US7304680B2 - Method and device for correcting an image, particularly for occupant protection - Google Patents
Method and device for correcting an image, particularly for occupant protection Download PDFInfo
- Publication number
- US7304680B2 US7304680B2 US10/469,782 US46978204A US7304680B2 US 7304680 B2 US7304680 B2 US 7304680B2 US 46978204 A US46978204 A US 46978204A US 7304680 B2 US7304680 B2 US 7304680B2
- Authority
- US
- United States
- Prior art keywords
- source
- address
- target
- image
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims description 35
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 230000015654 memory Effects 0.000 claims description 39
- 238000013507 mapping Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 6
- 230000009466 transformation Effects 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 2
- 230000003936 working memory Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/58—Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/81—Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/2628—Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
Definitions
- the present invention relates to a method and a device for correcting an image, particularly for occupant protection systems.
- Microsoft Research Technical Report MSR-TR-98-71 “A Flexible New Technique for Camera Calibration” discloses a method of compensating for image distortions in which a mathematical computing rule is used to map a source image recorded by a camera to a target image.
- the computing rule calculates the corrected target image from the source image loaded into a working memory.
- This method suffers from two principal drawbacks, namely that a large memory capacity is needed to store the source image and the calculation requires considerable computing capacity.
- the present invention compensates for image distortions of an image caused by a camera system quickly and cost-effectively.
- an image distorted by the optics of a camera system provides a source image in the image sensor of the camera system, which source image is distorted in different ways depending on the quality of the optics, the focal distance of the camera system and other optical parameters.
- the source image is broken down into individual source pixels. Each individual source pixel is arranged in a predefined position in the source image and the gray scale value of each individual source pixel as recorded by the image sensor is stored at a predefined source pixel address in the image sensor.
- the source image is mapped to a target image using a predefined imaging rule, the result being a corrected image.
- the target image comprises target pixels, the gray scale value of each of which is stored under a target pixel address in a target memory.
- One source pixel is mapped in the process to no, one or more than one target pixel.
- the gray scale value of the source pixel address is stored in the process under the target pixel address.
- the imaging rule for correcting a source image in a target image is preferably stored in tabular form in a memory of a microcontroller. This advantageously enables rapid processing of the imaging rule. There is, furthermore, no need for temporary storage of the source image, which considerably reduces the memory capacity required.
- Another embodiment of the invention provides for the source pixel to be mapped directly to at least one target pixel without temporary storage as the source image is being read from the image sensor. This method advantageously not only reduces the memory capacity required, but also corrects the source image without delay, which is essential in particular in occupant protection systems.
- Mapping the source image to the target image using the predefined imaging rule produces a target image having fewer pixels than the source image. This means that there are some source pixels that are not mapped to the target image.
- the image sensor generally records more information than is actually necessary. This information is filtered out by the imaging rule, so the method advantageously filters and reduces the data volume. All that then has to be stored in the microcontroller that serves as the evaluation unit is the target image generated by the imaging rule. Once again this reduces the memory capacity required in the evaluation unit.
- the microcontroller and/or evaluation unit furthermore includes a table, also referred to below as a rectifying table, which table in turn includes the imaging rule required for the correction method.
- This table include the addresses of the source pixels that are to be mapped to the target pixels, which source pixels are also referred to below as “selected source pixels” having a “selected source pixel address”.
- the microcontroller in the evaluation unit triggers all source pixel addresses for the source pixels in the image memory sequentially.
- the source pixel addresses are selected using a pointer, which is incremented by means of a counter.
- Each “selected source pixel address” is allocated to at least one target pixel address of a target pixel in the table.
- the target addresses read from the table are filled with the gray scale value of the corresponding selected source pixel address.
- the use of a table for the imaging rule reduces the computing capacity required for the evaluation unit.
- the memory capacity required is also reduced, since only a target image having a smaller number of pixels is stored in the evaluation unit.
- the corrected target image is, moreover, available virtually immediately once the source image has been read from the image sensor.
- the image information of the source image is more closely packed in the edge regions of the source image than it is in the center of the image.
- the gray scale value of at least one selected source pixel in the edge region is therefore distributed to more than one target pixel or stored in the target memory.
- An additional table including information required for multiple assignment and in particular of the target pixel addresses allocated to one source pixel address is used in order to permit smooth and uninterrupted incrementing of the pointer for reading the rectifying table, which includes one target pixel address per selected source pixel address.
- the additional table is also referred to below as the reference table. This reference table is preferably arranged directly below the rectifying table in the memory.
- Each cycle (reading cycle) of reading a source pixel by the incrementing counter includes cycles, referred to below as reference cycles, in which no selected source pixel or one unselected source pixel is read.
- Such a reference cycle accesses the reference table that includes the additional target pixel addresses for multiple assignments not included in the rectifying table.
- the gray scale value of the selected source pixel is in this way allocated to multiple target pixels and stored in the target memory in a number of successive reference cycles, which are often interrupted by reading cycles. Since this happens in the “pauses” or “reference cycles” and the number of target pixels is smaller than the number of source pixels despite the multiple assignment, the image correction process is complete as soon as the entire source image has been read from the image sensor by means of the incrementing counter.
- the correction of the source image is thus advantageously carried out in real-time.
- the reduced time and memory capacity required is particularly noticeable when using two image sensors to generate a stereo image.
- the method is preferably realized in an FBGA or ASIC.
- An implementation in a microprocessor is also conceivable in a further embodiment.
- the source image is the raw image supplied directly from the camera.
- the level and nature of the distortion affecting this image depend on the optics used.
- the source pixel is a picture element in the source image.
- the source pixel address is an address of a specific picture element in the source image.
- the picture elements are numbered linearly. It is perfectly straightforward to convert between image coordinates and source pixel address.
- the range of values for the source pixel address space is from zero to (number of picture elements in the source image) minus one.
- the target image is the image after rectifying or correction.
- This image is the corrected image, in which the pixel format or pixel address space is smaller than the format of the source image or source image address space.
- the target pixel is one picture element in the target image.
- the target pixel address is the address of a specific picture element in the target image.
- the picture elements are numbered linearly. It is perfectly straightforward to convert between image coordinates and target pixel address.
- the range of values for the target pixel address space is from zero to (number of picture elements in the target image) ⁇ 1.
- the rectifying table is the table in which the corresponding target pixel address is indicated for the source pixel address.
- the number of entries is equal to the number of target addresses.
- the number of target addresses is somewhat larger than the number of source pixel addresses in the case of multiple assignments. Rectification is carried out by working through this table.
- the reference table is a table that stores the target pixel addresses that are called up by multiple assignment of a source pixel address to more than one target pixel address.
- the content of the reference table includes a reference address and a target address as target pixel address.
- FIG. 1 shows the interior of a vehicle having an optical image capture system.
- FIG. 2 a shows a source image distorted by an optical system.
- FIG. 2 b shows the source image from FIG. 2 a corrected using an imaging rule.
- FIG. 3 shows an imaging rule that converts a source image into a corrected target image.
- FIG. 4 shows the pixel address space of an image with the coordinates of the pixel address arranged in the form of a matrix.
- FIG. 5 a shows an imaging table (rectifying table) for allocating source pixel addresses to target pixel addresses.
- FIG. 5 b shows an additional table (reference table) for allocating a source pixel address to more than one target pixel address.
- FIG. 6 shows a functional circuit diagram with which to implement the method for correcting an image recorded by an image sensor.
- FIG. 7 a shows a flow diagram of a method for correcting a source image.
- FIG. 7 b shows an additional flow diagram for correcting a source image.
- FIG. 1 shows a schematic representation of a vehicle 1 containing a vehicle seat 2 having a seat cushion 23 , a seat backrest 21 and, located thereon, a headrest 22 .
- an optical camera system 7 , 71 , 72 , 73 , 74 Arranged on the inside roof lining of the vehicle roof, preferably between the two vehicle seats, is an optical camera system 7 , 71 , 72 , 73 , 74 with which a predefined image area Bi of the vehicle interior can be captured. It is preferable for two image sensors 72 , 73 to capture the image area, with the vehicle seat 2 and an object 9 that may optionally be located thereon, through a camera optical system.
- the object 9 in FIG. 1 is shown as a schematic representation of a vehicle occupant.
- the objects 9 may in further embodiments be child seats, vehicle occupants, articles, etc. or the vehicle seat 2 may be empty.
- a dashboard 5 Arranged in the front part of the vehicle 1 below the wind-screen 4 is a dashboard 5 under which is located a foot well 8 , which provides space for the feet and legs of the occupant 9 and includes an airbag 26 .
- the foot well 8 is bounded at the bottom by the vehicle floor 6 , on which seat position adjustment rails 24 are arranged. Brackets connect the vehicle seat 2 to the seat position adjustment rails 24 in the area beneath the seat cushion 23 .
- the vehicle seat 2 is thus arranged such that it can be adjusted in the X direction, that is to say the direction of travel.
- the camera system 7 preferably contains two image sensors 72 , 73 , a light source 71 , which light source is preferably fitted with a number of light-emitting diodes, and an evaluation unit 74 .
- the optical axes of the two image sensors 72 , 73 have a predefined separation L. This makes it possible using stereo image processing methods to capture range information concerning the objects in the predefined image area Bi from the images recorded by the two image sensors 72 , 73 .
- the camera 7 preferably contains the two image sensors 72 , 73 and the light source 71 in a compact housing.
- the evaluation unit 74 is preferably arranged remote from the compact housing and connected thereto by a data link in order to keep the camera system 7 , which is considered to be an inconvenience by the designers of vehicle interiors, as small as possible. It is, however, entirely possible to integrate the evaluation unit 74 (ECU) into the camera housing of the camera 7 .
- the evaluation unit 74 has a target memory 105 in which the corrected target image can be stored.
- a further embodiment provides for there to be just one image sensor 71 or 73 , which reduces costs.
- the required range information is preferably determined in this configuration by means of light propagation time measurement or some other image processing method.
- FIG. 2 a shows a source image S (original image) distorted by the optical system having points P 1 , P 2 , P 3 of different sizes.
- the source image S is the image recorded by one of the image sensors 72 , 73 in FIG. 1 via a distorting camera optical system.
- the picture elements P 1 , P 2 , P 3 which were originally arranged in the form of a matrix, have been distorted by the wide-angle characteristic of the camera optical system (fisheye effect).
- FIG. 2 b shows a target image T that emerges after correction of the source image S.
- the picture elements P 1 , P 2 , P 3 from the original distorted source image S can be seen in the target image arranged in an orthogonal matrix.
- FIG. 3 shows a schematic representation of the imaging rule for converting a source image S into a corrected target image T.
- the source image S distorted by an image sensor 72 , 73 ( FIG. 1 ) via a camera optical system is broken down into source pixels N 1 , S 1 to S 18 , NI, NX in the form of a matrix.
- the source image has twenty six (26) columns in the X 1 direction (horizontal) and eighteen (18) rows in the Y 1 direction (vertical). This combination spans a source pixel address space (X 1 ,Y 1 ).
- Certain predefined source pixels S 1 to S 18 each of which is arranged under a predefined source pixel address (X 1 ,Y 1 ), are selected from the source pixels of the source image S.
- a corresponding gray scale value recorded by the image sensor the value of which gray scale value depends on the brightness of the corresponding source pixel, is stored under each source pixel address.
- the target image T has a target pixel address space (X 2 ,Y 2 ) comprising 18 columns (X 2 ) and 12 rows (Y 2 ).
- the gray scale value of the source pixel S 1 is stored under the target pixel address of the target pixel T 1 .
- the allocation of the selected source pixel S 1 to the target pixel T 1 is unambiguous.
- the source pixel N 1 lies outside the camera system image area Bi that is of interest for further image processing. This can be seen in FIG. 2 a at the upper left edge of the image, where the source pixel N 1 is located within a black field.
- the image sensor 72 , 73 sees no usable image at this source pixel address (2;2), as the distortion of the camera optical system drags the image information toward the center of the image and the black edge of the source image S includes no image information.
- Row 1 of the target image T represents the corrected image row produced from the curvilinear image row B in the source image S.
- the source image S includes selected source pixels S 1 to S 18 and unselected source pixels N 1 , Ni.
- the selected source pixels S 1 to S 18 are mapped to the target pixel address space of the target image T.
- the unselected source pixels NI are not mapped to the target image.
- the target image T is thus compressed by two pixels in the horizontal (X) direction as compared with the source image S.
- the distortion in the source image S means that the relevant points shown at its edges are very much compressed, as is evident from the different distances Di and Dr in FIG. 2 , so the imaging rule decompresses, corrects and/or stretches the image by mapping the source pixel S 18 to two target pixels T 18 , T 18 * located one above the other.
- the target pixel T 18 is located at address (18;1) and the target pixel T 18 * is located at address (18;2).
- the imaging rule turns the source image S having a pixel address space (X 1 ;Y 1 ) into a target image T having a smaller pixel address space (X 2 ;Y 2 ). Redundant information is filtered out of the source image S and this reduction in data volume means that less memory capacity is needed to store the target image T.
- the source pixel Nx (25;17), for example, is an unselected source pixel that is not contained in the imaging rule and is therefore not stored in the target memory 105 (see FIG. 1 ) for the target image T as “memory-consuming ballast”.
- FIG. 4 shows a 7 ⁇ 16 pixel sample image to illustrate the management of the image pixels of the source image S and target image T and also the concept of a “pixel address space”.
- This address allocation is used to read the gray scale values of an image sensor 72 , 73 ( FIG. 1 ).
- the address Ad is incremented continuously by means of a counter and the corresponding gray scale value for each address Ad is read from the image sensor 72 , 73 .
- the content of the image sensor 72 , 73 is thus read row-by-row.
- the counter content including the address Ad is also referred to below as the Counter_Source.
- the imaging rule for correcting the source image S is processed with the aid of the table TA from FIG. 5 a .
- the table TA also referred to below as the rectifying table TA, has three columns including the table address TBA, the source pixel address SP and the target pixel address TP respectively.
- the table TA is sorted with the source pixel addresses in ascending order. No source pixel address is repeated.
- the table address TBA includes pointer addresses A, A+1, . . . , A+17 of a pointer that indicates the respective source pixel address SP of the source pixels S 1 to S 18 in the second column and the respective target pixel address TP of the target pixels T 1 to T 18 in the third column.
- a cyclically incrementing counter having the counter content “Counter_Target” counts up through the table addresses TBA as is described in the figures that follow.
- the rectifying table TA outputs the source pixel address SP and associated target pixel address TP corresponding to the current pointer address. The rectifying table TA thus assigns each “selected” or “predefined” source pixel address SP to precisely one target pixel address TP.
- One source pixel address SP is, however, allocated to more than one target pixel address TP in the case of the multiple assignments described previously.
- These multiple assignments or multiple mappings are made using an additional table TB shown in FIG. 5 b and also referred to below as the reference table TB.
- the reference table TB assigns one source pixel address to multiple target pixel addresses; source pixel S 18 , for example, is assigned to both of target pixels T 18 * and T 18 **.
- the reference table TB has three columns headed “Table address TBB”, “Source address SPB” and “Target address TPB”.
- the first column includes table addresses TBB that refer to corresponding source addresses SPB in the second column and associated target addresses TPB in the third column.
- a reference address in the column TPB for example the reference address 1 of the target pixel T 18 , identifies a target pixel address that also occurs in the rectifying table TA.
- a reference address is a source address, for example the source address 1 of the column SPB, that likewise occurs in the rectifying table TA.
- a target address in the column TPB for example the target addresses 1 . 1 and 1 . 2 of target pixels T 18 * and T 18 **, identifies a target pixel address that is formed by multiple assignments of one source pixel address to multiple target pixel addresses and does not occur in the rectifying table.
- a target address of this nature is assigned the source address “0” in the column SPB.
- the reference address is thus distinguished from the target address in the method described in greater detail below by means of the source address SPB value assigned in each case.
- the pointer B is, for example, allocated a source address 1 and a reference address 1 .
- This source address 1 indicates further target addresses 1 . 1 , 1 . 2 , which are contained in the following rows B+1, B+2, in addition to the reference address 1 also included in the table TA.
- the table TB is thus used for the assignment of a source address to more than one target address as explained in greater detail below.
- FIG. 6 shows the method for correcting a source image S using a tabular imaging rule TA with reference to a functional circuit diagram.
- the function blocks may take the form of software, hardware or a combination of software and hardware.
- FIG. 6 shows an imaging rule for correcting an image in which, for the sake of clarity, one-to-one assignments are made. This means that each selected source pixel S from the reference table TA is allocated to precisely one target pixel T.
- a clock generator 100 sequentially increments a counter 101 having the counter content “Counter_Source”.
- the output of the counter 101 is connected to the address input Ad of an image sensor 72 , 73 having a source pixel address space 102 arranged in the form of a matrix.
- the counter content “Counter_Source” corresponds to the address Ad from FIG. 4 .
- the gray scale value GREY of the selected address Ad of the image sensor 72 , 73 is output at the output of the image sensor 72 , 73 .
- the rectifying table TA shown in FIG. 6 is already known from FIG. 5 a and is supplied by an additional counter 104 having the counter content “Counter_Target”.
- the additional counter 104 indicates the pointer A of the table address TBA.
- the source pixel address SP (X 1 ;Y 1 ) of the source pixel concerned and the target pixel address TP (X 2 ;Y 2 ) of the target pixel concerned are present in each case at the output of the table.
- a comparator 103 compares the address Ad present at the image sensor 72 , 73 at a given moment with the source image address SP (X 1 ;Y 1 ).
- an enable signal is sent to the target memory 105 that includes the target image address space.
- the target memory 105 receives the gray scale value GREY of the source pixel concerned, which gray scale value is present in the image sensor under the instantaneous address Ad, and stores it under the target pixel address TP 1 that it obtains from the rectifying table TA.
- the enable signal E continues to increment the counter content “Counter_Target” of the counter 104 for the next read operation so that the next selected source pixel address SP for comparison with the next instantaneous address Ad is available at the input of the comparator 103 .
- the gray scale value GREY of a source pixel Si which is stored under the address Ad (X 1 , Y 1 ), is thus stored under the target image address TP 1 (X 2 , Y 2 ) in the target memory 105 .
- the counter 101 is incremented so that the entire source image address space 102 of the image sensor 72 , 73 is read and the corresponding selected source pixels Si are mapped in the target image address space of the target memory 105 .
- the gray scale value GREY of the selected source pixel is stored in the process under the mapped target address TP 1 .
- FIG. 7A shows a flow diagram F 1 in which the method for correcting a source image S is explained.
- the comparator 103 checks in the next step to determine whether the instantaneous address Ad (Counter_Source) matches the source pixel address (Counter_Target) present in rectifying table TA. If the result of this check is negative, the instantaneous address Ad of the image sensor 72 , 73 is assigned no mapping instruction from the source pixel address to the target pixel address. The target memory 105 is therefore not activated by means of the enable signal and the counter 104 (Counter_Target) is not incremented. Counter 101 having the counter content “Counter_Source” is incremented, however, in order that the next source pixel in the image memory can be read.
- the current gray scale value GREY of the source pixel, for example S, recorded under the image address AD is stored in the target memory 105 under the target pixel address TP.
- the target pixel address TP required for this purpose is made available from the rectifying table TA.
- the enable signal of the comparator 103 and the clock generator 100 ensure that the method, which is preferably realized in a microcontroller, an ASIC and/or an FPGA, is time-synchronized.
- the counter 101 (Counter_Source) is also incremented so that the gray scale value of the next source pixel S in the image sensor 72 , 73 can be read.
- the read cycle for a new source image begins once a check has been made to confirm that the last address in the address space of the image sensor has been reached.
- the imaging rule for correcting a source image S by mapping individual source pixels Si to target pixels Ti shown by way of example in FIG. 3 is thus implemented using the method according to FIG. 7 a for the entire source image S.
- FIG. 7 b shows an additional flow diagram F 2 that, in contrast to the flow diagram F 1 from FIG. 7 a , is also able to undertake the assignment of one source pixel address SP of one source pixel to more than one target pixel address TP. This is done using both the rectifying table TA from FIG. 5 a and an additional reference table TB from FIG. 5 b that includes the multiple assignments.
- the reference table TA preferably follows immediately after the rectifying table TB in the read-only storage of the evaluation unit 74 .
- the method shown in the flow diagram F 2 begins after startup and the associated initialization routines.
- the counter (Counter_Target) that indicates the table address TBA in the reference table TA is set to zero.
- the pointer B in the table address TBB of the table TB is set to the first source address or reference address.
- the first reference address here is the target pixel address to which the first source pixel address with multiple assignment is allocated, which equates in FIG. 5 b to the source address 1 .
- a state machine is, moreover, assigned a status or state “Read_Ref_Addr” intended to lead to the subsequent reading of the next value B:+B+1 in the reference table TB.
- the source pixel address “Counter_Target” set by the counter 104 and output by the table TA is compared in the next step with the instantaneous source pixel address “Counter_Source” set by the other counter 101 . If these two addresses are identical (“Counter_Source equals Counter_Target”), the gray scale value GREY of the currently selected source pixel is stored under the target pixel address in the target memory. This target pixel address corresponds to the reference address from the reference table TB in the case of multiple assignments.
- the instantaneous address for the rectifying table TA (table address A) is incremented by one unit.
- the method steps that follow the state assignment use the table TB to check whether the current instance is a case of multiple assignment of one source pixel address to more than one target pixel address. If the answer is affirmative, the gray scale value GREY of the target pixel address concerned, which is also referred to below as the reference address “Ref_Addr”, is read in the following read cycles and copied to the relevant additional target addresses 1 . 1 , 1 . 2 (see FIG. 5 b ).
- This copying operation requires a total of three no-read cycles, that is to say three runs through the steps that follow the state query.
- the instantaneous value of the state at the start of a new image was set to “Read_Ref_Addr”. This means that the state query selects the “Read_Ref_Addr” branch, which provides for the next reference address to be read from table TB in a first step if the instantaneous source pixel address is larger than the source pixel address of the reference pixel read from the reference table TB.
- the “Ref_Pixel_Flag” is reset.
- the “Ref_Pixel_Flag” indicates, in its reset state, that the gray scale value GREY may be read from the target memory at the position of the reference address “Ref_Addr”.
- This gray scale value GREY was stored in the target memory as a result of a “Yes” response to the preceding “Counter_Target equals Counter_Source” query.
- the flag “Ref_Pixel_Flag” is used to query whether the reference gray scale value GREY has already been read from the target memory at the position of the reference address “Ref_Addr” in the preceding cycle. If the reference gray scale value GREY has not already been read from the target memory, this is now done.
- the next target address “Tar_Addr” belonging to the instantaneous reference address “Ref_Addr” is read.
- the target address 1 . 1 from the table TB ( FIG. 5 b ) that belongs to the reference address 1 is, for example, read under table address B+1.
- a next state “Write_Ref_Pixel” is then assigned, which state triggers the writing of this target address TAR_ADDR 1 . 1 to the target memory in the next cycle.
- next state assignment indicates the state “Write_Ref_Pixel”
- the gray scale value GREY of the reference address read in one of the preceding cycles is written to the target memory at the position of the target address TAR_ADDR.
- a check is then made to determine whether the next value in the reference table TB is a reference address or a target address. This is done by evaluating the source address in the column SPB. A reference address is assigned to a source address, whereas a target address is assigned a fixed value, for example zero (“0”). This makes it possible to ascertain, by incrementing the pointer B in the table address TBB, whether a reference address or target address is present as the next value in the table TB.
- the state is set to “Read_Ref_Pixel” so that the next target address Tar_Addr belonging to the instantaneous reference address Ref_Addr is read in the next read cycle. If, on the other hand, the next value in the table TB is a reference address, the state is set to “Read_Ref_Addr”, which results in the next reference address being read from the table TB for the subsequent multiple assignment in the next cycle.
- the invention is preferably applied in occupant protection systems, mobile telephones or web cameras.
- a further embodiment of the invention provides for the controlled distortion (morphing) of images to create desired optical effects, for example in video cameras.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2001/000825 WO2002078346A1 (de) | 2001-03-05 | 2001-03-05 | Verfahren und vorrichtung zum entzerren eines bildes, insbesondere für insassenschutzsysteme |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040202380A1 US20040202380A1 (en) | 2004-10-14 |
US7304680B2 true US7304680B2 (en) | 2007-12-04 |
Family
ID=5648222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/469,782 Expired - Fee Related US7304680B2 (en) | 2001-03-05 | 2002-10-03 | Method and device for correcting an image, particularly for occupant protection |
Country Status (6)
Country | Link |
---|---|
US (1) | US7304680B2 (de) |
EP (1) | EP1368970B1 (de) |
JP (1) | JP2004530202A (de) |
KR (1) | KR100910670B1 (de) |
DE (1) | DE50107083D1 (de) |
WO (1) | WO2002078346A1 (de) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070115384A1 (en) * | 2005-11-24 | 2007-05-24 | Olympus Corporation | Image processing apparatus and method for preferably correcting distortion aberration |
US20070132863A1 (en) * | 2005-12-14 | 2007-06-14 | Sony Corporation | Image taking apparatus, image processing method, and image processing program |
US7811011B2 (en) | 2006-02-06 | 2010-10-12 | Leopold Kostal Gmbh & Co. Kg | Camera arrangement behind an inclined pane |
US8405726B2 (en) | 2002-01-31 | 2013-03-26 | Donnelly Corporation | Vehicle accessory system |
US20130155296A1 (en) * | 2011-12-14 | 2013-06-20 | Samsung Electronics Co., Ltd. | Imaging apparatus and distortion compensation method |
US8481916B2 (en) | 1998-01-07 | 2013-07-09 | Magna Electronics Inc. | Accessory mounting system for a vehicle having a light absorbing layer with a light transmitting portion for viewing through from an accessory |
US8513590B2 (en) | 1998-01-07 | 2013-08-20 | Magna Electronics Inc. | Vehicular accessory system with a cluster of sensors on or near an in-cabin surface of the vehicle windshield |
US8531278B2 (en) | 2000-03-02 | 2013-09-10 | Magna Electronics Inc. | Accessory system for vehicle |
US8531279B2 (en) | 1999-08-25 | 2013-09-10 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US8534887B2 (en) | 1997-08-25 | 2013-09-17 | Magna Electronics Inc. | Interior rearview mirror assembly for a vehicle |
US8570374B2 (en) | 2008-11-13 | 2013-10-29 | Magna Electronics Inc. | Camera for vehicle |
US8686840B2 (en) | 2000-03-31 | 2014-04-01 | Magna Electronics Inc. | Accessory system for a vehicle |
US8692659B2 (en) | 1998-01-07 | 2014-04-08 | Magna Electronics Inc. | Accessory mounting system for vehicle |
US9090213B2 (en) | 2004-12-15 | 2015-07-28 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US9233645B2 (en) | 1999-11-04 | 2016-01-12 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US9434314B2 (en) | 1998-04-08 | 2016-09-06 | Donnelly Corporation | Electronic accessory system for a vehicle |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008077132A1 (en) | 2006-12-19 | 2008-06-26 | California Institute Of Technology | Imaging model and apparatus |
JP2010530087A (ja) * | 2006-12-19 | 2010-09-02 | 創太 清水 | 画像処理プロセッサ |
JPWO2008126227A1 (ja) * | 2007-03-29 | 2010-07-22 | 富士通マイクロエレクトロニクス株式会社 | 表示制御装置、情報処理装置、および表示制御プログラム |
JP5008139B2 (ja) * | 2007-11-26 | 2012-08-22 | 株式会社リコー | 画像撮像装置 |
JP4911628B2 (ja) * | 2008-01-28 | 2012-04-04 | 株式会社リコー | 画像処理方法、画像処理装置及び画像撮像装置 |
JP5062846B2 (ja) * | 2008-07-04 | 2012-10-31 | 株式会社リコー | 画像撮像装置 |
JP2012523783A (ja) * | 2009-04-13 | 2012-10-04 | テセラ・テクノロジーズ・ハンガリー・ケイエフティー | 軌跡に基づいて画像センサーを読み出すための方法とシステム |
DE102009028743B4 (de) | 2009-08-20 | 2011-06-09 | Robert Bosch Gmbh | Verfahren und Steuergerät zur Entzerrung eines Kamerabildes |
JP5376313B2 (ja) * | 2009-09-03 | 2013-12-25 | 株式会社リコー | 画像処理装置及び画像撮像装置 |
DE102011007644A1 (de) | 2011-04-19 | 2012-10-25 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Bestimmung von zur Entzerrung eines Bildes geeigneten Werten und zur Entzerrung eines Bildes |
US20140125802A1 (en) | 2012-11-08 | 2014-05-08 | Microsoft Corporation | Fault tolerant display |
EP3220099B1 (de) | 2014-11-13 | 2019-11-06 | Olympus Corporation | Kalibriervorrichtung, kalibrierverfahren, optische vorrichtung, bildgebungsvorrichtung projektionsvorrichtung, messsystem und messverfahren |
JP6805854B2 (ja) * | 2017-02-02 | 2020-12-23 | 株式会社Jvcケンウッド | 車載撮影装置及び映り込み抑制方法 |
US10657396B1 (en) * | 2019-01-30 | 2020-05-19 | StradVision, Inc. | Method and device for estimating passenger statuses in 2 dimension image shot by using 2 dimension camera with fisheye lens |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450718A1 (de) | 1990-04-02 | 1991-10-09 | Koninklijke Philips Electronics N.V. | Anordnung zum geometrischen Korrigieren eines verzerrten Bildes |
US5067019A (en) * | 1989-03-31 | 1991-11-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Programmable remapper for image processing |
US5185667A (en) * | 1991-05-13 | 1993-02-09 | Telerobotics International, Inc. | Omniview motionless camera orientation system |
US5200818A (en) * | 1991-03-22 | 1993-04-06 | Inbal Neta | Video imaging system with interactive windowing capability |
US5345542A (en) * | 1991-06-27 | 1994-09-06 | At&T Bell Laboratories | Proportional replication mapping system |
US5384588A (en) | 1991-05-13 | 1995-01-24 | Telerobotics International, Inc. | System for omindirectional image viewing at a remote location without the transmission of control signals to select viewing parameters |
US5508734A (en) * | 1994-07-27 | 1996-04-16 | International Business Machines Corporation | Method and apparatus for hemispheric imaging which emphasizes peripheral content |
US5528194A (en) * | 1991-05-13 | 1996-06-18 | Sony Corporation | Apparatus and method for performing geometric transformations on an input image |
JPH09202180A (ja) * | 1996-01-29 | 1997-08-05 | Niles Parts Co Ltd | 車載カメラ装置 |
US5691765A (en) * | 1995-07-27 | 1997-11-25 | Sensormatic Electronics Corporation | Image forming and processing device and method for use with no moving parts camera |
US5796426A (en) * | 1994-05-27 | 1998-08-18 | Warp, Ltd. | Wide-angle image dewarping method and apparatus |
US5815199A (en) | 1991-01-31 | 1998-09-29 | Matsushita Electric Works, Ltd. | Interphone with television |
US5818527A (en) * | 1994-12-21 | 1998-10-06 | Olympus Optical Co., Ltd. | Image processor for correcting distortion of central portion of image and preventing marginal portion of the image from protruding |
JPH10271490A (ja) | 1997-03-24 | 1998-10-09 | Yazaki Corp | 車両後方監視装置 |
WO1999012349A1 (en) | 1997-09-04 | 1999-03-11 | Discovery Communications, Inc. | Apparatus for video access and control over computer network, including image correction |
US5990941A (en) * | 1991-05-13 | 1999-11-23 | Interactive Pictures Corporation | Method and apparatus for the interactive display of any portion of a spherical image |
US5999660A (en) * | 1995-07-26 | 1999-12-07 | California Institute Of Technology | Imaging system for correction of perceptual distortion in wide angle images |
US6043837A (en) * | 1997-05-08 | 2000-03-28 | Be Here Corporation | Method and apparatus for electronically distributing images from a panoptic camera system |
US6211911B1 (en) * | 1994-10-14 | 2001-04-03 | Olympus Optical Co., Ltd. | Image processing apparatus |
JP2001145012A (ja) * | 1999-11-12 | 2001-05-25 | Toyota Autom Loom Works Ltd | 画像歪補正装置 |
US6538691B1 (en) * | 1999-01-21 | 2003-03-25 | Intel Corporation | Software correction of image distortion in digital cameras |
US6618081B1 (en) * | 1996-11-28 | 2003-09-09 | Minolta Co., Ltd. | Image acquisition device removing distortion in image signals |
US6704434B1 (en) * | 1999-01-27 | 2004-03-09 | Suzuki Motor Corporation | Vehicle driving information storage apparatus and vehicle driving information storage method |
US20040169726A1 (en) * | 2001-07-20 | 2004-09-02 | 6115187 Canada Inc. | Method for capturing a panoramic image by means of an image sensor rectangular in shape |
US20040234100A1 (en) * | 2001-05-25 | 2004-11-25 | Horst Belau | Device and method for the processing of image data |
US6833843B2 (en) * | 2001-12-03 | 2004-12-21 | Tempest Microsystems | Panoramic imaging and display system with canonical magnifier |
US20050007478A1 (en) * | 2003-05-02 | 2005-01-13 | Yavuz Ahiska | Multiple-view processing in wide-angle video camera |
US6920234B1 (en) * | 1999-05-08 | 2005-07-19 | Robert Bosch Gmbh | Method and device for monitoring the interior and surrounding area of a vehicle |
US6937282B1 (en) * | 1998-10-12 | 2005-08-30 | Fuji Photo Film Co., Ltd. | Method and apparatus for correcting distortion aberration in position and density in digital image by using distortion aberration characteristic |
US7058235B2 (en) * | 2001-02-09 | 2006-06-06 | Sharp Kabushiki Kaisha | Imaging systems, program used for controlling image data in same system, method for correcting distortion of captured image in same system, and recording medium storing procedures for same method |
US20070025636A1 (en) * | 2003-06-02 | 2007-02-01 | Olympus Corporation | Image processing device |
US7202888B2 (en) * | 2002-11-19 | 2007-04-10 | Hewlett-Packard Development Company, L.P. | Electronic imaging device resolution enhancement |
US20070115384A1 (en) * | 2005-11-24 | 2007-05-24 | Olympus Corporation | Image processing apparatus and method for preferably correcting distortion aberration |
US7224392B2 (en) * | 2002-01-17 | 2007-05-29 | Eastman Kodak Company | Electronic imaging system having a sensor for correcting perspective projection distortion |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853707A (ja) * | 1981-09-25 | 1983-03-30 | Toshiba Corp | 三次元距離測定装置におけるテレビカメラの画像歪補正方式 |
JP2658642B2 (ja) * | 1991-07-31 | 1997-09-30 | 松下電工株式会社 | テレビインターホン |
JP3033204B2 (ja) * | 1991-01-31 | 2000-04-17 | 松下電工株式会社 | テレビインターホン |
JP3599255B2 (ja) * | 1995-12-04 | 2004-12-08 | 本田技研工業株式会社 | 車両用環境認識装置 |
-
2001
- 2001-03-05 KR KR1020037011680A patent/KR100910670B1/ko not_active IP Right Cessation
- 2001-03-05 WO PCT/DE2001/000825 patent/WO2002078346A1/de active IP Right Grant
- 2001-03-05 JP JP2002576439A patent/JP2004530202A/ja active Pending
- 2001-03-05 EP EP01916900A patent/EP1368970B1/de not_active Expired - Lifetime
- 2001-03-05 DE DE50107083T patent/DE50107083D1/de not_active Expired - Lifetime
-
2002
- 2002-10-03 US US10/469,782 patent/US7304680B2/en not_active Expired - Fee Related
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5067019A (en) * | 1989-03-31 | 1991-11-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Programmable remapper for image processing |
EP0450718A1 (de) | 1990-04-02 | 1991-10-09 | Koninklijke Philips Electronics N.V. | Anordnung zum geometrischen Korrigieren eines verzerrten Bildes |
US5815199A (en) | 1991-01-31 | 1998-09-29 | Matsushita Electric Works, Ltd. | Interphone with television |
US5200818A (en) * | 1991-03-22 | 1993-04-06 | Inbal Neta | Video imaging system with interactive windowing capability |
USRE36207E (en) * | 1991-05-13 | 1999-05-04 | Omniview, Inc. | Omniview motionless camera orientation system |
US5384588A (en) | 1991-05-13 | 1995-01-24 | Telerobotics International, Inc. | System for omindirectional image viewing at a remote location without the transmission of control signals to select viewing parameters |
US5528194A (en) * | 1991-05-13 | 1996-06-18 | Sony Corporation | Apparatus and method for performing geometric transformations on an input image |
US5185667A (en) * | 1991-05-13 | 1993-02-09 | Telerobotics International, Inc. | Omniview motionless camera orientation system |
US5990941A (en) * | 1991-05-13 | 1999-11-23 | Interactive Pictures Corporation | Method and apparatus for the interactive display of any portion of a spherical image |
US5345542A (en) * | 1991-06-27 | 1994-09-06 | At&T Bell Laboratories | Proportional replication mapping system |
US5796426A (en) * | 1994-05-27 | 1998-08-18 | Warp, Ltd. | Wide-angle image dewarping method and apparatus |
US5508734A (en) * | 1994-07-27 | 1996-04-16 | International Business Machines Corporation | Method and apparatus for hemispheric imaging which emphasizes peripheral content |
US6211911B1 (en) * | 1994-10-14 | 2001-04-03 | Olympus Optical Co., Ltd. | Image processing apparatus |
US5818527A (en) * | 1994-12-21 | 1998-10-06 | Olympus Optical Co., Ltd. | Image processor for correcting distortion of central portion of image and preventing marginal portion of the image from protruding |
US6795113B1 (en) * | 1995-06-23 | 2004-09-21 | Ipix Corporation | Method and apparatus for the interactive display of any portion of a spherical image |
US5999660A (en) * | 1995-07-26 | 1999-12-07 | California Institute Of Technology | Imaging system for correction of perceptual distortion in wide angle images |
US5691765A (en) * | 1995-07-27 | 1997-11-25 | Sensormatic Electronics Corporation | Image forming and processing device and method for use with no moving parts camera |
JPH09202180A (ja) * | 1996-01-29 | 1997-08-05 | Niles Parts Co Ltd | 車載カメラ装置 |
US6618081B1 (en) * | 1996-11-28 | 2003-09-09 | Minolta Co., Ltd. | Image acquisition device removing distortion in image signals |
JPH10271490A (ja) | 1997-03-24 | 1998-10-09 | Yazaki Corp | 車両後方監視装置 |
US6043837A (en) * | 1997-05-08 | 2000-03-28 | Be Here Corporation | Method and apparatus for electronically distributing images from a panoptic camera system |
WO1999012349A1 (en) | 1997-09-04 | 1999-03-11 | Discovery Communications, Inc. | Apparatus for video access and control over computer network, including image correction |
US6937282B1 (en) * | 1998-10-12 | 2005-08-30 | Fuji Photo Film Co., Ltd. | Method and apparatus for correcting distortion aberration in position and density in digital image by using distortion aberration characteristic |
US6538691B1 (en) * | 1999-01-21 | 2003-03-25 | Intel Corporation | Software correction of image distortion in digital cameras |
US6704434B1 (en) * | 1999-01-27 | 2004-03-09 | Suzuki Motor Corporation | Vehicle driving information storage apparatus and vehicle driving information storage method |
US6920234B1 (en) * | 1999-05-08 | 2005-07-19 | Robert Bosch Gmbh | Method and device for monitoring the interior and surrounding area of a vehicle |
JP2001145012A (ja) * | 1999-11-12 | 2001-05-25 | Toyota Autom Loom Works Ltd | 画像歪補正装置 |
US7058235B2 (en) * | 2001-02-09 | 2006-06-06 | Sharp Kabushiki Kaisha | Imaging systems, program used for controlling image data in same system, method for correcting distortion of captured image in same system, and recording medium storing procedures for same method |
US20040234100A1 (en) * | 2001-05-25 | 2004-11-25 | Horst Belau | Device and method for the processing of image data |
US20040169726A1 (en) * | 2001-07-20 | 2004-09-02 | 6115187 Canada Inc. | Method for capturing a panoramic image by means of an image sensor rectangular in shape |
US6833843B2 (en) * | 2001-12-03 | 2004-12-21 | Tempest Microsystems | Panoramic imaging and display system with canonical magnifier |
US7224392B2 (en) * | 2002-01-17 | 2007-05-29 | Eastman Kodak Company | Electronic imaging system having a sensor for correcting perspective projection distortion |
US7202888B2 (en) * | 2002-11-19 | 2007-04-10 | Hewlett-Packard Development Company, L.P. | Electronic imaging device resolution enhancement |
US20050007478A1 (en) * | 2003-05-02 | 2005-01-13 | Yavuz Ahiska | Multiple-view processing in wide-angle video camera |
US20070025636A1 (en) * | 2003-06-02 | 2007-02-01 | Olympus Corporation | Image processing device |
US20070115384A1 (en) * | 2005-11-24 | 2007-05-24 | Olympus Corporation | Image processing apparatus and method for preferably correcting distortion aberration |
Non-Patent Citations (3)
Title |
---|
Claus et al.; "A Rational Function Lens Distortion Model for General Cameras"; Proceedings of the 2005 IEEE Computer Society Conference on COMputer Vision and Pattern Recognition; IEEE; 2005. * |
Shah et al.; "A Simple Calibration Procedure for Fish-Eye (High Distortion) Lens Camera"; 1994 IEEE International Conference on Robotics and Automation. Proceedings; May 8-13, 1994; IEEE; vol. 4, pp. 3422-3427. * |
Zhengyou Zhang, A Flexible New Technique for Camera Calibration, Dec. 2, 1998 (Updated on Dec. 14, 1998), Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052. |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9035233B2 (en) | 1997-08-25 | 2015-05-19 | Magna Electronics Inc. | Accessory mounting system for mounting an electronic device at a windshield of a vehicle |
US9718357B2 (en) | 1997-08-25 | 2017-08-01 | Magna Electronics Inc. | Vehicular accessory system |
US8534887B2 (en) | 1997-08-25 | 2013-09-17 | Magna Electronics Inc. | Interior rearview mirror assembly for a vehicle |
US8926151B2 (en) | 1997-08-25 | 2015-01-06 | Magna Electronics Inc. | Vehicular accessory system |
US8513590B2 (en) | 1998-01-07 | 2013-08-20 | Magna Electronics Inc. | Vehicular accessory system with a cluster of sensors on or near an in-cabin surface of the vehicle windshield |
US8481916B2 (en) | 1998-01-07 | 2013-07-09 | Magna Electronics Inc. | Accessory mounting system for a vehicle having a light absorbing layer with a light transmitting portion for viewing through from an accessory |
US8692659B2 (en) | 1998-01-07 | 2014-04-08 | Magna Electronics Inc. | Accessory mounting system for vehicle |
US9527445B2 (en) | 1998-01-07 | 2016-12-27 | Magna Electronics Inc. | Accessory mounting system for mounting an accessory at a vehicle such that a camera views through the vehicle windshield |
US9434314B2 (en) | 1998-04-08 | 2016-09-06 | Donnelly Corporation | Electronic accessory system for a vehicle |
US9283900B2 (en) | 1999-08-25 | 2016-03-15 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US9446715B2 (en) | 1999-08-25 | 2016-09-20 | Magna Electronics Inc. | Vision system for a vehicle |
US8531279B2 (en) | 1999-08-25 | 2013-09-10 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US9539956B2 (en) | 1999-08-25 | 2017-01-10 | Magna Electronics Inc. | Accessory system for a vehicle |
US9637053B2 (en) | 1999-11-04 | 2017-05-02 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US9233645B2 (en) | 1999-11-04 | 2016-01-12 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US8749367B2 (en) | 1999-11-04 | 2014-06-10 | Magna Electronics Inc. | Driver assistance system for a vehicle |
US9193302B2 (en) | 1999-11-04 | 2015-11-24 | Magna Electronics Inc. | Vision system for a vehicle |
US10427604B2 (en) | 2000-03-02 | 2019-10-01 | Magna Electronics Inc. | Vision system for a vehicle |
US10059265B2 (en) | 2000-03-02 | 2018-08-28 | Magna Electronics Inc. | Vision system for a vehicle |
US9843777B2 (en) | 2000-03-02 | 2017-12-12 | Magna Electronics Inc. | Cabin monitoring system for a vehicle |
US8531278B2 (en) | 2000-03-02 | 2013-09-10 | Magna Electronics Inc. | Accessory system for vehicle |
US8686840B2 (en) | 2000-03-31 | 2014-04-01 | Magna Electronics Inc. | Accessory system for a vehicle |
US9783125B2 (en) | 2000-03-31 | 2017-10-10 | Magna Electronics Inc. | Accessory system for a vehicle |
US8508593B1 (en) | 2002-01-31 | 2013-08-13 | Magna Electronics | Vehicle accessory system |
US8405726B2 (en) | 2002-01-31 | 2013-03-26 | Donnelly Corporation | Vehicle accessory system |
US10543786B2 (en) | 2002-01-31 | 2020-01-28 | Magna Electronics Inc. | Vehicle camera system |
US9862323B2 (en) | 2002-01-31 | 2018-01-09 | Magna Electronics Inc. | Vehicle accessory system |
US8749633B2 (en) | 2002-01-31 | 2014-06-10 | Magna Electronics Inc. | Vehicle accessory system |
US9266474B2 (en) | 2004-08-18 | 2016-02-23 | Magna Electronics Inc. | Accessory system for vehicle |
US10773724B2 (en) | 2004-08-18 | 2020-09-15 | Magna Electronics Inc. | Accessory system for vehicle |
US8710969B2 (en) | 2004-08-18 | 2014-04-29 | Magna Electronics Inc. | Accessory system for vehicle |
US9090213B2 (en) | 2004-12-15 | 2015-07-28 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US10046714B2 (en) | 2004-12-15 | 2018-08-14 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US10710514B2 (en) | 2004-12-15 | 2020-07-14 | Magna Electronics Inc. | Accessory mounting system for a vehicle |
US20070115384A1 (en) * | 2005-11-24 | 2007-05-24 | Olympus Corporation | Image processing apparatus and method for preferably correcting distortion aberration |
US7733407B2 (en) * | 2005-11-24 | 2010-06-08 | Olympus Corporation | Image processing apparatus and method for preferably correcting distortion aberration |
US20070132863A1 (en) * | 2005-12-14 | 2007-06-14 | Sony Corporation | Image taking apparatus, image processing method, and image processing program |
US7764309B2 (en) * | 2005-12-14 | 2010-07-27 | Sony Corporation | Image taking apparatus, image processing method, and image processing program for connecting into a single image a plurality of images taken by a plurality of imaging units disposed such that viewpoints coincide with each other |
US7811011B2 (en) | 2006-02-06 | 2010-10-12 | Leopold Kostal Gmbh & Co. Kg | Camera arrangement behind an inclined pane |
US8570374B2 (en) | 2008-11-13 | 2013-10-29 | Magna Electronics Inc. | Camera for vehicle |
US20130155296A1 (en) * | 2011-12-14 | 2013-06-20 | Samsung Electronics Co., Ltd. | Imaging apparatus and distortion compensation method |
Also Published As
Publication number | Publication date |
---|---|
KR20030081500A (ko) | 2003-10-17 |
WO2002078346A1 (de) | 2002-10-03 |
KR100910670B1 (ko) | 2009-08-04 |
EP1368970A1 (de) | 2003-12-10 |
EP1368970B1 (de) | 2005-08-10 |
US20040202380A1 (en) | 2004-10-14 |
JP2004530202A (ja) | 2004-09-30 |
DE50107083D1 (de) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7304680B2 (en) | Method and device for correcting an image, particularly for occupant protection | |
CN106462996B (zh) | 无失真显示车辆周边环境的方法和装置 | |
JP4903194B2 (ja) | 車載用カメラユニット、車両外部ディスプレイ方法及びドライビングコリドーマーカー生成システム | |
US9196022B2 (en) | Image transformation and multi-view output systems and methods | |
JP5361072B2 (ja) | 改良型撮像装置 | |
JP4859652B2 (ja) | 画像表示装置 | |
JP4677104B2 (ja) | 車両用表示装置 | |
JP2009017020A (ja) | 画像処理装置及び表示画像生成方法 | |
IES20060800A2 (en) | A method and apparatus for calibrating an image capturing device, and a method and apparatus for outputting image frames from sequentially captured image frames with compensation for image capture device offset | |
US6584235B1 (en) | Wide dynamic range fusion using memory look-up | |
WO2006087993A1 (ja) | 周辺監視装置および周辺監視方法 | |
CN105196917A (zh) | 全景式监控影像装置及其工作方法 | |
EP3916670A1 (de) | System und verfahren zur korrektur von geometrischen verzerrungen in bildern | |
EP3772035B1 (de) | Adaptive subkacheln zur verzerrungskorrektur in sichtbasierten assistenzsystemen und verfahren | |
KR101964864B1 (ko) | 차량의 어라운드 뷰 영상의 왜곡 보정 방법 | |
TWI443604B (zh) | 影像校正方法及影像校正裝置 | |
JPH10164326A (ja) | 画像取り込み装置 | |
US11483547B2 (en) | System and method for adaptive correction factor subsampling for geometric correction in an image processing system | |
JP2012134586A (ja) | 車両周辺監視装置 | |
CN117002406A (zh) | 一种车辆的后排影音娱乐系统 | |
CN102469249B (zh) | 影像校正方法及影像校正装置 | |
KR100855426B1 (ko) | 이미지 데이터를 처리하기 위한 장치 및 방법 | |
US7953292B2 (en) | Semiconductor integrated circuit device and rendering processing display system | |
CN113022590A (zh) | 车辆用周边显示装置 | |
WO2017086029A1 (ja) | 画像処理装置、画像処理方法、移動体、身体装着型電子機器及びコンピュータプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOHLER, THORSTEN;WAGNER, ULRICH;REEL/FRAME:015070/0354 Effective date: 20030818 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS AKTIENGESELLSCHAFT;REEL/FRAME:027263/0068 Effective date: 20110704 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20151204 |