US7536881B2 - Linen treatment device with imbalance monitoring, level monitoring or load monitoring - Google Patents

Linen treatment device with imbalance monitoring, level monitoring or load monitoring Download PDF

Info

Publication number
US7536881B2
US7536881B2 US10/774,978 US77497804A US7536881B2 US 7536881 B2 US7536881 B2 US 7536881B2 US 77497804 A US77497804 A US 77497804A US 7536881 B2 US7536881 B2 US 7536881B2
Authority
US
United States
Prior art keywords
sensor
treatment device
water container
soapy water
imbalance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/774,978
Other languages
English (en)
Other versions
US20040168480A1 (en
Inventor
Tilmann Lorenz
Willibald Reitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Assigned to BSH BOSCH UND SIEMENS HAUSGERATE GMBH reassignment BSH BOSCH UND SIEMENS HAUSGERATE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REITMEIER, WILLIBALD, LORENZ, TILMANN
Publication of US20040168480A1 publication Critical patent/US20040168480A1/en
Priority to US12/384,363 priority Critical patent/US7845198B2/en
Application granted granted Critical
Publication of US7536881B2 publication Critical patent/US7536881B2/en
Priority to US12/878,079 priority patent/US7958755B2/en
Assigned to BSH Hausgeräte GmbH reassignment BSH Hausgeräte GmbH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: BSH Bosch und Siemens Hausgeräte GmbH
Assigned to BSH Hausgeräte GmbH reassignment BSH Hausgeräte GmbH CORRECTIVE ASSIGNMENT TO REMOVE USSN 14373413; 29120436 AND 29429277 PREVIOUSLY RECORDED AT REEL: 035624 FRAME: 0784. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: BSH Bosch und Siemens Hausgeräte GmbH
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/20Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/006Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses
    • G01P15/008Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of fluid seismic masses by using thermal pick-up
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4244Water-level measuring or regulating arrangements
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4295Arrangements for detecting or measuring the condition of the crockery or tableware, e.g. nature or quantity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/16Imbalance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/001Arrangements for transporting, moving, or setting washing machines; Protective arrangements for use during transport
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/52Weighing apparatus combined with other objects, e.g. furniture
    • G01G19/56Weighing apparatus combined with other objects, e.g. furniture combined with handles of tools or household implements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/16Washing liquid temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/58Indications or alarms to the control system or to the user
    • D06F2105/60Audible signals
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/14Arrangements for detecting or measuring specific parameters
    • D06F34/18Condition of the laundry, e.g. nature or weight

Definitions

  • the invention relates to a linen treatment device with an arrangement for determining the imbalance.
  • An arrangement for monitoring imbalance in a washing machine is already known from EP 0 539 617 A1.
  • An electric motor monitored by a speed-measuring device for example, by means of a tacho-generator in a control device especially a series motor is provided in a washing machine.
  • An imbalance sensor which records the imbalance is constructed as a microswitch which is connected in series to the speed measuring device, for example, a tacho-generator. When an impermissible imbalance is reached, the imbalance sensor interrupts the connection to the speed measuring device and the control device.
  • the arrangement has at least one sensor to measure the temperature profile of a heating device built into the sensor, wherein the temperature profile can be varied by an acceleration caused by an imbalance.
  • the temperature distribution in a medium heated by the heating device of the sensor varies as a result of an acceleration caused by an imbalance, the temperature distribution thereby varied can be measured and the intensity of the acceleration can be deduced.
  • the direction of the acceleration can also be determined if the temperature distribution in measured in two axes.
  • a washing machine design where the sensor is arranged on the soapy water container is especially suitable. It is thereby possible to achieve a very direct determination of imbalances which are exerted on the soapy water container during spin-drying of a laundry unit in the drum.
  • the sensor can be arranged on a lever connected to the soapy water container, whereby especially tumbling imbalances, i.e., imbalances in the direction of the axis of rotation of the drum, can be efficiently measured.
  • Such tumbling imbalance cannot be measured by means of a tacho-generator.
  • it can be determined by means of an arrangement according to the invention and with a corresponding alignment of the sensor element.
  • speed ramping i.e., by controlling the motor. The same applies to a washer drier.
  • the senor is arranged in a damper which damps the vibrations of the soapy water container or in a foot of the washing machine.
  • the senor is located below the upper outer surface of the linen treatment device.
  • the measuring function of the sensor is thereby made directly accessible to the user. It is advantageous if the value measured by the sensor is displayed on a display device. The magnitude of the imbalance is thereby made recognisable to the user.
  • Equally the result of a measurement made by the sensor can also be displayed for the user by a separate display device.
  • the sensor for determining imbalance can also be used to subsequently determine the mass of the linen placed in the drum in the rest state of the washing machine.
  • a warning device can also be activated by means of the sensor which gives a warning signal when the washing machine is overloaded.
  • the loading which is conventionally determined, for example, by an inductive distance measurement, can be determined in a new way compared with the prior art. The loading or the weight or the water level in a washing machine or in a dishwasher can thus be displayed.
  • the sensor can advantageously also be used to determine the levelling of any household appliance, especially a washing machine.
  • the sensor can fulfil a double function: on the one hand, it is used to determine imbalances or the mass of a laundry unit and on the other hand, it is used for levelling the washing machine.
  • the sensor is useful not only when setting up the household appliance in order to set up the household appliance for the first time so that it stands horizontally in both directions in the plane but also later to check whether the household appliance is standing horizontally on both directions as before or whether it has sunk in one or both directions. If pre-determined, still permissible deviations are exceeded, a warning signal is generated so that the user suitably re-levels the appliance.
  • the levelling is carried out by the household appliance itself.
  • servomotors are provided, preferably in the area of the appliance feet, or a pneumatic or hydraulic pressure system is provided by which means the fluid can be distributed such that the device stands horizontally in both directions.
  • the weight of the household appliance or the useful load i.e., the loading in a washing machine or a washer drier
  • the useful load can be determined indirectly by evaluating the acceleration of the sensor. Acceleration sensors are known, for example, from the company Memsic. The measurement is made as follows: the drum is first loaded, then it sinks as a result of the loading. This results in an acceleration at the sensor element. Moreover, the time is measured as the second quantity. The distance covered as a result of the loading with the washing can thus be determined. From a knowledge of the damping of the household appliance, the force brought about by loading with the linen can then be determined using Hook's law so that the imbalance mass can be determined.
  • the speed of the washing machine can be reduced and the laundry unit can be re-aligned by reversing.
  • Speed ramping can also be implemented to control the motor.
  • a particular problem with measuring imbalance involves determining the so-called tumbling imbalance, i.e., the imbalance along the axis of the drum and the drive motor. However, this can be determined according to the invention if the sensor element is suitably selected and aligned. If the measurement signal is simultaneously returned in the control loop of the machine, the tumbling imbalance can be compensated. However, the tumbling can only be determined with a biaxial sensor system.
  • FIGS. 1 a, b is a cross-section through a sensor according to the invention
  • FIG. 2 shows an arrangement equipped with the sensor from FIGS. 1 a, b for levelling a household appliance
  • FIG. 3 shows an arrangement for determining the imbalance of a drum and the loading and the level of a washing machine
  • FIG. 4 is an equivalent circuit diagram for the measuring arrangement from FIG. 3 .
  • FIG. 5 is a baking oven with sensors according to the invention.
  • FIG. 6 is a spray arm of a dishwasher with a sensor.
  • a circular plate 4 which serves as a temperature sensor is arranged on a substrate 2 , which preferably consists of silicon, above a circular hole 3 .
  • the plate 4 In its central area the plate 4 is penetrated by a rod 5 which heats up, so that a thermal profile builds up above the rod 5 in a space 6 which has a decreasing temperature T with increasing distance from the rod 5 .
  • Above the rod 5 forms a substantially spherical or conical area 7 of especially strongly heated gas.
  • the temperature T inside the space 6 is plotted as a function of the distance from the rod 5 in FIG. 1 b.
  • the temperature T decreases substantially proportionately with increasing distance from the rod 5 .
  • the gas molecules or gas atoms in the space 6 above the rod 5 are accelerated towards said rod and the plate 4 so that the position of the thermal profile with respect to the original position changes. Since sensors for the temperature measurement are built in the plate 4 preferably in pixel fashion, this positional change can be measured as a change in temperature in one of the two directions X and Y extending through the plane of the plate 4 . In this case, not only the positional change of the profile itself can be measured but also its time profile since the sensors inside the plate 4 determine when the profile has changed.
  • a thermal profile 7 not completely symmetrical with respect to the rod 5 builds up if the rod 5 is not arranged completely vertically.
  • This can be used to adjust the levelling of a household appliance.
  • either a plurality of sensors are present in the fashion shown in FIG. 1 a or there is only one sensor in one of the corners of the household appliance on its upper surface, i.e., the working surface.
  • a display 8 ( FIG. 2 ) where a centring cross 9 indicates when the position of the household appliance is completely levelled.
  • a variable circular display 10 must cover the centre point of the cross 9 with its centre point.
  • the feet of the household appliance must be adjusted in height, as shown in FIG. 2 , for which the user receives instruction from the information on the display.
  • the feet which need to be adjusted are shown by the displays 11 , 12 , 13 .
  • any household appliance especially a linen treatment device such as a washing machine or a washer drier can be levelled.
  • the levelling information can also be evaluated by the appliance control system. During the initial setting up of the household appliance at a location the at least one sensor or the plurality of sensors controls the levelling. If this is not correct, the height adjustment of the adjusting feet is automatically varied by means of servomotors or by means of a hydraulic or pneumatic system.
  • the levelling information is either displayed visually, as by the display 8 , or it is passed on audibly to the user by means of a loudspeaker.
  • the household appliance preferably has an interface for connecting the household appliance to the internet or online assistance for the adjustment is given to the user by telephone.
  • a sensor 14 is arranged below a soapy water container (shown only schematically here).
  • the soapy water container 15 is mounted in a household appliance 20 (not reproduced to scale here) using tension springs 16 , 17 and dampers 18 , 19 .
  • a laundry unit 21 acts with the force of its weight together with the weight of the soapy water container 15 on the dampers 18 , 19 .
  • a sensor 22 can also be provided which is mounted on a rail 23 which is connected via a hinge joint 24 to a lever arm 25 of a lever 27 which is pivotable about a fulcrum 26 .
  • the other lever arm 28 of the lever 27 is connected to the soapy water container 15 parallel to the direction of the axis of rotation of the soapy water container 15 .
  • a rotational movement of the lever 27 is converted to a translational movement in the direction of a path b via the hinge joint 24 . If the soapy water container 15 is accelerated downwards as a result of an imbalance or by the loading with washing having a force F, the force of its weight, this acceleration is converted via the lever 27 into a horizontal acceleration a along the path b.
  • M is the weight of the total load and g is the acceleration due to gravity.
  • tan ⁇ (see FIG. 4 ) is given by:
  • the sensor 22 is capable of measuring the acceleration values.
  • the acceleration values can then be used to determine both the mass of the washing and any imbalance of the drum during operation.
  • the sensor 22 is suitable both for static and for dynamic measurements.
  • the pressure inside the sensor can also be varied by applying a force.
  • the change in pressure then results in a change in temperature which is detected by the temperature sensors built in the plate 4 . From this it is then possible to calculate a force from which the mass either of the laundry unit or an imbalance can be deduced.
  • the temperature sensors it is furthermore possible to deduce accelerations in the sensor plane and any change in angle, as already shown above with reference to levelling in connection with FIG. 2 .
  • the quantities weighing, levelling and imbalance monitoring can be determined using a sensor such as shown in FIG. 1 a.
  • the sensor is either attached to the soapy water container so that it serves for levelling and imbalance monitoring or it is arranged on the frame structure of the household appliance so that, in addition to weighing and monitoring imbalance, it can also be used for levelling the household appliance.
  • the user is assisted in adjusting the household appliance when this is first set up in a position.
  • the customer is also assisted in loading the household appliance in that he is notified about the washing already inserted, for example, via a display or audibly.
  • a warning signal is generated so that any damage to the household appliance caused by the mass of a laundry unit being too high is avoided.
  • Tumbling imbalance i.e., an imbalance along the drum motor axis of the washing machine or the washer drier can also be identified according to the invention so that measures to compensate for the tumbling imbalance can be introduced.
  • the tumbling imbalance can be compensated by speed ramping using a suitably matched motor control system. If an imbalance has been identified, a regulating mechanism results in countercontrol, for example, by reversing the laundry unit.
  • a sensor 30 preferably a second sensor 31 , is provided, said sensor being affixed below a sheet-metal guide frame 32 of a baking oven 33 .
  • both sensors 30 , 31 are based on measuring a temperature profile produced by a heating device built into each sensor 30 , 31 .
  • the sheet-metal guide frame 32 receives baking sheets in guide strips 34 .
  • the sheet-metal guide frame 32 is suspended by means of springs 35 to 38 inside a frame of a baking oven 33 . When the baking oven 33 is loaded, the springs 35 to 38 are deflected and the sheet-metal guide frame 32 is thus lowered.
  • the sensors 30 , 31 are thereby accelerated in the perpendicular direction.
  • the perpendicular movement of the sheet-metal guide frame 32 is converted into a horizontal movement in order to accelerate the sensors in the horizontal direction in this fashion. In this way the loading of the baking oven 33 with baking goods is measured.
  • the considerable lack of sensitivity to temperature of the sensors 30 , 31 should be seen as a particular advantage of this weighing device.
  • at least two sensors 30 , 31 are provided, which for example, viewed in the sliding direction of the baking sheets, have a certain spatial offset to one another, a spatial resolution of the weight loading of the baking sheet can also be determined.
  • the air circulation during circulating-air operation in the baking oven 33 or the temperature guidance in the baking oven 33 can then be adapted accordingly.
  • the sheet-metal guide frame is easily tiltable without jamming. It can be removed for cleaning.
  • the sheet-metal guide frame 32 either consists of a wire framework or of a flat enamel frame.
  • a sensor 40 according to the invention is provided in a spray arm 41 of a dishwasher.
  • the spray arm 41 is mounted on a pivot 42 . It turns in the direction of the arrow A to spray washing solution onto the crockery.
  • the sensor 40 experiences a radial acceleration from which the rotation speed and thus the number of revolutions, the spray arm position and also any stopping of the spray arm can be determined.
  • the signal is transmitted either by radio, by pressure contact or via a sliding contact 43 which is arranged in the vicinity of the pivot 42 and produces an electrical connection with an electrical lead in the casing of the dishwasher.
  • An acceleration sensor is provided for a household appliance 20 which is used both for levelling the household appliance and also for weighing a material inserted in the household appliance, for example a laundry unit or crockery and in addition, especially for a linen treatment device, serves to monitor imbalances.
  • the sensor is based on the fact that a temperature profile produced by a thermal source, for example, an immersion heater 5 inside a sealed chamber 6 containing a gas, undergoes a displacement as a result of the acceleration which is measured by means of temperature sensors arranged in a flat plate 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
US10/774,978 2001-08-10 2004-02-09 Linen treatment device with imbalance monitoring, level monitoring or load monitoring Expired - Fee Related US7536881B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/384,363 US7845198B2 (en) 2001-08-10 2009-04-03 Linen treatment device with imbalance monitoring, level monitoring or load monitoring
US12/878,079 US7958755B2 (en) 2001-08-10 2010-09-09 Linen treatment device with imbalance monitoring, level monitoring, or load monitoring

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10139388A DE10139388A1 (de) 2001-08-10 2001-08-10 Wäschebehandlungsgerät mit Unwuchtüberwachung, mit Erkennung des Niveaus oder mit Erkennung der Beladung
DE10139388.1 2001-08-10
WOPCT/EP02/08840 2002-08-07
PCT/EP2002/008840 WO2003014455A2 (fr) 2001-08-10 2002-08-07 Appareil de traitement de linge a controle de la masse non equilibree, avec identification du niveau ou identification de la charge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008840 Continuation WO2003014455A2 (fr) 2001-08-10 2002-08-07 Appareil de traitement de linge a controle de la masse non equilibree, avec identification du niveau ou identification de la charge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/384,363 Division US7845198B2 (en) 2001-08-10 2009-04-03 Linen treatment device with imbalance monitoring, level monitoring or load monitoring

Publications (2)

Publication Number Publication Date
US20040168480A1 US20040168480A1 (en) 2004-09-02
US7536881B2 true US7536881B2 (en) 2009-05-26

Family

ID=7695069

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/774,978 Expired - Fee Related US7536881B2 (en) 2001-08-10 2004-02-09 Linen treatment device with imbalance monitoring, level monitoring or load monitoring
US12/384,363 Expired - Fee Related US7845198B2 (en) 2001-08-10 2009-04-03 Linen treatment device with imbalance monitoring, level monitoring or load monitoring
US12/878,079 Expired - Fee Related US7958755B2 (en) 2001-08-10 2010-09-09 Linen treatment device with imbalance monitoring, level monitoring, or load monitoring

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/384,363 Expired - Fee Related US7845198B2 (en) 2001-08-10 2009-04-03 Linen treatment device with imbalance monitoring, level monitoring or load monitoring
US12/878,079 Expired - Fee Related US7958755B2 (en) 2001-08-10 2010-09-09 Linen treatment device with imbalance monitoring, level monitoring, or load monitoring

Country Status (7)

Country Link
US (3) US7536881B2 (fr)
EP (2) EP1643027A1 (fr)
KR (1) KR100804952B1 (fr)
AT (1) ATE382730T1 (fr)
DE (2) DE10139388A1 (fr)
ES (1) ES2298385T3 (fr)
WO (1) WO2003014455A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018628A1 (en) * 2004-09-11 2008-01-24 Bouncing Brain Innovations Season Two Subsidiary 13, Llc Attachable informational appliance
US20080066238A1 (en) * 2006-09-19 2008-03-20 Lg Electronics Inc. Apparatus and method for sensing vibration of washing machine
US20130152310A1 (en) * 2011-12-16 2013-06-20 Whirlpool Corporation Method and apparatus for controlling the liquid filling in a laundry treating appliance
US10266982B2 (en) 2016-09-22 2019-04-23 Midea Group Co., Ltd. Laundry washing machine with dynamic damping force optimization
US10760193B2 (en) 2011-08-15 2020-09-01 Whirlpool Corporation Method for real time determination during loading of volumetric load size in a laundry treating appliance

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100556503B1 (ko) * 2002-11-26 2006-03-03 엘지전자 주식회사 건조기의 건조 시간제어 방법
NL1025834C2 (nl) * 2004-03-26 2005-09-27 Esquisse Schoonhoven Transportmiddel voorzien van een beladingsmeter.
DE102006032337A1 (de) * 2006-07-12 2008-01-17 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Steuerung eines Schleuderablaufes einer Waschmaschine und zur Durchführung des Verfahrens geeignete Waschmaschine
DE202007013690U1 (de) 2007-09-29 2009-03-05 Sartorius Ag Waage mit höhenverstellbaren Stützen und einem elektronischen Neigungssensor
DE102008015417B4 (de) * 2008-03-20 2010-07-08 Rational Ag Gerät mit einer Nivellierungsvorrichtung und Verfahren zum Betreiben solch eines Gargeräts
US8695381B2 (en) * 2008-03-28 2014-04-15 Electrolux Home Products, Inc. Laundering device vibration control
DE102008017284B4 (de) 2008-04-04 2020-06-25 BSH Hausgeräte GmbH Waschmaschine mit analogem Drucksensor sowie Verfahren zu ihrem Betrieb
DE102009028460A1 (de) 2009-08-11 2011-02-17 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zur Bestimmung einer gegenüber einer Horizontalen geneigten Schrägstellung eines Hausgeräts, sowie entsprechendes Hausgerät
DE102010002048A1 (de) * 2010-02-17 2011-08-18 BSH Bosch und Siemens Hausgeräte GmbH, 81739 Verfahren zur Einstellung einer Schleuderdrehzahl einer Trommel eines Hausgeräts zur Pflege von Wäschestücken
DE102010016672B3 (de) * 2010-04-28 2011-05-05 Miele & Cie. Kg Verfahren zum Betreiben einer Waschmaschine und Waschmaschine
IT1403157B1 (it) * 2010-12-01 2013-10-04 Elbi Int Spa Macchina lavatrice con rilevazione delle vibrazioni della vasca o camera di lavaggio.
DE102013207897A1 (de) * 2013-04-30 2014-10-30 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum waagerechten Ausrichten eines Gerätes mit einem Nebelerzeuger
US20150371454A1 (en) * 2014-06-19 2015-12-24 Caterpillar Inc. System and Method for Severity Characterization of Machine Events
DE102014217943A1 (de) 2014-09-08 2016-03-10 BSH Hausgeräte GmbH Verfahren zum Betrieb einer Waschmaschine mit einem Drucksensor sowie hierzu geeignete Waschmaschine
US10533272B2 (en) 2017-03-24 2020-01-14 Haier Us Appliance Solutions, Inc. Washing machine appliance and method of operation
CN108660680B (zh) * 2017-03-30 2020-10-16 青岛海尔洗衣机有限公司 一种调平装置、具有该调平装置的洗衣机及其控制方法
DE102017211458A1 (de) * 2017-07-05 2019-01-10 BSH Hausgeräte GmbH Nivelliereinrichtung für ein Haushaltsgerät, Haushaltsgerät und Nivellierverfahren für ein Haushaltsgerät
DE102021203780A1 (de) 2021-04-16 2022-10-20 BSH Hausgeräte GmbH System zur Ermittlung von waschmechanischen Daten in einem Wäschebehandlungsgerät sowie Verfahren zu seinem Betrieb

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294014A1 (fr) 1987-03-18 1988-12-07 Creda Limited Machine à laver avec dispositifs pour la détection du poids et dispositifs pour la détection du balourd
US4875533A (en) 1987-07-13 1989-10-24 Matsushita Electric Industral Co., Ltd. Automatic weight detecting device
DE4020898A1 (de) 1990-06-30 1992-01-02 Licentia Gmbh Geschirrspuelmaschine mit einem sprueharm
EP0539617A1 (fr) 1991-10-30 1993-05-05 Siemens Aktiengesellschaft Détection de balourds dans une machine à laver automatique
DE4219298A1 (de) * 1992-06-12 1993-12-16 Licentia Gmbh Trommelwaschmaschine o. dgl. mit einer Waschgutwiegeeinrichtung und Waschgut-Gewichtsanzeige
DE4243978C1 (de) 1992-12-23 1994-01-05 Ploechinger Heinz Dipl Ing Fh Neigungs- und Beschleunigungs-Sensor
US5565655A (en) 1992-11-19 1996-10-15 Goldstar Co., Ltd. Method of detecting food weight in microwave oven by processing weight sensor signals
US5685038A (en) * 1995-05-18 1997-11-11 U.S. Controls Corporation Out-of-balance control for washing machine
US5743115A (en) * 1994-04-18 1998-04-28 Kabushiki Kaisha Toshiba Washing machine having a rinse mode
EP0984092A1 (fr) 1998-09-02 2000-03-08 Miele & Cie. GmbH & Co. Machine à laver avec dispositif pour déterminer le poids du linge
US6065170A (en) 1998-07-16 2000-05-23 Samsung Electronics Co., Ltd. Washing machine having a hybrid sensor and a control method thereof
DE20016793U1 (de) 2000-09-28 2000-12-21 RATIONAL AG, 86899 Landsberg Gargerät mit Massenerfassung
EP1087052A2 (fr) 1999-09-23 2001-03-28 Electrolux Zanussi S.p.A. Machine à laver avec dispositifs de régulation et de contrôle
KR20010087653A (ko) 2000-03-08 2001-09-21 구자홍 세탁기의 수평 조절 안내장치 및 안내방법
US20010025392A1 (en) * 2000-03-29 2001-10-04 Youn Sang Chul Communication-controlled washing system and method for operating the same
US6675818B1 (en) 1999-07-15 2004-01-13 Aweco Appliance Systems Gmbh & Co. Kg Dishwashing machine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088593A (en) * 1959-03-02 1963-05-07 Murray Corp Leveling and stabilizing apparatus
LU41943A1 (fr) * 1961-07-20 1962-08-27
US3227835A (en) * 1964-10-06 1966-01-04 Borg Warner Combination out-of-balance and safety spin switch
US4098098A (en) * 1977-05-11 1978-07-04 Mcgraw-Edison Company Out-of-balance and safety switch arrangement for washing machine
DE3812371A1 (de) * 1988-04-14 1989-10-26 Licentia Gmbh Verfahren zur messung der waescheverteilung, insbesondere bei waschmaschinen
DE3902908A1 (de) 1989-02-01 1990-08-02 Licentia Gmbh Programmgesteuertes haushaltsgeraet mit standfuessen
DE58904654D1 (de) * 1989-10-20 1993-07-15 Siemens Ag Induktiver bewegungssensor.
JPH0768080A (ja) * 1993-09-02 1995-03-14 Hitachi Ltd 全自動洗濯機
DE4415984A1 (de) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Halbleitersensor mit Schutzschicht
KR0165516B1 (ko) * 1996-02-26 1999-05-01 김광호 진동 검출 센서
US6394239B1 (en) * 1997-10-29 2002-05-28 Lord Corporation Controllable medium device and apparatus utilizing same
JP3124759B2 (ja) * 1998-07-14 2001-01-15 エルジー電子株式会社 洗濯機の水位/振動感知方法及び装置
US6470751B1 (en) * 1999-02-20 2002-10-29 Lg Electronics Inc. Vibration detecting apparatus and method thereof
US6530100B2 (en) * 2001-06-20 2003-03-11 Maytag Corporation Appliance spin control and method adaptable to floor structure
US6654975B2 (en) * 2001-08-24 2003-12-02 Maytag Corporation Appliance incorporating leveling display system

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294014A1 (fr) 1987-03-18 1988-12-07 Creda Limited Machine à laver avec dispositifs pour la détection du poids et dispositifs pour la détection du balourd
US4875533A (en) 1987-07-13 1989-10-24 Matsushita Electric Industral Co., Ltd. Automatic weight detecting device
DE4020898A1 (de) 1990-06-30 1992-01-02 Licentia Gmbh Geschirrspuelmaschine mit einem sprueharm
EP0539617A1 (fr) 1991-10-30 1993-05-05 Siemens Aktiengesellschaft Détection de balourds dans une machine à laver automatique
DE4219298A1 (de) * 1992-06-12 1993-12-16 Licentia Gmbh Trommelwaschmaschine o. dgl. mit einer Waschgutwiegeeinrichtung und Waschgut-Gewichtsanzeige
US5565655A (en) 1992-11-19 1996-10-15 Goldstar Co., Ltd. Method of detecting food weight in microwave oven by processing weight sensor signals
DE4243978C1 (de) 1992-12-23 1994-01-05 Ploechinger Heinz Dipl Ing Fh Neigungs- und Beschleunigungs-Sensor
US5743115A (en) * 1994-04-18 1998-04-28 Kabushiki Kaisha Toshiba Washing machine having a rinse mode
US5685038A (en) * 1995-05-18 1997-11-11 U.S. Controls Corporation Out-of-balance control for washing machine
US6065170A (en) 1998-07-16 2000-05-23 Samsung Electronics Co., Ltd. Washing machine having a hybrid sensor and a control method thereof
EP0984092A1 (fr) 1998-09-02 2000-03-08 Miele & Cie. GmbH & Co. Machine à laver avec dispositif pour déterminer le poids du linge
US6675818B1 (en) 1999-07-15 2004-01-13 Aweco Appliance Systems Gmbh & Co. Kg Dishwashing machine
EP1087052A2 (fr) 1999-09-23 2001-03-28 Electrolux Zanussi S.p.A. Machine à laver avec dispositifs de régulation et de contrôle
KR20010087653A (ko) 2000-03-08 2001-09-21 구자홍 세탁기의 수평 조절 안내장치 및 안내방법
US20010025392A1 (en) * 2000-03-29 2001-10-04 Youn Sang Chul Communication-controlled washing system and method for operating the same
US6539570B2 (en) * 2000-03-29 2003-04-01 Lg Electronics Inc. Communication-controlled washing system and method for operating the same
DE20016793U1 (de) 2000-09-28 2000-12-21 RATIONAL AG, 86899 Landsberg Gargerät mit Massenerfassung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EU Examination Report for Application No. 05112335.4.
M. Bugnacki et al,: "A Micromachined Thermal Accelerometer for Motion, Inclination, and Vibration Measurement", Sensors, Jun. 2001, pp. 98-104, vol. 18, No. 6, Helmers Publishing, US.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018628A1 (en) * 2004-09-11 2008-01-24 Bouncing Brain Innovations Season Two Subsidiary 13, Llc Attachable informational appliance
US20080066238A1 (en) * 2006-09-19 2008-03-20 Lg Electronics Inc. Apparatus and method for sensing vibration of washing machine
US7963128B2 (en) * 2006-09-19 2011-06-21 Lg Electronics Inc. Apparatus and method for sensing vibration of washing machine
US10760193B2 (en) 2011-08-15 2020-09-01 Whirlpool Corporation Method for real time determination during loading of volumetric load size in a laundry treating appliance
US11572648B2 (en) 2011-08-15 2023-02-07 Whirlpool Corporation Method for real time determination during loading of volumetric load size in a laundry treating appliance
US20130152310A1 (en) * 2011-12-16 2013-06-20 Whirlpool Corporation Method and apparatus for controlling the liquid filling in a laundry treating appliance
US9212445B2 (en) * 2011-12-16 2015-12-15 Whirlpool Corporation Method and apparatus for controlling the liquid filling in a laundry treating appliance
US10266982B2 (en) 2016-09-22 2019-04-23 Midea Group Co., Ltd. Laundry washing machine with dynamic damping force optimization
US10697108B2 (en) 2016-09-22 2020-06-30 Midea Group Co., Ltd. Laundry washing machine with dynamic damping force optimization

Also Published As

Publication number Publication date
US20100326140A1 (en) 2010-12-30
EP1419295A2 (fr) 2004-05-19
US7958755B2 (en) 2011-06-14
ATE382730T1 (de) 2008-01-15
ES2298385T3 (es) 2008-05-16
WO2003014455A2 (fr) 2003-02-20
DE50211474D1 (de) 2008-02-14
US20040168480A1 (en) 2004-09-02
WO2003014455A3 (fr) 2003-11-06
EP1643027A1 (fr) 2006-04-05
EP1419295B1 (fr) 2008-01-02
US20090211308A1 (en) 2009-08-27
US7845198B2 (en) 2010-12-07
DE10139388A1 (de) 2003-02-27
KR100804952B1 (ko) 2008-02-20
KR20040021691A (ko) 2004-03-10

Similar Documents

Publication Publication Date Title
US7958755B2 (en) Linen treatment device with imbalance monitoring, level monitoring, or load monitoring
CN101570928B (zh) 用于控制洗涤烘干机的烘干过程的方法及相应的洗涤烘干机
US8756956B2 (en) Laundry treatment device
US20120089258A1 (en) Laundry machine
CN101792963B (zh) 洗衣机及其操作方法
EP3348694B1 (fr) Procédé de commande d'un appareil de blanchisserie
US20070193310A1 (en) System and process for detecting a load of clothes in an automatic laundry machine
KR20180039601A (ko) 세탁기
US6141888A (en) Monitoring wood sample weight with mechanical force proportioning
US20110219551A1 (en) Washing machine and method for controlling washing machine
US5906020A (en) Out of balance sensor and control method for a textile processing machine
KR20100082448A (ko) 세탁기
JP2018175391A (ja) 洗濯機
EP1342826A1 (fr) Système pour le contrôle du balourd dans des machines à linge
TR201816476T4 (tr) Bir basınç sensörüne sahip olan bir çamaşır yıkama makinesinin işletilmesi için metot ve bunun için uygun olan çamaşır yıkama makinesi.
EP1882769B1 (fr) Machine à laver avec un capteur de mouvement
US6665625B2 (en) Energy-based thresholds applied dynamic balancing
US10753030B2 (en) Washing machine appliances and methods of using counterweight amplitude to limit basket speed
EP1264925A2 (fr) Machine à laver avec un capteur de poids
KR20230091480A (ko) 의류처리장치 및 의류처리장치의 제어방법
KR102713775B1 (ko) 의류처리장치의 제어방법
US11332867B2 (en) Washing machine appliances and methods of using detected motion to limit bearing forces
JP2018050910A (ja) 洗濯機のサービスシステム
JPH0889690A (ja) 洗濯機
KR20060031067A (ko) 드럼세탁기

Legal Events

Date Code Title Description
AS Assignment

Owner name: BSH BOSCH UND SIEMENS HAUSGERATE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LORENZ, TILMANN;REITMEIER, WILLIBALD;REEL/FRAME:014919/0741;SIGNING DATES FROM 20040225 TO 20040309

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BSH HAUSGERAETE GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:BSH BOSCH UND SIEMENS HAUSGERAETE GMBH;REEL/FRAME:035624/0784

Effective date: 20150323

AS Assignment

Owner name: BSH HAUSGERAETE GMBH, GERMANY

Free format text: CORRECTIVE ASSIGNMENT TO REMOVE USSN 14373413; 29120436 AND 29429277 PREVIOUSLY RECORDED AT REEL: 035624 FRAME: 0784. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:BSH BOSCH UND SIEMENS HAUSGERAETE GMBH;REEL/FRAME:036000/0848

Effective date: 20150323

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170526