US7833043B2 - Socket connector - Google Patents

Socket connector Download PDF

Info

Publication number
US7833043B2
US7833043B2 US11/989,738 US98973806A US7833043B2 US 7833043 B2 US7833043 B2 US 7833043B2 US 98973806 A US98973806 A US 98973806A US 7833043 B2 US7833043 B2 US 7833043B2
Authority
US
United States
Prior art keywords
housing
connected device
elongated guide
slide member
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/989,738
Other languages
English (en)
Other versions
US20100009563A1 (en
Inventor
Shigeyuki Hoshikawa
Atsuhito Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Molex LLC
Original Assignee
Molex LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molex LLC filed Critical Molex LLC
Assigned to MOLEX INCORPORATED reassignment MOLEX INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NODA, ATSUHITO, HOSHIKAWA, SHIGEYUKI
Publication of US20100009563A1 publication Critical patent/US20100009563A1/en
Application granted granted Critical
Publication of US7833043B2 publication Critical patent/US7833043B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R33/00Coupling devices specially adapted for supporting apparatus and having one part acting as a holder providing support and electrical connection via a counterpart which is structurally associated with the apparatus, e.g. lamp holders; Separate parts thereof
    • H01R33/74Devices having four or more poles, e.g. holders for compact fluorescent lamps
    • H01R33/76Holders with sockets, clips, or analogous contacts adapted for axially-sliding engagement with parallely-arranged pins, blades, or analogous contacts on counterpart, e.g. electronic tube socket
    • H01R33/7664Holders with sockets, clips, or analogous contacts adapted for axially-sliding engagement with parallely-arranged pins, blades, or analogous contacts on counterpart, e.g. electronic tube socket having additional guiding, adapting, shielding, anti-vibration or mounting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/10Plug-in assemblages of components, e.g. IC sockets
    • H05K7/1007Plug-in assemblages of components, e.g. IC sockets with means for increasing contact pressure at the end of engagement of coupling parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/10Plug-in assemblages of components, e.g. IC sockets
    • H05K7/1053Plug-in assemblages of components, e.g. IC sockets having interior leads
    • H05K7/1076Plug-in assemblages of components, e.g. IC sockets having interior leads co-operating by sliding
    • H05K7/1084Plug-in assemblages of components, e.g. IC sockets having interior leads co-operating by sliding pin grid array package carriers

Definitions

  • the present invention relates to a socket connector, and more particularly, to a novel socket connector allowing for direct connection of an IC or other connected device to the socket connector.
  • FIG. 8 is a partial sectional view showing a conventional socket.
  • Reference numeral 301 denotes a housing of a socket used for connecting a packaged semiconductor device 310 to a circuit board; more specifically, for electrically connecting pin terminals 311 of the semiconductor device 310 to unillustrated electrodes of the circuit board.
  • the housing 301 is formed of an insulating material such as resin, and has accommodation holes 302 which are arranged to correspond to the pin terminals 311 and extend through the housing 301 in the thickness direction thereof.
  • Connection terminals 303 to be connected to the pin terminals 311 are disposed in the accommodation holes 302 .
  • Solder balls 304 to be connected to the electrodes of the circuit board are bonded to the lower ends of the connection terminals 303 .
  • a plate-shaped slide member 305 is disposed on the housing 301 to be slidable in a lateral direction.
  • the slide member 305 is formed of an insulating material such as resin, and has connection holes 307 which are arranged to correspond to the pin terminals 311 and extend through the slide member 305 in the thickness direction thereof.
  • a rotation support metal member 312 having a cam support hole of radius R 1 formed therein is attached to an end of the housing 301 .
  • a pressure-receiving metal member 306 having a cam support hole of radius R 2 formed therein is attached to an end of the slide member 305 .
  • the center axis of the cam support hole of the pressure-receiving metal member 306 deviates in the lateral direction from the center axis of the cam support hole of the rotation support metal member 312 by an amount ⁇ .
  • An eccentric cam 315 is disposed to pass through the cam support hole of the rotation support metal member 312 and the cam support hole of the pressure receiving metal member 306 .
  • the slide member 305 is set to a ZIF position as shown in FIG. 8 . Subsequently, the semiconductor device 310 is placed on the slide member 305 , while the pin terminals 311 are inserted into the corresponding connection holes 307 . Thus, distal end portions of the pin terminals 311 enter the accommodation holes 302 of the housing 301 . At this time, since the slide member 305 is set to the ZIF position, the distal end portions of the pin terminals 311 can enter the accommodation holes 302 with small likelihood of coming into contact with the connection terminals 303 and receiving insertion resistance therefrom.
  • the pin terminals 311 may be bent at the time of attachment of the semiconductor device 310 , for the following reasons. Since the slide member 305 is interposed between the semiconductor device 310 and the housing 301 , the length of the pin terminals 311 increases by an amount corresponding to the thickness of the slide member 305 , and the position accuracy of the distal end portions of the pin terminals 311 decreases, whereby the distal end portions of the pin terminals 311 become more likely to improperly come into contact with the connection terminals 303 and receive lateral forces therefrom. In addition, because of the increased length, the pin terminals 311 become likely to bend.
  • the structure becomes complex, and cost increases.
  • use of the eccentric cam 315 makes it difficult to cope with increasing density of the pin terminals 311 .
  • the semiconductor device 310 is attached to the socket, all the pin terminals 311 must be inserted into the corresponding connection holes 307 . Therefore, positioning of the semiconductor device 310 is difficult, and the easiness of operation of attaching the semiconductor device 310 is spoiled.
  • a check must be made as to whether the slide member 305 is located in the ZIF position. Since such checking is performed on the basis of the position of the lever, the checking operation is difficult to perform. Therefore, the semiconductor device 310 may be placed on the slide member 305 , which has not yet been set to the ZIF position, and the pin terminals 311 may improperly come into contact with the connection terminals 303 and bend.
  • An object of the present invention is to solve the above-mentioned problems of the conventional socket and to provide a socket which is configured such that elongated guide holes are formed in the housing so as to receive guide members of a device to be connected (hereinafter referred to as a “to-be-connected device”), and a slide member is attached to the housing to be slidable in the longitudinal direction of the elongated guide holes so as to restrict the guide members to their initial positions.
  • the socket of the present invention enables direct placement of the to-be-connected device on the housing, can shorten the projection length of projection terminals of the to-be-connected device, can facilitate positioning of the to-be-connected device to thereby enhance the easiness of attachment operation, can prevent bending of the projection terminals, can cope with an increase in density of the projection terminals, and has a simple structure.
  • the present invention provides a socket comprising a plate-shaped housing having a terminal accommodation hole extending through the housing in the thickness direction thereof; and connection terminals attached to the housing and disposed within the terminal accommodation hole.
  • the housing includes a placement surface on which the to-be-connected device is placed, at least two elongated guide holes having openings at the placement surface and adapted to receive at least two guide members projecting from one surface of the to-be-connected device, and a slide member attached to be slidable in a longitudinal direction of the elongated guide holes, the slide member being capable of sliding, together with the to-be-connected device, from its initial position to its connection position; and at the initial position, the slide member partially covers the elongated guide holes such that the openings of the elongated guide holes have an initial shape, and the to-be-connected device is placed at the initial position on the placement surface when the guide members are inserted into the elongated guide holes via the openings having the initial shape.
  • the to-be-connected device moves on the placement surface from the initial position to the connection position in the longitudinal direction of the elongated guide holes in a state in which the guide members are inserted into the elongated guide holes.
  • the slide member is pushed by the guide member and slides from its initial position to its connection position.
  • the housing has a slide guide portion projecting from a body portion of the housing and having an upper surface lower than the placement surface; and the slide member is attached to cover at least the upper surface of the slide guide portion and has an upper surface generally flush with the placement surface.
  • the slide member at its initial position, comes into contact with the body portion of the housing.
  • the socket according to the present invention is configured such that elongated guide holes are formed in the housing so as to receive guide members of a to-be-connected device, and a slide member is attached to the housing to be slidable in the longitudinal direction of the elongated guide holes so as to restrict the guide members to their initial positions. Therefore, the socket of the present invention enables direct placement of the to-be-connected device on the housing, can shorten the projection length of projection terminals of the to-be-connected device, can facilitate positioning of the to-be-connected device to thereby enhance the easiness of attachment operation, can prevent bending of the projection terminals, can cope with an increase in density of the projection terminals, and has a simple structure.
  • FIG. 1 is an exploded perspective view showing a socket according to an embodiment of the present invention and a to-be-connected device;
  • FIG. 2 is an exploded perspective view of the socket according to the embodiment
  • FIG. 3 is a perspective view showing an initial state of the socket according to the embodiment.
  • FIG. 4 is a perspective view showing a connected state of the socket according to the embodiment.
  • FIG. 5 is a perspective view showing the structure of a terminal support plate having connection terminals used in the socket according to the embodiment
  • FIGS. 6A and 6B are partial perspective views showing an operation of connecting the to-be-connected device to the socket according to the embodiment
  • FIGS. 7A and 7B are partial sectional views showing the operation of connecting the to-be-connected device to the socket according to the embodiment.
  • FIG. 8 is a partial perspective view showing a conventional socket.
  • FIG. 1 is an exploded perspective view showing a socket according to an embodiment of the present invention and a to-be-connected device
  • FIG. 2 is an exploded perspective view of the socket according to the embodiment
  • FIG. 3 is a perspective view showing an initial state of the socket according to the embodiment
  • FIG. 4 is a perspective view showing a connected state of the socket according to the embodiment.
  • reference numeral 10 denotes a socket according to the present embodiment, which includes a generally square or rectangular, plate-shaped housing 11 integrally formed from an insulating material such as synthetic resin.
  • the housing 11 is attached to an unillustrated circuit board such that one surface; i.e., an upper surface in these drawings, faces a surface (lower surface in these drawings) of a to-be-connected device 30 on which projection terminals 31 to be described later are disposed, and the other surface; i.e., a lower surface in these drawings, faces a surface of the circuit board on which unillustrated electrodes (conductive traces) are disposed.
  • the socket 10 is used to establish electrical connection between the projection terminals 31 projecting from the lower surface of the to-be-connected device 30 and the corresponding conductive traces of the circuit board.
  • the to-be-connected device 30 is a semiconductor device such as an IC or LSI; however, the to-be-connected device 30 may be any type of electrical or electronic device, so long as the device has projection terminals 31 disposed on at least one surface thereof. Further, as will be described later, the projection terminals 31 are bar-shaped or needle-shaped electrode pins, which project vertically from one surface of the to-be-connected device 30 , and are arranged in a grid pattern to thereby form a PGA.
  • the circuit board may be of any type.
  • the circuit board may be a testing circuit board of a semiconductor testing apparatus, or a wiring circuit board (e.g., a motherboard or a daughter board) used in electrical or electronic apparatuses such as computers, televisions, game machines, cameras, and navigation apparatuses.
  • a testing circuit board of a semiconductor testing apparatus or a wiring circuit board (e.g., a motherboard or a daughter board) used in electrical or electronic apparatuses such as computers, televisions, game machines, cameras, and navigation apparatuses.
  • the housing 11 includes a terminal accommodation hole 12 , which is formed at a central portion of the housing 11 and extends through the housing 11 in the thickness direction thereof.
  • the terminal accommodation hole 12 has a generally square or rectangular shape, and has a size approximately corresponding to a region in which the projection terminals 31 are disposed on the to-be-connected device 30 . Therefore, when the to-be-connected device 30 is placed on the upper surface of the housing 11 , the terminal accommodation hole 12 can accommodate all the projection terminals 31 .
  • the upper surface of the housing 11 serves as a placement surface, and the to-be-connected device 30 is directly placed thereon.
  • Each of the terminal support plates 20 includes a plurality of connection terminals 21 which are arranged in a grid pattern to be connected with the projection terminals 31 .
  • Each of the terminal support plates 20 includes through holes 22 formed on opposite sides of each connection terminal 21 .
  • two terminal support plates 20 are attached to the lower surface of the housing 11 in a vertically superposed condition.
  • connection terminals 21 are arranged in a staggered fashion such that a positional shift of a half pitch is provided between the positions of connection terminals 21 in a certain row and the positions of connection terminals 21 in a row adjacent thereto. Further, a positional shift of a half pitch is provided between the positions of connection terminals 21 in a certain row on the upper terminal support plate 20 and the positions of connection terminals 21 in a corresponding row on the lower terminal support plate 20 .
  • connection terminals 21 of the lower terminal support plate 20 pass through the through holes 22 of the upper terminal support plate 20 and project upward from the upper terminal support plate 20 , and each of the connection terminals 21 of the lower terminal support plate 20 is located between the corresponding adjacent connection terminals 21 of the upper terminal support plate 20 .
  • the density of the connection terminals 21 becomes double the density in the case where a single terminal support plate 20 is used, and it is possible to cope with the projection terminals 31 of the to-be-connected device 30 which are densely arranged.
  • the number of the terminal support plates 20 is not limited to two, and a single terminal support plate 20 or three or more superposed terminal support plates 20 may be used depending on the required density of the connection terminals 21 .
  • solder balls 23 are bonded to the lower surface of the lower terminal support plate 20 .
  • the solder balls 23 are bonded to lower end portions of the connection terminals 21 at the lower surface of the lower terminal support plate 20 , and function as terminals, which are electrically connected to the corresponding conductive traces of the circuit board.
  • the solder balls 23 may be omitted.
  • the lower end portions of the connection terminals 21 are connected directly to the corresponding conductive traces of the circuit board.
  • the lower end portions of the connection terminals 21 and the corresponding conductive traces are preferably bonded together by means of an electrically conductive bonding material such as solder.
  • terminals of other shapes such as plate-shaped electrode pads, elongated, plate-shaped leads, or needle-shaped electrode pins, may be connected to the lower end portions of the connection terminals 21 .
  • the housing 11 includes a pair of elongated guide holes 13 a and a pair of auxiliary elongated guide holes 13 b formed therein and having respective openings at the upper surface (placement surface) of the housing 11 .
  • Each of the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b has an elliptical cross sectional formed by two semicircles and two straight lines connecting the semicircles.
  • the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b receive cylindrical guide members 32 to be described later, which project perpendicularly from the lower surface of the to-be-connected device 30 in the drawings.
  • the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b have a function of positioning the to-be-connected device 30 placed on the upper surface of the housing 11 . Specifically, when the guide members 32 of the to-be-connected device 30 are inserted into the corresponding guide holes, the to-be-connected device 30 is positioned with respect to the housing 11 .
  • the radius of the semicircles at opposite longitudinal ends of each of the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b is approximately equal to the radius of the guide members 32
  • the width of the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b as measured along the transverse direction is approximately equal to the diameter of the guide members 32 .
  • the auxiliary elongated guide holes 13 b may be omitted.
  • the to-be-connected device 30 has two guide members 32 , which are inserted into the corresponding elongated guide holes 13 a.
  • a parallelepiped slide guide portion 14 is integrally formed along a side of a body portion of the housing 11 along which the elongated guide holes 13 a are provided.
  • the slide guide portion 14 projects in the longitudinal direction of the elongated guide holes 13 a , and has an upper surface which is lower than the upper surface of the body portion of the housing 11 , and side surfaces which are located inward of the side surfaces of the body portion of the housing 11 .
  • the boundary between the body portion of the housing 11 and the slide guide portion 14 extends perpendicular to the longitudinal direction of the elongated guide holes 13 a , and crosses both the elongated guide holes 13 a .
  • the elongated guide holes 13 a are formed to extend from the body portion of the housing 11 and the slide guide portion 14 while crossing the boundary.
  • Semicircular portions of the elongated guide holes 13 a near the terminal accommodation hole 12 are formed in the body portion of the housing 11 , and the remaining portions of the elongated guide holes 13 a are formed in the slide guide portion 14 .
  • a slide member 15 is attached to the slide guide portion 14 to be slidable in the longitudinal direction of the elongated guide holes 13 a .
  • the slide member 15 assumes a shape resembling a parallelepiped box, and is attached to cover the circumference of the slide guide portion 14 as shown in FIGS. 3 and 4 .
  • the upper surface of the slide member 15 becomes approximately flush with the upper surface of the body portion of the housing 11
  • the opposite side surfaces of the slide member 15 become approximately flush with the corresponding side surfaces of the body portion of the housing 11 .
  • a pair of semicircular cut portions 16 is formed along a side of the slide member 15 facing the body portion of the housing 11 .
  • the semicircular cut portions 16 are disposed such that they are located above the corresponding elongated guide holes 13 a when the slide member 15 is attached to the slide guide portion 14 .
  • the slide member 15 In the initial state of the socket 10 , as shown in FIG. 3 , the slide member 15 is in contact with the body portion of the housing 11 , and the side thereof along which the cut portions 16 are formed coincides with the boundary between the body portion of the housing 11 and the slide guide portion 14 . Therefore, the semicircle portions of the elongated guide holes 13 a located near the terminal accommodation hole 12 and formed in the body portion of the housing 11 form circular openings in cooperation with the semicircular cut portions 16 of the slide member 15 . In this state, the elongated guide holes 13 a formed in the slide guide portion 14 , excluding the portions, which overlap the cut portions 16 , are covered from above by the slide member 15 .
  • the guide members 32 of the to-be-connected device 30 are inserted into the circular openings formed by the elongated guide holes 13 a and the cut portions 16 , so that the guide members 32 are restricted to their initial positions, and positioning of the to-be-connected device 30 to its initial position can be accurately carried out.
  • the to-be-connected device 30 When the projection terminals 31 of the to-be-connected device 30 are to be connected to the connection terminals 21 , the to-be-connected device 30 having been positioned as described is slid toward the side where the slide member 15 is attached. As a result, the guide members 32 of the to-be-connected device 30 push and slide the slide member 15 , whereby, as shown in FIG. 4 , the slide member 15 is separated from the body portion of the housing 11 , and the openings formed by the elongated guide holes 13 a and the cut portions 16 each assume an elliptical shape.
  • FIG. 5 is a perspective view showing the structure of a terminal support plate having connection terminals used in the socket according to the embodiment.
  • a sheet which is formed of resin such as polyimide and has on one surface thereof a metal layer formed of an electrically conductive material such as copper alloy is first prepared. Subsequently, the metal layer is etched while masks of a terminal shape are used so as to remove the metal layer, except for the portions covered with the masks. In this case, the masks have a shape resembling a bird. As a result, metal layer islands each having a terminal shape resembling a bird remain on the resin sheet. Subsequently, a raising process is performed on the metal layer islands.
  • connection terminals 21 which are formed of an electrically conductive metal and mounted onto the sheet-shaped terminal support plate 20 formed of an insulating material.
  • the space between the distal ends of the raised opposite portions of each connection terminal 21 is slightly smaller than the diameter of the projection terminals 31 of the to-be-connected device 30 , and is expanded upon insertion of the corresponding projection terminal 31 thereinto.
  • connection terminal 21 is formed on opposite sides of each connection terminal 21 .
  • a central portion (i.e., a portion corresponding to a midpoint between adjacent connection terminals 21 ) of each through hole 22 is expanded to a degree such that a connection terminal 21 provided on the other terminal support plate 20 can be inserted into the expanded portion of the through hole 22 .
  • the connection terminals 21 are arranged in a staggered fashion such that a positional shift of a half pitch is provided between the positions of connection terminals 21 in a certain row and the positions of connection terminals 21 in a row adjacent thereto.
  • the through holes 22 are arranged in a staggered fashion such that a positional shift of a half pitch is provided between the positions of the through holes 22 in a certain row and the positions of the through holes 22 in a row adjacent thereto. Therefore, when the above terminal support plate 20 is superposed on a second terminal support plate 20 such that the connection terminals 21 of the second terminal support plate 20 are inserted into the through holes 22 , the connection terminals 21 of the two superposed terminal support plates 20 are arranged to form a square grid pattern.
  • FIGS. 6A and 6B are partial perspective views showing an operation of connecting the to-be-connected device to the socket according to the embodiment
  • FIGS. 7A and 7B are partial sectional views showing the operation of connecting the to-be-connected device to the socket according to the embodiment.
  • solder balls 23 are bonded to the lower end portions of the connection terminals 21 at the lower surface of the lower terminal support plate 20 .
  • the socket 10 is assumed to have previously been mounted onto an unillustrated circuit board by means of connecting the solder balls 23 to connection pads of corresponding conductive traces of the circuit board.
  • the operator moves at least one of the to-be-connected device 30 and the circuit board toward the other, and inserts the four guide members 32 into the corresponding elongated guide holes 13 a and the corresponding auxiliary elongated guide holes 13 b , to thereby place the to-be-connected device 30 on the housing 11 .
  • the slide member 15 is in its initial position, and partially covers the elongated guide holes 13 a , so that the semicircle portions of the elongated guide holes 13 a located near the terminal accommodation hole 12 and formed in the body portion of the housing 11 form openings having a circular shape (initial shape), in cooperation with the semicircular cut portions 16 of the slide member 15 . Therefore, as shown in FIGS.
  • the guide members 32 corresponding to the elongated guide holes 13 a are inserted into the elongated guide holes 13 a through the circular openings formed by the elongated guide holes 13 a and the cut portions 16 .
  • the guide members 32 are restricted to their initial positions, and positioning of the to-be-connected device 30 to its initial position can be accurately carried out.
  • FIGS. 6A and 6B although the guide members 32 and the projection terminals 31 vertically projecting from the lower surface of the to-be-connected device 30 are illustrated, the body portion of the to-be-connected device 30 is not illustrated, so as to facilitate understanding.
  • the upper ends of the circular openings formed by the elongated guide holes 13 a and the cut portions 16 are tapered such that the diameter of the openings decreases downward. Therefore, a self-alignment effect is attained when the guide members 32 are inserted into the openings. Further, since the entirety of the to-be-connected device 30 is restricted to its initial position as a result of the guide members 32 being restricted to their initial positions, the distal end portions of the projection terminals 31 enter the terminal accommodation hole 12 while hardly coming into contact with the connection terminals 21 and hardly receiving resistance from the connection terminals 21 . Therefore, the initial position of the to-be-connected device 30 can be considered a ZIF position.
  • each projection terminal 31 is located on the rear side (right side in FIGS. 7A and 7B ) of the corresponding connection terminal 21 with respect to the slide direction of the slide member 15 .
  • each projection terminal 31 is located at the center of the corresponding connection terminal 21 with respect to the direction perpendicular to the slide direction of the slide member 15 (direction perpendicular to the sheet of FIGS. 7A and 7B ), and is located between the distal ends of the opposite raised portions of the connection terminal 21 .
  • each projection terminal 31 and the corresponding connection terminal 21 can be obtained through a simple operation of inserting the guide members 32 into the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b of the socket 10 in the initial state. Therefore, positioning of the to-be-connected device 30 with respect to the socket 10 can be performed easily and accurately.
  • the auxiliary elongated guide holes 13 b may be omitted. In such a case, the number of the guide members 32 becomes two. Further, whether the socket 10 is in the initial state can be readily checked through checking whether the slide member 15 is in its initial position and is in contact with the body portion of the housing 11 .
  • the operator slides the to-be-connected device 30 , placed on the upper surface of the housing 11 , in relation to the body portion of the housing 11 , and moves it to a connection position.
  • the operator moves the to-be-connected device 30 forward (leftward in FIGS. 7A and 7B ) with respect to the slide direction of the slide member 15 .
  • the guide members 32 are movable only in the longitudinal direction of the guide holes 13 a and 13 b ; i.e., in the slide direction of the slide member 15 , and are prevented from moving in the transverse direction of the guide holes 13 a and 13 b ; i.e., in the direction perpendicular to the slide direction of the slide member 15 .
  • the to-be-connected device 30 slides forward in the slide direction of the slide member 15 and reaches the connection position without moving in the direction perpendicular to the slide direction of the slide member 15 or changing its posture.
  • each projection terminal 31 When the to-be-connected device 30 moves to the connection position, as shown in FIGS. 6B and 7B , the distal end portion of each projection terminal 31 is inserted into the space between the distal ends of the raised opposite portions of the corresponding connection terminal 21 without fail, and comes into engagement with the connection terminal 21 .
  • the space between the distal ends of the raised opposite portions of each connection terminal 21 is expanded by the corresponding projection terminal 31 , so that the distal ends of the raised opposite portions of the connection terminal 21 are pressed against the projection terminal 31 and electrically connected thereto without fail.
  • the slide member 15 slides forward with respect to the slide direction, and moves, together with the to-be-connected device 30 , from the initial position to the connection position. Further, as shown in FIG. 7B , upon contact of the guide members 32 with the forward ends (with respect to the slide direction) of the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b , sliding movement of the to-be-connected device 30 is stopped. That is, the forward ends of the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b function as a stopper for stopping the to-be-connected device 30 at the connection position.
  • the sliding distance of the to-be-connected device 30 is defined by the longitudinal length of the elongated guide holes 13 a and the auxiliary elongated guide holes 13 b .
  • the to-be-connected device 30 is stopped at the predetermined connection position, and is connected with the socket 10 .
  • the to-be-connected device 30 in the connection position is moved rearward (rightward in FIGS. 7A and 7B ) with respect to the slide direction of the slide member 15 , in order to perform the above-described operation in reverse.
  • the housing 11 has an upper surface which serves as a placement surface on which the to-be-connected device 30 is placed, at least two elongated guide holes 13 a having openings at the upper surface and adapted to receive at least two guide members 32 of the to-be-connected device 30 , and a slide member 15 which slides, together with the to-be-connected device 30 , from the initial position to the connection position.
  • the slide member 15 partially covers the elongated guide holes 13 a such that the openings of the elongated guide holes 13 a have a circular shape (initial shape), and the to-be-connected device 30 is placed at the initial position on the upper surface when the guide members 32 are inserted into the elongated guide holes 13 a via the circular openings.
  • the to-be-connected device 30 can be placed directly on the housing 11 , rather than on a slide member 305 as in the prior art, the projection length of the projection terminals 31 of the to-be-connected device 30 can be shortened, and bending of the projection terminals 31 can be prevented. Further, since the positional accuracy of the distal end portions of the projection terminals 31 is improved, engagement of the projection terminals 31 with the connection terminals 21 becomes reliable, and since the resistance which the projection terminals 31 receive from the connection terminals 21 decreases, the possibility of the projection terminals 31 bending decreases further. Moreover, since positioning of the to-be-connected device 30 to the initial position is easy, easiness of the mounting operation is enhanced.
  • connection terminals 21 can be reduced so as to increase the density of the connection terminals 21 . Further, since an intermediate member becomes unnecessary, the structure of the socket 10 can be simplified, accurate machining can be performed on the socket 10 , manufacture of the socket 10 is facilitated, and cost can be reduced.
  • the to-be-connected device 30 moves on the upper surface of the housing 11 from the initial position to the connection position in the longitudinal direction of the elongated guide holes 13 a in a state in which the guide members 32 are inserted into the elongated guide holes 13 a . Therefore, handling of the to-be-connected device 30 is easy, and easiness of the mounting operation is enhanced. Further, through a simple operation of moving the to-be-connected device 30 in a single direction, the distal end portions of the projection terminals 31 can be brought into engagement with the connection terminals 21 for electrical connection.
  • the to-be-connected device 30 is prevented from being placed on the socket 10 , which is not in the initial state, and the distal end portions of the projection terminals 31 are prevented from improperly coming into contact with the connection terminals 21 and bending.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connecting Device With Holders (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
US11/989,738 2005-08-02 2006-08-02 Socket connector Expired - Fee Related US7833043B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005223689A JP4545061B2 (ja) 2005-08-02 2005-08-02 ソケット
JP2005-223689 2005-08-02
PCT/US2006/030219 WO2007016651A1 (en) 2005-08-02 2006-08-02 Socket connector

Publications (2)

Publication Number Publication Date
US20100009563A1 US20100009563A1 (en) 2010-01-14
US7833043B2 true US7833043B2 (en) 2010-11-16

Family

ID=37499331

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/989,738 Expired - Fee Related US7833043B2 (en) 2005-08-02 2006-08-02 Socket connector

Country Status (4)

Country Link
US (1) US7833043B2 (ja)
JP (1) JP4545061B2 (ja)
CN (1) CN101238765B (ja)
WO (1) WO2007016651A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832335B (zh) * 2018-05-31 2020-03-24 番禺得意精密电子工业有限公司 电连接器
CN111064357B (zh) * 2018-10-17 2021-11-02 上海宝存信息科技有限公司 电子装置电路板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379219A2 (en) 1989-01-20 1990-07-25 Japan Aviation Electronics Industry, Limited Electrical connector
US5730616A (en) 1995-07-25 1998-03-24 Yamaichi Electronics Co., Ltd. IC Socket
JP2002298998A (ja) 2001-03-30 2002-10-11 Molex Inc 半導体パッケージ用ソケット
JP2002352928A (ja) 2001-05-29 2002-12-06 Hirose Electric Co Ltd カム機構を有するicソケット
JP2003123922A (ja) 2001-10-11 2003-04-25 Sony Corp 半導体装置とソケットまたは実装基板との接続構造
JP2003346999A (ja) 2002-05-28 2003-12-05 Moldec Kk 集積回路用コネクタ
US7628635B2 (en) * 2006-11-03 2009-12-08 Hon Hai Precision Ind. Co., Ltd. Electrical connector with actuating mechanism
US7651358B2 (en) * 2007-06-13 2010-01-26 Hon Hai Precision Ind. Co., Ltd. Pin grid array socket having a base with interior standoffs and hightening peripheral walls
US7658634B2 (en) * 2006-10-31 2010-02-09 Hon Hai Precision Ind. Co., Ltd Zero insertion force connector with an improved driver member
US7658633B1 (en) * 2008-10-22 2010-02-09 Hon Hai Precision Ind. Co., Ltd. Socket having clip with attaching portion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298999A (ja) * 2001-03-30 2002-10-11 Molex Inc 半導体パッケージ用ソケット及び半導体パッケージのスライド方法
US6632106B2 (en) * 2001-07-24 2003-10-14 Adc Telecommunications, Inc. Jack; jack assembly; and methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379219A2 (en) 1989-01-20 1990-07-25 Japan Aviation Electronics Industry, Limited Electrical connector
US5730616A (en) 1995-07-25 1998-03-24 Yamaichi Electronics Co., Ltd. IC Socket
JP2002298998A (ja) 2001-03-30 2002-10-11 Molex Inc 半導体パッケージ用ソケット
JP2002352928A (ja) 2001-05-29 2002-12-06 Hirose Electric Co Ltd カム機構を有するicソケット
JP2003123922A (ja) 2001-10-11 2003-04-25 Sony Corp 半導体装置とソケットまたは実装基板との接続構造
JP2003346999A (ja) 2002-05-28 2003-12-05 Moldec Kk 集積回路用コネクタ
US7658634B2 (en) * 2006-10-31 2010-02-09 Hon Hai Precision Ind. Co., Ltd Zero insertion force connector with an improved driver member
US7628635B2 (en) * 2006-11-03 2009-12-08 Hon Hai Precision Ind. Co., Ltd. Electrical connector with actuating mechanism
US7651358B2 (en) * 2007-06-13 2010-01-26 Hon Hai Precision Ind. Co., Ltd. Pin grid array socket having a base with interior standoffs and hightening peripheral walls
US7658633B1 (en) * 2008-10-22 2010-02-09 Hon Hai Precision Ind. Co., Ltd. Socket having clip with attaching portion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report for PCT/US2006/030219.

Also Published As

Publication number Publication date
WO2007016651A1 (en) 2007-02-08
JP4545061B2 (ja) 2010-09-15
JP2007042353A (ja) 2007-02-15
CN101238765B (zh) 2010-11-17
US20100009563A1 (en) 2010-01-14
CN101238765A (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
US6575767B2 (en) Contact pin assembly, contact pin assembly manufacturing method, contact pin assembling structure, contact pin assembling structure manufacturing method, and socket for electrical parts
US7431591B2 (en) Socket for electrical parts
US5205741A (en) Connector assembly for testing integrated circuit packages
US6069481A (en) Socket for measuring a ball grid array semiconductor
JP2003075503A (ja) プローバ装置
US6287137B1 (en) Inspectable electrical connector for a PGA package
US7654862B2 (en) IC package having improved structure
US20090047808A1 (en) Electrical connector
US7534133B2 (en) Electrical connector assembly with alignment pin
US7833043B2 (en) Socket connector
JP7453851B2 (ja) 同軸端子、同軸コネクタ、配線板、及び、電子部品試験装置
KR101369406B1 (ko) 탐침 구조물 및 이를 갖는 전기적 검사 장치
JP3810134B2 (ja) コンタクト及びこのコンタクトを備えたicソケット
JP4213455B2 (ja) 電気部品用ソケット
JP2003317845A (ja) コンタクトピン、コンタクトピンの成形方法、電気部品用ソケット及び電気部品用ソケットの製造方法
KR102123882B1 (ko) 테스트 장치의 커넥터 시스템에 구비되는 커넥터 어셈블리, 커넥터 서브어셈블리 및 커넥터 핀
JP2006216399A (ja) 電気的接続装置
JP5112496B2 (ja) Icソケット
JP4279039B2 (ja) 電気部品用ソケット
JP3954161B2 (ja) 電気部品用ソケット
JP3730020B2 (ja) 電気部品用ソケット
KR100522753B1 (ko) 모듈형 ic 소켓
US20240364050A1 (en) Test connector
JP4651124B2 (ja) Icソケット
JP2003217777A (ja) 電気的接続装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOLEX INCORPORATED, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSHIKAWA, SHIGEYUKI;NODA, ATSUHITO;REEL/FRAME:023247/0392;SIGNING DATES FROM 20090907 TO 20090910

Owner name: MOLEX INCORPORATED, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSHIKAWA, SHIGEYUKI;NODA, ATSUHITO;SIGNING DATES FROM 20090907 TO 20090910;REEL/FRAME:023247/0392

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141116