US5539741A - Audio conferenceing system - Google Patents
Audio conferenceing system Download PDFInfo
- Publication number
- US5539741A US5539741A US08/346,553 US34655394A US5539741A US 5539741 A US5539741 A US 5539741A US 34655394 A US34655394 A US 34655394A US 5539741 A US5539741 A US 5539741A
- Authority
- US
- United States
- Prior art keywords
- audio
- stream
- workstation
- samples
- computer workstation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000007 visual effect Effects 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 14
- 230000005236 sound signal Effects 0.000 description 17
- 238000012545 processing Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 13
- 238000004891 communication Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000003139 buffering effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/1813—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast for computer conferences, e.g. chat rooms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/1059—End-user terminal functionalities specially adapted for real-time communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1083—In-session procedures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/40—Support for services or applications
- H04L65/403—Arrangements for multi-party communication, e.g. for conferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/60—Network streaming of media packets
- H04L65/61—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
- H04L65/613—Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for the control of the source by the destination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/56—Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities
- H04M3/567—Multimedia conference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/56—Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities
- H04M3/568—Arrangements for connecting several subscribers to a common circuit, i.e. affording conference facilities audio processing specific to telephonic conferencing, e.g. spatial distribution, mixing of participants
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/15—Conference systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/42—Systems providing special services or facilities to subscribers
- H04M3/42136—Administration or customisation of services
- H04M3/42153—Administration or customisation of services by subscriber
- H04M3/42161—Administration or customisation of services by subscriber via computer interface
Definitions
- the present invention relates to the processing by a computer workstation of multiple streams of audio data received over a network.
- a first terminal or workstation digitally samples a voice input signal at a regular rate (e.g. 8 kHz). A number of samples are then assembled into a data packet for transmission over the network to a second terminal, which then feeds the samples to a loudspeaker or equivalent device for playout, again at a constant rate.
- a regular rate e.g. 8 kHz
- the amount of buffering is adaptively controlled depending on the number of discarded packets (any other appropriate measure of lateness could be used). If the number of discarded packets is high, the degree of buffering is increased, while if the number of discarded packets is low, the degree of buffering is decreased. The size of the buffer is altered by temporarily changing the play-out rate (this affects the pitch; a less noticeable technique would be to detect periods of silence and artificially increase or decrease them as appropriate).
- audio conferencing involving multipoint communications, as opposed to two-way or point-to-point communications.
- audio conferencing requires each participant to send an audio signal to a central hub.
- the central hub mixes the incoming signals, possibly adjusting for the different levels, and sends each participant a summation of the signals from all the other participants (excluding the signal from that particular node).
- U.S. Pat. No. 4,650,929 discloses a centralized video/audio conferencing system in which individuals can adjust the relative volumes of the other participants.
- U.S. Pat. No. 4,389,720 discloses a telephone conferencing system with individual gain adjustment performed by system ports for multiple end user stations.
- a centralized mixing node often referred to as a multipoint control unit (MCU)
- MCU multipoint control unit
- U.S. Pat. No. 4,710,917 describes a multimedia conferencing system, in which each participant transmits audio to and receives audio from a central mixing unit.
- Other multimedia conferencing systems are described in "Distributed Multiparty Desktop Conferencing System: MERMAID" by K. Watabe, S. Sakata, K. Maeno, H. Fukuoka, and T. Ohmori, pp.
- a centralized MCU or summation node however has several drawbacks. Firstly, the architecture of most LANs is based on a peer-to-peer arrangement, and so there is no obvious central node. Moreover, the system relies totally on the continued availability of the nominated central node to operate the conference. There can also be problems with echo suppression (the central node must be careful not to include the audio from a node in the summation signal played back to that node).
- a distributed multimedia conferencing system is described in "Personal Multimedia-Multipoint Teleconference System" by H. Tanigawa, T. Arikawa, S. Masaki, and K. Shimamura, pp. 1127-1134 in IEEE INFOCOM 91, Proceedings Vol 3.
- This system provides sound localization for a stereo workstation, in that as a window containing the video signal from a conference participant is moved from right to left across the screen, the apparent source of the corresponding audio signal moves likewise. This approach provides limited assistance in identification of a speaker.
- a more comprehensive facility is described in Japanese abstract JP 02-123886 in which a bar graph is used to depict the output voice level associated with an adjacent window containing a video of the source of the sound.
- the invention provides a computer workstation for connecting to a network and receiving multiple audio input streams from the network, each audio stream comprising a sequence of digital audio samples, the workstation including:
- the invention recognizes that the provision of audio conferencing over a distributed network, in which each node receives a separate audio stream from all of the other participants, naturally allows extra functionality that could only previously be achieved with great difficulty and expense in in centralized conferencing systems.
- each user can adjust the relative volume of all the other participants according to their own personal preferences. This can be very desirable for example if they need to focus on one particular aspect of the conference, or because of language problems (for example, maybe one person has a strong accent which is difficult for some people to understand, or maybe the conference involves simultaneous translation).
- the system is responsive to user input to alter the relative volumes of the different participants.
- the incoming audio signals are kept separate, being placed into different queues according to their source (the queues are logically separate storage, although physically they may be adjacent or combined), before being weighted by the appropriate volume control factor. Only then are they combined together to produce the final audio output.
- the invention thus recognizes that a distributed audio conferencing system is particularly suited to the provision of individual control for the relative volumes.
- the workstation further comprises means for providing a visual indication for each of said multiple audio input streams of whether or not that stream is currently silent.
- the visual indication may simply be some form of on/off indicator, such as a light or equivalent feature, but in a preferred embodiment is implemented by a display that indicates for each of said multiple audio input streams the instantaneous sound volume in that audio stream.
- the display provides a full indication of the volume of the relevant participant.
- the volume output can be calculated on the basis of a running root-mean-square value from the sequence of digital audio samples, or if processing power is limited a simpler algorithm may be employed, such as using the maximum digital audio value in a predetermined number of samples.
- the incoming audio data arrives in blocks, each containing a predetermined number of digital audio samples, and said visual indication is updated for each new block of audio data.
- the volume figure will typically be calculated on a per block basis.
- said visual indication is displayed adjacent a visual representation of the origin of that audio input stream, such as a video or still image.
- a visual representation of the origin of that audio input stream such as a video or still image.
- the former requires a full multimedia conferencing network, whereas the latter can be provided on much lower bandwidth networks which cannot support the transmission of video signals.
- Such a visual indication, whether still or moving, allows easy identification of the source of any audio.
- the workstation further includes means for providing the user with a visual indication of the values of said weighting parameters, said means being responsive to user mouse operations to adjust said weighting parameters.
- This can be implemented as a scroll-bar or the like, one for each audio input stream, and located adjacent the visual indication of output volume for that stream.
- the computer workstation to further comprise means for disabling audio output from any of said multiple audio input streams.
- the invention also provides a method of operating a computer workstation, connected to a network for the receipt of multiple audio input streams, each audio stream comprising a sequence of digital audio samples, said method comprising the steps of:
- FIG. 1 is a schematic diagram of a computer network
- FIG. 2 is a simplified block diagram of a computer workstation for use in audio conferencing
- FIG. 3 is a simplified block diagram of an audio adapter card in the computer workstation of FIG. 2;
- FIG. 4 is a flow chart illustrating the processing performed on an incoming audio packet
- FIG. 5 illustrates the queue of incoming audio packets waiting to be played out
- FIG. 6 is a flow chart illustrating the processing performed by the digital signal processor on the audio adapter card
- FIG. 7 shows a typical screen interface presented to the user of the workstation of FIG. 2;
- FIG. 8 is a simplified diagram showing the main software components running on the workstation of FIG. 2.
- FIG. 1 is a schematic diagram of computer workstations A-E linked together in a local area network (LAN) 2. These workstations are participating in a multiway conference, whereby each workstation is broadcasting its audio signal to all the other workstations in the conference. Thus each workstation receives a separate audio signal from every other workstation.
- the network shown in FIG. 1 has a Token Ring architecture, in which a token circulates around the workstations. Only the workstation currently in possession of the token is allowed to transmit a message to another workstation. It should be understood that the physical transmission time for a message around the ring is extremely short. In other words, a message transmitted by A for example is received by the all the other terminals almost simultaneously. This is why a token system is used to prevent interference arising from two nodes trying to transmit messages at the same time.
- a one-way audio communication on a LAN typically requires a bandwidth of 64 kHz.
- each node will be broadcasting its audio signal to four other nodes, implying all overall bandwidth requirement of 5 ⁇ 4 ⁇ 64 kHz (1.28 MHz). This is comfortably within the capability of a standard Token Ring, which supports either 4 or 16 MBits per second transmission rate. It will be recognized that for larger conferences the bandwidth requirements quickly become problematic, although future networks are expected to offer much higher bandwidths.
- the invention can be implemented on many different network architectures or configurations other than Token Ring, providing of course the technical requirements regarding bandwidth, latency and so on necessary to support audio conferencing can be satisfied.
- FIG. 2 is a simplified schematic diagram of a computer system which may be used in the network of FIG. 1.
- the computer has a system unit 10, a display screen 12, a keyboard 14 and a mouse 16.
- the system unit 10 includes microprocessor 22, semi-conductor memory (ROM/RAM) 24, and a bus over which data is transferred 26.
- the computer of FIG. 2 may be any conventional workstation, such as an IBM PS/2® computer.
- the computer of FIG. 2 is equipped with two adapter cards.
- the first of these is a Token Ring adapter card 30.
- This card together with accompanying software, allows messages to be transmitted onto and received from the Token Ring network shown in FIG. 1.
- the operation of the Token Ring card is well-known, and so will not be described in detail.
- the second card is an audio card 28 which is connected to a microphone and a loudspeaker (not shown) for audio input and output respectively.
- the audio card is shown in more detail in FIG. 3.
- the card illustrated and used in this particular embodiment is an M-Wave card available from IBM, although other cards are available that perform an analogous function.
- M-Wave is a trademark of IBM Corporation.
- the card contains an A/D converter 42 to digitized incoming audio signals from an attached microphone 40.
- the A/D converter is attached to a CODEC 44, which samples the incoming audio signal at a rate of 44.1 kHz into 16 bit samples (corresponding to the standard sampling rate/size for compact disks).
- Digitized samples are then passed to a digital signal processor (DSP) 46 on the card via a double buffer 48 (ie the CODEC loads a sample into one half of the double buffer while the CODEC reads the previous sample from the other half).
- DSP digital signal processor
- the DSP is controlled by one or more programs stored in semiconductor memory 52 on the card. Data can be transferred by the DSP to and from the main PC bus.
- Audio signals to be played out are received by the DSP 46 from the PC bus 26, and processed in a converse fashion to audio input from the microphone. That is, the output audio signals are passed through the DSP 46 and a double buffer 50 to the CODEC 44, from there to a D/A converter 54, and finally to a loudspeaker 56 or other appropriate output device.
- the DSP is programmed to transform samples from the CODEC from 16 bits at 44.1 kHz into a new digital signal having an 8 kHz sampling rate, with 8-bit samples on a ⁇ -law scale (essentially logarithmic), corresponding to CCITT standard G.711, using standard re-sampling techniques.
- the total bandwidth of the signal passed to the workstation for transmission to other terminals is therefore 64 kHz.
- the DSP also performs the opposite conversion on an incoming signal received from the PC, i.e. it converts the signal from 8-bit 8 kHz to 16-bit, 44.1 kHz, again using known re-sampling techniques.
- Data is transferred between the audio adapter card and the workstation in blocks of 64 bytes: i.e. 8 ms of audio data, for 8-bit data sampled at 8 kHz.
- the workstation then only processes whole blocks of data, and each data packet transmitted from or received by the workstation typically contains a single 64 byte block of data.
- the choice of 64 bytes for the block size is a compromise between minimizing the granularity of the system (which introduces delay), whilst maintaining efficiency both as regards internal processing in the workstation and transmission over the network. In other systems a block size of 32 or 128 bytes for example may be more appropriate.
- the audio card receives an input signal, whether in analogue form from a microphone, or from some other audio source, such as a compact disk player, and produces blocks of digital audio data. These blocks are then transferred into the main memory of the workstation, and from there to the LAN adapter card (in some architectures it may be possible to transfer blocks from the audio adapter card directly into the LAN adapter card, without the need to go via the workstation memory).
- the LAN adapter card generates a data packet containing the digital audio data along with header information, identifying the source and destination nodes, and this packet is then transmitted over the network to the desired recipient(s). It will be understood that in any two or multi-way communications this transmission process will be executing at the workstation simultaneously with the reception process described below.
- FIG. 4 The processing by the computer workstation as regards the reception of audio data packets is illustrated in FIG. 4.
- the LAN adapter card notifies a program executing on the microprocessor in the workstation, providing information to the program identifying the source of the data packet.
- the program then transfers the incoming 64 byte audio block into a queue in main memory (step 404).
- the queue in main memory 500 actually comprises a set of separate subqueues containing audio blocks from each of the different source nodes. Thus one queue contains the audio blocks from one source node, one queue contains the audio blocks from another source node, and so on.
- subqueues 501, 502, 503, for audio data from nodes B, C and D respectively; the number of subqueues will of course vary with the number of participants in the audio conference.
- the program uses the information in each received packet identifying the source node in order to allocate the block of incoming audio data to the correct queue.
- Pointers P B , P C , and P D indicate time position of the end of the queue and are updated whenever new packets are added. Packets are removed for further processing from the bottom of the subqueues ("OUT" as shown in FIG. 5).
- the subqueues in FIG. 5 are therefore essentially standard First In First Out queues and can be implemented using conventional programming techniques.
- the operations performed by the DSP on the audio adapter card are illustrated in FIG. 6.
- the DSP runs in a cycle, processing a fresh set of audio blocks every 8 milliseconds in order to ensure a continuous audio output signal.
- These blocks are treated as representing simultaneous time intervals: in the final output they will be added together to produce a single audio output for that time interval.
- the DSP therefore effectively performs a digital mixing function on the multiple audio input streams.
- the individual samples within the 64 byte blocks are then converted out of G.711 format (which is essentially logarithmic) into a linear scale (step 604).
- Each individual sample is then multiplied by a weighting parameter (step 606).
- weighting parameter There is a separate weighting parameter for each received audio data stream; i.e. for the three subqueues of FIG. 5, there is one weighting parameter for the audio stream from node B, one for the audio stream from node C, and one for the audio stream from node D.
- the weighting parameters are used to control the relative loudness of the audio signals from different sources.
- the DSP maintains a running record of the root mean square (rms) value for each audio stream (step 608).
- rms root mean square
- the rms value represents the volume of that individual audio input stream and is used to provide volume information to the user as described below.
- step 608 Once the digital audio samples have been multiplied by the appropriate weighting parameter, they are summed together (step 608; note that this can effectively happen in parallel to the processing of step 606). Thus a single sequence of digital audio samples is produced, representing the weighted sum of the multiple input audio streams. This sequence of digital audio samples is then re-sampled up to 44.1 kHz (step 610, although as mentioned previously, this is hardware-dependent and not directly relevant to the present invention), before being passed to the CODEC (step 612) for supply to the loudspeaker.
- the actual DSP processing used to generate the volume adjusted signals may vary somewhat from that shown in FIG. 6, although effectively the end result is similar. Such variations might typically be introduced to maximise computational efficiency or to reduce demands on the DSP. For instance, if processor power is limited, then the volume control can be implemented at the conversion out of ⁇ -law format. Thus after the correct look-up value has been located (step 604), the actual read-out value can be determined by moving up or down the table a predetermined number of places, according to whether the volume of the signal is to be increased or decreased from its normal value.
- the weighting parameter is effectively the number of steps up or down to adjust the look-up table (obviously allowing for the fact that the G.711 format separates the original amplitudes according to whether they are positive or negative, and volume adjustment cannot convert one into the other).
- the above approach is computationally simple, but provides only discrete rather than continuous volume control.
- This approach effectively performs the multiplication of step 606 prior to the scale conversion of step 604 using logarithmic addition, which for most processors is computationally less expensive than multiplication.
- the result can then be converted back into a linear scale (step 604) for mixing with the other audio streams.
- the processing might perhaps be performed on every other block of data, or alternatively some computationally simpler algorithm such as summing the absolute value of the difference between successive samples could be used. Note that the summation of the squared values can be performed by logarithmic addition prior to step 604 (i.e. before the scale conversion). An even simpler approach would be to simply use the maximum sample value in any audio block as a volume indicator.
- FIG. 7 shows the screen 700 presented to the user at the workstation who is involved in an audio conference. As in the previous discussion, this involves the receipt of three different streams of audio data, although obviously the invention is not limited to just three participants.
- the screen in FIG. 7 has been split by dotted lines into three areas 701, 702, 703, each representing one participant, although in practice these dotted lines do not appear on the screen.
- a box 724 containing the name of the participant (in our case simply B, C and D).
- an image window 720 which can be used to contain a video image of the audio source, transmitted over the network with the audio, or a still bit map (either supplied by the audio source at the start of time conference, or perhaps already existing locally at the workstation and displayed in response to the name of that participant).
- a still bit map either supplied by the audio source at the start of time conference, or perhaps already existing locally at the workstation and displayed in response to the name of that participant.
- participant D no video or still image is available, so a blank window is shown.
- the choice of display (blank, still or video image) in the image window will depend on the available hardware at that workstation, the bandwidth of the network, and the availability of the relevant information.
- Beneath the image window is a volume display 721 (a VU meter) which indicates the instantaneous volume of that audio stream (as calculated in block 608 in FIG. 6).
- the length of the solid line in this display depicts the volume of the audio stream. If there is no audio signal from that participant, then the solid line has zero length (i.e. it disappears). The user can therefore determine who is speaking in a conference by looking at whose VU meter is active.
- volume control bar 722 Beneath the volume display is a volume control bar 722, which allows the user to adjust the relative volume of that participant. This is performed by the user pressing on the "+” or “-” buttons at either end of the bar in order to increase or decrease the volume respectively. This has the effect of correspondingly increasing or decreasing the weighting parameter used in the digital mixing.
- the indicator in the middle of the volume control bar represents the current volume setting (ie the current value of the weighting parameter).
- the weighting parameter is set to zero, when it is enabled the weighting parameter is restored to its previous value (i.e. as indicated on the volume control bar). If the audio from a participant is currently disabled, this is indicated by a cross superimposed over the mute button (in FIG. 7 all three audio outputs are currently enabled). Note that using the DSP processing described above, when the mute button is on with the audio output disabled, the VU meter will show zero. If desired it would be straightforward to modify the system so that the VU meter instead showed the signal level that would be produced if the audio output was in fact enabled.
- FIG. 8 illustrates the main software components running on the workstation of FIG. 2 in order to provide the user interface of FIG. 7.
- the workstation is controlled by the operating system 814, such as Windows, available from Microsoft Corporation.
- the appropriate communications software 816 to enable LAN communications (in some cases the communications software may effectively be included in the operating system).
- the operating system and communications software interact with the two adapter cards, the Token Ring and audio adapter cards, via device drivers 818, as is well-known in the art.
- the overall processing of the audio is controlled by the application 810.
- This utilizes the functions of an Application Support Layer 812, which in one implementation is Visual Basic, available from Microsoft Corporation.
- the purpose of the Application Support Layer is to facilitate the development of the application, particularly as regards the user interface, but of course it would be possible for the application to work directly with the operating system instead.
- the application controls the contents of the window boxes 720 in accordance with known programming techniques.
- the VU meters 721 are provided using functions provided in Visual Basic, which is effectively responsible for all the graphics associated with the meters: all that is necessary for the application to do is to supply the relevant numerical values. Since Visual Basic is interrupt-driven, this is easily accomplished by the DSP copying the output volume for an audio block into a workstation, and then invoking an interrupt. The interrupt produces an event in the application, notifying it of the new output volume which can now be copied onto the VU meter. In fact, the interrupt is used to signal the availability of the complete set of volume readings for that set of audio blocks; i.e.
- volume control bar 722 is also a feature provided in Visual Basic (termed a "scroll bar"). Visual Basic is responsible for all the graphics associated with the control bar, including the position of the selector, and simply passes to the application an updated volume figure whenever this is adjusted by the user. The application can then write this updated figure into the DSP to alter the volume accordingly.
- the mute button 723 is another display feature provide by Visual Basic allowing simple on/off control of each audio stream. Note that whenever the mute button is activated it is necessary for the application to remember tire previous value of the weighting parameter, so that this can be restored when the mute button is next pressed.
- VU meter could be segmented, or replaced by an analog level meter.
- An even simpler approach would be an on/off indicator that just changed colour according to whether or not there was any audio output from that participant.
- the volume control function could be implemented using a dial, or perhaps with a drag and drop slider rather than two push-buttons.
- the mute button could also be incorporated into the volume control bar.
- the user is effectively limited to volume control of each audio input stream
- the user may be provided with more advanced controls such as frequency control (i.e. treble and base adjustment), This could be implemented relatively easily by the DSP multiplying the audio signal in the time domain by an FIR or IIR filter.
- the frequency control would be represented to the user in a manner similar to the volume control bar of FIG. 7, and changes to the frequency control would produce appropriate changes to the FIR/IIR filter coefficients.
- These advanced controls will become increasingly desirable as the quality of audio signals transmitted over networks improves, for example in systems that use the G.721 rather than G.711 audio transmission standard.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Computer And Data Communications (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Telephonic Communication Services (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9325924A GB2284968A (en) | 1993-12-18 | 1993-12-18 | Audio conferencing system |
GB9325924 | 1993-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5539741A true US5539741A (en) | 1996-07-23 |
Family
ID=10746850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/346,553 Expired - Fee Related US5539741A (en) | 1993-12-18 | 1994-11-29 | Audio conferenceing system |
Country Status (8)
Country | Link |
---|---|
US (1) | US5539741A (hu) |
EP (1) | EP0659006A3 (hu) |
JP (1) | JP2537024B2 (hu) |
KR (1) | KR0133416B1 (hu) |
CN (1) | CN1097231C (hu) |
GB (1) | GB2284968A (hu) |
IN (1) | IN190028B (hu) |
TW (1) | TW366633B (hu) |
Cited By (127)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5703794A (en) * | 1995-06-20 | 1997-12-30 | Microsoft Corporation | Method and system for mixing audio streams in a computing system |
US5889764A (en) * | 1995-08-31 | 1999-03-30 | Intel Corporation | Low-latency multi-party audio chat |
US5903868A (en) * | 1995-11-22 | 1999-05-11 | Yuen; Henry C. | Audio recorder with retroactive storage |
US5923747A (en) * | 1996-09-27 | 1999-07-13 | Rockwell International Corp. | Communications system and interface circuit for interconnecting telephonic switch and agent computer |
US5963217A (en) * | 1996-11-18 | 1999-10-05 | 7Thstreet.Com, Inc. | Network conference system using limited bandwidth to generate locally animated displays |
US5991711A (en) * | 1996-02-26 | 1999-11-23 | Fuji Xerox Co., Ltd. | Language information processing apparatus and method |
US6008838A (en) * | 1996-08-29 | 1999-12-28 | Nec Corporation | Multi-point video conference system |
US6201859B1 (en) * | 1995-06-02 | 2001-03-13 | Intel Corporation | Method and apparatus for controlling participant input in a conferencing environment |
US6230130B1 (en) * | 1998-05-18 | 2001-05-08 | U.S. Philips Corporation | Scalable mixing for speech streaming |
WO2001033373A1 (en) * | 1999-11-01 | 2001-05-10 | Richard Thomas Ross | Audio queue management system |
US6262979B1 (en) * | 1998-12-01 | 2001-07-17 | 3Com Corporation | Telecommunication conferencing system and method |
US6311161B1 (en) | 1999-03-22 | 2001-10-30 | International Business Machines Corporation | System and method for merging multiple audio streams |
US6453022B1 (en) * | 1998-12-31 | 2002-09-17 | At&T Corporation | Multi-line telephone with input/output mixing and audio control |
US6466550B1 (en) * | 1998-11-11 | 2002-10-15 | Cisco Technology, Inc. | Distributed conferencing system utilizing data networks |
US6501739B1 (en) * | 2000-05-25 | 2002-12-31 | Remoteability, Inc. | Participant-controlled conference calling system |
US20030194072A1 (en) * | 2002-04-11 | 2003-10-16 | Macnamara John J. | Control of conference bridges |
US20040013244A1 (en) * | 2002-07-17 | 2004-01-22 | Oates John David | Apparatus and method for displaying a name of a speaker on a telecommunication conference call |
US20040042601A1 (en) * | 2002-08-28 | 2004-03-04 | Miao Kai X. | Method and apparatus to manage a conference |
US6714826B1 (en) | 2000-03-13 | 2004-03-30 | International Business Machines Corporation | Facility for simultaneously outputting both a mixed digital audio signal and an unmixed digital audio signal multiple concurrently received streams of digital audio data |
US20040077467A1 (en) * | 2002-10-17 | 2004-04-22 | Joseph Spinosa | Back-board |
US20040090986A1 (en) * | 1997-07-24 | 2004-05-13 | Shinji Usuba | Concentrator for speech telephones and method of communication over LAN using same |
US20040101145A1 (en) * | 2002-11-26 | 2004-05-27 | Falcon Stephen R. | Dynamic volume control |
US6792092B1 (en) | 2000-12-20 | 2004-09-14 | Cisco Technology, Inc. | Method and system for independent participant control of audio during multiparty communication sessions |
US20040215770A1 (en) * | 2002-06-11 | 2004-10-28 | Maher Robert Daniel | Device for enabling trap and trace of internet protocol communications |
US20040240673A1 (en) * | 2003-06-02 | 2004-12-02 | Sunplus Technology Co., Ltd. | Device for simplifying synthetic audio processing |
US20050076081A1 (en) * | 2003-10-01 | 2005-04-07 | Yong Rui | Methods and systems for participant sourcing indication in multi-party conferencing and for audio source discrimination |
US6888935B1 (en) | 2003-01-15 | 2005-05-03 | Cisco Technology, Inc. | Speak-louder signaling system for conference calls |
US20050152524A1 (en) * | 2004-01-13 | 2005-07-14 | International Business Machines Corporation | System and method for server based conference call volume management |
US20060050658A1 (en) * | 2004-09-09 | 2006-03-09 | Cisco Technology, Inc. | Method and system for providing a conference service |
US7065198B2 (en) | 2002-10-23 | 2006-06-20 | International Business Machines Corporation | System and method for volume control management in a personal telephony recorder |
US20070036100A1 (en) * | 2005-08-10 | 2007-02-15 | Cisco Technology, Inc. | Method and system for communicating media based on location of media source |
US20070037596A1 (en) * | 2005-08-10 | 2007-02-15 | Cisco Technology, Inc. | Method and system for providing interoperable communications with location information |
US20070036118A1 (en) * | 2005-08-10 | 2007-02-15 | Cisco Technology, Inc. | Method and system for automatic configuration of virtual talk groups based on location of media sources |
US20070047479A1 (en) * | 2005-08-29 | 2007-03-01 | Cisco Technology, Inc. | Method and system for conveying media source location information |
US20070165105A1 (en) * | 2006-01-09 | 2007-07-19 | Lengeling Gerhard H J | Multimedia conference recording and manipulation interface |
US20070177743A1 (en) * | 2004-04-08 | 2007-08-02 | Koninklijke Philips Electronics, N.V. | Audio level control |
US20070202907A1 (en) * | 2006-02-27 | 2007-08-30 | Cisco Technology, Inc. | Method and system for providing interoperable communications with congestion management |
US20070202908A1 (en) * | 2006-02-28 | 2007-08-30 | Cisco Technology, Inc. | Method and system for providing interoperable communications with dynamic event area allocation |
US20070239824A1 (en) * | 2006-04-05 | 2007-10-11 | Cisco Technology, Inc. | Method and system for managing virtual talk groups |
US20070270172A1 (en) * | 2006-05-18 | 2007-11-22 | Yogesh Kalley | Providing Virtual Talk Group Communication Sessions In Accordance With Endpoint Resources |
US20070274460A1 (en) * | 2006-05-10 | 2007-11-29 | Shmuel Shaffer | Providing Multiple Virtual Talk Group Communication Sessions |
US20070280195A1 (en) * | 2006-06-02 | 2007-12-06 | Shmuel Shaffer | Method and System for Joining a Virtual Talk Group |
US20070291128A1 (en) * | 2006-06-15 | 2007-12-20 | Yulun Wang | Mobile teleconferencing system that projects an image provided by a mobile robot |
US7313593B1 (en) | 2000-10-24 | 2007-12-25 | International Business Machines Corporation | Method and apparatus for providing full duplex and multipoint IP audio streaming |
US20080014865A1 (en) * | 2006-06-16 | 2008-01-17 | Pinnacle Peak Holding Corporation (Dba Setcom Corp.) | Radio and public address accessory system with wireless interface |
US7327719B2 (en) * | 2001-04-03 | 2008-02-05 | Trilogy Communications Limited | Managing internet protocol unicast and multicast communications |
US20080037749A1 (en) * | 2006-07-31 | 2008-02-14 | Larry Raymond Metzger | Adjusting audio volume in a conference call environment |
US7382766B1 (en) * | 1997-07-24 | 2008-06-03 | Oki Electric Industry Co., Ltd. | Line concentrator for telephone set and communication method of LAN |
US20080159128A1 (en) * | 2006-12-28 | 2008-07-03 | Cisco Technology, Inc. | Method and System for Providing Congestion Management within a Virtual Talk Group |
US20080280637A1 (en) * | 2007-05-10 | 2008-11-13 | Cisco Technology, Inc. | Method and System for Handling Dynamic Incidents |
CN100438332C (zh) * | 2004-11-06 | 2008-11-26 | 腾讯科技(深圳)有限公司 | 一种音量限制方法和系统 |
US20090094029A1 (en) * | 2007-10-04 | 2009-04-09 | Robert Koch | Managing Audio in a Multi-Source Audio Environment |
US7535995B1 (en) * | 2002-01-29 | 2009-05-19 | Cisco Technology, Inc. | System and method for volume indication during a communication session |
WO2010006211A1 (en) * | 2008-07-11 | 2010-01-14 | In Touch Technologies, Inc. | Tele-presence robot system with multi-cast features |
US20100010672A1 (en) * | 2008-07-10 | 2010-01-14 | Yulun Wang | Docking system for a tele-presence robot |
US20100020954A1 (en) * | 2006-07-28 | 2010-01-28 | Virginie Gilg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US20100115418A1 (en) * | 2004-02-26 | 2010-05-06 | Yulun Wang | Graphical interface for a remote presence system |
US20100159975A1 (en) * | 2008-12-19 | 2010-06-24 | Cisco Technology, Inc. | System and Method for Providing a Trunked Radio and Gateway |
US20100161727A1 (en) * | 2008-12-19 | 2010-06-24 | Cisco Technology, Inc. | System and Method for Accelerating a Wide Area Notification |
US20110058662A1 (en) * | 2009-09-08 | 2011-03-10 | Nortel Networks Limited | Method and system for aurally positioning voice signals in a contact center environment |
US20110069643A1 (en) * | 2009-09-22 | 2011-03-24 | Nortel Networks Limited | Method and system for controlling audio in a collaboration environment |
US20110077755A1 (en) * | 2009-09-30 | 2011-03-31 | Nortel Networks Limited | Method and system for replaying a portion of a multi-party audio interaction |
US20110225238A1 (en) * | 2010-03-11 | 2011-09-15 | Cisco Technology, Inc. | System and method for providing data channel management in a network environment |
US8045998B2 (en) | 2005-06-08 | 2011-10-25 | Cisco Technology, Inc. | Method and system for communicating using position information |
US20110289410A1 (en) * | 2010-05-18 | 2011-11-24 | Sprint Communications Company L.P. | Isolation and modification of audio streams of a mixed signal in a wireless communication device |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
CN102487423A (zh) * | 2010-12-03 | 2012-06-06 | 亚斯数码科技有限公司 | 可独立调整音源输入的会议系统 |
US8209051B2 (en) | 2002-07-25 | 2012-06-26 | Intouch Technologies, Inc. | Medical tele-robotic system |
US20120209933A1 (en) * | 2011-02-16 | 2012-08-16 | Masque Publishing, Inc. | Peer-To-Peer Communications |
US20120314886A1 (en) * | 2008-09-16 | 2012-12-13 | International Business Machines Corporation | Modifications of audio communications in an online environment |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US20120331401A1 (en) * | 2009-03-31 | 2012-12-27 | Voispot, Llc | Virtual meeting place system and method |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US8515577B2 (en) | 2002-07-25 | 2013-08-20 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
US8570909B1 (en) | 2006-10-17 | 2013-10-29 | Cisco Technology, Inc. | Method and system for providing an indication of a communication |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
WO2014052745A1 (en) | 2012-09-27 | 2014-04-03 | Dolby Laboratories Licensing Corporation | Near-end indication that the end of speech is received by the far end in an audio or video conference |
US8718837B2 (en) | 2011-01-28 | 2014-05-06 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US20140139611A1 (en) * | 2011-07-14 | 2014-05-22 | Akihito Aiba | Multipoint connection apparatus and communication system |
US8744065B2 (en) | 2010-09-22 | 2014-06-03 | Avaya Inc. | Method and system for monitoring contact center transactions |
US8831664B2 (en) | 2008-12-19 | 2014-09-09 | Cisco Technology, Inc. | System and method for providing channel configurations in a communications environment |
US8838722B2 (en) | 2011-02-16 | 2014-09-16 | Masque Publishing, Inc. | Communications adaptable to mobile devices |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US8861750B2 (en) | 2008-04-17 | 2014-10-14 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US8892260B2 (en) | 2007-03-20 | 2014-11-18 | Irobot Corporation | Mobile robot for telecommunication |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8930019B2 (en) | 2010-12-30 | 2015-01-06 | Irobot Corporation | Mobile human interface robot |
US8935005B2 (en) | 2010-05-20 | 2015-01-13 | Irobot Corporation | Operating a mobile robot |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US9014848B2 (en) | 2010-05-20 | 2015-04-21 | Irobot Corporation | Mobile robot system |
US20150193197A1 (en) * | 2014-01-03 | 2015-07-09 | Harman International Industries, Inc. | In-vehicle gesture interactive spatial audio system |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US9118767B1 (en) | 2013-03-28 | 2015-08-25 | Sprint Communications Company L.P. | Communication device audio control to combine incoming audio and select outgoing audio destinations |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US9174342B2 (en) | 2012-05-22 | 2015-11-03 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US9375843B2 (en) | 2003-12-09 | 2016-06-28 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US9498886B2 (en) | 2010-05-20 | 2016-11-22 | Irobot Corporation | Mobile human interface robot |
US9602295B1 (en) | 2007-11-09 | 2017-03-21 | Avaya Inc. | Audio conferencing server for the internet |
US9620131B2 (en) | 2011-04-08 | 2017-04-11 | Evertz Microsystems Ltd. | Systems and methods for adjusting audio levels in a plurality of audio signals |
US9736312B2 (en) | 2010-11-17 | 2017-08-15 | Avaya Inc. | Method and system for controlling audio signals in multiple concurrent conference calls |
US9974612B2 (en) | 2011-05-19 | 2018-05-22 | Intouch Technologies, Inc. | Enhanced diagnostics for a telepresence robot |
US10079941B2 (en) | 2014-07-07 | 2018-09-18 | Dolby Laboratories Licensing Corporation | Audio capture and render device having a visual display and user interface for use for audio conferencing |
US20190004671A1 (en) * | 2017-06-28 | 2019-01-03 | Blue Jeans Network, Inc. | Selecting and managing devices to use for video conferencing |
US20190028633A1 (en) * | 2006-03-06 | 2019-01-24 | Sony Corporation | Image monitoring system and image monitoring program |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10471588B2 (en) | 2008-04-14 | 2019-11-12 | Intouch Technologies, Inc. | Robotic based health care system |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
CN112333531A (zh) * | 2020-07-09 | 2021-02-05 | 深圳Tcl新技术有限公司 | 音频数据播放方法、设备及可读存储介质 |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US11389064B2 (en) | 2018-04-27 | 2022-07-19 | Teladoc Health, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
US11742094B2 (en) | 2017-07-25 | 2023-08-29 | Teladoc Health, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5736982A (en) * | 1994-08-03 | 1998-04-07 | Nippon Telegraph And Telephone Corporation | Virtual space apparatus with avatars and speech |
US5916302A (en) * | 1996-12-06 | 1999-06-29 | International Business Machines Corporation | Multimedia conferencing using parallel networks |
DE19724719C2 (de) * | 1997-06-11 | 2000-05-11 | Siemens Ag | Audiokonferenzsystem |
JPH11127188A (ja) * | 1997-10-20 | 1999-05-11 | Fujitsu Ltd | 蓄積交換型電子会議システムにおける情報伝達装置及び方法並びに情報伝達プログラムを記録した媒体 |
US6125115A (en) * | 1998-02-12 | 2000-09-26 | Qsound Labs, Inc. | Teleconferencing method and apparatus with three-dimensional sound positioning |
GB2346032B (en) * | 1998-12-30 | 2001-01-17 | Samsung Electronics Co Ltd | Apparatus and method for multi-access conference call in exchange system |
JP3617371B2 (ja) * | 1999-05-07 | 2005-02-02 | セイコーエプソン株式会社 | プロジェクタおよび情報記憶媒体 |
US7006616B1 (en) * | 1999-05-21 | 2006-02-28 | Terayon Communication Systems, Inc. | Teleconferencing bridge with EdgePoint mixing |
EP1094657A1 (en) * | 1999-10-18 | 2001-04-25 | BRITISH TELECOMMUNICATIONS public limited company | Mobile conferencing system and method |
DE10062342A1 (de) * | 2000-12-14 | 2002-07-11 | Eads Defence & Security Ntwk | Verfahren und Vorrichtung zur Realisierung von Sprachkonferenzen |
WO2003075150A1 (en) * | 2002-03-04 | 2003-09-12 | Telefonaktiebolaget Lm Ericsson (Publ) | An arrangement and a method for handling an audio signal |
US7280133B2 (en) | 2002-06-21 | 2007-10-09 | Koninklijke Philips Electronics, N.V. | System and method for queuing and presenting audio messages |
US7187764B2 (en) * | 2003-04-23 | 2007-03-06 | Siemens Communications, Inc. | Automatic speak-up indication for conference call attendees |
US7985138B2 (en) * | 2004-02-17 | 2011-07-26 | International Business Machines Corporation | SIP based VoIP multiplayer network games |
US20060023061A1 (en) * | 2004-07-27 | 2006-02-02 | Vaszary Mark K | Teleconference audio quality monitoring |
JP4513514B2 (ja) | 2004-11-10 | 2010-07-28 | 日本電気株式会社 | 多地点通話システム、携帯端末装置及びそれらに用いる音量調整方法並びにそのプログラム |
KR100732115B1 (ko) | 2005-10-01 | 2007-06-27 | 엘지전자 주식회사 | 통화 상태 표시 기능을 갖는 이동 통신 단말기 및 그 방법 |
US7668304B2 (en) | 2006-01-25 | 2010-02-23 | Avaya Inc. | Display hierarchy of participants during phone call |
US7843486B1 (en) | 2006-04-10 | 2010-11-30 | Avaya Inc. | Selective muting for conference call participants |
CN1968320A (zh) * | 2006-04-27 | 2007-05-23 | 华为技术有限公司 | 实现语音播放业务的方法 |
US8037414B2 (en) | 2006-09-14 | 2011-10-11 | Avaya Inc. | Audible computer user interface method and apparatus |
US8972594B2 (en) | 2008-02-11 | 2015-03-03 | Microsoft Corporation | Media mix wiring protocol for media control |
CN102739851B (zh) * | 2011-04-15 | 2014-01-22 | 鸿富锦精密工业(深圳)有限公司 | 具有音量调节功能的会议电话终端及方法 |
GB2492103B (en) * | 2011-06-21 | 2018-05-23 | Metaswitch Networks Ltd | Multi party teleconference methods and systems |
EP2829049B1 (en) * | 2012-03-23 | 2021-05-26 | Dolby Laboratories Licensing Corporation | Clustering of audio streams in a 2d/3d conference scene |
JP2015069136A (ja) * | 2013-09-30 | 2015-04-13 | 株式会社ナカヨ | 話者別音量調整機能を有する通信会議装置 |
CN103680513B (zh) * | 2013-12-13 | 2016-11-02 | 广州华多网络科技有限公司 | 语音信号处理方法、装置及服务器 |
EP3198855A1 (en) * | 2014-09-26 | 2017-08-02 | Intel Corporation | Techniques for enhancing user experience in video conferencing |
US20170187884A1 (en) * | 2015-12-23 | 2017-06-29 | Microsoft Technology Licensing, Llc | Controlling output volume levels |
JP2021184189A (ja) * | 2020-05-22 | 2021-12-02 | i Smart Technologies株式会社 | オンライン会議システム |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4389720A (en) * | 1981-04-23 | 1983-06-21 | Bell Telephone Laboratories, Incorporated | Distributed digital conferencing system |
US4730306A (en) * | 1984-10-11 | 1988-03-08 | Iwatsu Electric Co., Ltd. | Conference system |
US4750166A (en) * | 1985-07-19 | 1988-06-07 | Stc Plc | Conference circuit |
GB2207581A (en) * | 1987-07-22 | 1989-02-01 | Gec Avionics | Ring-shaped local area network for digital audio |
US4953159A (en) * | 1989-01-03 | 1990-08-28 | American Telephone And Telegraph Company | Audiographics conferencing arrangement |
US5014267A (en) * | 1989-04-06 | 1991-05-07 | Datapoint Corporation | Video conferencing network |
US5127001A (en) * | 1990-06-22 | 1992-06-30 | Unisys Corporation | Conference call arrangement for distributed network |
US5375068A (en) * | 1992-06-03 | 1994-12-20 | Digital Equipment Corporation | Video teleconferencing for networked workstations |
US5379280A (en) * | 1991-09-26 | 1995-01-03 | Ipc Information Systems, Inc. | Conferencing system for distributed switching network |
US5402418A (en) * | 1991-07-15 | 1995-03-28 | Hitachi, Ltd. | Multipoint teleconference system employing H. 221 frames |
-
1993
- 1993-12-18 GB GB9325924A patent/GB2284968A/en not_active Withdrawn
-
1994
- 1994-10-21 JP JP6256409A patent/JP2537024B2/ja not_active Expired - Fee Related
- 1994-11-09 EP EP94308254A patent/EP0659006A3/en not_active Ceased
- 1994-11-28 IN IN1534DE1994 patent/IN190028B/en unknown
- 1994-11-29 US US08/346,553 patent/US5539741A/en not_active Expired - Fee Related
- 1994-12-14 CN CN94119071A patent/CN1097231C/zh not_active Expired - Fee Related
- 1994-12-16 KR KR1019940034643A patent/KR0133416B1/ko not_active IP Right Cessation
-
1995
- 1995-03-10 TW TW084102303A patent/TW366633B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4389720A (en) * | 1981-04-23 | 1983-06-21 | Bell Telephone Laboratories, Incorporated | Distributed digital conferencing system |
US4730306A (en) * | 1984-10-11 | 1988-03-08 | Iwatsu Electric Co., Ltd. | Conference system |
US4750166A (en) * | 1985-07-19 | 1988-06-07 | Stc Plc | Conference circuit |
GB2207581A (en) * | 1987-07-22 | 1989-02-01 | Gec Avionics | Ring-shaped local area network for digital audio |
US4953159A (en) * | 1989-01-03 | 1990-08-28 | American Telephone And Telegraph Company | Audiographics conferencing arrangement |
US5014267A (en) * | 1989-04-06 | 1991-05-07 | Datapoint Corporation | Video conferencing network |
US5127001A (en) * | 1990-06-22 | 1992-06-30 | Unisys Corporation | Conference call arrangement for distributed network |
US5402418A (en) * | 1991-07-15 | 1995-03-28 | Hitachi, Ltd. | Multipoint teleconference system employing H. 221 frames |
US5379280A (en) * | 1991-09-26 | 1995-01-03 | Ipc Information Systems, Inc. | Conferencing system for distributed switching network |
US5375068A (en) * | 1992-06-03 | 1994-12-20 | Digital Equipment Corporation | Video teleconferencing for networked workstations |
Cited By (248)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201859B1 (en) * | 1995-06-02 | 2001-03-13 | Intel Corporation | Method and apparatus for controlling participant input in a conferencing environment |
US5703794A (en) * | 1995-06-20 | 1997-12-30 | Microsoft Corporation | Method and system for mixing audio streams in a computing system |
US5889764A (en) * | 1995-08-31 | 1999-03-30 | Intel Corporation | Low-latency multi-party audio chat |
US5903868A (en) * | 1995-11-22 | 1999-05-11 | Yuen; Henry C. | Audio recorder with retroactive storage |
US5991711A (en) * | 1996-02-26 | 1999-11-23 | Fuji Xerox Co., Ltd. | Language information processing apparatus and method |
US6008838A (en) * | 1996-08-29 | 1999-12-28 | Nec Corporation | Multi-point video conference system |
US5923747A (en) * | 1996-09-27 | 1999-07-13 | Rockwell International Corp. | Communications system and interface circuit for interconnecting telephonic switch and agent computer |
US5963217A (en) * | 1996-11-18 | 1999-10-05 | 7Thstreet.Com, Inc. | Network conference system using limited bandwidth to generate locally animated displays |
US7382766B1 (en) * | 1997-07-24 | 2008-06-03 | Oki Electric Industry Co., Ltd. | Line concentrator for telephone set and communication method of LAN |
US8379633B2 (en) | 1997-07-24 | 2013-02-19 | Oki Electric Industry Co., Ltd. | Concentrator for speech telephones and method of communication over LAN using same |
US20040090986A1 (en) * | 1997-07-24 | 2004-05-13 | Shinji Usuba | Concentrator for speech telephones and method of communication over LAN using same |
US20100046503A1 (en) * | 1997-07-24 | 2010-02-25 | Oki Electric Industry Co., Ltd. | Concentrator for speech telephones and method of communication over lan using same |
US7561538B2 (en) | 1997-07-24 | 2009-07-14 | Oki Electronic Industry Co. Ltd. | Concentrator for speech telephones and method of communication over LAN using same |
US6230130B1 (en) * | 1998-05-18 | 2001-05-08 | U.S. Philips Corporation | Scalable mixing for speech streaming |
US6466550B1 (en) * | 1998-11-11 | 2002-10-15 | Cisco Technology, Inc. | Distributed conferencing system utilizing data networks |
US6262979B1 (en) * | 1998-12-01 | 2001-07-17 | 3Com Corporation | Telecommunication conferencing system and method |
US6453022B1 (en) * | 1998-12-31 | 2002-09-17 | At&T Corporation | Multi-line telephone with input/output mixing and audio control |
US6311161B1 (en) | 1999-03-22 | 2001-10-30 | International Business Machines Corporation | System and method for merging multiple audio streams |
GB2372920B (en) * | 1999-11-01 | 2004-03-31 | Richard Thomas Ross | Audio queue management system |
WO2001033373A1 (en) * | 1999-11-01 | 2001-05-10 | Richard Thomas Ross | Audio queue management system |
GB2372920A (en) * | 1999-11-01 | 2002-09-04 | Richard Thomas Ross | Audio queue management system |
US6714826B1 (en) | 2000-03-13 | 2004-03-30 | International Business Machines Corporation | Facility for simultaneously outputting both a mixed digital audio signal and an unmixed digital audio signal multiple concurrently received streams of digital audio data |
US20030112947A1 (en) * | 2000-05-25 | 2003-06-19 | Alon Cohen | Telecommunications and conference calling device, system and method |
US6501739B1 (en) * | 2000-05-25 | 2002-12-31 | Remoteability, Inc. | Participant-controlled conference calling system |
US7742587B2 (en) | 2000-05-25 | 2010-06-22 | Alon Cohen | Telecommunications and conference calling device, system and method |
US7313593B1 (en) | 2000-10-24 | 2007-12-25 | International Business Machines Corporation | Method and apparatus for providing full duplex and multipoint IP audio streaming |
US6792092B1 (en) | 2000-12-20 | 2004-09-14 | Cisco Technology, Inc. | Method and system for independent participant control of audio during multiparty communication sessions |
US7302050B1 (en) | 2000-12-20 | 2007-11-27 | Cisco Technology, Inc. | Method and system for independent participant control of audio during multiparty communication sessions |
US7327719B2 (en) * | 2001-04-03 | 2008-02-05 | Trilogy Communications Limited | Managing internet protocol unicast and multicast communications |
US7535995B1 (en) * | 2002-01-29 | 2009-05-19 | Cisco Technology, Inc. | System and method for volume indication during a communication session |
US20030194072A1 (en) * | 2002-04-11 | 2003-10-16 | Macnamara John J. | Control of conference bridges |
US20040215770A1 (en) * | 2002-06-11 | 2004-10-28 | Maher Robert Daniel | Device for enabling trap and trace of internet protocol communications |
US7023965B2 (en) * | 2002-07-17 | 2006-04-04 | Avaya Technology Corp. | Apparatus and method for displaying a name of a speaker on a telecommunication conference call |
US20040013244A1 (en) * | 2002-07-17 | 2004-01-22 | Oates John David | Apparatus and method for displaying a name of a speaker on a telecommunication conference call |
US8209051B2 (en) | 2002-07-25 | 2012-06-26 | Intouch Technologies, Inc. | Medical tele-robotic system |
US8515577B2 (en) | 2002-07-25 | 2013-08-20 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
USRE45870E1 (en) | 2002-07-25 | 2016-01-26 | Intouch Technologies, Inc. | Apparatus and method for patient rounding with a remote controlled robot |
US9849593B2 (en) | 2002-07-25 | 2017-12-26 | Intouch Technologies, Inc. | Medical tele-robotic system with a master remote station with an arbitrator |
US10315312B2 (en) | 2002-07-25 | 2019-06-11 | Intouch Technologies, Inc. | Medical tele-robotic system with a master remote station with an arbitrator |
US20040042601A1 (en) * | 2002-08-28 | 2004-03-04 | Miao Kai X. | Method and apparatus to manage a conference |
US7280650B2 (en) * | 2002-08-28 | 2007-10-09 | Intel Corporation | Method and apparatus to manage a conference |
US20040077467A1 (en) * | 2002-10-17 | 2004-04-22 | Joseph Spinosa | Back-board |
US6890289B2 (en) * | 2002-10-17 | 2005-05-10 | Joseph Spinosa | Back-board |
US7065198B2 (en) | 2002-10-23 | 2006-06-20 | International Business Machines Corporation | System and method for volume control management in a personal telephony recorder |
US7706551B2 (en) | 2002-11-26 | 2010-04-27 | Microsoft Corporation | Dynamic volume control |
US20040101145A1 (en) * | 2002-11-26 | 2004-05-27 | Falcon Stephen R. | Dynamic volume control |
US7248709B2 (en) | 2002-11-26 | 2007-07-24 | Microsoft Corporation | Dynamic volume control |
US7142678B2 (en) | 2002-11-26 | 2006-11-28 | Microsoft Corporation | Dynamic volume control |
US20060177046A1 (en) * | 2002-11-26 | 2006-08-10 | Microsoft Corporation | Dynamic Volume Control |
US20060126866A1 (en) * | 2002-11-26 | 2006-06-15 | Microsoft Corporation | Dynamic Volume Control |
US6888935B1 (en) | 2003-01-15 | 2005-05-03 | Cisco Technology, Inc. | Speak-louder signaling system for conference calls |
US20040240673A1 (en) * | 2003-06-02 | 2004-12-02 | Sunplus Technology Co., Ltd. | Device for simplifying synthetic audio processing |
US7916848B2 (en) | 2003-10-01 | 2011-03-29 | Microsoft Corporation | Methods and systems for participant sourcing indication in multi-party conferencing and for audio source discrimination |
US20050076081A1 (en) * | 2003-10-01 | 2005-04-07 | Yong Rui | Methods and systems for participant sourcing indication in multi-party conferencing and for audio source discrimination |
US9956690B2 (en) | 2003-12-09 | 2018-05-01 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US9375843B2 (en) | 2003-12-09 | 2016-06-28 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
US10882190B2 (en) | 2003-12-09 | 2021-01-05 | Teladoc Health, Inc. | Protocol for a remotely controlled videoconferencing robot |
US8139744B2 (en) * | 2004-01-13 | 2012-03-20 | International Business Machines Corporation | Server based conference call volume management |
US20080304645A1 (en) * | 2004-01-13 | 2008-12-11 | Michael Pierre Carlson | Server Based Conference Call Volume Management |
US20050152524A1 (en) * | 2004-01-13 | 2005-07-14 | International Business Machines Corporation | System and method for server based conference call volume management |
US7522719B2 (en) * | 2004-01-13 | 2009-04-21 | International Business Machines Corporation | System and method for server based conference call volume management |
US9610685B2 (en) | 2004-02-26 | 2017-04-04 | Intouch Technologies, Inc. | Graphical interface for a remote presence system |
US20100115418A1 (en) * | 2004-02-26 | 2010-05-06 | Yulun Wang | Graphical interface for a remote presence system |
US20070177743A1 (en) * | 2004-04-08 | 2007-08-02 | Koninklijke Philips Electronics, N.V. | Audio level control |
US8600077B2 (en) | 2004-04-08 | 2013-12-03 | Koninklijke Philips N.V. | Audio level control |
US8983174B2 (en) | 2004-07-13 | 2015-03-17 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US9766624B2 (en) | 2004-07-13 | 2017-09-19 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US10241507B2 (en) | 2004-07-13 | 2019-03-26 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US8401275B2 (en) | 2004-07-13 | 2013-03-19 | Intouch Technologies, Inc. | Mobile robot with a head-based movement mapping scheme |
US20060050658A1 (en) * | 2004-09-09 | 2006-03-09 | Cisco Technology, Inc. | Method and system for providing a conference service |
US7940705B2 (en) | 2004-09-09 | 2011-05-10 | Cisco Technology, Inc. | Method and system for blocking communication within a conference service |
CN100438332C (zh) * | 2004-11-06 | 2008-11-26 | 腾讯科技(深圳)有限公司 | 一种音量限制方法和系统 |
US8045998B2 (en) | 2005-06-08 | 2011-10-25 | Cisco Technology, Inc. | Method and system for communicating using position information |
US7636339B2 (en) | 2005-08-10 | 2009-12-22 | Cisco Technology, Inc. | Method and system for automatic configuration of virtual talk groups based on location of media sources |
US20070036118A1 (en) * | 2005-08-10 | 2007-02-15 | Cisco Technology, Inc. | Method and system for automatic configuration of virtual talk groups based on location of media sources |
US7706339B2 (en) | 2005-08-10 | 2010-04-27 | Cisco Technology, Inc. | Method and system for communicating media based on location of media source |
US20070037596A1 (en) * | 2005-08-10 | 2007-02-15 | Cisco Technology, Inc. | Method and system for providing interoperable communications with location information |
US8472418B2 (en) | 2005-08-10 | 2013-06-25 | Cisco Technology, Inc. | Method and system for communicating media based on location of media source |
US20070036100A1 (en) * | 2005-08-10 | 2007-02-15 | Cisco Technology, Inc. | Method and system for communicating media based on location of media source |
US20100197333A1 (en) * | 2005-08-10 | 2010-08-05 | Cisco Technology, Inc. | Method and System for Communicating Media Based on Location of Media Source |
US7633914B2 (en) | 2005-08-10 | 2009-12-15 | Cisco Technology, Inc. | Method and system for providing interoperable communications with location information |
US7869386B2 (en) | 2005-08-29 | 2011-01-11 | Cisco Technology, Inc. | Method and system for conveying media source location information |
US20070047479A1 (en) * | 2005-08-29 | 2007-03-01 | Cisco Technology, Inc. | Method and system for conveying media source location information |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US10259119B2 (en) | 2005-09-30 | 2019-04-16 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US7808521B2 (en) * | 2006-01-09 | 2010-10-05 | Apple Inc. | Multimedia conference recording and manipulation interface |
US20070165105A1 (en) * | 2006-01-09 | 2007-07-19 | Lengeling Gerhard H J | Multimedia conference recording and manipulation interface |
US20070202907A1 (en) * | 2006-02-27 | 2007-08-30 | Cisco Technology, Inc. | Method and system for providing interoperable communications with congestion management |
US8085671B2 (en) | 2006-02-27 | 2011-12-27 | Cisco Technology, Inc. | Method and system for providing interoperable communications with congestion management |
US8260338B2 (en) | 2006-02-28 | 2012-09-04 | Cisco Technology, Inc. | Method and system for providing interoperable communications with dynamic event area allocation |
US20070202908A1 (en) * | 2006-02-28 | 2007-08-30 | Cisco Technology, Inc. | Method and system for providing interoperable communications with dynamic event area allocation |
US20190028633A1 (en) * | 2006-03-06 | 2019-01-24 | Sony Corporation | Image monitoring system and image monitoring program |
US11172120B2 (en) * | 2006-03-06 | 2021-11-09 | Sony Group Corporation | Image monitoring system and image monitoring program |
US20070239824A1 (en) * | 2006-04-05 | 2007-10-11 | Cisco Technology, Inc. | Method and system for managing virtual talk groups |
US9112746B2 (en) | 2006-04-05 | 2015-08-18 | Cisco Technology, Inc. | Method and system for managing virtual talk groups |
US20070274460A1 (en) * | 2006-05-10 | 2007-11-29 | Shmuel Shaffer | Providing Multiple Virtual Talk Group Communication Sessions |
US7860070B2 (en) | 2006-05-10 | 2010-12-28 | Cisco Technology, Inc. | Providing multiple virtual talk group communication sessions |
US20070270172A1 (en) * | 2006-05-18 | 2007-11-22 | Yogesh Kalley | Providing Virtual Talk Group Communication Sessions In Accordance With Endpoint Resources |
US7831270B2 (en) | 2006-05-18 | 2010-11-09 | Cisco Technology, Inc. | Providing virtual talk group communication sessions in accordance with endpoint resources |
US20070280195A1 (en) * | 2006-06-02 | 2007-12-06 | Shmuel Shaffer | Method and System for Joining a Virtual Talk Group |
US7639634B2 (en) | 2006-06-02 | 2009-12-29 | Cisco Technology, Inc. | Method and System for Joining a virtual talk group |
US20070291128A1 (en) * | 2006-06-15 | 2007-12-20 | Yulun Wang | Mobile teleconferencing system that projects an image provided by a mobile robot |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US20080014865A1 (en) * | 2006-06-16 | 2008-01-17 | Pinnacle Peak Holding Corporation (Dba Setcom Corp.) | Radio and public address accessory system with wireless interface |
US20110177778A1 (en) * | 2006-06-16 | 2011-07-21 | Pinnacle Peak Holding Corporation (d.b.a. Setcom Corp) | Radio and Public Address Accessory System with Wireless Interface |
US20150016597A1 (en) * | 2006-07-28 | 2015-01-15 | Unify Gmbh & Co. Kg | Method for Carrying Out an Audio Conference, Audio Conference Device, and Method for Switching Between Encoders |
US20100020954A1 (en) * | 2006-07-28 | 2010-01-28 | Virginie Gilg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US8885804B2 (en) * | 2006-07-28 | 2014-11-11 | Unify Gmbh & Co. Kg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US9661145B2 (en) | 2006-07-28 | 2017-05-23 | Unify Gmbh & Co. Kg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US10244120B2 (en) | 2006-07-28 | 2019-03-26 | Unify Gmbh & Co. Kg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US9674365B2 (en) * | 2006-07-28 | 2017-06-06 | Unify Gmbh & Co. Kg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US10574828B2 (en) | 2006-07-28 | 2020-02-25 | Unify Gmbh & Co. Kg | Method for carrying out an audio conference, audio conference device, and method for switching between encoders |
US8670537B2 (en) * | 2006-07-31 | 2014-03-11 | Cisco Technology, Inc. | Adjusting audio volume in a conference call environment |
US20080037749A1 (en) * | 2006-07-31 | 2008-02-14 | Larry Raymond Metzger | Adjusting audio volume in a conference call environment |
US8570909B1 (en) | 2006-10-17 | 2013-10-29 | Cisco Technology, Inc. | Method and system for providing an indication of a communication |
US8189460B2 (en) | 2006-12-28 | 2012-05-29 | Cisco Technology, Inc. | Method and system for providing congestion management within a virtual talk group |
US20080159128A1 (en) * | 2006-12-28 | 2008-07-03 | Cisco Technology, Inc. | Method and System for Providing Congestion Management within a Virtual Talk Group |
US9296109B2 (en) | 2007-03-20 | 2016-03-29 | Irobot Corporation | Mobile robot for telecommunication |
US8892260B2 (en) | 2007-03-20 | 2014-11-18 | Irobot Corporation | Mobile robot for telecommunication |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US10682763B2 (en) | 2007-05-09 | 2020-06-16 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US20080280637A1 (en) * | 2007-05-10 | 2008-11-13 | Cisco Technology, Inc. | Method and System for Handling Dynamic Incidents |
US8874159B2 (en) | 2007-05-10 | 2014-10-28 | Cisco Technology, Inc. | Method and system for handling dynamic incidents |
US20090094029A1 (en) * | 2007-10-04 | 2009-04-09 | Robert Koch | Managing Audio in a Multi-Source Audio Environment |
US7995732B2 (en) * | 2007-10-04 | 2011-08-09 | At&T Intellectual Property I, Lp | Managing audio in a multi-source audio environment |
US9602295B1 (en) | 2007-11-09 | 2017-03-21 | Avaya Inc. | Audio conferencing server for the internet |
US11787060B2 (en) | 2008-03-20 | 2023-10-17 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US11472021B2 (en) | 2008-04-14 | 2022-10-18 | Teladoc Health, Inc. | Robotic based health care system |
US10471588B2 (en) | 2008-04-14 | 2019-11-12 | Intouch Technologies, Inc. | Robotic based health care system |
US8861750B2 (en) | 2008-04-17 | 2014-10-14 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US10493631B2 (en) | 2008-07-10 | 2019-12-03 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US20100010672A1 (en) * | 2008-07-10 | 2010-01-14 | Yulun Wang | Docking system for a tele-presence robot |
US10878960B2 (en) | 2008-07-11 | 2020-12-29 | Teladoc Health, Inc. | Tele-presence robot system with multi-cast features |
US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
EP2300930A1 (en) * | 2008-07-11 | 2011-03-30 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
WO2010006211A1 (en) * | 2008-07-11 | 2010-01-14 | In Touch Technologies, Inc. | Tele-presence robot system with multi-cast features |
EP2300930A4 (en) * | 2008-07-11 | 2013-05-08 | Intouch Technologies Inc | TELEPRESENCE ROBOT SYSTEM WITH MULTICAST FUNCTIONS |
US20120314886A1 (en) * | 2008-09-16 | 2012-12-13 | International Business Machines Corporation | Modifications of audio communications in an online environment |
US9429934B2 (en) | 2008-09-18 | 2016-08-30 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US10875183B2 (en) | 2008-11-25 | 2020-12-29 | Teladoc Health, Inc. | Server connectivity control for tele-presence robot |
US10059000B2 (en) | 2008-11-25 | 2018-08-28 | Intouch Technologies, Inc. | Server connectivity control for a tele-presence robot |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US8831664B2 (en) | 2008-12-19 | 2014-09-09 | Cisco Technology, Inc. | System and method for providing channel configurations in a communications environment |
US20100161727A1 (en) * | 2008-12-19 | 2010-06-24 | Cisco Technology, Inc. | System and Method for Accelerating a Wide Area Notification |
US20100159975A1 (en) * | 2008-12-19 | 2010-06-24 | Cisco Technology, Inc. | System and Method for Providing a Trunked Radio and Gateway |
US8126494B2 (en) | 2008-12-19 | 2012-02-28 | Cisco Technology, Inc. | System and method for providing a trunked radio and gateway |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US20120331401A1 (en) * | 2009-03-31 | 2012-12-27 | Voispot, Llc | Virtual meeting place system and method |
US9268398B2 (en) * | 2009-03-31 | 2016-02-23 | Voispot, Llc | Virtual meeting place system and method |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US10969766B2 (en) | 2009-04-17 | 2021-04-06 | Teladoc Health, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US10404939B2 (en) | 2009-08-26 | 2019-09-03 | Intouch Technologies, Inc. | Portable remote presence robot |
US10911715B2 (en) | 2009-08-26 | 2021-02-02 | Teladoc Health, Inc. | Portable remote presence robot |
US9602765B2 (en) | 2009-08-26 | 2017-03-21 | Intouch Technologies, Inc. | Portable remote presence robot |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
US8363810B2 (en) | 2009-09-08 | 2013-01-29 | Avaya Inc. | Method and system for aurally positioning voice signals in a contact center environment |
US20110058662A1 (en) * | 2009-09-08 | 2011-03-10 | Nortel Networks Limited | Method and system for aurally positioning voice signals in a contact center environment |
US8144633B2 (en) | 2009-09-22 | 2012-03-27 | Avaya Inc. | Method and system for controlling audio in a collaboration environment |
US20110069643A1 (en) * | 2009-09-22 | 2011-03-24 | Nortel Networks Limited | Method and system for controlling audio in a collaboration environment |
US8547880B2 (en) | 2009-09-30 | 2013-10-01 | Avaya Inc. | Method and system for replaying a portion of a multi-party audio interaction |
US20110077755A1 (en) * | 2009-09-30 | 2011-03-31 | Nortel Networks Limited | Method and system for replaying a portion of a multi-party audio interaction |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US10887545B2 (en) | 2010-03-04 | 2021-01-05 | Teladoc Health, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US9089972B2 (en) | 2010-03-04 | 2015-07-28 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US11798683B2 (en) | 2010-03-04 | 2023-10-24 | Teladoc Health, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US20110225238A1 (en) * | 2010-03-11 | 2011-09-15 | Cisco Technology, Inc. | System and method for providing data channel management in a network environment |
US8495142B2 (en) | 2010-03-11 | 2013-07-23 | Cisco Technology, Inc. | System and method for providing data channel management in a network environment |
US9564148B2 (en) * | 2010-05-18 | 2017-02-07 | Sprint Communications Company L.P. | Isolation and modification of audio streams of a mixed signal in a wireless communication device |
US20110289410A1 (en) * | 2010-05-18 | 2011-11-24 | Sprint Communications Company L.P. | Isolation and modification of audio streams of a mixed signal in a wireless communication device |
US9498886B2 (en) | 2010-05-20 | 2016-11-22 | Irobot Corporation | Mobile human interface robot |
US9014848B2 (en) | 2010-05-20 | 2015-04-21 | Irobot Corporation | Mobile robot system |
US8935005B2 (en) | 2010-05-20 | 2015-01-13 | Irobot Corporation | Operating a mobile robot |
US9902069B2 (en) | 2010-05-20 | 2018-02-27 | Irobot Corporation | Mobile robot system |
US11389962B2 (en) | 2010-05-24 | 2022-07-19 | Teladoc Health, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US8744065B2 (en) | 2010-09-22 | 2014-06-03 | Avaya Inc. | Method and system for monitoring contact center transactions |
US9736312B2 (en) | 2010-11-17 | 2017-08-15 | Avaya Inc. | Method and system for controlling audio signals in multiple concurrent conference calls |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
CN102487423A (zh) * | 2010-12-03 | 2012-06-06 | 亚斯数码科技有限公司 | 可独立调整音源输入的会议系统 |
US10218748B2 (en) | 2010-12-03 | 2019-02-26 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US8930019B2 (en) | 2010-12-30 | 2015-01-06 | Irobot Corporation | Mobile human interface robot |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US8965579B2 (en) | 2011-01-28 | 2015-02-24 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US11289192B2 (en) | 2011-01-28 | 2022-03-29 | Intouch Technologies, Inc. | Interfacing with a mobile telepresence robot |
US8718837B2 (en) | 2011-01-28 | 2014-05-06 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US11468983B2 (en) | 2011-01-28 | 2022-10-11 | Teladoc Health, Inc. | Time-dependent navigation of telepresence robots |
US10591921B2 (en) | 2011-01-28 | 2020-03-17 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US9785149B2 (en) | 2011-01-28 | 2017-10-10 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US10399223B2 (en) | 2011-01-28 | 2019-09-03 | Intouch Technologies, Inc. | Interfacing with a mobile telepresence robot |
US9469030B2 (en) | 2011-01-28 | 2016-10-18 | Intouch Technologies | Interfacing with a mobile telepresence robot |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
US10021177B1 (en) | 2011-02-16 | 2018-07-10 | Masque Publishing, Inc. | Peer-to-peer communications |
US20120209933A1 (en) * | 2011-02-16 | 2012-08-16 | Masque Publishing, Inc. | Peer-To-Peer Communications |
US8838722B2 (en) | 2011-02-16 | 2014-09-16 | Masque Publishing, Inc. | Communications adaptable to mobile devices |
US9549023B2 (en) | 2011-02-16 | 2017-01-17 | Masque Publishing, Inc. | Communications adaptable to mobile devices |
US9270784B2 (en) * | 2011-02-16 | 2016-02-23 | Masque Publishing, Inc. | Peer-to-peer communications |
US9620131B2 (en) | 2011-04-08 | 2017-04-11 | Evertz Microsystems Ltd. | Systems and methods for adjusting audio levels in a plurality of audio signals |
US10242684B2 (en) | 2011-04-08 | 2019-03-26 | Evertz Microsystems Ltd. | Systems and methods for adjusting audio levels in a plurality of audio signals |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
US9974612B2 (en) | 2011-05-19 | 2018-05-22 | Intouch Technologies, Inc. | Enhanced diagnostics for a telepresence robot |
US9392224B2 (en) * | 2011-07-14 | 2016-07-12 | Ricoh Company, Limited | Multipoint connection apparatus and communication system |
US20140139611A1 (en) * | 2011-07-14 | 2014-05-22 | Akihito Aiba | Multipoint connection apparatus and communication system |
US9715337B2 (en) | 2011-11-08 | 2017-07-25 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US10331323B2 (en) | 2011-11-08 | 2019-06-25 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US11205510B2 (en) | 2012-04-11 | 2021-12-21 | Teladoc Health, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US10762170B2 (en) | 2012-04-11 | 2020-09-01 | Intouch Technologies, Inc. | Systems and methods for visualizing patient and telepresence device statistics in a healthcare network |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10603792B2 (en) | 2012-05-22 | 2020-03-31 | Intouch Technologies, Inc. | Clinical workflows utilizing autonomous and semiautonomous telemedicine devices |
US9776327B2 (en) | 2012-05-22 | 2017-10-03 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US10061896B2 (en) | 2012-05-22 | 2018-08-28 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10658083B2 (en) | 2012-05-22 | 2020-05-19 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US11515049B2 (en) | 2012-05-22 | 2022-11-29 | Teladoc Health, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10892052B2 (en) | 2012-05-22 | 2021-01-12 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US10780582B2 (en) | 2012-05-22 | 2020-09-22 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US10328576B2 (en) | 2012-05-22 | 2019-06-25 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
US11453126B2 (en) | 2012-05-22 | 2022-09-27 | Teladoc Health, Inc. | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
US11628571B2 (en) | 2012-05-22 | 2023-04-18 | Teladoc Health, Inc. | Social behavior rules for a medical telepresence robot |
US9174342B2 (en) | 2012-05-22 | 2015-11-03 | Intouch Technologies, Inc. | Social behavior rules for a medical telepresence robot |
WO2014052745A1 (en) | 2012-09-27 | 2014-04-03 | Dolby Laboratories Licensing Corporation | Near-end indication that the end of speech is received by the far end in an audio or video conference |
US9525845B2 (en) | 2012-09-27 | 2016-12-20 | Dobly Laboratories Licensing Corporation | Near-end indication that the end of speech is received by the far end in an audio or video conference |
US10334205B2 (en) | 2012-11-26 | 2019-06-25 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US11910128B2 (en) | 2012-11-26 | 2024-02-20 | Teladoc Health, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US10924708B2 (en) | 2012-11-26 | 2021-02-16 | Teladoc Health, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US9118767B1 (en) | 2013-03-28 | 2015-08-25 | Sprint Communications Company L.P. | Communication device audio control to combine incoming audio and select outgoing audio destinations |
US20150193197A1 (en) * | 2014-01-03 | 2015-07-09 | Harman International Industries, Inc. | In-vehicle gesture interactive spatial audio system |
US10126823B2 (en) * | 2014-01-03 | 2018-11-13 | Harman International Industries, Incorporated | In-vehicle gesture interactive spatial audio system |
US10585486B2 (en) | 2014-01-03 | 2020-03-10 | Harman International Industries, Incorporated | Gesture interactive wearable spatial audio system |
US10079941B2 (en) | 2014-07-07 | 2018-09-18 | Dolby Laboratories Licensing Corporation | Audio capture and render device having a visual display and user interface for use for audio conferencing |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
US10402056B2 (en) * | 2017-06-28 | 2019-09-03 | Blue Jeans Network, Inc. | Selecting and managing devices to use for video conferencing |
US20190004671A1 (en) * | 2017-06-28 | 2019-01-03 | Blue Jeans Network, Inc. | Selecting and managing devices to use for video conferencing |
US11742094B2 (en) | 2017-07-25 | 2023-08-29 | Teladoc Health, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
US11389064B2 (en) | 2018-04-27 | 2022-07-19 | Teladoc Health, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
CN112333531A (zh) * | 2020-07-09 | 2021-02-05 | 深圳Tcl新技术有限公司 | 音频数据播放方法、设备及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP0659006A2 (en) | 1995-06-21 |
IN190028B (hu) | 2003-05-31 |
JP2537024B2 (ja) | 1996-09-25 |
TW366633B (en) | 1999-08-11 |
EP0659006A3 (en) | 1999-03-03 |
KR0133416B1 (ko) | 1998-04-27 |
CN1097231C (zh) | 2002-12-25 |
GB2284968A (en) | 1995-06-21 |
GB9325924D0 (en) | 1994-02-23 |
JPH07200424A (ja) | 1995-08-04 |
CN1111775A (zh) | 1995-11-15 |
KR950022401A (ko) | 1995-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5539741A (en) | Audio conferenceing system | |
JP3216978B2 (ja) | マルチメディア・ストリーム転送方法 | |
KR100434583B1 (ko) | 에지포인트 믹싱을 이용한 통신회의 브리지 | |
US6100882A (en) | Textual recording of contributions to audio conference using speech recognition | |
US6330022B1 (en) | Digital processing apparatus and method to support video conferencing in variable contexts | |
EP0680190B1 (en) | A teleconferencing audio bridge | |
EP1116376A1 (en) | Method and system of teleconferencing | |
AU7206994A (en) | Method and apparatus for multiple media digital communication system | |
JPH07111547A (ja) | コンピュータシステムにおける規格電話機を介する音声記録及び再生 | |
Swinehart et al. | Adding voice to an office computer network | |
JPS59210758A (ja) | デジタルハンドフリ−電話装置 | |
CN111951821B (zh) | 通话方法和装置 | |
US20030174657A1 (en) | Method, system and computer program product for voice active packet switching for IP based audio conferencing | |
EP0650285A1 (en) | Audio communication apparatus | |
KR100310283B1 (ko) | 음성의 3-d 국소화를 향상시키는 방법 | |
JPH07131539A (ja) | マルチメディア通信システム | |
US7076053B1 (en) | System for the processing of audio data used for music on hold and paging in a private branch exchange | |
KR100378811B1 (ko) | 티티에스 합성음의 다중 사용자 실시간 처리장치 및 방법 | |
JPH023348B2 (hu) | ||
JPH07202888A (ja) | 音声通信装置 | |
Kaeppner et al. | Architecture of HeiPhone: a testbed for audio/video teleconferencing | |
JPS6018052A (ja) | デイジタル式会議通話装置 | |
JPH06261311A (ja) | 留守番機能付きテレビ電話 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IBM CORPORATION, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARRACLOUGH, K.;GAY, A.;CRIPPS, P. R.;REEL/FRAME:007263/0222;SIGNING DATES FROM 19941010 TO 19941114 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20040723 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |