US4506300A - Film video player with zoom, scan, and automatic border control - Google Patents

Film video player with zoom, scan, and automatic border control Download PDF

Info

Publication number
US4506300A
US4506300A US06/427,077 US42707782A US4506300A US 4506300 A US4506300 A US 4506300A US 42707782 A US42707782 A US 42707782A US 4506300 A US4506300 A US 4506300A
Authority
US
United States
Prior art keywords
film
image
magnification
video
video display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US06/427,077
Other languages
English (en)
Inventor
William T. Fearnside
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US06/427,077 priority Critical patent/US4506300A/en
Priority to EP83903145A priority patent/EP0121536B1/en
Priority to PCT/US1983/001417 priority patent/WO1984001485A1/en
Priority to DE8383903145T priority patent/DE3363080D1/de
Priority to JP58503187A priority patent/JPS59501768A/ja
Assigned to EASTMAN KODAK COMPANY, CORP. OF NJ reassignment EASTMAN KODAK COMPANY, CORP. OF NJ ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FEARNSIDE, WILLIAM T.
Application granted granted Critical
Publication of US4506300A publication Critical patent/US4506300A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00281Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a telecommunication apparatus, e.g. a switched network of teleprinters for the distribution of text-based information, a selective call terminal
    • H04N1/00283Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a telecommunication apparatus, e.g. a switched network of teleprinters for the distribution of text-based information, a selective call terminal with a television apparatus
    • H04N1/00291Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a telecommunication apparatus, e.g. a switched network of teleprinters for the distribution of text-based information, a selective call terminal with a television apparatus with receiver circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • H04N1/3872Repositioning or masking
    • H04N1/3873Repositioning or masking defined only by a limited number of coordinate points or parameters, e.g. corners, centre; for trimming
    • H04N1/3875Repositioning or masking defined only by a limited number of coordinate points or parameters, e.g. corners, centre; for trimming combined with enlarging or reducing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/0402Arrangements not specific to a particular one of the scanning methods covered by groups H04N1/04 - H04N1/207
    • H04N2201/0404Scanning transparent media, e.g. photographic film
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/11Scanning of colour motion picture films, e.g. for telecine

Definitions

  • the present invention relates to a film video player for generating a video signal from photographic film for display on a television monitor or receiver, and more particularly, to such a video player having means for selectively changing the magnification of the video display (zoom) and for translating the display vertically and horizontally (scan).
  • the resolution of most popularly employed still picture photographic film formats such as size 110, 126, 135, and disc film is substantially greater than standard television resolution, exceeding the television resolution by factors of approximately four to ten times.
  • the full available resolutions of these film formats are not effectively used when the film image is displayed on a television set at normal magnification, i.e. where the full frame image just fills the television display.
  • the excess resolution available in these film formats can be employed to good effect by providing a film video player with means, such as zoom optics, for selectively changing the magnification of the displayed image. Since the magnified film image overfills the video display, it is further desirable to provide a means whereby an operator can translate (scan) the image vertically and horizontally so that any selected portion of the magnified film image can be displayed.
  • a film video player provided with operator controlled zoom and scan capability is very entertaining, and the visual effects achieved can be quite striking.
  • a person using such a video player to display a favorite photograph becomes quite absorbed in exploring various portions of interest at different magnifications.
  • Zoom and scan capability in a film video player is also usefully employed to display images such as diagrams or pages of text, where the operator may zoom in on the portions of interest.
  • a problem encountered with such a film video player having zoom and scan capability is that when a scan is attempted at lower magnifications, the imge may be displaced on the television display past the borders of the film frame resulting in a portion of the television display being blank. Similarly, when a peripheral portion of a magnified film frame image is being displayed, and the magnification is returned to normal, the film frame image will not be centered in the dispaly. The effect is mildly annoying, and detracts from the otherwise esthetically pleasing impact of the video display.
  • the aspect ratio of a standard film format may not be identical to the aspect ratio of the television display (e.g. compare size 126 format which is square with a standard NTSC television frame which is rectangular). If the normal magnification is chosen so that the entire film frame image can be viewed at one time, there will be unsightly borders on one or two sides of the video display. Conversely, if a magnification is chosen such that the film frame just fills the video display, some of the image will lie outside the video display and will not be seen.
  • a similar format mismatching problem arises when a rectangular format picture of substantially the same aspect ratio as the television display is taken with the camera rotated 90° about its optical axis. When such a film is displayed at normal magnification, the display will be accompanied by blank borders on one or more sides.
  • a film video player apparatus for sensing a film frame image to produce a video signal, with means for selectively changing the magnification of the film frame image with respect to the video display (zoom), and for displacing the film frame image horizontally and vertically with respect to the video display (scan).
  • the video player apparatus includes a control system having means for coordinating zoom and scan such that the video display is always filled by the film image, thereby preventing the occurrence of unsightly blank areas on the video display.
  • the control system returns the zoom to normal magnification whenever a new film frame is selected for display, and blanks the video signal during the film advance.
  • control system comprises a programmed digital computer having a memory containing the locations of the horizontal and vertical borders of the film frame with respect to the horizontal and vertical borders of the video display at each magnification.
  • the control system overrides the operator's request for scan to the extent required for preventing the borders of the film image being shifted past the borders of the video display.
  • the film sensing means comprises a solid state area array image sensor
  • the means for changing magnification comprises a zoom lens and a stepper motor drive
  • the means for translating the film frame image horizontally and vertically with respect to the video display comprises respective horizontal and vertical stepper motor drives for displacing the solid state image sensor in respective horizontal and vertical directions.
  • the control means returns the magnification to normal when advancing to a new frame by sequentially commanding the stepper motors to move one step at a time towards normal magnification and toward a position where the film image is centered in the display.
  • the sequence of commands to the stepper motors takes less time than one stepper motor step, whereby the stepper motor drives are commanded by the control system in a quasi-parallel manner thereby minimizing the time required to return to normal magnification.
  • FIG. 1 is a perspective view of a video player for scanning color negative disc film to produce a video signal
  • FIG. 2 is an overall schematic block diagram of the video player shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a single frame CCD image sensor employed in the video player
  • FIG. 4 is a partial plan view showing the electrode configuration of the single frame image sensor in the area of the readout registers
  • FIGS. 5-8 are cross-sectional views taken along lines 5--5, 6--6, 7--7, and 8--8 respectively in FIG. 4, showing the electrode structure and channel potentials of the single frame image sensor;
  • FIG. 9 is a timing diagram for describing the operation of the image sensor
  • FIG. 10 is a schematic diagram of a portion near the output gate and the output amplifier of one of the output registers
  • FIG. 11 is a schematic diagram of a portion near the output gate and the output amplifier and demultiplexer of the other output register;
  • FIG. 12 is a partial plan view illustrating the integral color filter array on the image sensor
  • FIG. 13 is a schematic diagram illustrating the method of manufacturing the color filter array
  • FIG. 14 is an overall mechanical perspective of the video player
  • FIGS. 15 and 16 are cross-sectional views of the film handling portion of the video player, showing a film disc not seated, and seated, respectively on a film drive spindle;
  • FIG. 17 is a schematic block diagram of the sensor support electronics of the video player.
  • FIG. 18 is a schematic block diagram of the system control electronics of the video player according to the present invention.
  • FIGS. 19, 20 and 21 are flow charts of the overall control program for the microcomputer in the system control electronics of the video player according to the present invention.
  • the present invention will be described with specific reference to a film video player for generating a color television signal from disc format color negative film. It will be clear to one skilled in the art that the invention is not limited to color negative disc film players and may be employed in video players for use with other film formats such as size 110, 126, or 135, and for positive as well as negative color transparencies.
  • the color film video player generally designated 100 in FIG. 1, is a device for generating a color television signal from a disc format color negative film.
  • a film disc 102 for use in the video player is contained in packette 104.
  • the packette defines a window 106 that is open on both sides of the packette, for projecting light through a frame on the film disc.
  • An alignment hole 108 is provided in the packette for aligning a film frame in the window, using the alignment notches 110, around the periphery of the film disc.
  • the film disc is supported loosely in the packette and is free to rotate about the central axis of a hub 112 attached to the film disc.
  • the hub is accessible through a central aperture in the packette.
  • the main power is turned on, via an on/off switch 118, then a packette is placed in a slot 114 in the top of the player.
  • a sliding door 116 is closed over the slot, whereupon the video player automatically locates the first frame on the film disc and displays the image of the first frame on a television set or color monitor 120 at normal magnification.
  • the video player automatically reverses the color of the image from negative to positive, and provides exposure control and color correction.
  • the video player can be controlled by an operator through a hand held control unit 122.
  • a two digit display 124 shows the operator the number of the frame on the film disc that is being viewed on the television. Frames are advanced or backspaced by manipulating a rocker switch 126. If the rocker switch is held for a time in one direction, the frame number display 124 will advance or backspace in a stream. When the rocker switch 126 is released the player will automatically locate via the shortest path and then display the frame shown on the display 124.
  • the image on the television screen can be enlarged continuously up to a predetermined maximum magnification by manipulating a rocker switch 128.
  • the portion of the image being displayed can be shifted right or left and/or up or down by manipulating a joystick-type actuator 130.
  • the video player automatically returns to normal magnification and recenters the image on the display. Display is terminated, and the packette is ejected by actuating an eject button 132.
  • the video player operates by flash exposing a color negative image from the film disc onto a solid state charge coupled device image sensor during the vertical retrace intervals of a standard television signal. After each flash exposure, the image sensor is read out line by line at the standard video line rate to produce three color signals.
  • the color signals are inverted, color corrected, and enhanced by signal processing electronics to produce R, G, and B color video signals for display on a color monitor, or a standard NTSC color video signal for display on a color television receiver.
  • FIG. 2 An overall schematic diagram of the video player 100 is shown in FIG. 2.
  • the video player is powered by power supplies 200 and is controlled by a programmed microcomputer 202 via input, output driver circuits 204.
  • On/off button 118 actuates a main power switch 206 connected to the power supplies 200.
  • Light for illuminating the film is generated by a high intensity lamp 208 powered by a lamp power supply 210.
  • Infrared light from the lamp is removed from the main optical path by a cold mirror 212 and a hot mirror 214.
  • Infrared light passed by the cold mirror is absorbed by a heat sink 216 to protect the cabinet from localized overheating.
  • the light from the lamp is imaged by condenser lenses 218 and 220 into a focal region 222, where the light is slightly diffused, masked, chopped, and attenuated.
  • a weak diffuser 223 improves the uniformity of illumination across the film gate.
  • a mask 224 limits the apparent size of the source and reduces the off axis flare light from the light source 208.
  • the light is chopped at the video field rate by a rotating aperture disc 226 driven by a light chopper servo 228.
  • the intensity of the light flashes produced by the chopper disc is controlled by a variable attenuator 230 driven by an attenuator servo 232.
  • the chopped and attenuated light is collimated by a condenser lens 236 onto a film handling station 238.
  • a film disc in its packette 104 is located in the film handling station 238.
  • the film handling station 238 includes a film drive 240 for locating and advancing film frames in the video player.
  • the film handling station 238 also includes a movable film gate 242 that is actuated by a solenoid 244.
  • An image of the illuminated film frame is projected onto a solid state color image sensor 246 by a zoom lens 248.
  • the magnification of the image on the solid state image sensor 246 is controlled by a zoom drive 250.
  • the solid state color image sensor 246 is carried by an X-Y translation stage 252 that is driven by X-Y drives 254. Signals for operating the solid state color image sensor 246 are supplied by sensor support and signal processing electronics 256. The signal processing electronics also receive the photosignals generated by the solid state image sensor 246 and generate the color video signals therefrom.
  • Film gate door 116 is held in its closed position, against the urging of a bias spring 258, by a spring loaded latch 260. When in its closed position, film gate door 116 engages a sensor switch 262 to signal the microcomputer that the donor is closed.
  • a switch 264 is closed to signal the computer.
  • the computer releases latch 260 by activating a solenoid 266 coupled to latch 260.
  • the optical system of the color film video player provides a light source for uniformly illuminating the film gate with sufficient intensity so that a complete exposure of the solid state color image sensor 246 may be effected in the vertical retrace interval of a standard color television signal.
  • the light source optics provide locations for a filter pack, a chopper, an attenuator, a mask, and a weak diffuser in the light path.
  • the light source is capable of producing a range of intensities for properly illuminating films having intensities ranging over four and one half stops (one and a half stops under exposed to three stops overexposed) and at magnification from 1:1 to 2:1.
  • the image forming portion of the optical system projects an image of the film gate onto the solid state color image sensor at magnifications adjustable between normal magnification where the image just fills the display and a predetermined maximum magnification where the quality of the display is limited substantially by the resolution of the film.
  • the field of view of the image forming optics is sufficiently wide such that the solid state color image sensor may be moved to a far corner of an image projected at the maximum magnification, without experiencing objectionable vignetting.
  • light for the optical system is provided by a quartz halogen lamp having filament dimensions of approximately 2.5 mm ⁇ 2.5 mm.
  • a cold mirror 212 is 2 mm thick with a radius of curvature of approximately 30 mm.
  • the cold mirror approximately doubles the apparent useful intensity of the light source 208 by passing the infrared portion of the spectrum, and reflecting the visible portion of the spectrum to form a real image of the lamp filament adjacent the actual filament.
  • a dichroic filter pack 214 measuring approximately 25 mm ⁇ 25 mm, containing a hot mirror for reflecting infrared radiation and for passing visible light, and color correction filters for further adjusting the color balance of the light, is located between the two condenser lenses 218 and 220.
  • a weak diffuser 223 improves the uniformity of illumination across the film gate.
  • a mask 224 located at image location 222 limits the size of the source image.
  • Light chopper 226 comprising a rotating apertured disc interrupts the light beam and passes periodic pulses of light in synchronism with the vertical retrace period of a standard television signal.
  • Light attenuator 230 is a variable neutral density filter having a density range of 0 to 2.0 neutral density units. The light attenuator is servo driven for adjusting the apparent intensity of the light source.
  • a final aspheric condenser lens 236 partially collimates the light onto the film gate 242.
  • the pulsed light source may comprise an electronic strobe light, such as a Xenon flash lamp synchronized to the vertical retrace interval of the video output signal.
  • an electronic strobe light such as a Xenon flash lamp synchronized to the vertical retrace interval of the video output signal.
  • the image forming optics include a first lens group 268, comprising a Nikon, Series E 50 mm, F1.8 Camera Lens, arranged with the camera side toward the film gate.
  • the first lens group forms a real image 270 of the light source, and causes the film gate to appear at infinity.
  • the magnification of the image is continuously variable.
  • the zoom lens 248 is arranged with its camera side toward the solid state image sensor and is positioned such that the image 270 of the light source formed by the first lens group 268 falls on the aperture stop of the zoom lens, so that the quantity of light passing through the zoom lens is not further effected by changes in magnification.
  • the fields of view of the lenses 268 and 248 are sufficiently large such that the image sensor can be displaced to a corner of the maximally enlarged image without objectionable vignetting.
  • the solid state color image sensor produces a color video signal at standard television resolution from color negative film. Since flash illumination during vertical retrace is employed, there is no need to transfer and store a frame of video information in a light shielded area during sensor readout. Furthermore, since the dynamic range of color negative film is limited to about 40 db, there is no need for antibloom protection in the image sensor. With negative film, the most important areas of the picture (the bright areas of the original scene) will occur in the darkest areas of the negative (low signal areas).
  • the conventional definition of signal-to-noise ratio for a video camera does not apply to the image sensor for film video player for color negative film, and a new definition of signal-to-noise ratio is required to emphasize the importance of high signal-to-noise ratio in the low signal regions of the operating response of the sensor.
  • CCD charge coupled devices
  • the image sensor comprises a single frame, four-phase buried channel CCD.
  • the image is sensed in a two-dimensional array (A) having 740 vertical columns and 485 horizontal rows.
  • the image sensor array is provided with a vertically striped color filter array to render all the odd numbered columns sensitive to green light, and alternate even numbered columns sensitive to red and blue light respectively.
  • four-phase clock signals ⁇ 1-4 are applied to the image sensing array A to move the imagewise charge pattern formed therein one row at a time, to the output registers. Normally, a 14 MHz clock would be required for reading out rows of image sensors having 740 elements per row at a standard television line rate.
  • the output registers are four-phase CCD shift registers.
  • Each cell of the output registers includes two transfer electrodes 1T and 2T and two storage electrodes 1 S and 2S.
  • a first transfer gate 300 actuated by a first transfer signal T 1 transfers a row of photocharges to output register G.
  • the cell pitch in output registers G and M is twice the width of the columns in image sensing array A.
  • Each cell of the output registers is associated with an odd and an even column of the image sensing array. The odd columns are aligned with the 1S electrodes, and the even columns with the 2S electrodes.
  • the 2S electrodes of the output registers G and M are connected by buried channels 302.
  • transfer gates 300 and 304 are closed, and the output registers are operated in a pseudo two-phase manner by clocking the 1T and 1S electrodes in phase and the 2T and 2S electrodes in phase to transfer the photocharges serially to output diodes 306 and 308 respectively.
  • FIG. 4 A partial plan view of the electrode structure of the solid state image sensor is shown in FIG. 4.
  • the device is constructed on a doped semiconductor substrate (e.g. p-type silicon).
  • Channel stopping regions shown by stippled areas are defined by a more heavy doping (e.g. p+) covered by a thickened field oxide.
  • the thickened field oxide of the channel stop is employed as a mask to ion implant the buried channel regions outlined by chain lines, (e.g. n-type dopant).
  • the image sensing array A is defined by vertical channels 400 separated by channel stopping regions 402 and overlayed with four-phase transfer electrodes 404, 406, 408 and 410.
  • the channels of output registers G and M are separated by channel stopping regions 412 and the outside edge of the channel for register M is defined by channel stopping region 414.
  • the gaps between channel stopping regions 412 provide the buried channel connections between output registers G and M beneath the 2S electrodes.
  • a first transfer gate 300 separates register G from the image sensing array A
  • a second transfer gate 304 separates register G from register M.
  • Each cell of output registers G and M is defined by two transfer electrodes 1T and 2T (416 and 418 respectively) and two storage electrodes 1S and 2S (420 and 422a and b respectively).
  • the 1T, 2T and 1S electrodes are continuous across both shift registers G and M.
  • the 2S electrodes 422a and 422b are separately addressable.
  • the phase-one and phase-three electrodes of the image sensing array A and the 1S and 2S electrodes of the shift registers G and M are patterned from a first level of polysilicon.
  • the phase-two and phase-four electrodes of the image sensing array A, the 1T and 2T electrodes of the shift registers G and M, and the first and second transfer gates are patterned from a second level of polysilicon.
  • FIGS. 5, 6, 7 and 8 show cross sections of the image sensor taken along lines 5--5, 6--6, 7--7, and 8--8 in FIG. 4 respectively.
  • the image sensor is constructed on a p-type substrate 500.
  • the channel stopping regions comprise a p+-type doped layer 502 and a thickened field oxide 504.
  • the buried channels comprise n-type implanted regions 506.
  • FIG. 5 is a cross section through a 1T electrode 416. When the clock signal ⁇ GM1T applied to the 1T electrode 416 is low, the potential well under the 1T electrode is collapsed, as shown by chain lines 508 in FIG. 5.
  • a potential barrier 604 is formed between the image sensing array and the output shift register.
  • the potential barrier is lowered when T 1 goes high (as shown by dashed line 606) and signal charge waiting in the odd columns of the bottom row of the image sensing array A is allowed to flow into the output shift registers.
  • FIG. 8 illustrates the potential wells formed under the 2S electrodes 422a and b.
  • ⁇ M2S or ⁇ G2S When ⁇ M2S or ⁇ G2S is low, the potential well under the respective electrode is collapsed, as shown by dashed lines 800.
  • a potential well, as shown by chain line 802 is formed under the 2S electrodes when ⁇ M2S and ⁇ G2S are high.
  • an even higher voltage is applied to 2S electrode 422b, the potential well thereunder is further deepened as shown by dashed line 804.
  • the control signals T 1 and T 2 applied to the first and second transfer gates are low, potential barriers 806 and 808 are formed beneath the respective transfer gates. The potential barriers 806 and 808 collapse when the T 1 and T 2 signals are high, allowing signal charge to flow from the even columns of the last row of the image sensing array A into the M register.
  • FIG. 9 is a timing diagram showing the control signal timing sequence for transferring a row of photocharge from the image sensing array A to the output registers G and M.
  • the signal charge resides under the last phase-one electrode 404 and phase-two electrode 406 in the odd and even columns of the image sensing array A, as shown in FIGS. 6 and 8 respectively.
  • the potential wells under the 1T and 2T electrodes are collapsed (e.g. ⁇ GM1T and ⁇ GM2T low), as shown by chain lines 508 and 700 in FIGS. 5 and 7.
  • the potential wells under the 1S and 2S electrodes are formed ( ⁇ GM1S, ⁇ G2S, and ⁇ M2S high) as shown by chain lines 602 and 802 and FIGS. 6 and 8.
  • ⁇ M2S is raised even higher, as shown by the solid line ⁇ M2S in FIG. 9, and the potential well under the M2S electrode 422b is deepened, as shown by dashed line 804 in FIG. 8.
  • the first and second transfer gates 300 and 304 are actuated to lower the potential barriers 604, 806, and 808 as shown in FIGS. 6, and 8 (T 1 and T 2 high).
  • the potential barrier 808 (see FIG. 8) between the G and M registers is raised by dropping the voltage T 2 on the second transfer gate 304.
  • the potential well under the G2S electrode 422a (see FIG. 8) is reestablished.
  • the potential under the 2T electrode 418 is lowered to the level 702 as shown in FIG. 7, and the potential well under the 1S electrode 420 (see FIG. 6) is collapsed to the level 602, thus advancing the charges in the G register by one-half cell. From this point on, the shift registers are read out simultaneously by clocking the G and M shift registers in a pseudo two-phase mode.
  • FIG. 10 A schematic cross section of the output portion of the G register is shown in FIG. 10.
  • the output circuit 1000 is a standard double buffered, sense and reset-type amplifier, either integrated on the chip, or located off the chip.
  • the potential profile under the electrode structure illustrates the configuration of the potential well in the G register during transfer of one row of photocharges from the array A.
  • the wells under the 1S electrodes contain photocharges representing green information.
  • the wells under the 2S electrodes are marked with B and R in phantom to illustrate that photocharges representing blue and red have passed through these wells on their way to the M register.
  • a photocharge representing green information is shifted to a position beneath the final 2S electrode 422a.
  • the output diode 306 is reset by applying a RESET pulse to a reset gate 1002, which returns the potential of the output diode to a fixed reference potential RD supplied to a reset diode 1004.
  • the "green" photocharge is then transferred to the output diode 306 over a potential barrier 1006 formed by a fixed voltage OG applied to an output gate 1008.
  • the resulting change in potential on the output diode is applied to the gate of a first stage FET amplifier 1010.
  • the output of the FET amplifier, at node A is sampled by applying a sample pulse S G to the gate of a sample FET 1012, which applies the sampled voltage to the gate of a second stage FET amplifier 1014.
  • the resulting output signal G OUT forms the "green" channel of the color video signal.
  • the previous steps are repeated at the 7 MHz video sampling rate till readout of the G register is complete.
  • FIG. 11 is a schematic cross section of the output portion of the M shift register.
  • the output amplifier 1100 is a double buffered, sense and reset-amplifier having a single first stage and two identical second stages R and B.
  • the output amplifier also serves as a demultiplexer to separate the blue and red signals depending upon which stage is activated, the blue signals are produced from the B stage and the red signals are produced from the R stage.
  • a photocharge (representing, for example, red information) is shifted to a position beneath the final 2S electrode 422b.
  • the output diode 308 is reset by applying a RESET pulse to a reset gate 1102, which returns the potential of the output diode to a fixed reference potential RD supplied to a reset diode 1104.
  • the "red" photocharge is then transferred to the output diode 308 over a potential barrier 1106 formed by a fixed voltage OG supplied to an output gate 1108.
  • the resulting change in potential on the output diode 308 is applied to the gate of a first stage FET amplifier 1110.
  • the output of the FET amplifier, at node B, is sampled by applying a sample pulse S R to the gate of a sample FET 1112, which applies the sampled voltage to the gate of a second stage FET amplifier 1114.
  • the resulting output signal R OUT forms the "red" channel of the color video signal.
  • the next photosignal (representing, for example, blue information) is treated in a manner similar to that described above, with the exception that the output at node B is sampled applying a sample pulse S B to a second sample FET 1116.
  • the sampled signal is applied to the gate of a second stage FET amplifier 1118.
  • the resulting output signal B OUT forms the "blue” channel of the color video signal.
  • the readout continues in the manner described above, alternating between the "red” channel and the "blue” channel until readout of the M register is complete.
  • the color filter array used to specularly sensitize the solid state color image sensor employs a vertical stripe pattern of transmissive color filters. Odd columns transmit green, and the alternate even columns transmit red and blue portions of the spectrum.
  • the color filter array is fabricated directly on the sensor itself.
  • the color filters will be made on a quartz substrate, and attached to the sensors with UV curable optical cement, after alignment.
  • FIG. 3 showed the alternating color stripe pattern on the image sensor.
  • FIG. 12 is a partial schematic diagram showing in more detail the placement of the color filter stripes on the vertical columns of the image sensing array.
  • Aluminum light shields 1200 are placed over the vertical channel stops 402 to provide some tolerance for alignment of the color filter array.
  • the R, G, and B color filter stripes 1202, 1204, and 1206 respectively are each approximately 12 microns wide.
  • Each photosensitive element in the array, defined in width by the distance between the aluminum light shields and in height by one full set of four-phase transfer electrodes ⁇ 1-4 is approximately 12 ⁇ 27 microns.
  • FIG. 13 illustrates the process for fabricating the color filter array.
  • a layer 1302 of gelatin based photoresist is applied to the surface of the substrate by spin coating.
  • the photoresist layer 1302 is exposed through a mask to define the first set of color stripes.
  • the photoresist is then developed to leave behind the first pattern of stripes 1304.
  • the stripes are dyed in a hot bath (approximately 50° C.) of dye containing a surfactant to insure uniform surface wetting, to color the first set of stripes.
  • the colored stripe pattern is baked at approximately 200° C. for approximately 45 minutes to harden the gel so that it resists further dyeing.
  • the steps 1 through 5 are then repeated for the other color patterns to complete the color filter array.
  • the mechanical system of the film video player shown in FIG. 14 includes a light conditioning portion, a film handling station, a zoom optics portion, and a sensor transport stage.
  • the light conditioning portion comprises a mask 224, a light chopper disc 226 for providing intermittent illumination of the image sensor, and a variable light attenuator disc 230 for controlling the exposure of the image sensor.
  • the light chopper disc 226 has two apertures 1400 and 1402 located 180° apart near the circumference of the disc.
  • the light chopper disc is driven by a stepper motor 1404 to chop the light from lamp 208 at the video field rate.
  • An electrooptical sensor 1406 senses timing marks 1408 to provide a chopper rate feedback signal to the light chopper servo.
  • the timing marks 1408 are precisely aligned with the leading edges of the apertures for providing precise timing information.
  • variable attenuator disc 230 comprising a neutral density wedge around the circumference of a transparent disc, is journaled concentrically with the light chopper disc 226 and is driven at its periphery by a stepper motor 1410 through a hockey puck drive 1412.
  • An electrooptical sensor 1414 senses a mark 1416 on the edge of the variable attenuator disc 230 to signal the control electronics where the disc makes a transition from minimum to maximum attenuation.
  • the film handling station includes a packette locator 1418.
  • the film packette 104 is received in the packette locator 1418 which is journaled to slide freely on a pair of rails 1420 and 1422.
  • the packette locator includes a central aperture 1424 for access to the hub 112 of a film disc in the packette.
  • a first peripheral aperture 1426 is provided for illuminating a frame of film in the film disc.
  • a second peripheral aperture 1428 is provided in the packette locator for achieving access to the film alignment hole 108 in the packette.
  • the packette locator is surrounded by a sliding yoke 1430 that is likewise journaled on rails 1420 and 1422.
  • FIG. 15 shows a cross sectional side view of the film handling station.
  • Sliding yoke 1430 carries a disc brake 1500 mounted on an axle 1502.
  • the disc brake is normally free to rotate on its axle and is urged by a spring 1504 toward the left with respect to the yoke 1430 (as seen in FIG. 15).
  • the brake is lined on its front and back surfaces with a high friction elastomeric material 1506.
  • Sliding yoke 1430 includes a pair of walls 1508 and 1510.
  • a fork 1512, carried by an arm 1514 is interposed between the walls 1508 and 1510 and is urged into contact with wall 1508 by a leaf spring 1516.
  • Arm 1514 is journaled to slide on a rail 1518 and urged toward the right (as seen in FIG. 15) by a spring 1520.
  • fork 1512 urges sliding yoke 1430 to the right into stops (not shown) on the rails.
  • Sliding yoke 1430 in turn urges packette locator 1418 to the right.
  • a film drive spindle 1522 Located adjacent the central aperture in the packette locator is a film drive spindle 1522 having a key 1524.
  • the film drive spindle is adapted to engage the keyed hub 112 of a film disc 102 in the packette and is driven by a motor 1432 (see FIG. 14) through a gear train for rotating the film disc.
  • the film drive spindle is fixed axially with respect to the video player, and the hub 112 is urged onto the spindle by sliding the packette locator 1418 to the left as seen in FIG. 15.
  • a blade 1526 carried by the film door 116 engages the journal on arm 1514 and moves the arm to the left.
  • fork 1512 pushes sliding yoke 1430 to the left via leaf spring 1516, carrying disc brake 1500 into contact with a raised rim 1528 on hub 112 of the film disc.
  • Pressure of the disc brake 1500 against the hub 112 causes packette locator 1418 to slide to the left, till the hub encounters the film drive spindle 1522. Assuming that the key 1524 in the film drive spindle and the key way in the hub are not in alignment, further motion of the hub and the packette locator will be arrested.
  • spring 1504 is compressed and wall 1510 is brought into contact with the back side of the disc brake 1500, thereby clamping the hub to prevent it from further rotation. Further movement of arm 1514 to the left compresses leaf spring 1516 slightly.
  • spindle 1522 rotates with respect to hub 112 till the key 1524 engages the keyway in the hub.
  • springs 1504 and 1516 urge the hub fully onto the spindle.
  • Sliding yoke 1430 moves slightly to the left thereby closing the contacts of a "film seated" sensor switch 1434 (see FIG. 14) to indicate to the computer that the hub has seated on the spindle.
  • the back side of disc brake 1500 moves slightly away from wall 1510 thereby allowing the hub and/or the disc brake to rotate freely.
  • An electrooptical sensor 1436 senses an indicator mark 1438 on the gear train that drives the film drive spindle 1522 (see FIG. 14). The signal from the electrooptical sensor is employed by the control electronics to locate coarsely the first frame of the film disc. An electrooptical sensor 1440 is positioned with respect to aperture 1428 in the packette locator for finely positioning a frame in the film gate.
  • latch 260 comprising a pivotally mounted latch arm 1442, which cooperates with a pin 1444 on the sliding door 116.
  • Solenoid 266 connected to latch arm 1442 is actuable for retracting the latch arm to release the latch.
  • FIG. 16 is a schematic cross section of the film transport portion of the video player showing the sliding door 116 closed and latched, and the hub 112 of the film disc 102 located on the film drive spindle 1522.
  • the film disc 102 (shown in phantom) is directly adjacent a fixed half 1600 of the film gate.
  • the other half of the film gate 242 swings on a hinge 1602 and is urged in a direction away from the fixed half of the film gate by a spring 1604.
  • Sliding yoke 1430 carries an arm 1606 that contacts the movable half of the film gate 242 to swing the gate to a position very near the film when the sliding door 116 is closed.
  • solenoid 244 is actuated to urge the movable half of the film gate 242 into contact with the film, thereby firmly sandwiching the film between the fixed and movable portions of the film gate to maintain film flatness.
  • the solenoid 244 is deenergized prior to each advance of the film to avoid scratching the film with the gate.
  • the zoom lens 248 is adjusted by a sector gear 1446 attached to a rotatable portion 1448 of the zoom lens 248.
  • the gear is driven through a gear train by a stepper motor 1450.
  • An electrooptic sensor 1452 senses the end of a vane 1454 to generate a feedback signal indicating the normal magnification position of the zoom lens.
  • the feedback signal is used by the computer to return the magnification of the displayed image to normal magnification after each frame advance.
  • the solid state image sensor 246 is mounted on a circuit card 1456 that is carried by an X-Y translation range 252 having an X translating frame 1458 and a Y translating frame 1460.
  • the circuit card 1456 is mounted on the X translating frame by three studs 1462 which are individually adjustable to position the image sensor in the focal plane of the zoom lens 248.
  • the X translating frame 1458 is moved by a motor 1464 (mounted on the Y translating frame 1460) via a lead screw 1466 and a threaded block 1468.
  • the center position of the X translating frame is sensed by an electrooptic sensor 1480 (mounted on the X translating frame) that senses a stepped vane 1482 carried by the X translating frame.
  • the Y translating frame 1460 is moved by a stepper motor 1474 via a lead screw 1476 and a threaded block 1478.
  • the center position of the Y translating frame is sensed by an electrooptic sensor 1470 that senses a stepped vane 1472 carried by the Y translating frame.
  • the sensor support electronics shown in FIG. 17 include circuitry for generating the control signals for the solid state image sensor and for processing the signals generated by the image sensor.
  • Digital timing circuits 1700 generate the signals for driving solid state image sensor 246 from master timing signals supplied by a master clock 1702. The signals are also supplied to the system control electronics for synchronizing overall system control with the operation of the solid state image sensor.
  • the timing signals are amplified by a voltage translator 1704 and applied to the solid state image sensor 246.
  • the output of the solid state image sensor from the G and M output registers, is detected and decoded by a signal conditioning and color decoder circuit 1706.
  • a defect correction circuit 1708 is programmed with the location of defective columns in the sensor. When a defective column is present, the sample signal to the sample and hold circuit of signal conditioner and color decoder circuit 1706 is suppressed, thereby substituting a previous good sample in place of the defective sample.
  • the three color signals R, G, and B produced by the signal conditioner and color decoder circuit are amplified in amplifiers 1710.
  • the R, G and B signals are buffered by buffer amplifiers 1714, 1716, and 1718.
  • the negative logs of the R, G, & B signals are taken by circuit 1720 to invert the signals and to convert from transmittance space to density space.
  • the negative logs of the R, G and B signals are matrixed in matrix circuit 1722 to map the effective film exposures into color television light output.
  • the anti-logs of the resulting signals are taken by anti-log circuit 1726.
  • the R, G, and B signals are sampled and a weighted average taken over one frame by exposure control circuit 1712 to develop an average luminance signal.
  • the average luminance signal is sampled and held once per frame and is compared with a reference level to develope a two bit exposure control signal.
  • the first bit of the exposure control signal indicates to the system control computer whether or not a light attenuator adjustment is required, and the second bit of the exposure control signal tells whether to make the exposure lighter or darker.
  • the R, G, and B signals are then cored in a video coring circuit 1728 to suppress film grain and crispen the edges in the scene.
  • the coring circuit derives unsharp R, G, and B signals, using delay lines, that represent the average of a 3 ⁇ 3 pixel area.
  • the unsharp signals are subtracted from their respective full bandwidth signals to yield high frequency R, G, and B detail signals.
  • the detail signals are cored by removing the low amplitude excursions therefrom.
  • the cored detail signals are amplified (to crispen edges) and added back to the unsharp signals.
  • the resulting R, G and B signals are displayed directly on a color monitor 1730 or are encoded and modulated for display on a standard television receiver 120 by a standard NTSC encoder 1732 and an RF modulator 1734.
  • the video signal is blanked by a video blanking signal from the microprocessor.
  • the system control electronics comprises a microcomputer 202 on a single circuit card, and a plurality of input/output drivers on two other circuit cards 1800 and 1802.
  • the microcomputer based on the Z-80A microprocessor includes a Z-80A CPU 1804, a programmable input/output port 1806, two kilo-bits of EPROM 1808, and one kilo-bit of RAM 1810.
  • the clock for the microcomputer is a 3.58 MHz video frequency crystal clock to minimize the possibility of electrical interference with the video signals by the computer clock.
  • the 3.58 MHz clock was chosen for compatibility with an NTSC television signal. If another standard signal, such as PAL or SECAM, were employed, the compatible clock frequency may differ.
  • the first input/output card 1800 receives the television time sync base from the sensor support electronics (FIG. 17); the signal from the load door switch 262 (FIG. 2); the signal from the film disc seated switch 1434 (FIG. 14); and the two-bit exposure control signal from the exposure control circuit 1712 in the sensor support electronics (FIG. 17).
  • the first input/output card supplies control signals to the light chopper motor 1404; the spindle drive motor 1432; the X-translate motor 1464; the Y-translate motor 1474; the zoom lens motor 1450; and the attenuator adjust motor 1410 (FIG. 14).
  • the first input/output card 1800 also includes a sync detect circuit 1812 that compares the signal from the chopper disc sync sensor 1406 with the television vertical sync time base and indicates proper sync by lighting an indicator light 1814.
  • the second input/output card 1802 receives signals from the following sensors: the chopper disc sync sensor 1406; the spindle position sensor 1428; the film notch sensor 1440; the X and Y center sensors 1480 and 1470; the zoom sensor 1452; and the attenuator limit sensor 1414 (FIG. 14).
  • the second input/output card supplies the video blanking signal to the image enhancement circuit 1728 (FIG. 17); the lamp power signal to the lamp power circuit 210 (FIG. 2); and power to the door latch and film gate solenoids 266 and 244 respectively.
  • the second input/output card also receives the inputs from the remote operator control unit 122.
  • FIG. 19 shows the set up procedure followed when the video player is first turned on.
  • the microcomputer is first initialized and then the door release solenoid actuated to release the sliding loading door in case it is closed.
  • the computer then initializes the attenuator disc 230 by driving the disc in one direction until the calibration mark 1416 is detected by sensor 1414.
  • the X-Y translation stage 252 is centered in both the X and Y directions by sensing whether or not a stepped vane is blocking light in the X and Y position sensors 1470 and 1480 respectively and determining which side of center the respective translation stage is on. Then the computer commands the respective motor drive to move the translation stage in the direction toward center until a transition of the stepped vane is detected.
  • the zoom drive is set at its normal magnification position by driving the zoom drive motor 1450 toward smaller magnification until a transition is detected by the sensor 1452.
  • the program checks to see if the light chopper disc 226 is in sync with the video vertical sync time base. If not, the program stops the chopper disc and starts it again, until sync is achieved. The computer then checks the status of switch 262 to see if the loading door is closed. If the door is not closed, the program loops until the door is closed, checking on each loop to insure that the chopper disc is still in sync. After the loading door is closed, the program turns lamp 208 on, and actuates the spindle drive motor 1432 to seat the spindle 1522 in the hub of the film disc. The computer knows that the spindle is properly seated in the hub when the film disc seated switch 1434 is closed. The program then advances the film to frame number 1 on the film disc, using signals from the spindle position sensor 1436 and the film notch sensor 1440 to accurately locate the first frame in the film gate.
  • the program checks again to see if the light chopper disc is still in sync with the vertical sync of the video signal. If not, the program blanks the video, stops the chopper disc and restarts it till sync is achieved. When the light chopper disc is in sync, the program unblanks the video and signals the exposure number display 124 on the remote control unit 122 to display the frame number. Next, the computer checks the frame advance button 126 on the remote control unit 122 to see if a new frame is desired. If no new frame is desired, the program branches to the control monitor portion described below with reference to FIG. 21. If a new frame is called for, the program enters a setup portion shown in FIG. 20.
  • the set up portion of the program quickly returns the X and Y translation servos to their respective center positions and, returns the zoom lens to its normal magnification position, moves the film disc to the new frame position, and adjusts the light attenuator disc if needed. Since an inordinate amount of time would be required (with the video signal blanked) to perform these operations serially, according to one aspect of the present invention the microcomputer performs them in a quasi-parallel manner. When a new frame number is requested, the computer determines the shortest way to reach the new frame (either by rotating the film disc clockwise or counterclockwise) and calculates the number of motor steps nominally required to reach the required frame. The required number of motor steps is stored in a distance counter computer memory location.
  • the program next checks to see if the X translate stage 1458 is centered, if not, the program commands X translate motor 1464 to move one step toward center. If the X-translate stage is centered, the program resets the X-translate not ready flag and continues.
  • the program checks to see if the Y translate stage 1460 is centered, and if not, commands Y translate motor 1474 to move one step toward center. If the Y-translate stage is centered, the program resets the Y-translate not ready flag and continues.
  • the program checks to see if the zoom is at normal magnification, if not, it commands zoom motor 1450 to move one step toward normal magnification. If the zoom is at normal magnification, the program resets the zoom not ready flag and continues.
  • the program then checks the exposure control signal to see if the first exposure control bit is "on” or "off". If it is "on”, the program commands the light attenuator disc to move one step toward lighter or darker based on the second exposure control bit. The program then checks to see if all flags are cleared, if not, it executes a delay equal to the time required for the slowest stepper motor to execute one step, and then loops back through the setup portion of the program. Since it takes much less than one motor step time to execute the setup portion of the program, the scan and zoom drive motors are running substantially in parallel, thereby minimizing the time required for a new frame setup. As each servo reaches its desired position, the respective not ready flag for that servo is cleared, until all the flags have been cleared. The computer then exits this portion of the program. In this way, the maximum time spent adjusting all the drives to their respective initial setup positions is approximately equal to the time that it takes to adjust the slowest motor drive of the group.
  • the program clamps the film gate, unblanks the video display, and enters into a portion of the program (shown in FIG. 21) that monitors and executes the zoom and scan inputs from the remote control unit 122.
  • the control system insures that the image sensor 246 is not displaced vertically or horizontally past an edge of the projected image of the film frame.
  • the computer memory contains a border table having the maximum number of steps that the sensor may be displaced from center in the X and Y directions for each magnification. For example, at normal magnification, the X and Y translation stages must be centered, but at maximum magnification, the X and Y stages can be moved to their extremes without moving the sensor past the border of the image. At different intermediate magnifications, there are different limits as to how far the sensor can be displaced from its centered position.
  • the program monitors the X and Y joystick signals from remote control module 122 and when X and/or Y is on, commands the respective scan drive to move one step, unless a border has been reached, in which case the command to move will not be executed.
  • the program samples the output of the zoom switch and commands the zoom to move one step forward or back depending upon the polarity of the zoom command.
  • the program also updates the border table to include the new borders that are allowed after the one step zoom has been executed.
  • the program flow falls into an equalizing time delay for the purpose of equalizing the program execution times whether or not the zoom switch is operated. Ultimately this leads to a uniform scan motor step rate regardless of whether or not a zoom motion is simultaneously selected.
  • the program checks the X and Y borders to see if the previous zoom command moved the sensor past the X and/or Y border for the new zoom position. If so, the program commands the X and/or Y stepper motor servo to move back toward the center one step.
  • the program loops through this zoom and scan monitor portion until all requested moves have been made, and all border criteria are satisfied. Video is displayed continuously during this portion of the program. After all border criteria are satisfied and all the commanded moves have been accomplished, the program checks to see if the eject button has been depressed. If not, the program returns to the first portion FIG. 19, checks and adjusts the exposure if required, checks to insure that the light chopper is still in sync, and then checks the inputs from the remote control module in case a new command is requested. When the computer senses that the eject button 132 is depressed, it blanks the video, releases the film gate then actuates solenoid 266 to release the load door latch, and returns to the beginning of the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Color Television Image Signal Generators (AREA)
  • Projection-Type Copiers In General (AREA)
US06/427,077 1982-09-29 1982-09-29 Film video player with zoom, scan, and automatic border control Expired - Fee Related US4506300A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US06/427,077 US4506300A (en) 1982-09-29 1982-09-29 Film video player with zoom, scan, and automatic border control
EP83903145A EP0121536B1 (en) 1982-09-29 1983-09-19 Film video player
PCT/US1983/001417 WO1984001485A1 (en) 1982-09-29 1983-09-19 Film video player
DE8383903145T DE3363080D1 (en) 1982-09-29 1983-09-19 Film video player
JP58503187A JPS59501768A (ja) 1982-09-29 1983-09-19 フイルムビデオプレヤ−

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/427,077 US4506300A (en) 1982-09-29 1982-09-29 Film video player with zoom, scan, and automatic border control

Publications (1)

Publication Number Publication Date
US4506300A true US4506300A (en) 1985-03-19

Family

ID=23693401

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/427,077 Expired - Fee Related US4506300A (en) 1982-09-29 1982-09-29 Film video player with zoom, scan, and automatic border control

Country Status (5)

Country Link
US (1) US4506300A (ja)
EP (1) EP0121536B1 (ja)
JP (1) JPS59501768A (ja)
DE (1) DE3363080D1 (ja)
WO (1) WO1984001485A1 (ja)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603966A (en) * 1985-08-28 1986-08-05 Eastman Kodak Company Film video player/printer with cropping control
US4633306A (en) * 1982-10-19 1986-12-30 Fuji Photo Film Co., Ltd. Arrangement for producing visual images recorded on a disk of film
US4633305A (en) * 1984-11-19 1986-12-30 Fuji Photo Film Co., Ltd. Method of recording image signals of photographic pictures
US4660091A (en) * 1985-09-16 1987-04-21 Eastman Kodak Company Exposure level correction for film-to-video conversion
US4700237A (en) * 1984-10-15 1987-10-13 Canon Kabushiki Kaisha Film image processing apparatus
US4703360A (en) * 1985-03-25 1987-10-27 Ehud Shor Electronic slide projector providing chroma and luma inversion of a composite video signal
US4719511A (en) * 1984-04-04 1988-01-12 Asahi Kogaku Kogyo Kabushiki Kaisha Exposure controlling method for television camera
US4774575A (en) * 1985-08-07 1988-09-27 Canon Kabushiki Kaisha Video signal processing apparatus
US4777525A (en) * 1985-12-23 1988-10-11 Preston Jr Kendall Apparatus and method for a multi-resolution electro-optical imaging, display and storage/retrieval system
US4809064A (en) * 1987-11-19 1989-02-28 Eastman Kodak Company Enlarging photographic printer
US4819073A (en) * 1988-01-13 1989-04-04 Eastman Kodak Company Film video player apparatus with selective image composing controls
US4821073A (en) * 1987-11-19 1989-04-11 Eastman Kodak Company Method and apparatus for measuring characteristics of photographic negatives
US4858003A (en) * 1988-01-12 1989-08-15 Eastman Kodak Company Mechanism for handling slides and film strips
US4864408A (en) * 1988-10-31 1989-09-05 Eastman Kodak Company Light box with improved spectral response for CCD imager
US4875103A (en) * 1988-08-19 1989-10-17 Eastman Kodak Company Apparatus and method for aligning a repositionable imaging sensor with a photographic image in a film video system
US4920419A (en) * 1988-05-31 1990-04-24 Eastman Kodak Company Zoom lens focus control device for film video player
US4974096A (en) * 1988-10-07 1990-11-27 Eastman Kodak Company Photofinishing process with film-to-video printer using dedicated magnetic tracks on film
US5012346A (en) * 1989-10-16 1991-04-30 Eastman Kodak Company Illumination system for a film scanner
US5258859A (en) * 1989-07-25 1993-11-02 Minolta Camera Kabushiki Kaisha Image reproducing system
US5301029A (en) * 1990-12-07 1994-04-05 Goldstar Co., Ltd. Device for maintaining the clearance between a cycolor film and the head of film exposing CRT
US5382973A (en) * 1990-09-14 1995-01-17 Fuji Photo Film Co., Ltd. Film imaged input system
US5440401A (en) * 1990-09-14 1995-08-08 Eastman Kodak Company Image database incorporating low resolution index image data
US5519442A (en) * 1990-09-14 1996-05-21 Fuji Photo Film Co., Ltd. Film image input system having a guide mechanism adjustable about at least three different axes
US5657074A (en) * 1991-11-29 1997-08-12 Minolta Camera Kabushiki Kaisha Apparatus for reproducing still images with music
US5671008A (en) * 1995-02-23 1997-09-23 Maestroworks Inc Telecine system
US5745214A (en) * 1995-06-26 1998-04-28 Nikon Corporation Film image processing apparatus
US5805206A (en) * 1995-06-19 1998-09-08 Nikon Corporation Film image processing apparatus
US5861911A (en) * 1990-09-13 1999-01-19 Fuji Photo Film Co., Ltd. Film image input system
US5872643A (en) * 1994-04-15 1999-02-16 Minolta Co., Ltd. Film image reproducing apparatus using a domestic light condition or an undomestic light condition for generation of a designated area
US5883729A (en) * 1994-08-04 1999-03-16 Olympus Optical Co., Ltd. Scanner device
US5909241A (en) * 1995-07-06 1999-06-01 Nikon Corporation Film image signal generation apparatus
US5959665A (en) * 1995-07-06 1999-09-28 Nikon Corporation Film scanner comprising a display information storage means which stores display information including character information for narration
US6137469A (en) * 1995-11-28 2000-10-24 Avermedia Technologies, Inc. Computer-TV video converting apparatus
US6157440A (en) * 1995-02-24 2000-12-05 Nikon Corporation Image input apparatus
US6166762A (en) * 1990-09-13 2000-12-26 Fuji Photo Film Co., Ltd. Film image input system
US6191810B1 (en) * 1990-09-13 2001-02-20 Fuji Photo Film Co., Ltd. Film image input system for outputting an image signal to a video monitor
EP1100254A1 (en) * 1999-11-12 2001-05-16 Noritsu Koki Co., Ltd. Apparatus for reading images from photographic film
US6546150B2 (en) * 1996-12-09 2003-04-08 Canon Kabushiki Kaisha Analogue signal processing circuit
US20030159635A1 (en) * 2000-05-15 2003-08-28 Ikuo Tajima Frame movement command devices for embroidery machine
US20060267539A1 (en) * 2005-05-30 2006-11-30 Yoshisuke Kuramoto Telecine device that utilizes standard video camera circuits

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2150782A (en) * 1983-12-02 1985-07-03 Johnson William N H Image displaying apparatus
JPS60144078A (ja) * 1983-12-30 1985-07-30 Fuji Photo Film Co Ltd 写真画像の映像信号作成方法及び装置
US4616926A (en) * 1985-08-28 1986-10-14 Eastman Kodak Company Film video player/printer
US5218459A (en) * 1991-09-16 1993-06-08 Eastman Kodak Company Print scanner with soft key variable magnification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161756A (en) * 1976-03-19 1979-07-17 Jos. Schneider & Co. Optische Werke Control system for varifocal objective
JPS55109081A (en) * 1979-02-16 1980-08-21 Hitachi Denshi Ltd Television camera
US4293876A (en) * 1980-01-11 1981-10-06 Williams Jarvis L Television monitoring system
US4331979A (en) * 1980-10-02 1982-05-25 Rca Corporation Line-scan still image reproducer
US4417281A (en) * 1980-11-21 1983-11-22 Asahi Kogaku Kogyo Kabushiki Kaisha Image magnification control mechanism for facsimile zoom lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2433914A1 (de) * 1973-07-17 1976-02-05 System Service Ges Fuer Datenv Mikrofilm-aufnahmegeraet
JPS5465528A (en) * 1977-11-04 1979-05-26 Fuji Xerox Co Ltd Variable magnification rate reader*printer
DE3004717C2 (de) * 1980-02-08 1986-03-27 Agfa-Gevaert Ag, 5090 Leverkusen Vorrichtung zur elektronischen Abtastung von Aufnahmegegenständen
JPS56159638A (en) * 1980-05-15 1981-12-09 Toshiba Corp Image pickup device for color film
JPS578533A (en) * 1980-06-19 1982-01-16 Fuji Photo Film Co Ltd Microfilm projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161756A (en) * 1976-03-19 1979-07-17 Jos. Schneider & Co. Optische Werke Control system for varifocal objective
JPS55109081A (en) * 1979-02-16 1980-08-21 Hitachi Denshi Ltd Television camera
US4293876A (en) * 1980-01-11 1981-10-06 Williams Jarvis L Television monitoring system
US4331979A (en) * 1980-10-02 1982-05-25 Rca Corporation Line-scan still image reproducer
US4417281A (en) * 1980-11-21 1983-11-22 Asahi Kogaku Kogyo Kabushiki Kaisha Image magnification control mechanism for facsimile zoom lens

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633306A (en) * 1982-10-19 1986-12-30 Fuji Photo Film Co., Ltd. Arrangement for producing visual images recorded on a disk of film
US4719511A (en) * 1984-04-04 1988-01-12 Asahi Kogaku Kogyo Kabushiki Kaisha Exposure controlling method for television camera
US4700237A (en) * 1984-10-15 1987-10-13 Canon Kabushiki Kaisha Film image processing apparatus
US4633305A (en) * 1984-11-19 1986-12-30 Fuji Photo Film Co., Ltd. Method of recording image signals of photographic pictures
US4703360A (en) * 1985-03-25 1987-10-27 Ehud Shor Electronic slide projector providing chroma and luma inversion of a composite video signal
US4774575A (en) * 1985-08-07 1988-09-27 Canon Kabushiki Kaisha Video signal processing apparatus
US4603966A (en) * 1985-08-28 1986-08-05 Eastman Kodak Company Film video player/printer with cropping control
US4660091A (en) * 1985-09-16 1987-04-21 Eastman Kodak Company Exposure level correction for film-to-video conversion
US4777525A (en) * 1985-12-23 1988-10-11 Preston Jr Kendall Apparatus and method for a multi-resolution electro-optical imaging, display and storage/retrieval system
US4809064A (en) * 1987-11-19 1989-02-28 Eastman Kodak Company Enlarging photographic printer
US4821073A (en) * 1987-11-19 1989-04-11 Eastman Kodak Company Method and apparatus for measuring characteristics of photographic negatives
US4858003A (en) * 1988-01-12 1989-08-15 Eastman Kodak Company Mechanism for handling slides and film strips
US4819073A (en) * 1988-01-13 1989-04-04 Eastman Kodak Company Film video player apparatus with selective image composing controls
US4920419A (en) * 1988-05-31 1990-04-24 Eastman Kodak Company Zoom lens focus control device for film video player
US4875103A (en) * 1988-08-19 1989-10-17 Eastman Kodak Company Apparatus and method for aligning a repositionable imaging sensor with a photographic image in a film video system
US4974096A (en) * 1988-10-07 1990-11-27 Eastman Kodak Company Photofinishing process with film-to-video printer using dedicated magnetic tracks on film
US4864408A (en) * 1988-10-31 1989-09-05 Eastman Kodak Company Light box with improved spectral response for CCD imager
US5258859A (en) * 1989-07-25 1993-11-02 Minolta Camera Kabushiki Kaisha Image reproducing system
US5012346A (en) * 1989-10-16 1991-04-30 Eastman Kodak Company Illumination system for a film scanner
US6278484B1 (en) 1990-09-13 2001-08-21 Fuji Photo Film Co., Ltd. Film image input system
US6191810B1 (en) * 1990-09-13 2001-02-20 Fuji Photo Film Co., Ltd. Film image input system for outputting an image signal to a video monitor
US6166762A (en) * 1990-09-13 2000-12-26 Fuji Photo Film Co., Ltd. Film image input system
US5861911A (en) * 1990-09-13 1999-01-19 Fuji Photo Film Co., Ltd. Film image input system
US5440401A (en) * 1990-09-14 1995-08-08 Eastman Kodak Company Image database incorporating low resolution index image data
US5382973A (en) * 1990-09-14 1995-01-17 Fuji Photo Film Co., Ltd. Film imaged input system
US5638115A (en) * 1990-09-14 1997-06-10 Fuji Photo Film Co., Ltd. Film image input system for reproducing a film image on a TV screen
US5389966A (en) * 1990-09-14 1995-02-14 Fuji Photo Film Co., Ltd. Film image input system for reproducing a film image on a T.V. screen
US5546122A (en) * 1990-09-14 1996-08-13 Fuji Photo Film Co., Ltd. Film image input system
US5808668A (en) * 1990-09-14 1998-09-15 Fuji Photo Film Co., Ltd. Film image input system
US5519442A (en) * 1990-09-14 1996-05-21 Fuji Photo Film Co., Ltd. Film image input system having a guide mechanism adjustable about at least three different axes
US6154249A (en) * 1990-09-14 2000-11-28 Fuji Photo Film Co., Ltd. Film image input system having automatic scan speed/scope adjustment
US5301029A (en) * 1990-12-07 1994-04-05 Goldstar Co., Ltd. Device for maintaining the clearance between a cycolor film and the head of film exposing CRT
US5657074A (en) * 1991-11-29 1997-08-12 Minolta Camera Kabushiki Kaisha Apparatus for reproducing still images with music
US5872643A (en) * 1994-04-15 1999-02-16 Minolta Co., Ltd. Film image reproducing apparatus using a domestic light condition or an undomestic light condition for generation of a designated area
US5883729A (en) * 1994-08-04 1999-03-16 Olympus Optical Co., Ltd. Scanner device
US5671008A (en) * 1995-02-23 1997-09-23 Maestroworks Inc Telecine system
US6157440A (en) * 1995-02-24 2000-12-05 Nikon Corporation Image input apparatus
US5805206A (en) * 1995-06-19 1998-09-08 Nikon Corporation Film image processing apparatus
US5745214A (en) * 1995-06-26 1998-04-28 Nikon Corporation Film image processing apparatus
US5959665A (en) * 1995-07-06 1999-09-28 Nikon Corporation Film scanner comprising a display information storage means which stores display information including character information for narration
US5909241A (en) * 1995-07-06 1999-06-01 Nikon Corporation Film image signal generation apparatus
US6137469A (en) * 1995-11-28 2000-10-24 Avermedia Technologies, Inc. Computer-TV video converting apparatus
US6546150B2 (en) * 1996-12-09 2003-04-08 Canon Kabushiki Kaisha Analogue signal processing circuit
EP1100254A1 (en) * 1999-11-12 2001-05-16 Noritsu Koki Co., Ltd. Apparatus for reading images from photographic film
US20030159635A1 (en) * 2000-05-15 2003-08-28 Ikuo Tajima Frame movement command devices for embroidery machine
US6932005B2 (en) * 2000-05-15 2005-08-23 Tokai Kogyo Mishin Kabushiki Kaisha Frame movement command devices for embroidery machine
US20060267539A1 (en) * 2005-05-30 2006-11-30 Yoshisuke Kuramoto Telecine device that utilizes standard video camera circuits

Also Published As

Publication number Publication date
WO1984001485A1 (en) 1984-04-12
EP0121536A1 (en) 1984-10-17
JPH0411072B2 (ja) 1992-02-27
EP0121536B1 (en) 1986-04-16
DE3363080D1 (en) 1986-05-22
JPS59501768A (ja) 1984-10-18

Similar Documents

Publication Publication Date Title
US4506300A (en) Film video player with zoom, scan, and automatic border control
US4495516A (en) Film video player having flash illuminated area image sensor and single frame CCD image sensor for use therewith
US4656524A (en) Electronic imaging copier
US4485406A (en) Film video player with zoom and scan
EP1214609B1 (en) 3d imaging system
US3005042A (en) Electronic motion picture printer
US4179711A (en) Defect noise compensating system
US5335082A (en) Method and apparatus for using monochrome images to form a color image
DE69729765T2 (de) Vorrichtung und verfahren zum scannen
JPS62145234A (ja) 電子撮像複写機
US2947810A (en) Film scratch minimizer
US2912487A (en) Electronic motion picture printer
US4174895A (en) Apparatus for producing multiple image formats
US5864362A (en) High speed scanner for reading latent images in storage phosphors
US5739849A (en) Electro-developing recording medium upon which an image is sensed
US4635124A (en) Auxiliary focusing circuit for automatic focusing camera
JP3018319B2 (ja) 写真装置
US3712202A (en) Multiple shutter system for cameras and projectors
US5493330A (en) Telecine apparatus utilizing an equal-interval pull-down technique
US5815202A (en) Method and apparatus for scanning an image using a moving lens system
US5978611A (en) Electro-developing type camera
US6999114B1 (en) Electronic camera employing reflective flat panel display for viewing and printing images
JP3125340B2 (ja) フイルム画像入力装置
JP3207080B2 (ja) 電子現像型カメラ
JP3272569B2 (ja) 電子現像型カメラ

Legal Events

Date Code Title Description
AS Assignment

Owner name: EASTMAN KODAK COMPANY, ROCHESTER, NY, CORP. OF NJ

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FEARNSIDE, WILLIAM T.;REEL/FRAME:004346/0250

Effective date: 19820924

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362