US6358633B1 - Organic electroluminescence element - Google Patents
Organic electroluminescence element Download PDFInfo
- Publication number
- US6358633B1 US6358633B1 US09/308,818 US30881899A US6358633B1 US 6358633 B1 US6358633 B1 US 6358633B1 US 30881899 A US30881899 A US 30881899A US 6358633 B1 US6358633 B1 US 6358633B1
- Authority
- US
- United States
- Prior art keywords
- organic electroluminescent
- dopant
- host material
- electroluminescent device
- indicated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005401 electroluminescence Methods 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 67
- 239000002019 doping agent Substances 0.000 claims abstract description 62
- 238000002347 injection Methods 0.000 claims abstract description 54
- 239000007924 injection Substances 0.000 claims abstract description 54
- 238000004770 highest occupied molecular orbital Methods 0.000 claims abstract description 37
- 239000011368 organic material Substances 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims description 94
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 claims description 16
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 6
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 claims description 6
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 claims description 5
- FJTIGPKOUULVRK-UHFFFAOYSA-N 1,2,3,4-tetramethyltetracene Chemical compound C1=CC=CC2=CC3=CC4=C(C)C(C)=C(C)C(C)=C4C=C3C=C21 FJTIGPKOUULVRK-UHFFFAOYSA-N 0.000 claims description 4
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 claims description 4
- HKMTVMBEALTRRR-UHFFFAOYSA-N Benzo[a]fluorene Chemical compound C1=CC=CC2=C3CC4=CC=CC=C4C3=CC=C21 HKMTVMBEALTRRR-UHFFFAOYSA-N 0.000 claims description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 4
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 claims description 4
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims description 4
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 4
- FMKFBRKHHLWKDB-UHFFFAOYSA-N rubicene Chemical compound C12=CC=CC=C2C2=CC=CC3=C2C1=C1C=CC=C2C4=CC=CC=C4C3=C21 FMKFBRKHHLWKDB-UHFFFAOYSA-N 0.000 claims description 4
- YFPSDOXLHBDCOR-UHFFFAOYSA-N Pyrene-1,6-dione Chemical compound C1=CC(C(=O)C=C2)=C3C2=CC=C2C(=O)C=CC1=C32 YFPSDOXLHBDCOR-UHFFFAOYSA-N 0.000 claims description 3
- JDPBLCQVGZLACA-UHFFFAOYSA-N benzo[a]perylene Chemical group C1=CC(C=2C3=CC=CC=C3C=C3C=2C2=CC=C3)=C3C2=CC=CC3=C1 JDPBLCQVGZLACA-UHFFFAOYSA-N 0.000 claims description 3
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 claims description 3
- CUOYSVTWECOPNA-UHFFFAOYSA-N pentacyclo[11.7.0.02,10.03,8.015,20]icosa-1(13),2(10),3,5,7,11,15,17,19-nonaene Chemical compound C1C2=CC=CC=C2C2=C1C=CC1=C2C2=CC=CC=C2C1 CUOYSVTWECOPNA-UHFFFAOYSA-N 0.000 claims description 3
- LZPBKINTWROMEA-UHFFFAOYSA-N tetracene-5,12-dione Chemical compound C1=CC=C2C=C3C(=O)C4=CC=CC=C4C(=O)C3=CC2=C1 LZPBKINTWROMEA-UHFFFAOYSA-N 0.000 claims description 3
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 claims description 2
- UDFPKUSKLVFYJO-UHFFFAOYSA-N C1=C2C=C3C=CC4=C(C=CC=5C=6C=CC=CC6CC45)C3=CC2=CC=C1 Chemical compound C1=C2C=C3C=CC4=C(C=CC=5C=6C=CC=CC6CC45)C3=CC2=CC=C1 UDFPKUSKLVFYJO-UHFFFAOYSA-N 0.000 claims description 2
- RAASUWZPTOJQAY-UHFFFAOYSA-N Dibenz[a,c]anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C3=CC=CC=C3C2=C1 RAASUWZPTOJQAY-UHFFFAOYSA-N 0.000 claims description 2
- XTAHYROJKCXMOF-UHFFFAOYSA-N Dihydroaceanthrylene Chemical compound C1=CC=C2C(CCC3=CC=C4)=C3C4=CC2=C1 XTAHYROJKCXMOF-UHFFFAOYSA-N 0.000 claims description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 claims description 2
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 claims description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 claims description 2
- 150000004056 anthraquinones Chemical class 0.000 claims description 2
- WVXMLBXFHITUIT-UHFFFAOYSA-N benzo[a]fluoren-1-one Chemical compound C1=CC=CC2=CC3=C4C(=O)C=CC=C4C=CC3=C21 WVXMLBXFHITUIT-UHFFFAOYSA-N 0.000 claims description 2
- PLKNNIMJRPBOSW-UHFFFAOYSA-N benzo[a]pentacene Chemical compound C1=CC=C2C3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=CC2=C1 PLKNNIMJRPBOSW-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- -1 fluorocyclene Chemical compound 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- IGKLGCQYPZTEPK-UHFFFAOYSA-N pentacene-1,2-dione Chemical compound C1=CC=C2C=C(C=C3C(C=C4C=CC(C(C4=C3)=O)=O)=C3)C3=CC2=C1 IGKLGCQYPZTEPK-UHFFFAOYSA-N 0.000 claims description 2
- IYYMDGDZPDXTGT-UHFFFAOYSA-N perylene-1,2-dione Chemical compound C1=CC(C2=C3C(=CC(C2=O)=O)C=CC=C32)=C3C2=CC=CC3=C1 IYYMDGDZPDXTGT-UHFFFAOYSA-N 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 125000005580 triphenylene group Chemical group 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 52
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 16
- 230000005525 hole transport Effects 0.000 description 12
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 10
- 238000010030 laminating Methods 0.000 description 9
- GQVWHWAWLPCBHB-UHFFFAOYSA-L beryllium;benzo[h]quinolin-10-olate Chemical compound [Be+2].C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21.C1=CC=NC2=C3C([O-])=CC=CC3=CC=C21 GQVWHWAWLPCBHB-UHFFFAOYSA-L 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 0 c1cc2c3c(c1)ccc1cccn(c13)[Be]1(O2)Oc2cccc3ccc4cccn1c4c23 Chemical compound c1cc2c3c(c1)ccc1cccn(c13)[Be]1(O2)Oc2cccc3ccc4cccn1c4c23 0.000 description 5
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229910000846 In alloy Inorganic materials 0.000 description 3
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- HSHNITRMYYLLCV-UHFFFAOYSA-N 4-methylumbelliferone Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2C HSHNITRMYYLLCV-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- HAPOJKSPCGLOOD-UHFFFAOYSA-N Benzo[b]fluorene Chemical compound C1=CC=C2C=C3CC4=CC=CC=C4C3=CC2=C1 HAPOJKSPCGLOOD-UHFFFAOYSA-N 0.000 description 2
- MASVCBBIUQRUKL-UHFFFAOYSA-N POPOP Chemical compound C=1N=C(C=2C=CC(=CC=2)C=2OC(=CN=2)C=2C=CC=CC=2)OC=1C1=CC=CC=C1 MASVCBBIUQRUKL-UHFFFAOYSA-N 0.000 description 2
- TXVHTIQJNYSSKO-UHFFFAOYSA-N benzo[e]pyrene Chemical compound C1=CC=C2C3=CC=CC=C3C3=CC=CC4=CC=C1C2=C34 TXVHTIQJNYSSKO-UHFFFAOYSA-N 0.000 description 2
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- JCXLYAWYOTYWKM-UHFFFAOYSA-N (2,3,4-triphenylcyclopenta-1,3-dien-1-yl)benzene Chemical compound C1C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 JCXLYAWYOTYWKM-UHFFFAOYSA-N 0.000 description 1
- ZUJCVBCKDAFTBW-UHFFFAOYSA-N *.CCC(C)n1c2ccccc2c2ccccc21 Chemical compound *.CCC(C)n1c2ccccc2c2ccccc21 ZUJCVBCKDAFTBW-UHFFFAOYSA-N 0.000 description 1
- OUEIPKXVZRHNIB-UHFFFAOYSA-N 1-(3-pyren-1-ylpropyl)pyrene Chemical compound C1=C2C(CCCC=3C4=CC=C5C=CC=C6C=CC(C4=C65)=CC=3)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 OUEIPKXVZRHNIB-UHFFFAOYSA-N 0.000 description 1
- ZAIXSCQWBUSJIH-UHFFFAOYSA-N 5,6,11,12-tetramethyltetracene Chemical compound C1=CC=C2C(C)=C3C(C)=C(C=CC=C4)C4=C(C)C3=C(C)C2=C1 ZAIXSCQWBUSJIH-UHFFFAOYSA-N 0.000 description 1
- ZHBOFZNNPZNWGB-UHFFFAOYSA-N 9,10-bis(phenylethynyl)anthracene Chemical compound C1=CC=CC=C1C#CC(C1=CC=CC=C11)=C(C=CC=C2)C2=C1C#CC1=CC=CC=C1 ZHBOFZNNPZNWGB-UHFFFAOYSA-N 0.000 description 1
- GYFAGKUZYNFMBN-UHFFFAOYSA-N Benzo[ghi]perylene Chemical group C1=CC(C2=C34)=CC=C3C=CC=C4C3=CC=CC4=CC=C1C2=C43 GYFAGKUZYNFMBN-UHFFFAOYSA-N 0.000 description 1
- XEEFTIJDXUXCQU-PDHSEDKQSA-N C(#Cc1c2ccccc2c(C#Cc2ccccc2)c2ccccc12)c1ccccc1.Cc1c2ccccc2c(C)c2c(C)c3ccccc3c(C)c12.c1cc2c3c(cccc3c1)C1/C2=C2/c3cccc4cccc(c34)C2C2/C(=C3/c4cccc5cccc(c45)C31)c1cccc3cccc2c13.c1cc2cccc3c4cccc5cccc(c(c1)c23)c54.c1ccc(C2=C(c3ccccc3)C(c3ccccc3)=C(c3ccccc3)C2)cc1.c1ccc2c(c1)Cc1c-2ccc2c1-c1ccccc1C2 Chemical compound C(#Cc1c2ccccc2c(C#Cc2ccccc2)c2ccccc12)c1ccccc1.Cc1c2ccccc2c(C)c2c(C)c3ccccc3c(C)c12.c1cc2c3c(cccc3c1)C1/C2=C2/c3cccc4cccc(c34)C2C2/C(=C3/c4cccc5cccc(c45)C31)c1cccc3cccc2c13.c1cc2cccc3c4cccc5cccc(c(c1)c23)c54.c1ccc(C2=C(c3ccccc3)C(c3ccccc3)=C(c3ccccc3)C2)cc1.c1ccc2c(c1)Cc1c-2ccc2c1-c1ccccc1C2 XEEFTIJDXUXCQU-PDHSEDKQSA-N 0.000 description 1
- UHEYUAHZRUMGSH-UHFFFAOYSA-N C1=CC2=C3C4=C1C=C1/C=C\C5=C6C1=C4/C1=C4\C6=C(C=C5)C=C\C4=C\C4=C1C3=C(C=C4)/C=C\2.CCN1C2=C(C=CC=C2)C2=C1C=C1OC3=C(Cl)C4=NC5=CC6=C(C=C5OC4=C(Cl)C3=NC1=C2)N(CC)C1=C6C=CC=C1.O=C1c2ccccc2-c2cc3cc4ccccc4cc3cc21.O=C1c2ccccc2-c2cc3ccccc3cc21.O=c1ccc2ccc3c(=O)ccc4ccc1c2c43.c1ccc2c(c1)Cc1cc3cc4cc5ccccc5cc4cc3cc1-2.c1ccc2c(c1)ccc1c2ccc2c3ccccc3ccc21 Chemical compound C1=CC2=C3C4=C1C=C1/C=C\C5=C6C1=C4/C1=C4\C6=C(C=C5)C=C\C4=C\C4=C1C3=C(C=C4)/C=C\2.CCN1C2=C(C=CC=C2)C2=C1C=C1OC3=C(Cl)C4=NC5=CC6=C(C=C5OC4=C(Cl)C3=NC1=C2)N(CC)C1=C6C=CC=C1.O=C1c2ccccc2-c2cc3cc4ccccc4cc3cc21.O=C1c2ccccc2-c2cc3ccccc3cc21.O=c1ccc2ccc3c(=O)ccc4ccc1c2c43.c1ccc2c(c1)Cc1cc3cc4cc5ccccc5cc4cc3cc1-2.c1ccc2c(c1)ccc1c2ccc2c3ccccc3ccc21 UHEYUAHZRUMGSH-UHFFFAOYSA-N 0.000 description 1
- MKRVCVMZLBYHDC-UHFFFAOYSA-N C1=CC=C(C2=CN=C(C3=CC=C(C4=NC=C(C5=CC=CC=C5)O4)C=C3)O2)C=C1.c1ccc2c(c1)Cc1c-2ccc2ccccc12.c1ccc2c(c1)Cc1cc3ccccc3cc1-2.c1ccc2c(c1)ccc1cc3c(ccc4ccccc43)cc12 Chemical compound C1=CC=C(C2=CN=C(C3=CC=C(C4=NC=C(C5=CC=CC=C5)O4)C=C3)O2)C=C1.c1ccc2c(c1)Cc1c-2ccc2ccccc12.c1ccc2c(c1)Cc1cc3ccccc3cc1-2.c1ccc2c(c1)ccc1cc3c(ccc4ccccc43)cc12 MKRVCVMZLBYHDC-UHFFFAOYSA-N 0.000 description 1
- YLZXEYJGFOUDSZ-VDKKDVOJSA-L C1=N2CCCCCC/N3=C\c4ccccc4O[Zn]23Oc2ccccc21 Chemical compound C1=N2CCCCCC/N3=C\c4ccccc4O[Zn]23Oc2ccccc21 YLZXEYJGFOUDSZ-VDKKDVOJSA-L 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- UEWRXKQDNOBVJC-UHFFFAOYSA-N O.O=C1c2ccccc2-c2cc3ccc4ccccc4c3cc21.O=C1c2ccccc2-c2ccc3c(ccc4ccccc43)c21.c1ccc(-c2c3c(c(-c4ccccc4)c4ccccc24)C2(c4ccccc4)OC3(c3ccccc3)c3ccccc32)cc1.c1ccc(-c2c3ccccc3c(-c3ccccc3)c3c(-c4ccccc4)c4ccccc4c(-c4ccccc4)c23)cc1.c1ccc2c(c1)-c1cccc3c4c5c(cccc5c-2c13)-c1ccccc1-4.c1ccc2cc3cc4cc5c(ccc6ccccc65)cc4cc3cc2c1 Chemical compound O.O=C1c2ccccc2-c2cc3ccc4ccccc4c3cc21.O=C1c2ccccc2-c2ccc3c(ccc4ccccc43)c21.c1ccc(-c2c3c(c(-c4ccccc4)c4ccccc24)C2(c4ccccc4)OC3(c3ccccc3)c3ccccc32)cc1.c1ccc(-c2c3ccccc3c(-c3ccccc3)c3c(-c4ccccc4)c4ccccc4c(-c4ccccc4)c23)cc1.c1ccc2c(c1)-c1cccc3c4c5c(cccc5c-2c13)-c1ccccc1-4.c1ccc2cc3cc4cc5c(ccc6ccccc65)cc4cc3cc2c1 UEWRXKQDNOBVJC-UHFFFAOYSA-N 0.000 description 1
- ICZWUVCQKKPRHV-UHFFFAOYSA-N O=C1c2cc3ccccc3cc2C(=O)c2cc3ccccc3cc21.O=C1c2ccccc2C(=O)c2cc3ccccc3cc21.O=c1c2ccccc2cc2cc3c(=O)c4ccccc4cc3cc12.O=c1ccc2c3ccc(=O)c4cccc(c5cccc1c52)c43.O=c1ccc2c3cccc4c(=O)ccc(c5cccc1c52)c43.O=c1ccc2cccc3c4cccc5ccc(=O)c(c1c23)c54 Chemical compound O=C1c2cc3ccccc3cc2C(=O)c2cc3ccccc3cc21.O=C1c2ccccc2C(=O)c2cc3ccccc3cc21.O=c1c2ccccc2cc2cc3c(=O)c4ccccc4cc3cc12.O=c1ccc2c3ccc(=O)c4cccc(c5cccc1c52)c43.O=c1ccc2c3cccc4c(=O)ccc(c5cccc1c52)c43.O=c1ccc2cccc3c4cccc5ccc(=O)c(c1c23)c54 ICZWUVCQKKPRHV-UHFFFAOYSA-N 0.000 description 1
- GOZPTOHMTKTIQP-UHFFFAOYSA-N OC1=CC=CC2=CC=C3C=CC(=NC3=C21)C(=O)O Chemical compound OC1=CC=CC2=CC=C3C=CC(=NC3=C21)C(=O)O GOZPTOHMTKTIQP-UHFFFAOYSA-N 0.000 description 1
- JLVCRTWYDZKQBH-HYOXNGFTSA-N Oc1ccccc1/C=N1/CCCCCC/N(=C/c2ccccc2O)[Zn]1 Chemical compound Oc1ccccc1/C=N1/CCCCCC/N(=C/c2ccccc2O)[Zn]1 JLVCRTWYDZKQBH-HYOXNGFTSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KSEXGODEKUPNPV-UHFFFAOYSA-N c1cc2ccc3ccc(CCCc4ccc5ccc6cccc7ccc4c5c67)c4ccc(c1)c2c34.c1cc2ccc3ccc4ccc5cccc6c(c1)c2c3c4c56.c1ccc2c(c1)Cc1c-2ccc2c1ccc1ccccc12.c1ccc2c(c1)Cc1cc3c(ccc4ccccc43)cc1-2.c1ccc2c(c1)c1cccc3ccc4cccc2c4c31.c1ccc2c(c1)cc1ccc3cccc4ccc2c1c34.c1ccc2cc3c(cc2c1)cc1ccc2cccc4ccc3c1c24 Chemical compound c1cc2ccc3ccc(CCCc4ccc5ccc6cccc7ccc4c5c67)c4ccc(c1)c2c34.c1cc2ccc3ccc4ccc5cccc6c(c1)c2c3c4c56.c1ccc2c(c1)Cc1c-2ccc2c1ccc1ccccc12.c1ccc2c(c1)Cc1cc3c(ccc4ccccc43)cc1-2.c1ccc2c(c1)c1cccc3ccc4cccc2c4c31.c1ccc2c(c1)cc1ccc3cccc4ccc2c1c34.c1ccc2cc3c(cc2c1)cc1ccc2cccc4ccc3c1c24 KSEXGODEKUPNPV-UHFFFAOYSA-N 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- LHRCREOYAASXPZ-UHFFFAOYSA-N dibenz[a,h]anthracene Chemical compound C1=CC=C2C(C=C3C=CC=4C(C3=C3)=CC=CC=4)=C3C=CC2=C1 LHRCREOYAASXPZ-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- GBTRMNJQEKCYRN-UHFFFAOYSA-N fluoren-2-one Chemical compound C1=CC=CC2=CC3=CC(=O)C=CC3=C21 GBTRMNJQEKCYRN-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- LOOWWKXPYHZZDM-UHFFFAOYSA-N pentacene-5,12-dione Chemical compound O=C1C2=CC=CC=C2C=C2C1=CC1=CC3=CC=CC=C3C(=O)C1=C2 LOOWWKXPYHZZDM-UHFFFAOYSA-N 0.000 description 1
- UFCVADNIXDUEFZ-UHFFFAOYSA-N pentacene-6,13-dione Chemical compound C1=CC=C2C=C3C(=O)C4=CC5=CC=CC=C5C=C4C(=O)C3=CC2=C1 UFCVADNIXDUEFZ-UHFFFAOYSA-N 0.000 description 1
- ODYASLOGAWBBOY-UHFFFAOYSA-N perylene-1,12-dione Chemical compound C1=CC=C2C=CC(=O)C3=C2C1=C1C=CC=C2C=CC(=O)C3=C21 ODYASLOGAWBBOY-UHFFFAOYSA-N 0.000 description 1
- FUTARTAINOHELR-UHFFFAOYSA-N perylene-3,10-dione Chemical compound C12=CC=CC(C(=O)C=C3)=C2C3=C2C3=C1C=CC=C3C(=O)C=C2 FUTARTAINOHELR-UHFFFAOYSA-N 0.000 description 1
- YZOSFIUCJCRFEF-UHFFFAOYSA-N perylene-3,9-dione Chemical compound C12=CC=CC(C(=O)C=C3)=C2C3=C2C3=C1C=CC(=O)C3=CC=C2 YZOSFIUCJCRFEF-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/624—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/141—Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
- H10K85/146—Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/381—Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
Definitions
- the present invention relates to an organic electroluminescent device constructed by forming at least an emitting layer using an organic material between a hole injection electrode and an electron injection electrode, and is characterized in that stable luminance can be obtained for a long time, and high luminance can be obtained at a low voltage particularly in an organic electroluminescent device having an emitting layer constructed by doping a dopant into a host material.
- the electroluminescent device is roughly divided into an inorganic electroluminescent device and an organic electroluminescent device depending on a used material.
- the inorganic electroluminescent device is so adapted that a high electric field is generally applied on a luminance portion, and electrons are accelerated within the high electric field to collide with a luminescence center, whereby the luminescence center is excited to emit light.
- the organic electroluminescent device is so adapted that electrons and holes are respectively injected into a luminescent portion from an electron injection electrode and a hole injection electrode, the electrons and the holes thus injected are recombined with each other in a luminescence center to bring an organic molecule into its excited state, and the organic molecule emits fluorescence when it is returned from the excited state to its ground state.
- the inorganic electroluminescent device In the case of the inorganic electroluminescent device, a high voltage of 100 to 200 volts is required as its driving voltage because the high electric field is applied as described above. On the other hand, the organic electroluminescent derive can be driven at a low voltage of approximately 5 to 20 volts.
- a luminescent device emitting light in a suitable color can be obtained by selecting a fluorescent material that is a luminescent material. It is expected that the organic electroluminescent device can be also utilized as a multi-color or full-color display device, for example. Further, it is considered that the organic electroluminescent device is utilized as a back light of a liquid crystal display device or the like because it can emit light at a low voltage.
- an emitting layer and a carrier transport layer which is constituted by a hole transport layer for transporting holes to the emitting layer and an electron transport layer for transporting electrons thereto are generally provided between a hole injection electrode and an electron injection electrode.
- a three-layer structure referred to as a DH structure obtained by laminating a hole transport layer, an emitting layer and an electron transport layer between a hole injection electrode and an electron injection electrode a two-layer structure referred to as an SH-A structure obtained by laminating a hole transport layer and an emitting layer abundant in electron transport properties between a hole injection electrode and an electron injection electrode
- a two-layer structure referred to as an SH-B structure obtained by laminating an emitting layer abundant in hole transporting properties and an electron transport layer between a hole injection electrode and an electron injection electrode.
- organic electroluminescent device In a conventional organic electroluminescent device, however, it is generally difficult to obtain as an organic material used for its emitting layer high-purity one by sublimation and purification, for example, and the stability of the organic material to heat or the like is not sufficient.
- the organic electroluminescent device emits light for a long time, therefore, some problems occur.
- the organic material used for the emitting layer is crystallized to form pinholes due to heat or the like at the time of the light emission, so that uniform and sufficient luminance cannot be obtained for a long time.
- An object of the present invention is to solve the above-mentioned problems in an organic electroluminescent device constructed by forming at least an emitting layer using an organic material between a hole injection electrode and an electron injection electrode.
- an object of the present invention is to make it possible to obtain stable luminance for a long time by preventing pinholes from being formed by crystallization of an organic material used for an emitting layer due to heat or the like at the time of emitting light as in the conventional example.
- Another object of the present invention is to make it possible to obtain, in an organic electroluminescent device having an emitting layer obtained by doping a dopant into a host material, high luminance by sufficient light emission of a dopant doped into the host material in the emitting layer.
- the present invention is so adapted, in an organic electroluminescent device constructed by providing at least an emitting layer using an organic material between a hole injection electrode and an electron injection electrode, that a dopant selected from coronene, rubicene, pyrene, benzpyrene, chrysene, ovalene, fluorocyclene, picene, triphenylene, aceanthrene, fluoranthene, acenaphthene, acenaphthylene, benzanthracene, naphthafluorene, naphthafluorenone, naphthapyrene, anthraquinone, rubrene peroxide, pentacene quinone, perylene quinone, naphthacene quinone, benzofluorenone, benzofluorene, anthrafluorene, benzperylene, benzpentacene, bispyrenyl propane, tetramethyl nap
- the above-mentioned dopant is low in molecular polarity, is easily sublimated, and has high heat resistance. Therefore, a high-purity dopant is easily obtained by sublimation and purification. When the high-purity dopant which is thus obtained by the sublimation and purification is doped into the emitting layer, uniform and higher luminance is obtained for a long time.
- FIG. 1 is a schematic explanatory view of an organic electroluminescent device having an SH-A structure obtained by laminating a hole transport layer and an emitting layer between a hole injection electrode and an electron injection electrode;
- FIG. 2 is a schematic explanatory view of an organic electroluminescent device having an SH-B structure obtained by laminating an emitting layer and an electron transport layer between a hole injection electrode and an electron injection electrode;
- FIG. 3 is a schematic explanatory view of an organic electroluminescent device having a DH structure obtained by laminating a hole transport layer, an emitting layer and an electron transport layer between a hole injection electrode and an electron injection electrode;
- FIG. 4 is a schematic explanatory view showing structures of organic electroluminescent devices in examples 1 to 31 and comparative examples 1 to 8;
- FIG. 5 is a schematic explanatory view showing structures of organic electroluminescent devices in examples 32 to 35 and comparative examples 9 and 10.
- the organic electroluminescent device may have any one of known structures such as an SH-A structure obtained by laminating a hole transport layer 3 and an emitting layer 4 between a hole injection electrode 2 and an electron injection electrode 6 which are formed on a transparent substrate 1 such as a glass substrate, as shown in FIG. 1, an SH-B structure obtained by laminating an emitting layer 4 and an electron transport layer 5 between the hole injection electrode 2 and the electron injection electrode 6 , as shown in FIG. 2, and a DH structure obtained by laminating a hole transport layer 3 , an emitting layer 4 and an electron transport layer 5 between the hole injection electrode 2 and the electron injection electrode 6 , as shown in FIG. 3 .
- a dopant having a condensed ring obtained by condensing three or more rings is doped into a host material in the emitting layer 4 , and the difference between the highest occupied molecular orbital (hereinafter referred to as HOMO) in the host material and the highest occupied molecular orbital (HOMO) in the dopant is set in a range from ⁇ 0.3 eV to +0.3 eV.
- HOMO highest occupied molecular orbital
- a material having a large work function for example, gold or an indium-tin oxide (hereinafter referred to as ITO) is used for the hole injection electrode 2
- an electrode material having a small work function for example, a material including a magnesium alloy, an alkali metal or an alkali earth metal is used for the electron injection electrode 6 .
- At least one of the electrodes must be made transparent in order to take out light emitted in the emitting layer 4 .
- ITO which is transparent and has a large work function is used for the hole injection electrode 2 .
- a transparent hole injection electrode 2 having a thickness of 2000 ⁇ was formed using the above-mentioned ITO on a glass substrate 1 , and a first hole transport layer 3 a having a thickness of 600 ⁇ using a triphenylamine derivative (hereinafter referred to as MTDATA) indicated by the following chemical formula 1, a second hole transport layer 3 b having a thickness of 200 ⁇ using NPD indicated by the following chemical formula 2, an emitting layer 4 having a thickness of 500 ⁇ obtained by doping 2% by weight of coronene having a melting point of 438° C.
- MTDATA triphenylamine derivative
- coronene indicated by the foregoing chemical formula 4 to be contained as a dopant in the emitting layer 4 was one having purity of 99% obtained by sublimating and purifying commercially available coronene (produced by Tokyo Kasei Kogyo Co., Ltd.) for 12 hours using a vacumm heating type sublimating and purifying apparatus. The yield of the coronene which was thus sublimated and purified was 60%.
- the glass substrate 1 having the hole injection electrode 2 composed of ITO formed on its surface was cleaned by a neutral detergent, was ultrasonically cleaned in extrapure water, acetone, and ethanol, respectively, for 20 minutes, 20 minutes, and 20 minutes, was further put in boiling ethanol for about one minute and taken out, and was then immediately dried by ventilation, after which the surface of the glass substrate 1 was cleaned for ten minutes using a UV-ozone cleaner.
- the above-mentioned MTDATA was vacuum evaporated over the hole injection electrode 2 formed on the glass substrate 1 , to form the first hole transport layer 3 a, and the above-mentioned NPD was then vacuum evaporated, to form the second hole transport layer 3 b.
- the above-mentioned Zn(OXZ) 2 and coronene were co-evaporated over the second hole transport layer 3 b, to form the emitting layer 4 , and a magnesium-indium alloy was further vacuum evaporated over the emitting layer 4 , to form the electron injection electrode 6 .
- the vacuum evaporation was performed at a degree of vacuum of 1 ⁇ 10 ⁇ 6 Torr.
- An organic electroluminescent device in a comparative example 1 was obtained in the same manner as that in the above-mentioned example 1 except that only the emitting layer 4 in the organic electroluminescent device in the example 1 was changed, and only the above-mentioned Zn(OXZ) 2 which is the host material was used, to form an emitting layer 4 .
- An organic electroluminescent device in a comparative example 2 was also obtained in the same manner as that in the above-mentioned example 1 except that only the emitting layer 4 in the organic electroluminescent device in the example 1 was changed, and 2% by weight of coumarin 4 having a melting point of 70° C. indicated by the following chemical formula 5 was doped into the above-mentioned Zn(OXZ) 2 which is the host material, to form an emitting layer 4 .
- a positive voltage and a negative voltage were respectively applied to the hole injection electrode 2 and the electron injection electrode 6 in each of the organic electroluminescent devices in the example 1 and the comparative examples 1 and 2, to find the highest luminance obtained in the organic electroluminescent device and the applied voltage at that time, and each of the organic electroluminescent devices was caused to emit light having luminance of 100 cd/m 2 , to find a time period elapsed until the luminance is reduced by half.
- the results were shown in the following Table 1.
- the organic electroluminescent devices in the examples 2 to 7 and the comparative examples 3 and 4 were obtained in the same manner that in the example 1 except that an emitting layer 4 was formed using only the above-mentioned host material in the comparative example 3, while 2′,3′-naphtha-2,3-fluorenone indicated by the following chemical formula 7, 2,3-anthrafluorene indicated by the following chemical formula 8, 2,3-benzofluorenone indicated by the following chemical formula 9, picene indicated by the following chemical formula 10, ovalene indicated by the following chemical formula 11, pyrene quinone indicated by the following chemical formula 12, and dioxazine carbazole indicated by the following chemical formula 13 were doped at a ratio of 2 % by weight as a dopant into the above-mentioned host material, respectively, in the example 2, the example 3, the example 4, the example 5, the example 6, the example 7, and the comparative example 4.
- a positive voltage and a negative voltage were respectively applied to the hole injection electrode 2 and the electron injection electrode 6 in each of the organic electroluminescent devices in the examples 2 to 7 and the comparative examples 3 and 4, to find the highest luminance obtained in the organic electroluminescent device and the applied voltage at that time, and each of the organic electroluminescent devices was caused to emit light having luminance of 100 cd/m 2 , to find a time period elapsed until the luminance is reduced by half.
- the results were shown in the following Table 2.
- the organic electroluminescent devices in the examples 8 to 19 and the comparative examples 5 and 6 were obtained in the same manner that in the example 1 except that an emitting layer 4 was formed using only the above-mentioned host material in the comparative example 5, while 1′,2′-naphtha-2,3,-fluorene indicated by the following chemical formula 15, 2′,1′-naphtha-1,2-fluorene indicated by the following chemical formula 16, 1,12-benzperylene indicated by the following chemical formula 17, 4,5-benzpyrene indicated by the following chemical formula 18, benzo(a)pyrene indicated by the following chemical 19, naphthapyrene indicated by the following chemical formula 20.
- 1,3-bis(1-pyrenyl)propane indicated by the following chemical formula 21 5,6,11,12-tetramethyl naphthacene indicated by the following formula 22, 9,10-bis(phenylethynyl)anthracene indicated by the following chemical formula 23, fluoracene indicated by the following chemical formula 24, fluorocyclene indicated by the following chemical formula 25, perylene indicated by the following chemical formula 26, 1,2,3,4-tetraphenyl-1,3-cyclopentadiene indicated by the following chemical formula 27 were doped at a ratio of 2% by weight as a dopant into the above-mentioned host material, respectively, in the example 8, the example 9, the example 10, the example 11, the example 12, the example 13, the example 14, the example 15, the example 16, the example 17, the example 18, the example 19, and the comparative example 6.
- a positive voltage and a negative voltage were respectively applied to the hole injection electrode 2 and the electron injection electrode 6 in each of the organic electroluminescent devices in the examples 8 to 19 and the comparative examples 5 and 6, to find the highest luminance obtained in the organic electroluminescent device and the applied voltage at that time, and each of the organic electroluminescent devices was caused to emit light having luminance of 100 cd/m 2 , to find a time period elapsed until the luminance is reduced by half.
- the results were shown in the following Table 3.
- organic electroluminescent devices in examples 20 to 31 and comparative examples 7 and 8 only the emitting layer 4 in the organic electroluminescent device in the above-mentioned example 1 was changed, and tris(8-quinolinol)aluminum (hereinafter referred to as Alq 3 ) indicated by the following chemical formula 28 was used as a host material.
- Alq 3 tris(8-quinolinol)aluminum
- the organic electroluminescent devices in the examples 20 to 31 and the comparative examples 7 and 8 were obtained in the same manner that in the example 1 except that an emitting layer 4 was formed using only the above-mentioned host material in the comparative example 7, while 1′,2′-naphtha-2,3-fluorenone indicated by the following chemical formula 29, 2′,1′-naphtha-1,2-fluorenone indicated by the following chemical formula 30, rubicene indicated by the following chemical formula 31, 1,2-benzpentacene indicated by the following chemical formula 32, 5,6,11,12-tetraphenyl naphthacene (rubrene) indicated by the following chemical formula 33, rubrene peroxide indicated by the following chemical formula 34, naphthacene quinone indicated by the following chemical formula 35, pentacene-5,12-quinone indicated by the following chemical formula 36, pentacene-6,13-quinone indicated by the following chemical formula 37, 3,9-perylene quinone indicated by the following
- a positive voltage and a negative voltage were respectively applied to the hole injection electrode 2 and the electron injection electrode 6 in each of the respective organic electroluminescent devices in the examples 20 to 31 and the comparative examples 7 and 8, to find the highest luminance obtained in the organic electroluminescent device and the applied voltage at that time, and each of the organic electroluminescent devices was caused to emit light having luminance of 100 cd/m 2 , to find a time period elapsed until the luminance is reduced by half.
- the results were shown in the following Table 4.
- a transparent hole injection electrode 2 having a thickness of 2000 ⁇ was formed using the above-mentioned ITO on a glass substrate 1 , and an emitting layer 4 having a thickness of 500 ⁇ obtained by doping 2% by weight of 2′,3′-naphtha-2,3-fluorene indicated by the following chemical formula 42 as a dopant into a host material composed of polyvinyl carbazole (PVCz) indicated by the following chemical formula 41, a first electron transport layer 5 a, which has hole blocking properties, having a thickness of 200 ⁇ using a triazole derivative (TAZ) indicated by the following chemical formula 43, a second electron transport layer 5 b having a thickness of 300 ⁇ using Alq 3 indicated by the foregoing chemical formula 28, and an electron injection electrode 6 having a thickness of 2000 ⁇ using a magnesium-indium alloy were laminated on the injection electrode 2 , as shown in FIG. 5 .
- PVCz polyvinyl carbazole
- TEZ triazole derivative
- Organic electroluminescent devices in examples 33 to 35 and comparative examples 9 and 10 were obtained in the same manner as that in the above-mentioned example 32 except that only the emitting layer 4 in the organic electroluminescent device in the above-mentioned example 33 was changed, to form an emitting layer 4 using only the above-mentioned PVCz which is a host material in the comparative example 9, while the dopant to be doped into the host material using the above-mentioned PVCz was changed in the examples 33 to 35 and the comparative example 10, that is, 2% by weight of 2,3-benzofluorene indicated by the following chemical formula 44, 1,2-benzofluorene indicated by the following chemical formula 45, dibenzo(a,h)anthracene indicated by the following chemical formula 46, and 1,4-bis(5-phenyl-2-oxazolyl)benzene (hereinafter referred to as POPOP) indicated by the following chemical formula 47 were respectively doped in the example 33, the example 34, the example 35,
- a positive voltage and a negative voltage were respectively applied to the hole injection electrode 2 and the electron injection electrode 6 in each of the organic electroluminescent devices in the examples 32 to 35 and the comparative examples 9 and 10, to find the highest luminance obtained in the organic electroluminescent device and the applied voltage at that time, and each of the organic electroluminescent devices was caused to emit light having luminance of 100 cd/m 2 , to find a time period elapsed until the luminance is reduced by half.
- the results were shown in the following Table 5.
- the organic electroluminescent device in the present invention is not limited to those in the above-mentioned examples, and can be embodied by being suitably changed in a range in which the gist thereof is not changed.
- the organic electroluminescent device in the present invention in forming an emitting layer having a dopant doped into a host material, a dopant having a condensed ring obtained by condensing three or more rings is used, the difference in the HOMO between the host material and the dopant is in a range from ⁇ 0.3 eV to +0.3 eV, the film stability of the emitting layer is improved, and an organic material in the emitting layer is prevented from being crystallized due to heat or the like at the time of light emission, so that stable and uniform light emission can be performed for a long time, and excitation energy is efficiently moved from the host material to the dopant. Therefore, luminous efficiency in the organic electroluminescent device is improved, so that high luminance is obtained.
- the present invention can be further optimized by using as these materials materials having a substituent group, for example, —C 6 H 5 , —CH 3 , —C 2 H 5 , —C(CH 3 ) 3 , —OCH 3 , —OCOCH 3 , —OH, —NH 2 , —N(CH 3 ) 2 , —N(C 6 H 5 ) 2 , —NC 12 H 8 , —NHCOCH 3 , —NH 3 , —CF 3 , —NO 2 , —CN, —COCH 3 , and —CO 2 C 2 H 5 .
- a substituent group for example, —C 6 H 5 , —CH 3 , —C 2 H 5 , —C(CH 3 ) 3 , —OCH 3 , —OCOCH 3 , —OH, —NH 2 , —N(CH 3 ) 2 , —N(C 6 H 5 ) 2 ,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-125192 | 1997-05-15 | ||
JP12519297 | 1997-05-15 | ||
PCT/JP1998/001947 WO1998051757A1 (fr) | 1997-05-15 | 1998-04-27 | Element electroluminescent organique |
Publications (1)
Publication Number | Publication Date |
---|---|
US6358633B1 true US6358633B1 (en) | 2002-03-19 |
Family
ID=14904204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/308,818 Expired - Lifetime US6358633B1 (en) | 1997-05-15 | 1998-04-27 | Organic electroluminescence element |
Country Status (4)
Country | Link |
---|---|
US (1) | US6358633B1 (de) |
EP (1) | EP1020510A4 (de) |
JP (1) | JP4278186B2 (de) |
WO (1) | WO1998051757A1 (de) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010045565A1 (en) * | 2000-05-05 | 2001-11-29 | Shunpei Yamazaki | Light emitting device |
US20030089904A1 (en) * | 2001-10-15 | 2003-05-15 | Fujitsu Limited | Electrically conducting organic compound and electronic device |
KR100389195B1 (ko) * | 2000-12-08 | 2003-06-27 | (주)신화엔지니어링종합건축사사무소 | 청색광을 고효율로 발산하는 유기 전계 발광체 |
US6613454B2 (en) * | 2000-04-21 | 2003-09-02 | Tdk Corporation | Organic EL device |
US20030186081A1 (en) * | 2002-03-15 | 2003-10-02 | Fujitsu Limited | Organic el element and organic el display |
US20040131880A1 (en) * | 2002-12-31 | 2004-07-08 | Eastman Kodak Company | Complex fluorene-containing compounds |
US20040131881A1 (en) * | 2002-12-31 | 2004-07-08 | Eastman Kodak Company | Complex fluorene-containing compounds for use in OLED devices |
US20040265630A1 (en) * | 2003-06-24 | 2004-12-30 | Samsung Sdi Co., Ltd. | Organic light-emitting device employing doped hole transporting layer and/or hole injecting layer |
KR100465513B1 (ko) * | 2002-11-19 | 2005-01-13 | 주식회사 엘리아테크 | 승화 정제 과정을 통해 예비 도핑된 고순도 유기 호스트물질 및 유기 도판트 물질 혼합물의 제조방법 및 이를이용한 유기 전계 발광 소자 |
US6864628B2 (en) * | 2000-08-28 | 2005-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising light-emitting layer having triplet compound and light-emitting layer having singlet compound |
US20050238920A1 (en) * | 2003-05-01 | 2005-10-27 | Fujitsu Limited | 1,3,6,8-Tetrasubstituted pyrene compound, organic electroluminescent element, and organic electroluminescent display |
US20070099025A1 (en) * | 2003-07-08 | 2007-05-03 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator and display |
US20080185555A1 (en) * | 2006-11-17 | 2008-08-07 | Antonio Facchetti | Acene-based organic semiconductor materials and methods of preparing and using the same |
US20080233429A1 (en) * | 2003-12-12 | 2008-09-25 | Sumitomo Chemical Company, Limited | Polymer Compound and Polymer Light-Emitting Device Using the Same |
US20080268285A1 (en) * | 2007-04-27 | 2008-10-30 | Canon Kabushiki Kaisha | Organic electroluminescent device |
US20090066227A1 (en) * | 2005-12-20 | 2009-03-12 | Canon Kabushiki Kaisha | Organic light-emitting device |
US20120241730A1 (en) * | 2009-12-03 | 2012-09-27 | Toray Industries, Inc. | Organic el element and method for manufacturing organic el element |
CN102007194B (zh) * | 2008-04-14 | 2015-01-14 | 默克专利有限公司 | 用于有机电致发光器件的新材料 |
CN104684876A (zh) * | 2012-10-05 | 2015-06-03 | 佳能株式会社 | 茚并[1, 2-b]菲化合物和包括该化合物的有机发光元件 |
US9957260B2 (en) | 2013-08-09 | 2018-05-01 | Kyushu University, National University Corporation | Organic metal complex, light emitting material, delayed fluorescent material, and organic light emitting device |
CN110759835A (zh) * | 2018-12-06 | 2020-02-07 | 广州华睿光电材料有限公司 | 苝醌类有机化合物及其应用 |
CN113336784A (zh) * | 2021-05-28 | 2021-09-03 | 上海大学 | 3-取代苯并芴酮或3-取代萘并芴酮衍生物及其合成方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3690926B2 (ja) * | 1997-12-12 | 2005-08-31 | 三井化学株式会社 | 有機電界発光素子 |
JP2001102172A (ja) * | 1999-09-30 | 2001-04-13 | Idemitsu Kosan Co Ltd | 有機エレクトロルミネッセンス素子 |
KR100387166B1 (ko) | 1999-12-15 | 2003-06-12 | 닛뽄덴끼 가부시끼가이샤 | 유기 일렉트로 루미네선스 소자 |
JP4558153B2 (ja) * | 2000-07-27 | 2010-10-06 | 三星モバイルディスプレイ株式會社 | 有機エレクトロルミネッセンス素子 |
GB2380192B8 (en) | 2001-02-09 | 2005-09-14 | Sumitomo Chemical Co | Phenylacetylene compounds liquid crystal compositions polymers optically anisotropic products & optical & liquid crystal elements derived therefrom |
KR100440901B1 (ko) * | 2001-07-16 | 2004-07-23 | 임수근 | 폴리(아세안스릴렌)과폴리(아세안스릴렌-코-비닐카르바졸) 발광고분자 및 이를사용한 전기발광소자 |
US7264889B2 (en) * | 2002-04-24 | 2007-09-04 | Eastman Kodak Company | Stable electroluminescent device |
JP4792738B2 (ja) * | 2003-12-12 | 2011-10-12 | 住友化学株式会社 | 高分子化合物およびそれを用いた高分子発光素子 |
JP5143245B2 (ja) * | 2005-12-20 | 2013-02-13 | キヤノン株式会社 | 有機発光素子 |
JP5457638B2 (ja) * | 2008-03-17 | 2014-04-02 | 国立大学法人 新潟大学 | 環状過酸化物誘導体 |
KR101561479B1 (ko) * | 2008-12-05 | 2015-10-19 | 롬엔드하스전자재료코리아유한회사 | 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 발광소자 |
JP5773638B2 (ja) * | 2010-12-24 | 2015-09-02 | キヤノン株式会社 | 縮合多環化合物及びこれを用いた有機発光素子 |
EP4183853B1 (de) | 2016-04-15 | 2024-10-02 | Beckman Coulter, Inc. | Photoaktive makromoleküle und ihre verwendung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5281489A (en) * | 1990-03-16 | 1994-01-25 | Asashi Kasei Kogyo Kabushiki Kaisha | Electroluminescent element |
US5601903A (en) | 1993-08-27 | 1997-02-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent elements |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5432014A (en) * | 1991-11-28 | 1995-07-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent element and a method for producing the same |
US5693428A (en) * | 1995-02-06 | 1997-12-02 | Sanyo Electric Co., Ltd. | Organic electroluminescent device |
US5552547A (en) * | 1995-02-13 | 1996-09-03 | Shi; Song Q. | Organometallic complexes with built-in fluorescent dyes for use in light emitting devices |
JP3505257B2 (ja) * | 1995-02-24 | 2004-03-08 | 三洋電機株式会社 | 有機エレクトロルミネッセンス素子 |
US5779937A (en) * | 1995-05-16 | 1998-07-14 | Sanyo Electric Co., Ltd. | Organic electroluminescent device |
US5811834A (en) * | 1996-01-29 | 1998-09-22 | Toyo Ink Manufacturing Co., Ltd. | Light-emitting material for organo-electroluminescence device and organo-electroluminescence device for which the light-emitting material is adapted |
-
1998
- 1998-04-27 WO PCT/JP1998/001947 patent/WO1998051757A1/ja not_active Application Discontinuation
- 1998-04-27 US US09/308,818 patent/US6358633B1/en not_active Expired - Lifetime
- 1998-04-27 EP EP98917715A patent/EP1020510A4/de not_active Withdrawn
- 1998-04-27 JP JP54902398A patent/JP4278186B2/ja not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5281489A (en) * | 1990-03-16 | 1994-01-25 | Asashi Kasei Kogyo Kabushiki Kaisha | Electroluminescent element |
US5601903A (en) | 1993-08-27 | 1997-02-11 | Sanyo Electric Co., Ltd. | Organic electroluminescent elements |
Non-Patent Citations (4)
Title |
---|
D. J. Fatemi et al; Synthetic Metals, 85 (1997) pp. 1225-1228, (No Month). |
M. Yoshida et al; Synthetic Metals, 71 (1995) pp. 2111-2112, (No Month). |
Wada et al; Applied Surface Science 65/66 (1993) pp. 376-380, (No Month). |
Yugi Hamada et al; Jpn. J. Appl. Phys. vol. 34 (1995) pp. L824-L826, (No Month). |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6613454B2 (en) * | 2000-04-21 | 2003-09-02 | Tdk Corporation | Organic EL device |
US20010045565A1 (en) * | 2000-05-05 | 2001-11-29 | Shunpei Yamazaki | Light emitting device |
US9564472B2 (en) | 2000-06-05 | 2017-02-07 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US20080169751A1 (en) * | 2000-06-05 | 2008-07-17 | Semiconductor Energy Laboratory Co., Ltd. | Light Emitting Device |
US10777615B2 (en) | 2000-06-05 | 2020-09-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US10192934B2 (en) | 2000-06-05 | 2019-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having light emission by a singlet exciton and a triplet exciton |
US9917141B2 (en) | 2000-06-05 | 2018-03-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having singlet and triplet compounds |
US20050233170A1 (en) * | 2000-06-05 | 2005-10-20 | Semiconductor Energy Laboratory Co., Ltd. A Japan Corporation | Light emitting device |
US9362343B2 (en) | 2000-06-05 | 2016-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Iridium-containing active-matrix EL display module |
US8304985B2 (en) | 2000-06-05 | 2012-11-06 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having singlet and triplet compounds with different emission colors |
US8907559B2 (en) | 2000-06-05 | 2014-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having display portion with plural pixels |
US8674599B2 (en) | 2000-06-05 | 2014-03-18 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having fluorescence and phosphoresence compound |
US7400087B2 (en) | 2000-06-05 | 2008-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having triplet and singlet compound in light-emitting layers |
US20110156580A1 (en) * | 2000-06-05 | 2011-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US10446615B2 (en) | 2000-06-05 | 2019-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US7915808B2 (en) | 2000-06-05 | 2011-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device including EL elements for emitting lights of different colors |
US7339317B2 (en) | 2000-06-05 | 2008-03-04 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device having triplet and singlet compound in light-emitting layers |
US8975813B2 (en) | 2000-08-28 | 2015-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060181206A1 (en) * | 2000-08-28 | 2006-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7199519B2 (en) | 2000-08-28 | 2007-04-03 | Semiconductor Energy Laboratory Co., Ltd. | Electrical equipment having light-emitting device with triplet and singlet compounds in the light-emitting layer |
US7042151B2 (en) | 2000-08-28 | 2006-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Electrical equipment having light-emitting device with triplet and singlet compounds in the light-emitting layer |
US20070170853A1 (en) * | 2000-08-28 | 2007-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8049418B2 (en) | 2000-08-28 | 2011-11-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising triplet compound in electroluminescent layer |
US8415876B2 (en) | 2000-08-28 | 2013-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and display comprising light emitting device |
US20050140280A1 (en) * | 2000-08-28 | 2005-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7372199B2 (en) | 2000-08-28 | 2008-05-13 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and image playback device having triplet and singlet compounds in electroluminescent layer |
US6864628B2 (en) * | 2000-08-28 | 2005-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device comprising light-emitting layer having triplet compound and light-emitting layer having singlet compound |
US20090115348A1 (en) * | 2000-08-28 | 2009-05-07 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
KR100389195B1 (ko) * | 2000-12-08 | 2003-06-27 | (주)신화엔지니어링종합건축사사무소 | 청색광을 고효율로 발산하는 유기 전계 발광체 |
US6940092B2 (en) * | 2001-10-15 | 2005-09-06 | Fujitsu Limited | Electrically conducting organic compound and electronic device |
US20030089904A1 (en) * | 2001-10-15 | 2003-05-15 | Fujitsu Limited | Electrically conducting organic compound and electronic device |
US20030186081A1 (en) * | 2002-03-15 | 2003-10-02 | Fujitsu Limited | Organic el element and organic el display |
US6803126B2 (en) | 2002-03-15 | 2004-10-12 | Fujitsu Limited | Organic EL element and organic EL display |
KR100465513B1 (ko) * | 2002-11-19 | 2005-01-13 | 주식회사 엘리아테크 | 승화 정제 과정을 통해 예비 도핑된 고순도 유기 호스트물질 및 유기 도판트 물질 혼합물의 제조방법 및 이를이용한 유기 전계 발광 소자 |
US7348071B2 (en) * | 2002-12-31 | 2008-03-25 | Eastman Kodak Company | Complex fluorene-containing compounds and use |
US20040131880A1 (en) * | 2002-12-31 | 2004-07-08 | Eastman Kodak Company | Complex fluorene-containing compounds |
US20040131881A1 (en) * | 2002-12-31 | 2004-07-08 | Eastman Kodak Company | Complex fluorene-containing compounds for use in OLED devices |
US20040241496A1 (en) * | 2002-12-31 | 2004-12-02 | Eastman Kodak Company | Complex fluorene-containing compounds and use |
US6849348B2 (en) | 2002-12-31 | 2005-02-01 | Eastman Kodak Company | Complex fluorene-containing compounds |
US20050238920A1 (en) * | 2003-05-01 | 2005-10-27 | Fujitsu Limited | 1,3,6,8-Tetrasubstituted pyrene compound, organic electroluminescent element, and organic electroluminescent display |
US7771843B2 (en) * | 2003-06-24 | 2010-08-10 | Samsung Mobile Display Co., Ltd. | Organic light-emitting device employing doped hole transporting layer and/or hole injecting layer |
US20040265630A1 (en) * | 2003-06-24 | 2004-12-30 | Samsung Sdi Co., Ltd. | Organic light-emitting device employing doped hole transporting layer and/or hole injecting layer |
US7862909B2 (en) | 2003-07-08 | 2011-01-04 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator and display |
US20080233431A1 (en) * | 2003-07-08 | 2008-09-25 | Konica Minolta Holdings Inc. | Organic electroluminescent element, illuminator and display |
US20070099025A1 (en) * | 2003-07-08 | 2007-05-03 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator and display |
US7371469B2 (en) * | 2003-07-08 | 2008-05-13 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator and display |
CN100556224C (zh) * | 2003-07-08 | 2009-10-28 | 柯尼卡美能达控股株式会社 | 有机电致发光元件、照明装置及显示装置 |
US20080233429A1 (en) * | 2003-12-12 | 2008-09-25 | Sumitomo Chemical Company, Limited | Polymer Compound and Polymer Light-Emitting Device Using the Same |
US20090066227A1 (en) * | 2005-12-20 | 2009-03-12 | Canon Kabushiki Kaisha | Organic light-emitting device |
US20080185555A1 (en) * | 2006-11-17 | 2008-08-07 | Antonio Facchetti | Acene-based organic semiconductor materials and methods of preparing and using the same |
US7892454B2 (en) | 2006-11-17 | 2011-02-22 | Polyera Corporation | Acene-based organic semiconductor materials and methods of preparing and using the same |
US8227094B2 (en) * | 2007-04-27 | 2012-07-24 | Canon Kabushiki Kaisha | Organic electroluminescent device |
US20080268285A1 (en) * | 2007-04-27 | 2008-10-30 | Canon Kabushiki Kaisha | Organic electroluminescent device |
CN102007194B (zh) * | 2008-04-14 | 2015-01-14 | 默克专利有限公司 | 用于有机电致发光器件的新材料 |
US20120241730A1 (en) * | 2009-12-03 | 2012-09-27 | Toray Industries, Inc. | Organic el element and method for manufacturing organic el element |
US9240553B2 (en) | 2012-10-05 | 2016-01-19 | Canon Kabushiki Kaisha | Indeno[1,2-b]phenanthrene compound and organic light emitting element including the same |
CN104684876A (zh) * | 2012-10-05 | 2015-06-03 | 佳能株式会社 | 茚并[1, 2-b]菲化合物和包括该化合物的有机发光元件 |
US9957260B2 (en) | 2013-08-09 | 2018-05-01 | Kyushu University, National University Corporation | Organic metal complex, light emitting material, delayed fluorescent material, and organic light emitting device |
CN110759835A (zh) * | 2018-12-06 | 2020-02-07 | 广州华睿光电材料有限公司 | 苝醌类有机化合物及其应用 |
CN110759835B (zh) * | 2018-12-06 | 2023-05-30 | 广州华睿光电材料有限公司 | 苝醌类有机化合物及其应用 |
CN113336784A (zh) * | 2021-05-28 | 2021-09-03 | 上海大学 | 3-取代苯并芴酮或3-取代萘并芴酮衍生物及其合成方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1020510A4 (de) | 2004-12-29 |
EP1020510A1 (de) | 2000-07-19 |
WO1998051757A1 (fr) | 1998-11-19 |
JP4278186B2 (ja) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358633B1 (en) | Organic electroluminescence element | |
EP0728828B1 (de) | Organische elektrolumineszente Vorrichtung | |
US6387546B1 (en) | Organic electroluminescent device | |
US6713192B2 (en) | Organic electroluminescence device and organic light emitting medium | |
JP4255610B2 (ja) | 白色系有機エレクトロルミネッセンス素子 | |
US20090009073A1 (en) | Oligoarylene Derivatives and Organic Electroluminescent Devices Made By Using The Same | |
JP2007201491A (ja) | 白色系有機エレクトロルミネッセンス素子 | |
JP2000182778A (ja) | 有機系多層型エレクトロルミネセンス素子 | |
JP3239057B2 (ja) | 有機エレクトロルミネッセンス素子 | |
WO2002022760A1 (en) | Organic electro-luminescence device | |
KR100660001B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
JP2006287248A (ja) | 有機エレクトロルミネッセンス素子及び有機発光媒体 | |
KR100682766B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
KR100682824B1 (ko) | 고효율의 유기 전계 발광 소자 | |
KR100740303B1 (ko) | 고효율의 유기 전계 발광 소자 | |
KR100773248B1 (ko) | 신규 적색 발광 화합물 및 이를 사용한 유기 전계 발광 소자 | |
KR100682765B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
KR100644530B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
KR100682833B1 (ko) | 고효율의 유기 전계 발광 소자 | |
KR100660010B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
KR100662599B1 (ko) | 고효율의 유기 전계 발광 소자 | |
KR100682764B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
KR100659949B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 | |
KR100746981B1 (ko) | 전자 래더층을 갖는 유기 전계 발광 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANYO ELECTRIC CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SANO, TAKESHI;NISHIO, YOSHITAKA;REEL/FRAME:010079/0848;SIGNING DATES FROM 19990224 TO 19990302 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |