US3930166A - Package for transporting or enclosing radioactive materials - Google Patents
Package for transporting or enclosing radioactive materials Download PDFInfo
- Publication number
- US3930166A US3930166A US424720A US42472073A US3930166A US 3930166 A US3930166 A US 3930166A US 424720 A US424720 A US 424720A US 42472073 A US42472073 A US 42472073A US 3930166 A US3930166 A US 3930166A
- Authority
- US
- United States
- Prior art keywords
- ring
- vanes
- packaging according
- rings
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/06—Details of, or accessories to, the containers
- G21F5/10—Heat-removal systems, e.g. using circulating fluid or cooling fins
Definitions
- ABSTRACT Package for transporting or enclosing radioactive materials emitting a large amount of heat, having a heat protection device provided between a container metal casing and an external jacket.
- the device comprises concentric rows of radial metal vanes between which an endothermic insulating material is placed, so that heat emitted by the radioactive material is discharged under optimum conditions, whilst the endothermic material forms an effective heat barrier against external heat.
- packages of the type in question generally comprise an internal container placed inside an anti-radiation shield (of lead or a similar material).
- This shield is itself surrounded by an external protective jacket made of metal, which, however, provides an annular space forming a seat for a fire protection device.
- this protective device must possess very good heat conductivity, so that the heat emitted by the radioactive material contained in the packaging can be discharged and so that any overheating of the shield, made of lead or another material, can be avoided.
- the protective device should possess very low conductivity so that it can form a screen and effectively prevent any overheating of the shield; however, after the fire the conductivity should remain adequate to discharge the internal heat once more.
- the aim of the improvements which form the subject of the present invention is more especially to deal with the abovementioned disadvantage and to allow a package to be produced which can contain a radioactive material emitting a large amount of heat, under optimum safety conditions.
- the fire or heat protection device comprises two concentric rows of metal vanes oriented to extend radially, withcircumfer- ,ential spaces between the vanes of rows being filled with an endothermic insulatingmaterial.
- the metal vanes consist of lateral flanges or wings, the profiles of which have a U-shaped cross-section, which are made of copper or of another metal of good heat conductivity.
- the two rows of vanes and the endothermic insulating material which they contain are held between two annular layers of a heat swellable material (of the type of hydrated calcium sulphate) which is a good heat conductor, so that the said vanes are effectively sealed and that heat is transmitted between the various annular layers in use.
- FIG. 1 is a transverse cross-section of a packaging comprising the improvements according to the invention.
- FIG. 2 represents a part of FIG. 1 on a larger scale to show the arrangement of the fire protection device.
- FIG. 3 is a similar view to FIG. 2, but corresponds to an alternative embodiment.
- the packaging represented in FIG. 1 comprises, in the customary manner, an internal container 1 which has a circular transverse cross-section and is embedded inside a shield or screen 2 made of lead or of another material, which is itself cylindrical in shape.
- the shield 2 is surrounded by an external protective jacket 3 made of steel or of another resistant metal; the said jacket 3 provides, between its internal wall and the shield 2, an annular space forming a seat fora fire protection device shown schematically at 4.
- this heat or fire protection device 4 comprises afirst external row or ring of profiled sections 5 which have a U-shaped protile in transverse cross-section; these profiled sections 5, for example made of copper, extend over the entire height of the package and are joined one to another by welding points 5'.
- the lateral flanges or wings of each profiled section 5, which is held in contact with lateral flanges or wings of adjacent profiled section 5, thus define vanes which are oriented radially toward the inside of the container; the transverse web or bridge of the profiled section which is perforated at intervals at 5a, being turned toward the jacket 3.
- the protective device also comprises a second internal row or ring of vanes consisting of angle-profiles 6 preferably made of copper, and joined to one another at 6.
- the angleprofiles 6 are oriented in such a way that one of their wings is placed radially inside a profiled section 5, the two rings being wedged together by means of grooved plates or rods 7 made of wood or of another material which possesses a high coefficient of heat insulation.
- the spaces provided between the vanes of the two rings 5 and 6 are filled with a mass 8 of a material which is of endothermic nature and can absorb a large amount of heat when subjected to an abrupt rise in temperature.
- the tworings are sealed in place by means of internal and external annular layers 9 of a material which provides good heat contact.
- the mass 8 can be produced in accordance with one or other of the two French Pat. Nos. 1,438,241 and 69 27,633.
- the following composition (by volume) can be used to form the sealing layers 9:
- the heat emitted by the radioactive material held in the internal container 1 is transmitted to the shield 2 and passes through the internal annular layer 9.
- the ring formed by the angleprofiles 6 is thus heated to a high temperature; the heat cannot be discharged radially to the outside as a result ofthe heat barrier formed by the wedges or rods 7, so that the heat must pass through each mass 8 to reach the lateral wings of the profiled sections which discharge into the atmosphere through the external annular layer 9 and the metal jacket 2.
- the heattransmission between the internal ring and the external ring is achieved under excellent conditions as a result of the low circumferential thickness of each of the masses 8 and of the large exchange surface thereby created.
- the volume of the endothermicinsulating material can be made greater by increasing the radial length of the vanes of the two rings of the fire protection device, and this simultaneously improves the heat insulation of the packaging and the heat discharge characteristics as a result of the increase in the exchange surface,
- P16. 3 illustrates another embodiment of the invention according to which the shield 2 is lined with a protective neutron screen 10.
- the angleprofiles 6 comprise a very long radial wing so as to define a space for a suitable material.
- Use can especially be made of a composition of the following type (the percentages here being given by weight):
- the screen 10 can consist of a row of bundles formed by polyethylene filaments of small diameter, oriented parallel to each other and coated, for example, by immersion, with a boron-containing binder which, after drying, seals them into the spaces provided between the angle-profiles 6.
- the screen can have the following composition (by weight):
- the screen 10 does not in any way disturb the discharge of heat emitted by the radioactive material, since the angle-profiles 6 provide excellent heat conductivity; the heat is dissipated in the same way as in FIG. 2, through the external ring of the profiled sections 5, the layer 9 and the jacket 3.
- Packaging for enclosing and transporting radioactive material of the type including a material container surrounded by an anti-radiation shield located within a protective metal jacket whose inner wall is spaced from the outer wall of the shield to leave an annular space between said walls for housing an improved protective device operative to insulate the container against heat generated externally of the packaging, the improvement comprising:
- first and second metal rings concentrically disposed in said annular space and spaced from each other, the first ring being disposed in heat conductive relationship with said jacket and the second ring being disposed in heat conductive relationship with said shield:
- one of the rings comprises an annular series of mutually attached U-shaped sections each having two legs joined by a web, and the legs of the adjacent sections being radially disposed to form vanes.
- the rings comprises an annular series of mutually attached angle sections, each having a radially disposed leg forming a vane and an annularly disposed leg form ing a part of the ring.
- said insulating material comprises a plate having one side lying against a ring and having an opposite side grooved to receive a vane, said plates wedging the alternating vanes together in accurately maintained relationship.
- sealing material includes hydrated calcium sulphate.
- sealing material comprises, by volume, substantially:
- vanes of the second ring are radially longer than the vanes of the first ring, leaving a zone between the rings wherein the vanes are not alternately opposed, and said zone being filled with neutron absorbing material packed between the vanes of the second ring to form a neutron screen.
- said neutron absorbing material comprises series of bundles each formed of polyethylene filaments coated with a boron-containing binder; the binder joining the bundles to one-another and sealing them between the vanes.
- the first ring comprises an annular series of attached U-shaped sections, each having two legs joined by a web and the legs of adjacent sections being radially inwardly disposed to form vanes; and wherein the second ring comprises an annular series of attached angle sections, each having a radially disposed leg forming a vane and an annular disposed leg forming a part of the second ring; and the free ends of the vanes being spaced from the opposed ring by insulating material, whereby to prevent heat conductive contact between the vanes and the opposing rings.
- Packaging according to claim 12, wherein said insulating material comprises plates wedged between the vanes and the opposing rings and grooved to receive the ends of the vanes.
- vanes of the second ring are radially longer than the vanes of the first ring, leaving a zone between the rings wherein the vanes are not alternately opposed, and said zone being filled with neutron absorbing material packed between the vanes of the second ring to form a neutron screen.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Packages (AREA)
- Building Environments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7242963A FR2208165B1 (ko) | 1972-11-28 | 1972-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3930166A true US3930166A (en) | 1975-12-30 |
Family
ID=9108118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US424720A Expired - Lifetime US3930166A (en) | 1972-11-28 | 1973-12-14 | Package for transporting or enclosing radioactive materials |
Country Status (5)
Country | Link |
---|---|
US (1) | US3930166A (ko) |
JP (1) | JPS5727440B2 (ko) |
DE (1) | DE2358979C2 (ko) |
FR (1) | FR2208165B1 (ko) |
GB (1) | GB1403338A (ko) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4039842A (en) * | 1976-01-08 | 1977-08-02 | Brooks & Perkins, Incorporated | Fuel storage rack |
FR2431754A1 (fr) * | 1978-07-19 | 1980-02-15 | Transnuklear Gmbh | Conteneur blinde pour le transport et/ou le stockage d'elements combustibles irradies |
FR2471027A1 (fr) * | 1979-11-17 | 1981-06-12 | Transnuklear Gmbh | Vase de transport et/ou de stockage pour matieres radioactives |
US4326130A (en) * | 1978-10-17 | 1982-04-20 | Stefan Ahner | Shielding container with neutron shielding for the transportation and/or storage of spent fuel elements |
US4326918A (en) * | 1980-03-13 | 1982-04-27 | Electric Power Research Institute, Inc. | Storage assembly for spent nuclear fuel |
US4328423A (en) * | 1980-04-23 | 1982-05-04 | The United States Of America As Represented By The United States Department Of Energy | Canister arrangement for storing radioactive waste |
EP0143398A2 (de) * | 1983-11-29 | 1985-06-05 | Alkem Gmbh | Behälter insbesondere für radioaktive Substanzen |
US4783309A (en) * | 1986-06-20 | 1988-11-08 | Deutsche Gesellschaft Fur Wiederaufarbeitung Von Kernbrennstoffen Mbh | Double container system for transporting and storing radioactive materials |
EP0312902A2 (en) * | 1987-10-19 | 1989-04-26 | Westinghouse Electric Corporation | Thermal protection shell for radioactive waste containers |
US4935943A (en) * | 1984-08-30 | 1990-06-19 | The United States Of America As Represented By The United States Department Of Energy | Corrosion resistant storage container for radioactive material |
WO1995020459A1 (de) * | 1994-01-27 | 1995-08-03 | Germania Chemnitz Gmbh | Verfahren zur herstellung einer schweissverbindung und nach diesem verfahren hergestellter transport und lagerbehälter für abgebrannte kernbrennstoffkasseten |
EP0757361A1 (en) * | 1995-08-04 | 1997-02-05 | Kabushiki Kaisha Kobe Seiko Sho | Transport/storage cask for a radioactive material |
US6389093B1 (en) * | 1999-06-19 | 2002-05-14 | Gnb Gesellschaft Fur Nuklear-Behalter Mbh | Storage/transport container for spent nuclear-fuel elements |
EP1355320A1 (en) * | 2001-01-25 | 2003-10-22 | Mitsubishi Heavy Industries, Ltd. | Cask and production method for cask |
US20040125906A1 (en) * | 2002-11-09 | 2004-07-01 | Gnb Gesellschaft Fur Nuklear-Behalter Mbh | Container for heat-generating radioactive elements |
US20040253397A1 (en) * | 1995-09-07 | 2004-12-16 | Hayes Claude Q.C. | Heat absorbing temperature control devices that include hydroxide |
US20090059531A1 (en) * | 2007-08-31 | 2009-03-05 | Hayes & Associates | Endotherm Systems and Methods Utilizing Carbohydrate In Non-Oxidizing Environment |
US20090114856A1 (en) * | 2007-10-10 | 2009-05-07 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) | Transport/storage cask for radioactive material |
US20100270001A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing grout heat conductibility and increasing caustic resistance |
US20130206361A1 (en) * | 2010-06-02 | 2013-08-15 | Tn International | Packaging for transport and/or storage of radioactive materials, which include improved means of thermal conduction |
WO2019184928A1 (zh) * | 2018-03-29 | 2019-10-03 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
US10692618B2 (en) | 2018-06-04 | 2020-06-23 | Deep Isolation, Inc. | Hazardous material canister |
US10878972B2 (en) | 2019-02-21 | 2020-12-29 | Deep Isolation, Inc. | Hazardous material repository systems and methods |
US10943706B2 (en) | 2019-02-21 | 2021-03-09 | Deep Isolation, Inc. | Hazardous material canister systems and methods |
WO2021204265A1 (zh) * | 2020-04-09 | 2021-10-14 | 上海核工程研究设计院有限公司 | 核燃料运输容器 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3012256A1 (de) * | 1980-03-29 | 1981-10-15 | Transnuklear Gmbh, 6450 Hanau | Behaelter zum transport und/oder lagerung radioaktiver stoffe |
JPS57116898U (ko) * | 1981-01-13 | 1982-07-20 | ||
FR2521764A1 (fr) * | 1982-02-12 | 1983-08-19 | Creusot Loire | Dispositif de protection neutronique pour produit radio-actif |
DE3306940A1 (de) * | 1982-03-05 | 1983-09-15 | British Nuclear Fuels Ltd., Risley, Warrington, Cheshire | Kernbrennstoff-transportbehaelter |
DE3424938A1 (de) * | 1984-07-06 | 1986-02-06 | Gesellschaft für Strahlen- und Umweltforschung mbH, 8000 München | Transporteinrichtung fuer hochradioaktive stoffe |
JPS63159795A (ja) * | 1986-12-24 | 1988-07-02 | 株式会社神戸製鋼所 | 放射性物質の輸送兼貯蔵用容器 |
DE4004037C1 (en) * | 1990-02-10 | 1991-05-23 | Siempelkamp Giesserei Gmbh & Co, 4150 Krefeld, De | Storage container for radioactive substance - comprises cast iron lower section and lid with soft elastic seal |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3432666A (en) * | 1964-03-13 | 1969-03-11 | Atomic Energy Authority Uk | Containers for transporting radioactive and/or fissile materials |
US3466662A (en) * | 1964-10-21 | 1969-09-09 | Lyonnaise De Plomberie Ind Soc | Fireproof shielded containers for radioactive materials |
US3727060A (en) * | 1969-08-13 | 1973-04-10 | Transnucleaire Soc Transports | Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3113215A (en) * | 1961-02-27 | 1963-12-03 | Stanray Corp | Cask construction for radioactive material |
DE1514623B2 (de) * | 1965-11-22 | 1971-01-07 | Siemens AG, 1000 Berlin u. 8000 München | Transportbehälter für verbrauchte Brennelemente von Kernreaktoren |
US3483381A (en) * | 1966-09-09 | 1969-12-09 | Nat Lead Co | Shipping container for radioactive materials having corner shielding means |
FR2055761A1 (ko) * | 1969-08-12 | 1971-04-30 | Robatel Slpi | |
JPS6053614B2 (ja) * | 1977-07-14 | 1985-11-26 | 松下電器産業株式会社 | 電気掃除機の除塵装置 |
-
1972
- 1972-11-28 FR FR7242963A patent/FR2208165B1/fr not_active Expired
-
1973
- 1973-11-12 GB GB5233973A patent/GB1403338A/en not_active Expired
- 1973-11-27 DE DE2358979A patent/DE2358979C2/de not_active Expired
- 1973-11-28 JP JP13400873A patent/JPS5727440B2/ja not_active Expired
- 1973-12-14 US US424720A patent/US3930166A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3432666A (en) * | 1964-03-13 | 1969-03-11 | Atomic Energy Authority Uk | Containers for transporting radioactive and/or fissile materials |
US3466662A (en) * | 1964-10-21 | 1969-09-09 | Lyonnaise De Plomberie Ind Soc | Fireproof shielded containers for radioactive materials |
US3727060A (en) * | 1969-08-13 | 1973-04-10 | Transnucleaire Soc Transports | Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4039842A (en) * | 1976-01-08 | 1977-08-02 | Brooks & Perkins, Incorporated | Fuel storage rack |
FR2431754A1 (fr) * | 1978-07-19 | 1980-02-15 | Transnuklear Gmbh | Conteneur blinde pour le transport et/ou le stockage d'elements combustibles irradies |
US4326130A (en) * | 1978-10-17 | 1982-04-20 | Stefan Ahner | Shielding container with neutron shielding for the transportation and/or storage of spent fuel elements |
FR2471027A1 (fr) * | 1979-11-17 | 1981-06-12 | Transnuklear Gmbh | Vase de transport et/ou de stockage pour matieres radioactives |
US4326918A (en) * | 1980-03-13 | 1982-04-27 | Electric Power Research Institute, Inc. | Storage assembly for spent nuclear fuel |
US4328423A (en) * | 1980-04-23 | 1982-05-04 | The United States Of America As Represented By The United States Department Of Energy | Canister arrangement for storing radioactive waste |
EP0143398A2 (de) * | 1983-11-29 | 1985-06-05 | Alkem Gmbh | Behälter insbesondere für radioaktive Substanzen |
EP0143398A3 (en) * | 1983-11-29 | 1985-07-17 | Alkem Gmbh | Container, in particular for radioactive substances |
US4935943A (en) * | 1984-08-30 | 1990-06-19 | The United States Of America As Represented By The United States Department Of Energy | Corrosion resistant storage container for radioactive material |
US4783309A (en) * | 1986-06-20 | 1988-11-08 | Deutsche Gesellschaft Fur Wiederaufarbeitung Von Kernbrennstoffen Mbh | Double container system for transporting and storing radioactive materials |
EP0312902A3 (en) * | 1987-10-19 | 1990-01-10 | Westinghouse Electric Corporation | Thermal protection shell for radioactive waste containers |
EP0312902A2 (en) * | 1987-10-19 | 1989-04-26 | Westinghouse Electric Corporation | Thermal protection shell for radioactive waste containers |
WO1995020459A1 (de) * | 1994-01-27 | 1995-08-03 | Germania Chemnitz Gmbh | Verfahren zur herstellung einer schweissverbindung und nach diesem verfahren hergestellter transport und lagerbehälter für abgebrannte kernbrennstoffkasseten |
US6187395B1 (en) * | 1994-01-27 | 2001-02-13 | Gnb-Gesellschaft Fur Nuklear-Behalter Mbh | Process for the production of a weld joint and conveying and storage containers produced according to this process for burned out nuclear fuel cartridges |
EP0757361A1 (en) * | 1995-08-04 | 1997-02-05 | Kabushiki Kaisha Kobe Seiko Sho | Transport/storage cask for a radioactive material |
US5641970A (en) * | 1995-08-04 | 1997-06-24 | Kabushiki Kaisha Kobe Seiko Sho | Transport/storage cask for a radioactive material |
US20040253397A1 (en) * | 1995-09-07 | 2004-12-16 | Hayes Claude Q.C. | Heat absorbing temperature control devices that include hydroxide |
US7566484B2 (en) | 1995-09-07 | 2009-07-28 | Hayes And Associates | Heat absorbing temperature control devices that include hydroxide |
US6389093B1 (en) * | 1999-06-19 | 2002-05-14 | Gnb Gesellschaft Fur Nuklear-Behalter Mbh | Storage/transport container for spent nuclear-fuel elements |
EP1355320A1 (en) * | 2001-01-25 | 2003-10-22 | Mitsubishi Heavy Industries, Ltd. | Cask and production method for cask |
US20040062338A1 (en) * | 2001-01-25 | 2004-04-01 | Katsunari Ohsono | Cask and production method for cask |
US6839395B2 (en) * | 2001-01-25 | 2005-01-04 | Mitsubishi Heavy Industries, Ltd. | Cask and production method for cask |
US20050117688A1 (en) * | 2001-01-25 | 2005-06-02 | Mitsubishi Heavy Industries Ltd. | Cask and method of manufacturing the cask |
US7194060B2 (en) * | 2001-01-25 | 2007-03-20 | Mitsubishi Heavy Industries, Ltd. | Cask and method of manufacturing the cask |
EP1355320A4 (en) * | 2001-01-25 | 2010-01-06 | Mitsubishi Heavy Ind Ltd | BARREL AND METHOD FOR ITS MANUFACTURE |
US20040125906A1 (en) * | 2002-11-09 | 2004-07-01 | Gnb Gesellschaft Fur Nuklear-Behalter Mbh | Container for heat-generating radioactive elements |
US20090059531A1 (en) * | 2007-08-31 | 2009-03-05 | Hayes & Associates | Endotherm Systems and Methods Utilizing Carbohydrate In Non-Oxidizing Environment |
US9546312B2 (en) | 2007-08-31 | 2017-01-17 | Hayes & Associates | Endotherm systems and methods utilizing carbohydrate in non-oxidizing environment |
EP2048671A3 (en) * | 2007-10-10 | 2011-03-16 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Transport/storage cask for radioactive material |
US7973298B2 (en) | 2007-10-10 | 2011-07-05 | Kobe Steel, Ltd. | Transport/storage cask for radioactive material |
US20090114856A1 (en) * | 2007-10-10 | 2009-05-07 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) | Transport/storage cask for radioactive material |
US20100270001A1 (en) * | 2008-08-05 | 2010-10-28 | Parrella Michael J | System and method of maximizing grout heat conductibility and increasing caustic resistance |
US20130206361A1 (en) * | 2010-06-02 | 2013-08-15 | Tn International | Packaging for transport and/or storage of radioactive materials, which include improved means of thermal conduction |
WO2019184928A1 (zh) * | 2018-03-29 | 2019-10-03 | 何满潮 | 用于地下中子能电站的防核素迁移屏障体及其施工方法 |
US10692618B2 (en) | 2018-06-04 | 2020-06-23 | Deep Isolation, Inc. | Hazardous material canister |
US10878972B2 (en) | 2019-02-21 | 2020-12-29 | Deep Isolation, Inc. | Hazardous material repository systems and methods |
US10943706B2 (en) | 2019-02-21 | 2021-03-09 | Deep Isolation, Inc. | Hazardous material canister systems and methods |
US11289230B2 (en) | 2019-02-21 | 2022-03-29 | Deep Isolation, Inc. | Hazardous material canister systems and methods |
US11488736B2 (en) | 2019-02-21 | 2022-11-01 | Deep Isolation, Inc. | Hazardous material repository systems and methods |
US11842822B2 (en) | 2019-02-21 | 2023-12-12 | Deep Isolation, Inc. | Hazardous material canister systems and methods |
WO2021204265A1 (zh) * | 2020-04-09 | 2021-10-14 | 上海核工程研究设计院有限公司 | 核燃料运输容器 |
Also Published As
Publication number | Publication date |
---|---|
DE2358979A1 (de) | 1974-05-30 |
GB1403338A (en) | 1975-08-28 |
FR2208165B1 (ko) | 1975-09-12 |
JPS5727440B2 (ko) | 1982-06-10 |
JPS4995099A (ko) | 1974-09-10 |
DE2358979C2 (de) | 1984-08-02 |
FR2208165A1 (ko) | 1974-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3930166A (en) | Package for transporting or enclosing radioactive materials | |
US3727060A (en) | Package for the storage and transportation of radioactive substances containing both neutron and gamma radiation absorbing material | |
US4453081A (en) | Container for the transportation and/or storage of radioactive material | |
US3432666A (en) | Containers for transporting radioactive and/or fissile materials | |
US3962587A (en) | Shipping cask for spent nuclear fuel assemblies | |
US4649018A (en) | Container for the storage of radioactive elements | |
RU2525229C2 (ru) | Устройство для хранения и/или транспортировки высокорадиоактивных отходов, а также способ его изготовления | |
GB1196269A (en) | Shipping Container for Radioactive Materials | |
US3466662A (en) | Fireproof shielded containers for radioactive materials | |
US4521691A (en) | Shielding container having neutron shielding for the transportation and/or storage of radioactive material | |
US2825689A (en) | Neutronic reactor and fuel element therefor | |
RU2084975C1 (ru) | Контейнер для транспортировки и/или хранения отработавшего ядерного топлива | |
US3851179A (en) | Shipping cask neutron and heat shield | |
RU2510770C1 (ru) | Контейнер для транспортировки и/или хранения отработавшего ядерного топлива | |
US4261794A (en) | Radiation shielding for electric penetration assemblies | |
RU2459295C1 (ru) | Транспортный упаковочный комплект для отработавших тепловыделяющих сборок ядерных реакторов | |
RU2463677C1 (ru) | Транспортный упаковочный комплект для отработавших тепловыделяющих сборок ядерных реакторов | |
RU2543609C1 (ru) | Интенсификатор теплоотдачи | |
US2910177A (en) | Reactor component | |
ES306784A1 (es) | Un dispositivo de castillete de transporte para objetos radioactivos | |
GB1222189A (en) | Improvements in and relating to shielding containers | |
RU2082233C1 (ru) | Железобетонный контейнер | |
USH558H (en) | Radation shielding pellets | |
RU2134918C1 (ru) | Контейнер железобетонный | |
KR102638259B1 (ko) | 용이한 제조와 향상된 열전도성을 허용하는, 방사성 물질의 운송 및/또는 저장을 위한 패키징 |