring board, and
an uneven amount of the filled via surface exposed from the interlayer resin insulating layer is −5 μm to +5 μm in relation to the thickness of the conductor layer formed on the interlayer resin insulating layer.
6. The printed wiring board according to claim 1, wherein the conductor pads are position to align with respective contacts of the electric parts to be mounted on the printed wiring board.
US12/622,049 2005-06-30 2009-11-19 Printed wiring board Active US8022314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/622,049 US8022314B2 (en) 2005-06-30 2009-11-19 Printed wiring board

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005192863 2005-06-30
JP2005-192863 2005-06-30
US11/476,559 US8017875B2 (en) 2005-06-30 2006-06-29 Printed wiring board
US12/622,049 US8022314B2 (en) 2005-06-30 2009-11-19 Printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/476,559 Continuation US8017875B2 (en) 2005-06-30 2006-06-29 Printed wiring board

Publications (2)

Publication Number Publication Date
US20100065323A1 US20100065323A1 (en) 2010-03-18
US8022314B2 true US8022314B2 (en) 2011-09-20

Family

ID=37604519

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/476,559 Active US8017875B2 (en) 2005-06-30 2006-06-29 Printed wiring board
US12/622,049 Active US8022314B2 (en) 2005-06-30 2009-11-19 Printed wiring board
US13/109,745 Active 2026-07-09 US8624132B2 (en) 2005-06-30 2011-05-17 Printed wiring board

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/476,559 Active US8017875B2 (en) 2005-06-30 2006-06-29 Printed wiring board

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/109,745 Active 2026-07-09 US8624132B2 (en) 2005-06-30 2011-05-17 Printed wiring board

Country Status (7)

Country Link
US (3) US8017875B2 (en)
EP (1) EP1887846A4 (en)
JP (1) JP5021473B2 (en)
KR (1) KR100905685B1 (en)
CN (2) CN101854771A (en)
TW (1) TW200718298A (en)
WO (1) WO2007004658A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100096749A1 (en) * 2008-10-21 2010-04-22 Samsung Electro-Mechanics Co., Ltd. Semiconductor package and manufacturing method thereof
US9480170B2 (en) 2006-01-27 2016-10-25 Ibiden Co., Ltd. Printed wiring board and a method of manufacturing a printed wiring board

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576270B2 (en) * 2005-03-29 2010-11-04 昭和電工株式会社 Method for manufacturing solder circuit board
KR100966774B1 (en) * 2005-05-23 2010-06-29 이비덴 가부시키가이샤 Printed wiring board
CN101868120A (en) 2005-06-30 2010-10-20 揖斐电株式会社 Printed wiring board and its manufacturing method
JP5021473B2 (en) * 2005-06-30 2012-09-05 イビデン株式会社 Method for manufacturing printed wiring board
WO2007007865A1 (en) 2005-07-11 2007-01-18 Showa Denko K.K. Method for attachment of solder powder to electronic circuit board and solder-attached electronic circuit board
US20090041990A1 (en) * 2005-09-09 2009-02-12 Showa Denko K.K. Method for attachment of solder powder to electronic circuit board and soldered electronic circuit board
EP2047725A4 (en) * 2006-08-03 2010-05-26 Showa Denko Kk Production method of solder circuit board
CN101296570A (en) * 2007-04-25 2008-10-29 富葵精密组件(深圳)有限公司 Circuit board and production method thereof
US8455766B2 (en) * 2007-08-08 2013-06-04 Ibiden Co., Ltd. Substrate with low-elasticity layer and low-thermal-expansion layer
EP2157841A4 (en) * 2008-05-30 2011-11-02 Ibiden Co Ltd Solder ball mounting method
US7705447B2 (en) * 2008-09-29 2010-04-27 Intel Corporation Input/output package architectures, and methods of using same
TWI468093B (en) * 2008-10-31 2015-01-01 Princo Corp Via structure in multi-layer substrate and manufacturing method thereof
WO2010064467A1 (en) * 2008-12-05 2010-06-10 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
CN101917818B (en) * 2009-09-25 2012-08-22 昆山市华升电路板有限公司 Pad structure of circuit board and manufacturing method thereof
JP5807221B2 (en) 2010-06-28 2015-11-10 アユミ工業株式会社 Bonded structure manufacturing method, heat-melt treatment method, and system thereof
CN103404244B (en) 2010-12-24 2016-12-14 Lg伊诺特有限公司 Printed circuit board and manufacturing methods
KR101231522B1 (en) * 2010-12-24 2013-02-07 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
JP5640892B2 (en) * 2011-05-23 2014-12-17 三菱電機株式会社 Semiconductor device
US8643196B2 (en) * 2011-07-27 2014-02-04 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for bump to landing trace ratio
US20130168132A1 (en) * 2011-12-29 2013-07-04 Sumsung Electro-Mechanics Co., Ltd. Printed circuit board and method of manufacturing the same
JP5502139B2 (en) * 2012-05-16 2014-05-28 日本特殊陶業株式会社 Wiring board
FR2991108A1 (en) * 2012-05-24 2013-11-29 St Microelectronics Sa BLINDED COPLANAR LINE
JP6069960B2 (en) * 2012-08-30 2017-02-01 凸版印刷株式会社 Manufacturing method of semiconductor package
KR101497840B1 (en) * 2013-12-02 2015-03-02 삼성전기주식회사 Opening structure of solder resist and circuit boad
JP2016015432A (en) * 2014-07-03 2016-01-28 イビデン株式会社 Circuit board and method of manufacturing the same
KR102214512B1 (en) 2014-07-04 2021-02-09 삼성전자 주식회사 Printed circuit board and semiconductor package using the same
US9699921B2 (en) * 2014-08-01 2017-07-04 Fujikura Ltd. Multi-layer wiring board
JP6329027B2 (en) * 2014-08-04 2018-05-23 ミネベアミツミ株式会社 Flexible printed circuit board
JP2016134409A (en) * 2015-01-16 2016-07-25 イビデン株式会社 Printed wiring board
KR102532200B1 (en) * 2015-12-09 2023-05-12 삼성전자 주식회사 Test pattern, test method for semiconductor device, and computer-implemented method for designing an integrated circuit layout
CN107732488A (en) * 2016-08-10 2018-02-23 泰科电子(上海)有限公司 Connector
US10164358B2 (en) * 2016-09-30 2018-12-25 Western Digital Technologies, Inc. Electrical feed-through and connector configuration
FR3069128B1 (en) * 2017-07-13 2020-06-26 Safran Electronics & Defense FIXING A CMS ON AN INSULATING LAYER WITH A SOLDERING JOINT IN A CAVITY PRODUCED IN AN INSULATING LAYER
JP6991014B2 (en) * 2017-08-29 2022-01-12 キオクシア株式会社 Semiconductor device
US20190366460A1 (en) * 2018-06-01 2019-12-05 Progress Y&Y Corp. Soldering apparatus and solder nozzle module thereof
US11488918B2 (en) * 2018-10-31 2022-11-01 Intel Corporation Surface finishes with low rBTV for fine and mixed bump pitch architectures
CN111334750B (en) * 2020-03-11 2022-02-01 京东方科技集团股份有限公司 SOI fine mask and manufacturing method thereof
CN111640719B (en) * 2020-06-01 2022-04-01 厦门通富微电子有限公司 Semiconductor device and manufacturing method thereof
KR20210154454A (en) * 2020-06-12 2021-12-21 엘지이노텍 주식회사 Printed circuit board and mehod of manufacturing thereof
US20220069489A1 (en) * 2020-08-28 2022-03-03 Unimicron Technology Corp. Circuit board structure and manufacturing method thereof
CN113524885B (en) * 2021-07-17 2022-07-08 江苏本川智能电路科技股份有限公司 Thick copper plate solder mask printing equipment and printing method thereof

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59996A (en) 1982-06-25 1984-01-06 株式会社日立製作所 Connecting structure of board
JPH05121411A (en) 1991-10-25 1993-05-18 Rohm Co Ltd Formation of connecting bump on electronic component
US5329423A (en) 1993-04-13 1994-07-12 Scholz Kenneth D Compressive bump-and-socket interconnection scheme for integrated circuits
JPH1140908A (en) 1997-07-22 1999-02-12 Ibiden Co Ltd Printed wiring board
US5959353A (en) 1997-08-28 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6046910A (en) 1998-03-18 2000-04-04 Motorola, Inc. Microelectronic assembly having slidable contacts and method for manufacturing the assembly
US6256207B1 (en) 1998-07-06 2001-07-03 Shinko Electric Industries Co., Ltd. Chip-sized semiconductor device and process for making same
JP2002208778A (en) 2001-01-10 2002-07-26 Ibiden Co Ltd Multilayer printed wiring board
JP2002217531A (en) 2001-01-12 2002-08-02 Ibiden Co Ltd Method for manufacturing multilayer printed circuit board
US6443351B1 (en) 2000-05-15 2002-09-03 Siliconware Precision Industries Co., Ltd. Method of achieving solder ball coplanarity on ball grid array integrated circuit package
US6461953B1 (en) 1998-08-10 2002-10-08 Fujitsu Limited Solder bump forming method, electronic component mounting method, and electronic component mounting structure
DE10138042A1 (en) 2001-08-08 2002-11-21 Infineon Technologies Ag Electronic component has at least one semiconducting chip on first side of and electrically connected to wiring plate, conducting track structures and solder connection contacts on other side
US20030070835A1 (en) 2001-10-12 2003-04-17 S&S Technology Corporation Printed circuit board having permanent solder mask
US6719185B2 (en) 2001-06-27 2004-04-13 Ngk Spark Plug Co., Ltd. Substrate with top-flattened solder bumps and method for manufacturing the same
JP2004179578A (en) 2002-11-29 2004-06-24 Ngk Spark Plug Co Ltd Wiring board and its manufacturing method
JP2004207370A (en) 2002-12-24 2004-07-22 Cmk Corp Method of manufacturing printed wiring board
US6809268B2 (en) 2000-07-31 2004-10-26 Ngk Spark Plug Co., Ltd. Printed wiring substrate and method for fabricating the same
JP2004319676A (en) 2003-04-15 2004-11-11 Harima Chem Inc Solder deposition method and solder bump forming method
US6822170B2 (en) 2000-12-26 2004-11-23 Ngk Spark Plug Co., Ltd. Embedding resin and wiring substrate using the same
US20050035451A1 (en) 2003-08-14 2005-02-17 Advanced Semiconductor Engineering Inc. Semiconductor chip with bumps and method for manufacturing the same
US20050248037A1 (en) * 2004-05-06 2005-11-10 Advanced Semiconductor Engineering, Inc. Flip-chip package substrate with a high-density layout
US7087991B2 (en) * 2002-01-16 2006-08-08 Via Technologies, Inc. Integrated circuit package and method of manufacture
US20060244142A1 (en) 2005-04-27 2006-11-02 Bernd Waidhas Electronic component and electronic configuration
US7189927B2 (en) 2002-05-17 2007-03-13 Fujitsu Limited Electronic component with bump electrodes, and manufacturing method thereof
US20070096327A1 (en) 2005-06-30 2007-05-03 Ibiden Co., Ltd. Printed wiring board
US7279771B2 (en) 2004-03-31 2007-10-09 Shinko Electric Industries Co., Ltd. Wiring board mounting a capacitor
US20080078810A1 (en) 2006-09-28 2008-04-03 Ibiden Co., Ltd. Manufacturing method and manufacturing apparatus of printed wiring board
US20080120832A1 (en) 2006-04-26 2008-05-29 Ibiden Co., Ltd Solder ball loading method and solder ball loading apparatus
US20080149369A1 (en) 2005-05-23 2008-06-26 Ibiden Co., Ltd. Printed wiring board
US20080283580A1 (en) 2005-12-20 2008-11-20 Ibiden Co., Ltd Method for manufacturing a printed wiring board
US20080302560A1 (en) 2006-01-27 2008-12-11 Ibiden Co., Ltd Printed wiring board and a method of manufacturing a printed wiring board
US20090001139A1 (en) 2005-12-20 2009-01-01 Ibiden Co., Ltd Method for manufacturing a printed wiring board
US7475803B2 (en) 2004-08-04 2009-01-13 Ibiden Co., Ltd. Solder ball loading method and solder ball loading unit background of the invention
US20090026250A1 (en) 2006-01-27 2009-01-29 Ibiden Co., Ltd. Method and apparatus for loading solder balls
US20090120680A1 (en) 2006-01-27 2009-05-14 Ibiden Co., Ltd Method for manufacturing a printed wiring board
US20090294516A1 (en) 2008-05-30 2009-12-03 Ibiden, Co., Ltd. Solder ball loading mask, apparatus and associated methodology

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118027A (en) * 1991-04-24 1992-06-02 International Business Machines Corporation Method of aligning and mounting solder balls to a substrate
JP3213292B2 (en) * 1999-07-12 2001-10-02 ソニーケミカル株式会社 Multilayer board and module
US6563210B2 (en) * 2000-12-19 2003-05-13 Intel Corporation Parallel plane substrate
JP2002290030A (en) * 2001-03-23 2002-10-04 Ngk Spark Plug Co Ltd Wiring board
JP3910387B2 (en) * 2001-08-24 2007-04-25 新光電気工業株式会社 Semiconductor package, manufacturing method thereof, and semiconductor device
JP2003218272A (en) * 2002-01-25 2003-07-31 Sony Corp High frequency module and its manufacturing method
JP4209178B2 (en) * 2002-11-26 2009-01-14 新光電気工業株式会社 Electronic component mounting structure and manufacturing method thereof
JP4006699B2 (en) * 2003-04-22 2007-11-14 日立金属株式会社 Micro ball mounting mask and micro ball mounting method
US20060289203A1 (en) * 2003-05-19 2006-12-28 Dai Nippon Printing Co., Ltd. Double-sided wiring board, double sided wiring board manufacturing method, and multilayer wiring board
KR100520961B1 (en) * 2003-05-30 2005-10-17 엘지전자 주식회사 Making method of PCB
TWI335195B (en) * 2003-12-16 2010-12-21 Ngk Spark Plug Co Multilayer wiring board
CN100367491C (en) * 2004-05-28 2008-02-06 日本特殊陶业株式会社 Intermediate substrate
US7626829B2 (en) * 2004-10-27 2009-12-01 Ibiden Co., Ltd. Multilayer printed wiring board and manufacturing method of the multilayer printed wiring board
JP2006216713A (en) * 2005-02-02 2006-08-17 Ibiden Co Ltd Multilayer printed wiring board
TWI414218B (en) * 2005-02-09 2013-11-01 Ngk Spark Plug Co Wiring board and capacitor to be built into wiring board
JP5021473B2 (en) 2005-06-30 2012-09-05 イビデン株式会社 Method for manufacturing printed wiring board
JP4838068B2 (en) * 2005-09-01 2011-12-14 日本特殊陶業株式会社 Wiring board
US20090120832A1 (en) * 2007-11-14 2009-05-14 Debbie Munden Single hand use baby food and container tray

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59996A (en) 1982-06-25 1984-01-06 株式会社日立製作所 Connecting structure of board
JPH05121411A (en) 1991-10-25 1993-05-18 Rohm Co Ltd Formation of connecting bump on electronic component
US5329423A (en) 1993-04-13 1994-07-12 Scholz Kenneth D Compressive bump-and-socket interconnection scheme for integrated circuits
JPH1140908A (en) 1997-07-22 1999-02-12 Ibiden Co Ltd Printed wiring board
US5959353A (en) 1997-08-28 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6046910A (en) 1998-03-18 2000-04-04 Motorola, Inc. Microelectronic assembly having slidable contacts and method for manufacturing the assembly
US6256207B1 (en) 1998-07-06 2001-07-03 Shinko Electric Industries Co., Ltd. Chip-sized semiconductor device and process for making same
US6461953B1 (en) 1998-08-10 2002-10-08 Fujitsu Limited Solder bump forming method, electronic component mounting method, and electronic component mounting structure
US6443351B1 (en) 2000-05-15 2002-09-03 Siliconware Precision Industries Co., Ltd. Method of achieving solder ball coplanarity on ball grid array integrated circuit package
US6809268B2 (en) 2000-07-31 2004-10-26 Ngk Spark Plug Co., Ltd. Printed wiring substrate and method for fabricating the same
US6822170B2 (en) 2000-12-26 2004-11-23 Ngk Spark Plug Co., Ltd. Embedding resin and wiring substrate using the same
JP2002208778A (en) 2001-01-10 2002-07-26 Ibiden Co Ltd Multilayer printed wiring board
JP2002217531A (en) 2001-01-12 2002-08-02 Ibiden Co Ltd Method for manufacturing multilayer printed circuit board
US6719185B2 (en) 2001-06-27 2004-04-13 Ngk Spark Plug Co., Ltd. Substrate with top-flattened solder bumps and method for manufacturing the same
DE10138042A1 (en) 2001-08-08 2002-11-21 Infineon Technologies Ag Electronic component has at least one semiconducting chip on first side of and electrically connected to wiring plate, conducting track structures and solder connection contacts on other side
US20030070835A1 (en) 2001-10-12 2003-04-17 S&S Technology Corporation Printed circuit board having permanent solder mask
US6753480B2 (en) 2001-10-12 2004-06-22 Ultratera Corporation Printed circuit board having permanent solder mask
US6933448B2 (en) 2001-10-12 2005-08-23 S & S Technology Corporation Printed circuit board having permanent solder mask
US7087991B2 (en) * 2002-01-16 2006-08-08 Via Technologies, Inc. Integrated circuit package and method of manufacture
US7189927B2 (en) 2002-05-17 2007-03-13 Fujitsu Limited Electronic component with bump electrodes, and manufacturing method thereof
JP2004179578A (en) 2002-11-29 2004-06-24 Ngk Spark Plug Co Ltd Wiring board and its manufacturing method
JP2004207370A (en) 2002-12-24 2004-07-22 Cmk Corp Method of manufacturing printed wiring board
JP2004319676A (en) 2003-04-15 2004-11-11 Harima Chem Inc Solder deposition method and solder bump forming method
US7452797B2 (en) 2003-04-15 2008-11-18 Harima Chemicals, Inc. Solder deposition method and solder bump forming method
US20050035451A1 (en) 2003-08-14 2005-02-17 Advanced Semiconductor Engineering Inc. Semiconductor chip with bumps and method for manufacturing the same
US7279771B2 (en) 2004-03-31 2007-10-09 Shinko Electric Industries Co., Ltd. Wiring board mounting a capacitor
US20050248037A1 (en) * 2004-05-06 2005-11-10 Advanced Semiconductor Engineering, Inc. Flip-chip package substrate with a high-density layout
US20090084827A1 (en) 2004-08-04 2009-04-02 Ibiden Co., Ltd. Solder ball loading method and solder ball loading unit
US7475803B2 (en) 2004-08-04 2009-01-13 Ibiden Co., Ltd. Solder ball loading method and solder ball loading unit background of the invention
US20060244142A1 (en) 2005-04-27 2006-11-02 Bernd Waidhas Electronic component and electronic configuration
US20080149369A1 (en) 2005-05-23 2008-06-26 Ibiden Co., Ltd. Printed wiring board
US20070096327A1 (en) 2005-06-30 2007-05-03 Ibiden Co., Ltd. Printed wiring board
US20090001139A1 (en) 2005-12-20 2009-01-01 Ibiden Co., Ltd Method for manufacturing a printed wiring board
US20080283580A1 (en) 2005-12-20 2008-11-20 Ibiden Co., Ltd Method for manufacturing a printed wiring board
US20090026250A1 (en) 2006-01-27 2009-01-29 Ibiden Co., Ltd. Method and apparatus for loading solder balls
US20080302560A1 (en) 2006-01-27 2008-12-11 Ibiden Co., Ltd Printed wiring board and a method of manufacturing a printed wiring board
US20090120680A1 (en) 2006-01-27 2009-05-14 Ibiden Co., Ltd Method for manufacturing a printed wiring board
US7472473B2 (en) 2006-04-26 2009-01-06 Ibiden Co., Ltd. Solder ball loading apparatus
US20080120832A1 (en) 2006-04-26 2008-05-29 Ibiden Co., Ltd Solder ball loading method and solder ball loading apparatus
US20080078810A1 (en) 2006-09-28 2008-04-03 Ibiden Co., Ltd. Manufacturing method and manufacturing apparatus of printed wiring board
US20090294516A1 (en) 2008-05-30 2009-12-03 Ibiden, Co., Ltd. Solder ball loading mask, apparatus and associated methodology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480170B2 (en) 2006-01-27 2016-10-25 Ibiden Co., Ltd. Printed wiring board and a method of manufacturing a printed wiring board
US20100096749A1 (en) * 2008-10-21 2010-04-22 Samsung Electro-Mechanics Co., Ltd. Semiconductor package and manufacturing method thereof
US8159071B2 (en) * 2008-10-21 2012-04-17 Samsung Electro-Mechanics Co., Ltd. Semiconductor package with a metal post
US8409981B2 (en) 2008-10-21 2013-04-02 Samsung Electro-Mechanics Co., Ltd. Semiconductor package with a metal post and manufacturing method thereof

Also Published As

Publication number Publication date
US20100065323A1 (en) 2010-03-18
US8017875B2 (en) 2011-09-13
KR20070116967A (en) 2007-12-11
US20070086147A1 (en) 2007-04-19
CN101171895A (en) 2008-04-30
KR100905685B1 (en) 2009-07-03
JPWO2007004658A1 (en) 2009-01-29
WO2007004658A1 (en) 2007-01-11
US20110214915A1 (en) 2011-09-08
CN101854771A (en) 2010-10-06
JP5021473B2 (en) 2012-09-05
TWI323624B (en) 2010-04-11
TW200718298A (en) 2007-05-01
EP1887846A1 (en) 2008-02-13
US8624132B2 (en) 2014-01-07
CN101171895B (en) 2010-06-23
EP1887846A4 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
US8022314B2 (en) Printed wiring board
US8832935B2 (en) Method of manufacturing a printed wiring board
JP4647007B2 (en) Solder ball mounting device
US5477419A (en) Method and apparatus for electrically connecting an electronic part to a circuit board
JP4592762B2 (en) Solder ball mounting method and solder ball mounting apparatus
JP4118283B2 (en) Solder ball mounting method and solder ball mounting apparatus
CN101400216A (en) Method for producing wiring substrate with solder protuberance
JP4118286B2 (en) Solder ball mounting method
KR100726242B1 (en) Method for manufacturing substrate used to mount flip chip
TWI476844B (en) Method for fabricating conductive bump and circuit board structure with the same
TWI524442B (en) Method for manufacturing wiring board having solder bumps, mask for solder ball mounting
KR100221654B1 (en) Method for manufacturing metal bump used screen printing
JP4118285B2 (en) Solder ball mounting apparatus and solder ball mounting method
JP2006074000A (en) Apparatus and method of loading solder ball
KR20070082133A (en) Printed circuit board

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12